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TWO-SAMPLE AND ANOVA TESTS FOR HIGH DIMENSIONAL
MEANS1

BY SONG XI CHEN, JUN LI AND PING-SHOU ZHONG

Peking University, Kent State University and University of Illinois at Chicago

This paper considers testing the equality of two high dimensional means.
Two approaches are utilized to formulate L2-type tests for better power per-
formance when the two high dimensional mean vectors differ only in sparsely
populated coordinates and the differences are faint. One is to conduct thresh-
olding to remove the nonsignal bearing dimensions for variance reduction of
the test statistics. The other is to transform the data via the precision matrix
for signal enhancement. It is shown that the thresholding and data transfor-
mation lead to attractive detection boundaries for the tests. Furthermore, we
demonstrate explicitly the effects of precision matrix estimation on the detec-
tion boundary for the test with thresholding and data transformation. Exten-
sion to multi-sample ANOVA tests is also investigated. Numerical studies are
performed to confirm the theoretical findings and demonstrate the practical
implementations.

1. Introduction. Modern statistical data in biological and financial studies
are increasingly high dimensional, but with relatively small sample sizes. This is
the so-called “large p, small n” paradigm, where classical multivariate procedures
originally designed for fixed dimension problems may no longer be feasible. New
methods which are adaptive to the “large p, small n” paradigm are needed.

An important high dimensional inferential task is to test the equality of the mean
vectors between two populations. Let Xi1, . . . ,Xini

be an IID sample drawn from
a p-dimensional distribution Fi , for i = 1 and 2, respectively. The dimensionality
p can be much larger than the sample sizes n1 and n2 so that p/ni → ∞. Let μi

and �i be the mean and the covariance of Fi . The primary interest is testing

(1.1) H0 : μ1 = μ2 versus H1 : μ1 �= μ2.

Hotelling’s T 2 test (Hotelling (1931)) is a classical test for the above hypotheses
with fixed dimension p, and is still applicable if p < n1 + n2 − 2. However, Bai
and Saranadasa (1996) showed that Hotelling’s test suffers from a power loss when
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p/(n1 + n2 − 2) approaches to 1 from below. When p > n1 + n2 − 2, the test is
inapplicable as the sample covariance matrix is no longer invertible.

There have been proposals to modify Hotelling’s T 2 statistic for high dimen-
sion. Bai and Saranadasa (1996) removed the inverse of the sample covariance
from the Hotelling’s formulation. Chen and Qin (2010) (CQ) considered a linear
combination of U-statistics and showed that the corresponding test can operate
under much relaxed conditions regarding p and sample sizes without assuming
�1 = �2. Srivastava, Katayama and Kano (2013) proposed using the diagonal
matrix of the sample covariance to replace the sample covariance under the nor-
mality. Gregory et al. (2015) proposed using an average of the squared univariate
two-sample t-statistics over p components as the test statistic. These four tests are
basically all targeted on the L2-norm or a weighted L2-norm between μ1 and μ2.
Cai, Liu and Xia (2014) (CLX) proposed a test based on the max-norm of marginal
t-statistics. More importantly, they implemented a data transformation designed to
increase the signal strength under sparsity as discovered by Hall and Jin (2010) in
the one-sample innovated higher criticism test.

The L2-norm based tests are known to be effective in detecting dense signals
when the differences between μ1 and μ2 are located over a large number of com-
ponents. However, the tests encounter a power loss under the sparse signal settings.
Meanwhile, although Hall and Jin (2010) discovered that transforming data with a
known precision matrix � = �−1 for the Gaussian data leads to enhanced signal
strength and a lowered detection boundary, it is uncertain if these results can be
maintained with estimated � for the sub-Gaussian data.

With these as the motivation, this paper considers two modifications to CQ’s
test formulation. First of all, we apply a multi-level thresholding approach to re-
moving the nonsignal bearing dimensions via a multi-layer of threshold levels to
be adaptive to faint signals. The second alteration is to transform the data by an
estimated precision matrix followed by the multi-level thresholding trying to en-
large the signal strength for more power gain. The idea of thresholding to remove
the nonsignal bearing dimensions was advocated in Donoho and Johnstone (1994)
for selecting significant wavelet coefficients and Fan (1996) for testing the mean
with IID Gaussian distributed components; see also Ji and Jin (2012) for variable
selection in high dimensional regression. In this paper, we show that a two-sample
test based on the multiple thresholding levels (multi-level thresholding test) at-
tains a detection boundary that coincides with the the optimal detection boundary
for Gaussian data with identity covariance matrix. Furthermore, it is found that
the detection boundary can be lowered by adding the data transformation in its
formulation. A contribution of the current paper is that we explicitly establish the
effect of precision matrix estimation on the detection boundary for the test with
thresholding and data transformation.

In addition to the two-sample tests, we extend our analysis to the ANOVA test
for m populations:

(1.2) H ∗
0 : μ1 = μ2 = · · · = μm versus H ∗

1 : μi �= μj for some i �= j ,
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where μi is the mean of Fi for i = 1, . . . ,m and m ≥ 2. Multi-level thresholding
ANOVA tests with and without data transformation via the precision matrices are
proposed. It is shown that the detection boundaries of the ANOVA tests resemble
those of the two samples outlined above. As far as we are aware, the results re-
garding the detection boundary for ANOVA tests are the first of this kind in high
dimensional testing for the means.

The rest of the paper is organized as follows. We analyze the power performance
of the CQ test and the Oracle test under the sparse setting in Section 2. Thresh-
olding tests without and with data transformation are proposed in Section 3 for
detecting faint signals. Section 4 studies the multi-level thresholding tests. Exten-
sion to the ANOVA tests is provided in Section 5. Simulation results are presented
in Section 6. Section 7 concludes the paper with discussions. Key technical details
are reported in the Appendix, whereas additional proofs and simulation results, and
an empirical study to select differentially expressed gene-sets for a human breast
cancer data set are given in the Supplementary Material.

2. L2-Norm based tests under sparsity. The statistic proposed by Chen and
Qin (2010) (herein CQ test) can be written as Tn = ∑p

k=1 Tnk where

Tnk = 1

n1(n1 − 1)

n1∑
i �=j

X
(k)
1i X

(k)
1j + 1

n2(n2 − 1)

n2∑
i �=j

X
(k)
2i X

(k)
2j

(2.1)

− 2

n1n2

n1∑
i

n2∑
j

X
(k)
1i X

(k)
2j ,

and X
(k)
ij denotes the kth component of Xij . It is readily shown that Tnk is unbiased

to (μ1k − μ2k)
2, a form of the signal in the kth dimension.

To facilitate simpler notation, we modify the statistic Tn by rescaling each Tnk

by σ1,kk/n1 + σ2,kk/n2, the variance of X̄
(k)
1 − X̄

(k)
2 where σi,kk is the kth diag-

onal component of �i (i = 1,2) and is assumed to be known. If σ1,kk and σ2,kk

are unknown, we can use σ̂1,kk/n1 + σ̂2,kk/n2 where σ̂1,kk and σ̂2,kk are the usual
sample variances at the kth dimension. This will make the CQ test invariant un-
der the scale transformation; see Feng et al. (2015) for a related investigation. To
expedite discussion, we assume σi,kk are known and equal to one without loss of
generality. This leads to a modified CQ statistic

(2.2) T̃n = n

p∑
k=1

Tnk with n = n1n2/(n1 + n2).

Similar to Chen and Qin (2010), by defining

(2.3) ρkl = Cov
{√

n
(
X̄

(k)
1 − X̄

(k)
2

)
,
√

n
(
X̄

(l)
1 − X̄

(l)
2

)} = n

(
σ1,kl

n1
+ σ2,kl

n2

)
,
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the variance of T̃n under H0 is σ 2
T̃n,0

= 2p + 2
∑

i �=j ρ2
ij , and under H1 is

(2.4) σ 2
T̃n,1

= 2p + 2
∑
i �=j

ρ2
ij + 4n

∑
k,l∈Sβ

δkδlρkl,

where δk = μ1k − μ2k and Sβ = {k : δk �= 0} is the set of nonzero δk locations.
Under a general multivariate model and some conditions on the covariance, it

can be shown (Chen and Qin (2010)) that

T̃n − ‖μ1 − μ2‖2

σ
T̃n,1

d−→ N(0,1) as p → ∞ and n → ∞.

So the modified CQ test rejects H0 if T̃n/σ̂T̃n,0 > zα where zα is the upper α quan-
tile of N(0,1) and σ̂

T̃n,0 is a consistent estimator of σ
T̃n,0.

To see the performance of the CQ test under the sparse setting, let |Sβ | = p1−β

where | · | represents the cardinality of a set and β ∈ (0,1) is the sparsity index.
The power of the CQ test is

(2.5) β
T̃n

(‖μ1 − μ2‖
) = �

(
−σ

T̃n,0

σ
T̃n,1

zα + p1−βnδ̄2

σ
T̃n,1

)
,

where �(·) is the cumulative distribution function of N(0,1), and δ̄2 =∑
k∈Sβ

δ2
k/p

1−β in (2.5) is the average standardized signal.

Since σ 2
T̃n,1

≥ σ 2
T̃n,0

, the first term within �(·) in (2.5) is bounded. Then the

power is largely determined by the second term

(2.6) SNR
T̃n

=: p1−βnδ̄2√
2p + 2

∑
i �=j ρ2

ij + 4n
∑

k,l∈Sβ
δkδlρkl

,

which is the signal-to-noise ratio since the numerator is the average signal strength
and the denominator is the standard deviation of the test statistic under H1. An
inspection on (2.6) reveals that while the numerator of SNR

T̃n
is contributed only

by those signal bearing dimensions, the standard deviation in the denominator is
contributed by all Tnk including those with non-signals. Specifically, if �1 = �2 =
Ip , SNR

T̃n
= p1−βnδ̄2/

√
2p + 4p1−βnδ̄2. If β > 1/2 and δ̄ = o(n−1/2pβ/2−1/4),

SNR
T̃n

= o(1), which implies that the test has little power beyond the significant

level. A reason for the power loss is that the variance of T̃n is inflated by those
nonsignal bearing Tnk .

To put the above analysis in a broader perspective, we consider an Oracle who
has the knowledge of the signal bearing set Sβ = {k : δk �= 0}. The Oracle test
statistic is

(2.7) On = n
∑
k∈Sβ

Tnk.
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Similar to the CQ test, the power of the Oracle test is determined by

SNROn =: p1−βnδ̄2

σOn

where(2.8)

σ 2
On

= 2p1−β + 2
∑

i �=j∈Sβ

ρ2
ij + 4n

∑
k,l∈Sβ

δkδlρkl.(2.9)

Since σ 2
On


 σ 2
T̃n,1

, SNROn � SNR
T̃n

. Specially, if �1 = �2 = Ip ,

(2.10) SNROn = p1−βnδ̄2√
2p1−β + 4p1−βnδ̄2

= p(1−β)/2nδ̄2√
2 + 4nδ̄2

that tends to infinity for β > 1/2 as long as δ̄�n−1/2pβ/4−1/4+ε for any ε > 0,
which is much smaller than n−1/2pβ/2−1/4 required for the CQ test, indicating the
test is able to detect much fainter signal.

3. Thresholding and data transformation. The power of the Oracle test is
in its exclusion of the nonsignal bearing dimensions, whose locations are unknown
in reality. Thresholding can be carried out to exclude those nonsignal bearing di-
mensions. Based on the large deviation results (Petrov (1995)), we use a thresh-
olding level λn(s) = 2s logp for s ∈ (0,1) to strike a balance between removing
nonsignal bearing Tnk and keeping those with signals. The thresholding statistic is

(3.1) L1(s) =
p∑

k=1

nTnkI
{
nTnk + 1 > λn(s)

}
,

where I (·) is the indicator function. A closely related statistic is

(3.2) L2(s) =
p∑

k=1

{
n
(
X̄

(k)
1 − X̄

(k)
2

)2 − 1
}
I
{
n
(
X̄

(k)
1 − X̄

(k)
2

)2
> λn(s)

}
,

where X̄
(k)
i is the sample means of X

(k)
ij . Here, we use Ln(s) to refer either L1(s)

or L2(s) because both L1(s) and L2(s) have very similar properties. The proposed
thresholding statistic can accommodate the column-wise dependence, which is de-
fined via the α-mixing among the components of X = (X(1), . . . ,X(p))T .

We take a time series view on the dependence among the components of the high
dimensional X. For any integers a < b, let FX,(a,b) to be the σ -algebra generated
by {X(m) : m ∈ (a, b)} and define the α-mixing coefficient

αX(k) = sup
m∈N ,A∈FX,(1,m),B∈FX,(m+k,∞)

∣∣P(A ∩ B) − P(A)P (B)
∣∣,

where N denotes the set of natural numbers. The following conditions are assumed
in our analysis:
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(C1): As n → ∞, p/n → ∞, n1/(n1 + n2) → κ and logp = o(n1/3).
(C2): Let Xij = μi + W ij . There exists a positive constant H such that for

h ∈ [−H,H ]2, E{ehT ·[(W(k)
ij )2,(W

(l)
ij )2]} < ∞ for k �= l.

(C3): There exists a permutation X̃ of the components of X such that X̃ is
α-mixing satisfying αX̃(k) ≤ Cαk for some α ∈ (0,1) and a positive constant C.
Moreover,

∑p
l=1 |σi,kl| < ∞ for i = 1 or 2 such that ρkl defined in (2.3) satisfies∑p

l=1 |ρkl| < ∞ for any k ∈ {1, . . . , p}.
Condition (C1) specifies the growth rate of p relative to n under which the large

deviation results can be applied. This condition is not required in Chen and Qin
(2010) because it does not involve the thresholding. (C2) assumes that (X

(k)
ij ,X

(l)
ij )

has a bivariate sub-Gaussian distribution, which is more general than the Gaussian
distribution. Such conditions are commonly assumed in high dimensional analy-
sis (Bickel and Levina (2008b), Zhong, Chen and Xu (2013); and Cai, Liu and
Xia (2014)). Condition (C3) prescribes weak dependence among the column com-
ponents of a permuted version X̃ of the original vector X, which implies that X̃
respects an ordering such that components closer to each other are more strongly
correlated than those further apart. As the thresholded L2-norm statistics are in-
variant under any permutation of the data, (C3) only requires that such permuta-
tion exists and there is no need to actually identify the permutation. The exponen-
tial decay for the α-mixing coefficients can be relaxed to polynomial decays with
more involved proofs. The last two restrictions in (C3) are for the quantities of the
original data rather than the permuted data due to the permutation invariance of
the L2 statistics. While the α-mixing is a common approach to accommodate the
column-wise dependence, the physical dependence measure of Wu (2005) may be
also used for modeling the weak dependence. A parallel development based on the
physical dependence is possible. It is noted that (C3) is not required in Chen and
Qin (2010) because their test formulation does not involve thresholding to remove
the nonsignal bearing dimensions. The asymptotic normality of the test statistic
in Chen and Qin (2010) is established by the martingale central limit theorem,
which requires some moment conditions and a general multivariate linear innova-
tion model. However, in one aspect, the paper’s assumption is weaker, as we do
not assume the multivariate linear innovation model. This is due to the thresholding
which renders a need for such model.

In addition to the thresholding, we consider enhancing signal strength via data
rotation. Motivated by Hall and Jin’s (2010) study on data rotation via a banded
Cholesky factor for the innovated HC test, and Cai, Liu and Xia’s (2014) trans-
formation via the CLIME estimator (Cai, Liu and Luo (2011)) in their max-
norm based test, we will show that the signal enhancement can be achieved by
transforming the data via an estimate of � = �−1

w = (ωij )p×p where �w =
(1 − κ)�1 + κ�2.
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Like Hall and Jin (2010), we consider a bandable covariance matrix class

V (ε0,C, ν) = {
� : 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ ε−1

0 , ν > 0,

|σij | ≤ C
(
1 + |i − j |)−(ν+1) for all i, j : |i − j | ≥ 1

}
,

which satisfies both the banding and thresholding conditions of Bickel and Levina
(2008b). We assume the following regarding the covariance matrices:

(C4): Both �1 and �2 belong to the matrix class V (ε0,C, ν).

Although (C3) has assumed the weak dependence among the components of
Xij , imposing (C4) ensures that the data transformed by � are also weakly de-
pendent. Although we assume the off-diagonal decay rates of �i (i = 1,2) are
the same to expedite the technical analysis, all the results can be generalized to the
case with different decay rates. In practice, the precision matrix � needs to be esti-
mated. Bickel and Levina (2008a) proposed estimating � by banding the Cholesky
factor matrices. Cai, Liu and Luo (2011) introduced the CLIME estimator based
on the constrained L1 minimization. As the CLIME estimator has the same rate
of convergence as the estimator of Bickel and Levina (2008a) (Cai, Liu and Luo
(2011)) when � belongs to the bandable class, we use the latter to obtain a slightly
simpler banding Cholesky estimator �̂τ as follows.

Define Y kl = √
1 − κX1k − √

κX2l for k = 1, . . . , n1 and l = 1, . . . , n2, where
κ = limn→∞ n1/(n1 + n2). Then Var(Ykl) = �w ≡ (1 − κ)�1 + κ�2. Let Y be
an IID copy of Y kl for any fixed k and l such that Y = (Y (1), . . . , Y (p))T . For
j = 1, . . . , p, define Ŷ (j) = aT

j W(j) where aj = {Var(W(j))}−1 Cov(Ŷ (j),W(j))

and W(j) = (Y (1), . . . , Y (j−1))T . Let εj = Y (j) − Ŷ (j) and d2
j = Var(εj ), and A

be the lower triangular matrix with the j th row being (aT
j ,0p−j+1) and D =

diag(d2
1 , . . . , d2

p) where 0s means a vector of 0 with length s. Then the Cholesky

decomposition is � = (I − A)T D−1(I − A).
Let Y n,kl = √

n2/(n1 + n2)X1k − √
n1/(n1 + n2)X2l := (Y

(1)
n,kl, . . . , Y

(p)
n,kl)

T .

Given a τ , regress Y
(j)
n,kl on Y(j)

n,kl,−τ = (Y
(j−τ)
n,kl , . . . , Y

(j−1)
n,kl )T to obtain the least

square estimate of aj,τ = (aj−τ , . . . , aj−1)
T :

âj,τ =
(

n1∑
k=1

n2∑
l=1

Y(j)
n,kl,−τ Y(j)T

n,kl,−τ

)−1 n1∑
k=1

n2∑
l=1

Y(j)
n,kl,−τ Y(j)

n,kl .

Put âT
j = (0T

τ−1, âT
j,τ ,0T

p−j+1) be the j th row of a lower triangular matrix Âτ

and D̂τ = diag(d2
1,τ , . . . , d

2
p,τ ) where d2

j,τ = ∑n1
k=1

∑n2
l=1(Y

(j)
n,kl − âT

j,τ Y(j)
n,kl,−τ )

2/

(n1n2). Thus, a banded estimator of � is

(3.3) �̂τ = (I − Âτ )
T D̂−1

τ (I − Âτ ).
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The consistency of �̂τ to � is established in Bickel and Levina (2008a). The
method of Qiu and Chen (2015) may be used for selecting the suitable banding
width τ , as well as a method outlined in Section 6.

It is noted that the bandable structure assumed in (C4) is not needed in the max-
norm based test of Cai, Liu and Xia (2014). However, they require other conditions
which are not taken by the current paper. More importantly, the two tests have
different detection boundaries by comparing those established in Theorem 4 of
this paper and that given in Section 1.4.1 of Donoho and Jin (2004). In particular,
when the sparsity is moderate such that 1/2 < β < 3/4, the proposed test can attain
the Gaussian detection boundary while the max-norm test cannot. These aspects
are reflected in the simulation results and reported in Figures 1–3 of Section 6.

The transformed thresholding test statistic based on {Ẑ1i =: �̂τ X1i : 1 ≤ i ≤ n1}
and {Ẑ2i =: �̂τ X2i : 1 ≤ i ≤ n2} is

(3.4) Ĵn(s, τ ) =
p∑

k=1

{
n(

¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2

ω̂kk

− 1
}
I

{
n(

¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2

ω̂kk

> λn(s)

}
,

where ¯̂
Z

(k)
i is the sample mean of Ẑ

(k)
ij .

It is worth discussing the sparsity of the transformed signals as it directly relates
to the benefits of data transformation. As shown in Lemma 6 of the Supplemen-
tary Material, under (C4) and (C5), �(τ )(μ1 −μ2) is sparse if (μ1 −μ2) is, where
�(τ ) = {ωij I(|i − j | ≤ τ)}p×p is a banded version of �. The Supplementary Ma-
terial also contains a numerical confirmation on the sparsity of �(τ )(μ1 − μ2). In
practical problems such as time series data analysis, (C4) and (C5) can hold simul-
taneously if random noises are weakly dependent when they are farther apart in
time, and signals are distributed randomly without appearing in clusters. However,
in many applications such as genomic studies, variables are not naturally ordered
even though the correlations among them are sparse. In such a case, there are algo-
rithms, such as the one in Wagaman and Levina (2009), which permute the original
random vectors so that the covariance of permuted data vector is more compliant
to (C4). We note that the hypothesis (1.1) will not be affected by the permutation.
When signals appear in clusters whose locations are randomly distributed as (C5),
the benefits of data transformation may also be studied similar to Hall and Jin
(2010).

THEOREM 1. Assume Conditions (C1)–(C4), p = n1/θ for 0 < θ < 1 and τ �
(n−1 logp)−1/{2(ν+1)}, then for any s ∈ (1 − νθ/(ν + 1),1),

σ−1
Jn(s,τ )

{
Ĵn(s, τ ) − μJn(s,τ )

} d−→ N(0,1),

where μJn(s,τ ) and σJn(s,τ ) are defined by (A.3) and (A.4), respectively.

That requiring τ � (n−1 logp)−1/{2(ν+1)} is to allow consistent estimation of �.
In addition, that imposing p = n1/θ is to control the accumulated error due to
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the increase of dimension. Note that if θ is arbitrarily close to 0, p will grow
exponentially fast with n. Moreover, a sufficient rate of convergence of �̂τ to �
requires the thresholding level s being larger than 1 − νθ/(ν + 1) which depends
on the sparsity parameter ν for the bandable class in (C4). In practice, θ can be
“estimated” by log(n)/ log(p). A liberal choice for the lower bound may be 1 −
log(n)/ log(p) provided ν � 1. To gain knowledge of ν, we may model the decay
of σij parametrically, for instance |σij | = γ |j−i| for a γ ∈ (0,1) or |σij | = (1+|j −
i|)−ξ for a ξ > 0, which represent models with the exponential and the polynomial
decay, respectively. Both models were considered in Hall and Jin (2010) and Qiu
and Chen (2015). We can also use the generalized method of moment estimator
advocated in He and Chen (2016) to estimate the parameters γ and ξ under both
models, which can be translated to estimates of ν.

For the thresholding statistic Ln(s) without the data transformation, less condi-
tions than those in Theorem 1 are required in establishing its asymptotic normality,
as shown in the following proposition. In particular, that p = n1/θ and the lower
bound on s are not needed.

PROPOSITION 1. Assume Conditions (C1)–(C3). For any s ∈ (0,1),

(3.5) σ−1
Ln(s)

{
Ln(s) − μLn(s)

} d−→ N(0,1),

where μLn(s) and σLn(s) are given by (A.1) and (A.2), respectively.

The transformed thresholding test rejects H0 at the level α if

(3.6) Ĵn(s, τ ) > zασ̂Jn(s,τ ),0 + μ̂Jn(s,τ ),0,

where μ̂Jn(s,τ ),0 and σ̂ 2
Jn(s,τ ),0 are, respectively, consistent estimators of

μJn(s,τ ),0 =
{

2√
2π

(2s logp)
1
2 p1−s

}{
1 + o(1)

}
and

σ 2
Jn(s,τ ),0 =

{
2√
2π

{
(2s logp)

3
2 + (2s logp)

1
2
}
p1−s

}{
1 + o(1)

}
,

satisfying

(3.7) μJn(s,τ ),0 − μ̂Jn(s,τ ),0 = o{σJn(s,τ ),0} and σ̂Jn(s,τ ),0/σJn(s,τ ),0
p→ 1.

Moreover, the asymptotic power of the transformed thresholding test is

β
Ĵn(s,τ )

(‖μ1 − μ2‖) = �

(
−zασJn(s,τ ),0

σJn(s,τ )

+ μJn(s,τ ) − μJn(s,τ ),0

σJn(s,τ )

)
,

which is mainly determined by

(3.8) SNR
Ĵn(s,τ )

=: μJn(s,τ ) − μJn(s,τ ),0

σJn(s,τ )

.
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A test based on Ln(s) without the data transformation can be proposed in an
analogy to (3.6). It can be shown based on (3.5) that the asymptotic power of the
thresholding only test is

βLn(s)

(‖μ1 − μ2‖) = �

(
−zασLn(s),0

σLn(s)

+ μLn(s) − μLn(s),0

σLn(s)

)
,

which is determined by its signal-to-noise ratio

(3.9) SNRLn(s) =: μLn(s) − μLn(s),0

σLn(s)

,

where μLn(s),0 and σLn(s),0 are the values of μLn(s) and σLn(s) under H0 and can
be obtained by ignoring all the summation terms in (A.1) and (A.2).

We want to compare SNR
Ĵn(s,τ )

with SNRLn with the following condition re-
garding the distribution of the signals:

(C5): The sparse elements of Sβ with β ∈ (1/2,1) are randomly distributed
among {1,2, . . . , p}.

THEOREM 2. Under the conditions of Theorem 1 and (C5), SNR
Ĵn(s,τ )

≥
SNRLn(s) with probability approaching to 1.

Theorem 2 implies that the transformed thresholding test possesses a better
power than that of the thresholding only test based on Ln(s), which spells out
the benefit of conducting the data transformation.

4. Multi-level thresholding. The thresholding tests with or without the data
transformation in the last section depend on the thresholding level s. As shown
in the proof of Proposition 1, if all the signals are strong such that nδ2

k > 2 logp,
a single level thresholding with s = 1− allows the test based on Ln(s) to have
the power of the Oracle test up to a slowly varying multi-logp function Lp . This
echoes a result of Fan (1996) for Gaussian data with no dependence among the
column components of the data. However, for weak signals, the thresholding has
to be administrated at a smaller level, say 2s logp for s ∈ (0,1). In this case, the
single-level thresholding becomes inflexible. In order to adapt to the underlying
signal strength, the higher criticism (HC) test (Donoho and Jin (2004)) that utilizes
many levels of thresholding offers a solution.

We propose a multi-level thresholding statistic for the transformed data

(4.1) M
Ĵn

= max
s∈�n

Ĵn(s, τ ) − μ̂Jn(s,τ ),0

σ̂Jn(s,τ ),0
,

where �n = {sk : sk = n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2/(2ω̂kk logp) for k = 1, . . . , p} ∩ (1 −

νθ/(ν + 1),1 − η�) is the set of the thresholds for an arbitrarily small posi-
tive η�. It can be shown that the value of M

Ĵn
is unchanged if we replace �n
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by (1−νθ/(ν +1),1−η�) where, similar to Theorem 1, the lower bound depends
on θ and ν to ensure that the estimation error of �̂τ is negligible.

THEOREM 3. Assume Conditions (C1)–(C4) and (3.7), p = n1/θ for 0 < θ <

1 and τ � (n−1 logp)−1/{2(ν+1)}. Then under H0,

P
{
a(logp)M

Ĵn
− b

(
logp,

νθ

ν + 1
− η�

)
≤ x

}
→ exp

(−e−x),
where the two functions a(y) = (2 logy)1/2 and b(y, νθ/(ν + 1)− η�) = 2 logy +
2−1 log logy − 2−1 log[4π/{1 − νθ/(ν + 1) + η�}2].

Theorem 3 implies an asymptotically α level test that rejects H0 if

(4.2) M
Ĵn

≥ {
qα + b

(
logp,νθ/(ν + 1) − η�)}/a(logp),

where qα is the upper α quantile of the Gumbel distribution exp(−e−x).
We can also construct the multi-level thresholding statistic based on Ln(s)

(without data transformation) as

(4.3) MLn = max
s∈Sn

Ln(s) − μ̂Ln(s),0

σ̂Ln(s),0
,

where Sn = {sk ∈ (0,1 − η) : sk = n(X̄
(k)
1 − X̄

(k)
2 )2/(2 logp), fork = 1, . . . , p},

μ̂Ln(s),0 and σ̂Ln(s),0 are estimators of μLn(s),0 and σLn(s),0 satisfying

μLn(s),0 − μ̂Ln(s),0 = o{σLn(s),0} and σ̂Ln(s),0/σLn(s),0
p→ 1.(4.4)

PROPOSITION 2. Assume (C1)–(C3) and condition (4.4). Then under H0,

P
{
a(logp)MLn − b(logp,η) ≤ x

} → exp
(−e−x),

where the two functions a(·) and b(·) are defined in Theorem 3.

The proposition implies an α level two-sample multi-level thresholding test
without transformation that rejects H0 if

(4.5) MLn ≥ {
qα + b(logp,η)

}
/a(logp).

It is expected that both thresholding tests would encounter size distortion due to
a slow convergence to the extreme value distribution and the second-order effects
of the data dependence. To alleviate the problem, a parametric bootstrap approxi-
mation to the null distribution of M

Ĵn
is considered. We first obtain �̂τ through the

Cholesky decomposition based on the original samples. Two bootstrap resamples
{Z∗

1i}n1
i=1 and {Z∗

2i}n2
i=1 are generated independently from N(0, �̂τ ). It is noted

that there is no need to generate bootstrap versions of the original samples. Based
on the two bootstrap resamples, a bootstrap version of M

Ĵn
can be obtained based
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on (4.1), which we denote as M∗
Ĵn

(s). After repeating this procedure B times,

we obtain B bootstrap copies of M
Ĵn

: M
∗,(1)

Ĵn
(s), . . . ,M

∗,(B)

Ĵn
(s), which are used

to obtain an estimate to empirical null distribution of the transformed multi-level
thresholding statistic and the upper α quantile.

We are to establish the detection boundary of the transformed multi-level thresh-
olding test. Specially, we will consider the effect of estimating the precision matrix
on the detection boundary, which has not been investigated in the literature. To de-
fine the detection boundary of the test, let

ω = lim
p→∞

(
min

1≤k≤p
ωkk

)
and ω̄ = lim

p→∞
(

max
1≤k≤p

ωkk

)
.

Lemma 7 in the Supplementary Material (Chen, Li and Zhong (2018)) shows that
ω and ω̄ ≥ 1. The following two functions quantify the detection boundaries of the
tests:

�(β) =
⎧⎨⎩β − 1/2, 1/2 ≤ β ≤ 3/4,

(1 −
√

1 − β)2, 3/4 < β < 1,

and for 0 < νθ/(ν + 1) < 1,

�ν,θ (β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√
1 − νθ

ν + 1
−
√

1 − β − νθ

2ν + 2

)2
,

1

2
≤ β ≤ 3

4
− νθ

4(ν + 1)
,

β − 1

2
,

3

4
− νθ

4(ν + 1)
≤ β ≤ 3

4
,

(1 −
√

1 − β)2,
3

4
< β < 1.

(4.6)

Ingster (1997) showed that r = �(β) is the optimal detection boundary for un-
correlated Gaussian data in the sense that if (r, β) lays above the phase diagram
r = �(β), there are tests whose probabilities of type I and type II errors converge
to zero simultaneously as n → ∞; and if (r, β) is below the phase diagram, no
such test exists. Donoho and Jin (2004) showed that the HC test attains r = �(β)

as the detection boundary when Xi are IID N(μ, Ip). Zhong, Chen and Xu (2013)
showed that the L1 and L2-versions of the HC tests also attain r = �(β) as the de-
tection boundary for non-Gaussian data with column-wise dependence, and have
more attractive power for (r, β) above the detection boundary.

Although the phase diagram r = �ν,θ (β) has a similar functional form as the
detect boundary established by Delaigle, Hall and Jin (2011) based on the marginal
t-statistics, it explicitly demonstrates the effect of estimating � on the detection
boundary in the current setting. Specifically, for moderate sparsity such that 1/2 ≤
β < 3/4 − νθ/(4ν + 4), it can be shown that �ν,θ (β) > �(β) implying �ν,θ (β) has
a higher detection boundary caused by having to estimate �. However, for high
sparsity such that β ≥ 3/4 − νθ/(4ν + 4), the two diagrams are identical.
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THEOREM 4. Assume Conditions (C1)–(C5) and (3.7).

(a) When � is known, if r < ω̄−1�(β), the sum of type I and II errors of the
transformed multi-level thresholding test converges to 1 as α → 0 and n → ∞;
if r > ω−1�(β), the sum of type I and II errors of the transformed multi-level
thresholding test converges to zero when α = �̄{(logp)ε} → 0 for an arbitrarily
small ε > 0 as n → ∞.

(b) When � is unknown and p = n1/θ for 0 < θ < 1, if r < ω̄−1�ν,θ (β), the
sum of type I and II errors of the transformed multi-level thresholding test con-
verges to 1 as α → 0 and n → ∞; if r > ω−1�ν,θ (β), the sum of type I and
II errors of the transformed multi-level thresholding test converges to zero when
α = �̄{(logp)ε} → 0 for an arbitrarily small ε > 0 as n → ∞.

Part (a) of Theorem 4 shows that when � is known, the transformed multi-
level thresholding test has a lower detection boundary than r = �(β). The latter, as
shown in the Supplementary Material, is the detection boundary for the multi-level
thresholding only test. This means that the data transformation is able to detect
weaker signals (at a given level of sparsity β) than the thresholding only test, re-
alizing the benefit of having higher signal-to-noise ratio as reported in Theorem 2.
Part (b) of the theorem reminisces Part (a) except that the estimation of � leads to
the use of �ν,θ (β) with more stringent conditions in order to control the error of
estimation. Hall and Jin (2010) has shown that similar to part (a), the data transfor-
mation can lower the detection boundary for Gaussian data with known covariance
matrix. Here, we demonstrate that a modified detection boundary written in terms
of �ν,θ (β), which is achieved by the transformed multi-level thresholding test for
sub-Gaussian data with estimated precision matrix.

As r = �(β) is the detection boundary for the multi-level thresholding only
test, and �(β) ≤ �ν,θ (β) with the two functions being identical for β ≥ 3/4 −
νθ/(4ν + 4) (high sparsity), Theorem 4 indicates that for the high sparsity case,
doing the data-transformation in the multi-thresholding test achieves a lower detec-
tion boundary than that of the multi-thresholding test without the transformation.
This means the extra labor involved in estimating � pays off with better power
performance. However, for moderate sparsity [1/2 ≤ β < 3/4 − νθ/(4ν + 4)],
it is uncertain which has a lower detection limit due to the facts that despite
�(β) < �ν,θ (β), both ω and ω̄ are larger than 1. In this case, one may just do
the multi-level thresholding without the data transformation.

5. Extension to ANOVA tests. The ANOVA hypotheses (1.2) can be equiva-
lently written as

H ∗
0 : μ1 − μ2 = · · · = μ(m−1) − μm = 0 versus H ∗

1 : μl �= μ(l+1)

for some 1 ≤ l ≤ m − 1.
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A measure of difference between μlk and μ(l+1)k , the means in the kth dimen-
sion of the lth and (l + 1)th population means is

T
l(l+1)
nk = 1

nl(nl − 1)

nl∑
i �=j

X
(k)
li X

(k)
lj + 1

nl+1(nl+1 − 1)

nl+1∑
i �=j

X
(k)
(l+1)iX

(k)
(l+1)j

− 2

nlnl+1

nl∑
i

nl+1∑
j

X
(k)
li X

(k)
(l+1)j ,

which is an unbiased estimator of {μlk − μ(l+1)k}2. Then a statistic mea-
sure of

∑m−1
l=1 {μlk − μ(l+1)k}2 among all the adjacent populations, is Tnk,m =∑m−1

l=1 T
l(l+1)
nk . We observe that if m = 2, Tnk,2 = Tnk which is the two-sample

case defined by (2.1). Like the two-sample case, we assume that σl,kk = 1 for
l ∈ {1, . . . ,m} and the following condition analogous to (C1):

(C1′): As n,p → ∞, nl(l+1) are of the same order as n and nl/(nl +nl+1) → κl

where nl(l+1) = (nlnl+1)/(nl + nl+1).

The thresholding test statistic for the ANOVA hypotheses (1.2) is

L∗
1(s) =

p∑
k=1

m−1∑
l=1

nl(l+1)T
l(l+1)
nk I

{
nl(l+1)T

l(l+1)
nk + 1 > λn(s)

}
.

We now provide the connection between the ANOVA test and the two-sample
test. For any fixed coordinate 1 ≤ k ≤ p, we place the adjacent distance mean
measure T

l(l+1)
nk to a vector of length m − 1 as T̃nk = (n12T

12
nk , n23T

23
nk , . . . ,

nm−1mT
(m−1)m
nk )T . We then stack {T̃nk}pk=1 column-wise one after another to

form a (m − 1)p-dim vector Qn. Specifically, for 1 ≤ j ≤ (m − 1)p, let Q
(j)
n =

nl(l+1)T
l(l+1)
nk for j = (k − 1)(m − 1) + l with 1 ≤ l ≤ m − 1. With this notation,

an equivalent form of L∗
1(s) is

(5.1) L∗
1(s) =

(m−1)p∑
j=1

Q(j)
n I

{
Q(j)

n + 1 > λn(s)
}
.

Similarly, for 1 ≤ j ≤ (m − 1)p, define U(j) = nl(l+1)(X̄
(k)
l − X̄

(k)
l+1) for j = (k −

1)(m − 1) + l with 1 ≤ k ≤ p and 1 ≤ l ≤ m − 1. Let U = (U(1), . . . ,U(m−1)p)T

be the stacked (m− 1)p-dim vector. A thresholding test statistic based on U, anal-
ogous to (3.2), is

(5.2) L∗
2(s) =

(m−1)p∑
j=1

({
U(j)}2 − 1

)
I
({

U(j)}2
> λn(s)

)
.

Both L∗
1(s) and L∗

2(s) maintain the forms of L1(s) and L2(s). This implies that
both versions of the thresholding ANOVA test statistics can be treated essentially
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as two-sample thresholding statistics with increased “dimensions” (m − 1)p. In
the following, we use L∗

n(s) to refer either L∗
1(s) or L∗

2(s).
To develop the transformed ANOVA test statistic from the stacked (m − 1)p-

dimensional random vector U, we first define (m − 1) × (m − 1) matrices

V1 =

⎛⎜⎜⎜⎝
1 − κ1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎠ , Vm =

⎛⎜⎜⎜⎝
0 · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · 0 κm−1

⎞⎟⎟⎟⎠ and

for 2 ≤ b ≤ m − 1, Vb = (vb,(l,k)) contains a submatrix(
vb,(b−1,b−1) vb,(b−1,b)

vb,(b−1,b) vb,(b,b)

)
=

⎛⎝ κb−1 −
√

κb−1(1 − κb)

−
√

κb−1(1 − κb) 1 − κb

⎞⎠
and all the other elements of Vb are 0. Then the covariance matrix of U is
�∗ = ∑m

b=1(�b ⊗ Vb), where �b = Var(Xbi) is the covariance matrix of the bth
population, and ⊗ denotes the Kronecker product. If m = 2, �∗ is reduced to �w

in the two-sample case defined in Section 3.
Similar to the two-sample case, we assume that �b for b ∈ {1, . . . ,m} belongs to

the family of V (ε0,C, ν) defined in Section 3. Let �∗ = �∗−1, which is unknown
in practice and can be estimated by the Cholesky banding estimator �̂

∗
τ similar to

�̂τ for the two-sample case. We now transform the vector U by �̂
∗
τ to Ẑ∗ = �̂

∗
τ U.

Then the thresholding ANOVA statistic based on the transformed data is

(5.3) Ĵ ∗
n (s, τ ) =

(m−1)p∑
k=1

({Ẑ∗(k)}2

ω̂∗
kk

− 1
)
I

({Ẑ∗(k)}2

ω̂∗
kk

> λn(s)

)
,

where ω̂∗
kk is the kth diagonal element of �̂

∗
τ . The corresponding multi-level

thresholding ANOVA test statistic, similar to (4.1), is

(5.4) M
Ĵ ∗
n

= max
s∈�∗

n

Ĵ ∗
n (s, τ ) − μ̂J ∗

n (s,τ ),0

σ̂J ∗
n (s,τ ),0

,

where �∗
n = {sk : sk = (Ẑ∗(k))2/{2 log{(m − 1)p}ω̂∗

kk} for k = 1, . . . , (m − 1)p} ∩
(1 − νθ/(ν + 1),1 − η�) for an arbitrarily small η�, and μ̂J ∗

n (s,τ ),0 and σ̂ 2
J ∗
n (s,τ ),0

are estimates which can be developed similar to (3.7) by replacing p by (m− 1)p.
As given in (4.2) for the two-sample case, the multi-level thresholding ANOVA
test based on the transformed data rejects H0 in (1.2) at an α level if MJ ∗

n
> (qα +

b{log(m − 1)p, νθ/(ν + 1) − η∗})/a{log(m − 1)p}.
To discuss the detection boundary of the transformed multi-level thresholding

ANOVA test, we define

ω∗ = lim
p→∞

(
min

1≤k≤(m−1)p
ω∗

kk

)
and ω̄∗ = lim

p→∞
(

max
1≤k≤(m−1)p

ω∗
kk

)
,
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where ω∗
kk are the diagonal elements of �∗, and require the following conditions

analogous to conditions (C2)–(C5) of the two-sample tests:

(C2′): The random samples {Xij }ni

j=1 (i = 1, . . . ,m) are mutually independent.
For each i ∈ {1, . . . ,m}, Xij satisfies the sub-Gaussian condition outlined in (C2).

(C3′): For each i ∈ {1, . . . ,m}, the sequence of random variables {X(l)
ij }pl=1 sat-

isfies conditions in (C3).
(C4′): �1, . . . ,�m belong to the matrix class V (ε0,C, ν).
(C5′): The nonzero differences in adjacent pairs of means defined by S∗

β = {j :
j = (k − 1)(m − 1) + l, δkl �= 0, for k = 1, . . . , p and l = 1, . . . ,m − 1} are ran-
domly distributed among {1,2, . . . , (m − 1)p}.

THEOREM 5. Assume Conditions (C1′)–(C5′).

(a) When �∗ is known, if r < ω̄∗−1�(β), the sum of type I and II errors of the
transformed multi-level thresholding ANOVA test converges to 1 as α → 0 and
n → ∞; if r > ω∗−1�(β), the sum of type I and II errors of the transformed multi-
level thresholding ANOVA test converges to zero when α = �̄({log(m − 1)p}ε) →
0 for an arbitrarily small ε > 0 as n → ∞.

(b) When �∗ is unknown and p = n1/θ for 0 < θ < 1, then if r < ω̄∗−1�ν,θ (β),
the sum of type I and II errors of the transformed multi-level thresholding ANOVA
test converges to 1 as α → 0 and n → ∞; if r > ω∗−1�ν,θ (β), the sum of type I
and II errors of the transformed multi-level thresholding ANOVA test converges to
zero when α = �̄({log(m − 1)p}ε) → 0 for an arbitrarily small ε > 0 as n → ∞.

Theorem 5 demonstrates the detection boundary for the transformed multi-level
thresholding ANOVA test for sub-Gaussian data with estimated precision matrix.
This is consistent with the results obtained for the two sample test given in Theo-
rem 4, which is expected as the two-sample hypotheses (1.1) is a special case of
(1.2).

Similar to M
Ĵ ∗
n

, we can also construct the multi-level thresholding ANOVA
statistic:

(5.5) ML∗
n
= max

s∈S∗
n

L∗
n(s) − μ̂L∗

n(s),0

σ̂L∗
n(s),0

,

where S∗
n = {skl ∈ (0,1 − η) : skl = nl(l+1)(X̄

(k)
l − X̄

(k)
l+1)

2/{2 log(m − 1)p}, for
k = 1, . . . , p; l = 1, . . . ,m − 1} for a small η > 0, μ̂L∗

n(s),0 and σ̂ 2
L∗

n(s),0 are the es-

timators of mean and variance analogous to μ̂J ∗
n (s,τ ),0 and σ̂ 2

J ∗
n (s,τ ),0 in (5.4). Under

(C1) and (C2′)–(C3′), we can show that the detection boundary of the multi-level
thresholding ANOVA test based on ML∗

n
can be lowered by the data transforma-

tion.
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6. Simulation study. We report results from simulation experiments which
were designed to evaluate the empirical performance of the two multi-level
thresholding tests defined in (4.1) and (4.3) with and without transformation
(Mult2 and Mult1). We also experimented the test of Chen and Qin (2010) (CQ),
the Oracle test in (2.7) and two tests proposed by Cai, Liu and Xia (2014)
(CLX 1 and CLX2). The latter tests are based on the max-norm statistics with-
out and with transformation G(I) = max1≤k≤p n(X̄

(k)
1 − X̄

(k)
2 )2 and G(�̂) =

max1≤k≤p n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2/ω̂kk , where ω̂kk were estimates of the diagonal ele-

ments of �. Instead of the CLIME estimator used by Cai, Liu and Luo (2011),
we used ω̂kk from the Cholesky decomposition with banding to estimate �.

The two random samples were generated according to the model

(6.1) Xij = �
1/2
i Zij + μi ,

where the innovations Zij are IID p-dimensional random vectors with indepen-
dent components such that E(Zij ) = 0 and Var(Zij ) = Ip . We considered two
types of innovations: the Gaussian Zij ∼ N(0, Ip) and the Gamma where each
component of Zij is the standardized Gamma(4,0.5) such that it has zero mean
and unit variance. We assigned μ1 = μ2 = 0 under H0 and under H1, μ1 = 0 and
μ2 had [p1−β] nonzero entries of equal value that were uniformly allocated among
{1, . . . , p}. Here, [a] denotes the integer part of a. The values of the nonzero entries
were

√
2r logp/n with r > 0. The covariance matrices �1 = �2 =: � = (σij )

where σij = 0.4|i−j | for 1 ≤ i, j ≤ p.
In the simulation, the dimension p was chosen to be 200 and 600, and the two

sample sizes (n1, n2) to be (30,40), (60,80) and (90,120), respectively. The spar-
sity parameter β was ranged from 0.3 to 0.8. To gain perspectives on the level
of sparsity in the simulation, we note that for p = 200 with β = 0.7, there were
2001−0.7 ≈ 5 signals, and for p = 600, there were 6001−0.7 ≈ 7 signals, which
were sparse indeed.

To select the banding width τ in the estimation of �, we used the cross-
validation approach by Bickel and Levina (2008a). We divided a given dataset
into two subsamples by repeated (N times) random data split. For the lth split,

let �̂
(l)

τ = {(I − Â
(l)
τ )′}−1D̂

(l)
τ (I − Â

(l)
τ )−1 be the Cholesky decomposition of �

obtained from the first subsample and let S(l)
n be the sample covariance obtained

from the second subsample. Then τ is selected as

(6.2) τ̂ = min
τ

1

N

N∑
l=1

∥∥�̂(l)

τ − S(l)
n

∥∥
F ,

where ‖ · ‖F denotes the Frobenius norm.
Table 1 reports the empirical sizes of the multi-thresholding tests with the data

transformation (Mult2) and without the data transformation (Mult1), and Cai, Liu
and Xia’s max-norm tests with (CLX2) and without (CLX1) the data transforma-
tion. It also provides the empirical sizes for Mult1 and Mult2 with the bootstrap
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TABLE 1
Empirical sizes of the proposed multi-thresholding tests with (Mult2) and without data

transformation (Mult1), Cai, Liu and Xia’s max-norm tests with (CLX2) and without (CLX1) data
transformation, Chen and Qin’s test (CQ) and the Oracle test for the Gaussian and Gamma data.
The numbers inside the parentheses are the size obtained via the parametric bootstrap procedure

for the Mult1 and Mult2 tests, respectively

p (n1,n2) Oracle CQ CLX1 CLX2 Mult1 (Mult1∗) Mult2 (Mult2∗)

Gaussian
200 (30,40) 0.068 0.052 0.039 0.022 0.094 (0.057) 0.044 (0.049)

(60,80) 0.067 0.065 0.048 0.026 0.099 (0.059) 0.033 (0.035)
(90,120) 0.066 0.063 0.042 0.032 0.103 (0.064) 0.063 (0.037)

400 (30,40) 0.059 0.055 0.040 0.031 0.091 (0.063) 0.082 (0.058)
(60,80) 0.059 0.064 0.040 0.023 0.093 (0.051) 0.046 (0.052)
(90,120) 0.062 0.066 0.038 0.027 0.093 (0.071) 0.051 (0.041)

600 (30,40) 0.058 0.053 0.037 0.054 0.095 (0.057) 0.129 (0.112)
(60,80) 0.050 0.049 0.047 0.033 0.080 (0.064) 0.061 (0.051)
(90,120) 0.054 0.054 0.043 0.036 0.098 (0.066) 0.072 (0.042)

Gamma
200 (30,40) 0.068 0.062 0.034 0.027 0.097 (0.064) 0.056 (0.056)

(60,80) 0.065 0.063 0.036 0.022 0.103 (0.069) 0.031 (0.029)
(90,120) 0.061 0.055 0.040 0.027 0.084 (0.057) 0.046 (0.035)

400 (30,40) 0.065 0.053 0.051 0.032 0.108 (0.050) 0.092 (0.078)
(60,80) 0.057 0.055 0.042 0.036 0.110 (0.051) 0.064 (0.043)
(90,120) 0.073 0.049 0.038 0.038 0.092 (0.047) 0.055 (0.042)

600 (30,40) 0.068 0.054 0.041 0.059 0.114 (0.054) 0.134 (0.121)
(60,80) 0.057 0.056 0.039 0.031 0.090 (0.052) 0.061 (0.060)
(90,120) 0.059 0.052 0.041 0.037 0.099 (0.059) 0.073 (0.058)

approximation described in Section 4. We observe that the empirical sizes of the
two thresholding tests tended to be larger than the nominal 5% level due to a slow
convergence to the extreme value distribution. The bootstrap calibration can sig-
nificantly improve the size. To make the power comparison fair, we preadjusted
the nominal significant levels of all the tests such that their empirical sizes were
all close to 0.05. We obtain the average empirical power curves with respect to r

and β under each of the settings outlined above based on 1000 simulations.
Figure 1 displays the empirical power profiles of the proposed multi-thresholding

tests with data transformation (Mult2) and without data transformation (Mult1),
and Cai, Liu and Xia’s max-norm tests with (CLX2) and without (CLX1) data
transformation with respect to the signal strength r at a given level of sparsity
β = 0.7 for Gaussian data. The power profile for the Gamma innovations are given
in the Supplementary Material. Figures 2–3 provide alternative views of the power
profiles of these tests where the powers are displayed with respect to the sparsity
β at four levels of signal strength r = 0.1,0.2,0.3 and 0.4 for Gaussian data. The
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FIG. 1. Average Power with respect to the signal strength r of the proposed multi-thresholding
tests with (Mult2) and without data transformation (Mult1), Cai, Liu and Xia’s max-norm tests with
(CLX2) and without (CLX1) data transformation, Chen and Qin’s test (CQ) and the Oracle test for
the Gaussian data with the sparsity β = 0.7.
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FIG. 2. Average power with respect to the sparsity β of the proposed multi-thresholding tests with
(Mult2) and without data transformation (Mult1), Cai, Liu and Xia’s max-norm tests with (CLX2) and
without (CLX1) data transformation, Chen and Qin’s test (CQ) and the Oracle test for the Gaussian
data with p = 200, n1 = 60 and n2 = 80.

figures also report the powers of Chen and Qin’s (2010) test (CQ) and the Oracle
test to provide some bench marks for the performance.

The basic trend of Figure 1 was that the powers of all the tests were increasing
as the signal strength r was increased, and that of Figures 2–3 is that the powers
were decreasing as the sparsity was increased. These are all expected. It is also
expected to see in each figure that the Oracle test had the best power among all the
tests since all the dimensions bearing noise were removed in advance. A careful
examination of the power profiles reveals that the two tests that employed data
transformation (Mult2 and CLX2) were the top two performers among the non-
Oracle tests especially for large sample sizes, indicating the effectiveness of the
data transformation. Under the moderate sparsity, the thresholding test with data
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FIG. 3. Average power with respect to the sparsity β of the proposed multi-thresholding tests with
(Mult2) and without data transformation (Mult1), Cai, Liu and Xia’s max-norm tests with (CLX2) and
without (CLX1) data transformation, Chen and Qin’s test (CQ) and the Oracle test for the Gaussian
data with p = 600, n1 = 60 and n2 = 80.

transformation (Mult2) had the best performance among all the non-Oracle test.
Under the high sparsity with β = 0.8, the power of Mult2 was higher than that of
the max-norm (CLX2) test with data transformation under faint signals, but only
slightly lower than that of the CLX2 under strong signals. The CQ test and the
CLX1 had the least power among the tests, with the CLX1 being more powerful
than the CQ for the more sparse situation (large β) and vice versa for the faint
signal case (smaller r). The CQ test was not designed for the sparse and faint
signal settings of the simulation. The above features became more pronounced
when we increase the dimensionality to p = 600 as shown in Figures 1 and 3.

Simulation studies were also conducted to demonstrate the performance of the
multi-level thresholding ANOVA tests defined in (5.5) and (5.4) without and with
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transformation. For simplicity, we considered testing the equality of the mean vec-
tors among three populations. Three random samples {X1j }n1

j=1, {X2j }n2
j=1 and

{X3j }n3
j=1 were generated according to the multivariate model (6.1). We chose

μ1 = μ2 = μ3 = 0 under H0, and under H1, μ1 = 0, μ2 and μ3 in total had
[(2p)0.4] nonzero entries of equal value

√
2r log(2p)/n, which were uniformly

allocated among the 2p components of μ2 and μ3. The covariance matrices
were assigned such that �1 = (0.4|i−j |), �2 = (0.5|i−j |) and �3 = (0.6|i−j |) for
1 ≤ i, j ≤ p.

Table 2 displays the empirical sizes and powers of the multi-thresholding
ANOVA tests without (Mult-A1) and with (Mult-A2) data transformation subject
to different values of p, n1, n2, n3 and r when Zij ∼ N(0, Ip) in the multivariate
model (6.1). Similar to the two-sample test, the bootstrap calibration was imple-
mented to improve the sizes of the testing procedures. Except slightly conservative
sizes at the sample size of 40, others were quite close to the nominal significance
level of 0.05. Despite the fact that the powers of both ANOVA tests were increased
as the signal strength r was increased, the ANOVA test with data transformation
had better performance than that without, which again confirms the advantageous
of the transformation. Here, we only report the empirical sizes and powers based

TABLE 2
Empirical sizes and powers of the multi-thresholding ANOVA tests with (Mult-A2) and without
(Mult-A1) data transformation for Gaussian data with �1 = (0.4|i−j |), �2 = (0.5|i−j |) and

�3 = (0.6|i−j |)

Power

(p,n1,n2,n3) Methods Size r = 0.1 r = 0.2 r = 0.4

(100,40,40,40) Mult-A1 0.025 0.054 0.099 0.231
Mult-A2 0.043 0.151 0.278 0.883

(100,80,80,80) Mult-A1 0.034 0.059 0.122 0.327
Mult-A2 0.040 0.232 0.552 0.979

(100,100,100,100) Mult-A1 0.050 0.083 0.124 0.357
Mult-A2 0.049 0.199 0.483 0.991

(200,40,40,40) Mult-A1 0.022 0.042 0.078 0.249
Mult-A2 0.020 0.133 0.545 0.965

(200,80,80,80) Mult-A1 0.041 0.057 0.126 0.409
Mult-A2 0.050 0.278 0.669 0.990

(200,100,100,100) Mult-A1 0.037 0.070 0.137 0.429
Mult-A2 0.050 0.212 0.752 0.995

(400,40,40,40) Mult-A1 0.020 0.042 0.058 0.251
Mult-A2 0.027 0.127 0.402 0.960

(400,80,80,80) Mult-A1 0.047 0.059 0.124 0.451
Mult-A2 0.041 0.255 0.700 0.992

(400,100,100,100) Mult-A1 0.033 0.076 0.133 0.727
Mult-A2 0.041 0.277 0.492 0.999
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on the Gaussian data. Results based on other distributions such as the Gamma are
similar and thus omitted due to the space limitation.

7. Discussion. This paper investigates the benefits of multi-level thresholding
in a L2 formulation of the test statistics with or without the data transformation
via the precision matrix. It shows that the thresholding combined with the data
transformation leads to a very powerful test procedure for the high sparsity case.
In this case, thresholding with the data transformation has better power than the
thresholding alone formulation. Our study confirms the benefit of the transforma-
tion discovered by Hall and Jin (2010) for the higher criticism test and Cai, Liu and
Xia (2014) for the max-norm based test. The proposed thresholding tests can be
viewed as improvements of the test of Chen and Qin (2010) when the signals are
sparse and faint. The CQ test is similar to the max-norm test without data transfor-
mation, except that it is based on the L2-norm. Generally speaking, the max-norm
test works better for more sparse and stronger signals whereas the CQ test is for
denser but fainter signals. These aspects were confirmed by our simulations. A rea-
son for the proposed test having better power than the CLX test is that the proposed
test has both thresholding and data transformation whereas CLX test has only the
data transformation.

Hall and Jin (2010) discovered that by transforming data with � = �−1, the sig-
nal strength of the high dimensional testing problem can be enhanced. However,
they only considered the case of a known covariance matrix with Gaussian data.
There is much uncertainty if the signal and the eventual power enhancement would
be maintained when � has to be estimated for non-Gaussian data. We embark on
this task by estimating �, and shows that with the estimated precision matrix in
high dimension, a modified version of the detection boundary established in Hall
and Jin (2010) can be reached. Moreover, the effect of estimating precision ma-
trix on the detection boundary is also considered. Cai, Liu and Xia (2014) (CLX)
studied the relative performance of several forms of data transformation for testing
two-sample means based on the maximum norm. Although they confirmed the ad-
vantage of data transformation via the precision matrix discovered in Hall and Jin
(2010), CLX did not have results on the detection boundary. In relation to Zhong,
Chen and Xu (2013) (ZCX), this paper studies a new test that combines data trans-
formation and thresholding, which was not considered in ZCX. The current paper
also extends the proposed method to ANOVA test, which was not considered in
the one-sample study of ZCX.

APPENDIX: TECHNICAL DETAILS

We provide the technical detail in the proofs of Theorems 1 and 4. Proofs of
other theorems are relegated to the Supplementary Material to this paper (Chen, Li
and Zhong (2018)).
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A.1. Proof of Theorem 1. Recall that � = �−1
w = (ωij )p×p where �w =

(1 − κ)�1 + κ�2 and κ = limn→∞ n1/(n1 + n2). We first assume � is known to
gain insight on the test. Rather than transforming the data via �, we transform it
via �(τ ) = {ωij I(|i −j | ≤ τ)}p×p , a banded version of � for an integer τ between
1 and p − 1. There are two reasons to use �(τ ). One is that the signal enhance-
ment is facilitated mainly by elements of � close to the main diagonal. Another
is that banding maintains the α-mixing structure of the transformed data provided
k − 2τ → ∞. Since both �1 and �2 have off-diagonal entries decaying to zero
at polynomial rates, � has the same decay rate (Gröchenig and Leinert (2006),
Jaffard (1990), Sun (2005)), so the transformed data are still weakly dependent.
Two transformed samples are{

Z1j (τ ) = �(τ )X1j : 1 ≤ j ≤ n1
}

and
{
Z2j (τ ) = �(τ )X2j : 1 ≤ j ≤ n2

}
.

Let �kk(τ ) = Var{√n(Z̄
(k)
1 (τ ) − Z̄

(k)
2 (τ ))} be the counterpart of n(σ1,kk/n1 +

σ2,kk/n2) for the transformed data where Z̄
(k)
i (τ ) = n−1

i

∑ni

j=1 Z
(k)
ij (τ ) for i = 1,2.

Lemmas 5 and 7 in Chen, Li and Zhong (2018) show that there exists a constant
C > 1 such that �kk(τ ) = ωkk + O(τ−C) and ωkk > 1.

The transformed thresholding statistic can be constructed by replacing Xij with
Zij (τ ) in either (3.1) or (3.2). Although both have similar properties, the latter of
which has the form

Jn(s, τ ) =
p∑

k=1

{
n(Z̄

(k)
1 (τ ) − Z̄

(k)
2 (τ ))2

�kk(τ )
− 1

}

× I

{
n(Z̄

(k)
1 (τ ) − Z̄

(k)
2 (τ ))2

�kk(τ )
> λn(s)

}
and is easier to work with, which we will present in the following.

Let δ�(τ ) = (δ�(τ ),1, . . . , δ�(τ ),p)T where δ�(τ ),k = ∑
l �kl(τ )δl = ∑

l∈Sβ
ωkl ×

δlI(|k − l| ≤ τ) is the difference between the transformed means in the kth
dimension. Using Zij (τ ) = �(τ )Xij and

∑
l |ωkl| < ∞, for a given constant

C, Z
(k)
ij (τ ) = ∑

l ωklX
(l)
ij I(|k − l| < τ). Since X

(l)
ij is sub-Gaussian for any l =

1, . . . , p, Z
(l)
ij (τ ) is sub-Gaussian by Hölder inequality and mathematical induc-

tion. Hence, the large derivation results can be applied to derive the mean and
variance of Jn(s, τ ) by following the similar steps for the mean and variance of the
thresholding statistic. Derivations in Lemmas 2–3 show that the mean and variance
of the thresholding test statistic Ln(s) is

μLn(s) =
(

2√
2π

(2s logp)
1
2 p1−s + ∑

k∈Sβ

{
nδ2

kI
(
nδ2

k > 2s logp
)

(A.1)

+ (2s logp)�̄
(
η−

k

)
I
(
nδ2

k < 2s logp
)}){

1 + o(1)
}

and
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σ 2
Ln(s) =

(
2√
2π

{
(2s logp)

3
2 + (2s logp)

1
2
}
p1−s + ∑

k,l∈Sβ

(
4nδkδlρkl + 2ρ2

kl

)
× I

(
nδ2

k > 2s logp
)
I
(
nδ2

l > 2s logp
)+ ∑

k∈Sβ

(2s logp)2�̄
(
η−

k

)
(A.2)

× I
(
nδ2

k < 2s logp
)){

1 + o(1)
}
,

where �̄ = 1 − � and η−
k = (2s logp)1/2 − n1/2δk .

By replacing δk by δ�(τ ),k and Sβ by S�(τ ),β in (A.1) and (A.2) where after
the transformation, δk becomes δ�(τ ),k and the set Sβ including nonzero signals
becomes S�(τ ),β , the mean and variance of Jn(s, τ ) are

μJn(s,τ ) =
(

2√
2π

(2s logp)
1
2 p1−s + ∑

k∈S�(τ ),β

{nδ2
�(τ ),k

�kk(τ )
I

(nδ2
�(τ ),k

�kk(τ )
> 2s logp

)
(A.3)

+ (2s logp)�̄
(
η−

�(τ )k

)
I

(
n

δ2
�(τ ),k

�kk(τ )
< 2s logp

)}){
1 + o(1)

}
and

σ 2
Jn(s,τ ) =

(
2√
2π

{
(2s logp)

3
2 + (2s logp)

1
2
}
p1−s

+ ∑
k,l∈S�(τ ),β

(
4n

δ�(τ ),k

�
1/2
kk (τ )

δ�(τ),lρ�,kl

�
1/2
ll (τ )

+ 2ρ2
�,kl

)
(A.4)

× I

(nδ2
�(τ ),k

�kk(τ )
> 2s logp

)
I

(nδ2
�(τ ),l

�ll(τ )
> 2s logp

)

+ ∑
k∈S�(τ ),β

(2s logp)2�̄
(
η−

�(τ )k

)
I

(
n

δ2
�(τ ),k

�kk(τ )
< 2s logp

)){
1 + o(1)

}
,

where S�(τ ),β = {k : δ�(τ ),k �= 0} is the set of locations of the nonzero signals
δ�(τ ),k , η−

�(τ )k = (2s logp)1/2 − n1/2δ�(τ ),k/�kk(τ )1/2 and ρ�,kl = Cov{√n ×
(Z̄

(k)
1 (τ ) − Z̄

(k)
2 (τ ))/

√
�kk(τ ),

√
n(Z̄

(l)
1 (τ ) − Z̄

(l)
2 (τ ))/

√
�ll(τ )}.

We first establish the asymptotic normality of Jn(s, τ ) where the banding
parameter τ is chosen to be a slowly varying function. To this end, we first
show that both {Z(k)

1i (τ )}pk=1 and {Z(k)
2i (τ )}pk=1 are α-mixing sequences. By con-

dition (C3), {X(k)
1j }pk=1 and {X(k)

2j }pk=1 are α-mixing sequences. Then any event

A ∈ σ(F (1)
X,(1,a),F

(2)
X,(1,a)) and B ∈ σ(F (1)

X,(a+k,∞),F
(2)
X,(a+k,∞)), |P(A ∩ B) −

P(A)P (B)| → 0 as k → ∞. By the relationship between Z1i (τ ) and X1i , for
any τ ,

Z
(a)
1i (τ ) ∈ σ

(
F (1)

X,(a−τ,a+τ)

)
and Z

(a+k)
1i (τ ) ∈ σ

(
F (1)

X,(a+k−τ,a+k+τ)

)
.



1468 S. X. CHEN, J. LI AND P.-S. ZHONG

Then as long as k − 2t → ∞, |P(A′ ∩ B ′) − P(A′)P (B ′)| → 0 for any
A′ ∈ σ(F (1)

Z,(1,a),F
(2)
Z,(1,a)) and B ′ ∈ σ(F (1)

Z,(a+k,∞),F
(2)
Z,(a+k,∞)). It follows that

αZ1(τ )(k) = αX1(k − 2t) if k > 2t . Therefore, αZ1(τ )(k) → 0 as k − 2t → ∞
where αZ1(τ ) is the α-mixing coefficient for the sequence {Z(k)

1j (τ )}pk=1. Similarly,

it can be shown that αZ2(τ )(k) → 0 as k − 2t → ∞. Thus, both {Z(k)
1i (τ )}pk=1 and

{Z(k)
2i (τ )}pk=1 are α-mixing sequences. Then the asymptotic normality of Jn(s, τ )

can be established by applying the Bernstein’s blocking method as we have done
in the proof of Proposition 1. To further establish the normality of Ĵn(s, τ ), we
note that our Ĵn can be written as

Ĵn = Jn +
p∑

k=1

(
Ŝnk

ω̂kk

− Snk

�kk

)
I

(
Snk

�kk

> λn

)

+
p∑

k=1

(
Snk

�kk

+ 1
)[

I

(
Ŝnk

ω̂kk

> λn

)
− I

(
Snk

�kk

> λn

)]

+
p∑

k=1

(
Ŝnk

ω̂kk

− Snk

�kk

)[
I

(
Ŝnk

ω̂kk

> λn

)
− I

(
Snk

�kk

> λn

)]
= Jn + I + II + III,

where Ŝnk = n(
¯̂
Z

(k)
1 − ¯̂

Z
(k)
2 )2 and Snk = n(Z̄

(k)
1 (τ ) − Z̄

(k)
2 (τ ))2. To show the

asymptotic normality of Ĵn under H0, we only need to show that I/σJn,0 = op(1)

and II/σJn,0 = op(1) since III is smaller order of I or II.
We first consider I, which can be bounded by

I ≤ max
1≤k≤p

∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ p∑
k=1

I
(

Snk

�kk

> λn

)
.

Using E{∑p
k=1 I( Snk

�kk
> λn)} = ∑p

k=1 P( Snk

�kk
> λn) = O(

p1−s√
2s logp

) by Lemma 1 in

Chen, Li and Zhong (2018), we have
∑p

k=1 I( Snk

�kk
> λn) = Op(

p1−s√
2s logp

). Recall

that Ŝnk = n{∑l ω̂kl(X̄
(l)
1 − X̄

(l)
2 )}2 and Snk = n{∑l ωkl(τ )(X̄

(l)
1 − X̄

(l)
2 )}2. Then it

can be derived that

max
k

∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣
≤ M max

l
n
(
X̄

(l)
1 − X̄

(l)
2

)2 max
k

{ p∑
l=1

|ω̂kl − ωkl| + τ−a + O
(
τ−C)},

where M > 0, a > 0 and we use the fact that �kk = ωkk + O(τ−C) from Lemma
5 in the Supplementary Material. From the fact that maxl n(X̄

(l)
1 − X̄

(l)
2 )2 =
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Op(logp) and maxk

∑p
l=1 |ω̂kl − ωkl| = Op[( logp

n
)ν/(2ν+2)] (see Bickel and Lev-

ina (2008a)),

max
k

∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ p∑
k=1

I
(

Snk

�kk

> λn

)
= Op

{
Lpp1−sn−ν/(2ν+2) + logp

(
τ−a + τ−C)},

where Lp and τ are slowly varying functions. We can choose τ such that
logp(τ−a + τ−C) = o(1). Therefore, we have I = Op(Lpp1−sn−ν/(2ν+2)). By
assumption that p = n1/θ and s > 1 − νθ/(ν + 1), then I/σJn,0 = op(1).

For the second term II, we have

II ≤ max
k

∣∣∣∣ Snk

�kk

+ 1
∣∣∣∣max

k
I

{
Ŝnk

ω̂kk

> λn

} p∑
k=1

I

{∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ > ∣∣∣∣ Snk

�kk

− λn

∣∣∣∣}

+ max
k

∣∣∣∣ Snk

�kk

+ 1
∣∣∣∣max

k
I

{
Snk

�kk

> λn

} p∑
k=1

I

{∣∣∣∣ Snk

�kk

− Ŝnk

ω̂kk

∣∣∣∣ > ∣∣∣∣ Snk

�kk

− λn

∣∣∣∣}
:= II1 + II2.

Because the proofs for II1 and II2 are similar, we only show II2. Note that

maxk | Snk

�kk
+ 1| ≤ 1 + maxk

(
∑

l ωkl(τ ))2

�kk
maxl n(X̄

(l)
1 − X̄

(l)
2 )2 = Op(logp). And

p∑
k=1

I

{∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ > ∣∣∣∣ Snk

�kk

− λn(s)

∣∣∣∣}
(A.5)

≤
p∑

k=1

I

(∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ > h

)
+

p∑
k=1

I

(∣∣∣∣ Snk

�kk

− λn(s)

∣∣∣∣ < h

)
,

where the second indicator function on the right-hand side satisfies
E{∑p

k=1 I (| Snk

�kk
− λn(s)| < h)} = h√

2s logp
p1−s . So, in (A.5),

∑p
k=1 I (| Snk

�kk
−

λn(s)| < h) = Op( h√
2s logp

p1−s). For
∑p

k=1 I (| Ŝnk

ω̂kk
− Snk

�kk
| > h) in (A.5), we first

notice that∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ ≤ M max
l

n
(
X̄

(l)
1 − X̄

(l)
2

)2

{ p∑
l=1

|ω̂kl − ωkl|
}

+ o(1).

Then

E

{ p∑
k=1

I

(∣∣∣∣ Ŝnk

ω̂kk

− Snk

�kk

∣∣∣∣ > h

)}

≤
p∑

k=1

P

( p∑
l=1

|ω̂kl − ωkl| > h

MnT 2

)
+

p∑
k=1

P
(
max

l

∣∣X̄(l)
1 − X̄

(l)
2

∣∣ > T
)
,
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where, if T = C
√

logp/n, then
∑p

k=1 P(maxl |X̄(l)
1 − X̄

(l)
2 | > T ) ≤ p2−C →

0, for sufficient large C. If h = C∗ logp(
logp

n
)ν/(2ν+2), there exists a a > 0

such that
∑p

k=1 P(
∑p

l=1 |ω̂kl − ωkl| > h
MnT 2 ) = ∑p

k=1 P(
∑p

l=1 |ω̂kl − ωkl| >

M ′( logp
n

)ν/(2ν+2)) ≤ p1−a . Therefore, by choosing C∗ large enough such that

a > νθ/(2ν + 2),
∑p

k=1 I (| Ŝnk

ω̂kk
− Snk

�kk
| > h) = Op(p1−a) = op(pn−ν/(2ν+2))

for p = n1/θ . With h = C∗ logp(
logp

n
)ν/(2ν+2),

∑p
k=1 I (| Snk

�kk
− λn(s)| < h) =

Op(Lpn−ν/(2ν+2)p1−s). In addition, maxk I { Snk

�kk
> λn(s)} = Op(p−s). There-

fore, II2 = op(Lpp1−sn−ν/(2ν+2)). Similarly, one can show that II1 = op(Lp ×
p1−sn−ν/(2ν+2)). In summary, II/σJn,0 = op(I/σJn,0) = op(1). The asymptotic
normality of Ĵn under H1 can be established based on similar derivations. This
completes the proof of Theorem 1.

A.2. Proof of Theorem 4. We first consider � is known. We know that the
power of the transformed thresholding test is determined by SNRJn(s,τ ). Recall
that for k ∈ Sβ , ωδ2

k ≤ δ2
�(τ ),k/�kk(τ ) ≤ ω̄δ2

k . If M1 = ∑
k∈Sβ

{nωδ2
kI (nωδ2

k >

2s logp) + (2s logp)�̄(η−
k )I (nωδ2

k < 2s logp)},
(A.6) SNRJn(s,τ ) ≥ M1/V1

where

V 2
1 = 2√

2π

{
(2s logp)

3
2 + (2s logp)

1
2
}
p1−s

+ ∑
k∈Sβ

(2s logp)2�̄
(
η−

k

)
I
(
nωδ2

k < 2s logp
)

+ ∑
k,l∈Sβ

(
4nω2δkδlρ�,kl + 2ρ2

�,kl

)
I
(
nωδ2

k > 2s logp
)
I
(
nωδ2

l > 2s logp
)
.

Note that M1/V1 is the signal-to-noise ratio of the thresholding test without the
transformation with nωδ2

k = 2ωr logp. From the proof of Proposition 3 in the
Supplementary Material, M1/V1 → ∞ as long as s is properly chosen and ωr >

�(β). Therefore, {μJn(s,τ ),1 − μJn(s,τ ),0}/σJn(s,τ ),1 → ∞, as long as ωr > �(β).
This establishes the upper bound of the detectable region.

To show the second statement in part (a) of Theorem 4, we notice that the max-
imal transformed thresholding test is of asymptotic α level. Therefore, it is suffi-
cient to show that its power tends to 1 above the detection boundary as n → ∞
and α → 0. To this end, we notice that

P(MJn ≥ Gα|H1) ≥ P
(

Jn(s, τ ) − μJn(s,τ ),0

σJn(s,τ ),0
≥ Gα|H1

)

≥ �

(
−σJn(s,τ ),0

σJn(s,τ ),1
Gα + M1

V1

)
,
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where Gα = {qα + b(logp,η)}/a(logp). We choose αn = �̄{(logp)ε} → 0 as
p → ∞ for ε > 0 such that Gα = O{(log logp)1/2}. If ωr > �(β), we can find a
s satisfying one of cases given in the proof of Proposition 3 in the Supplementary
Material such that the second term in �(·) dominates and tends to infinity, which
leads to �(·) → 1.

Then we consider the first statement in part (a) of Theorem 4. Note that
SNRJn(s,τ ) ≤ M2/V2, where M2 = ∑

k∈Sβ
{nω̄δ2

kI (nω̄δ2
k > 2s logp)+ (2s logp)×

�̄(η−
k )I (nω̄δ2

k < 2s logp)} and

V 2
2 = 2√

2π

{
(2s logp)

3
2 + (2s logp)

1
2
}
p1−s

+ ∑
k∈Sβ

(2s logp)2�̄
(
η−

k

)
I
(
nω̄δ2

k < 2s logp
)

+ ∑
k,l∈Sβ

(
4nω̄2δkδlρ�,kl + 2ρ2

�,kl

)
I
(
nω̄δ2

k > 2s logp
)
I
(
nω̄δ2

l > 2s logp
)
.

Note that M2/V2 is the signal-to-noise ratio of the thresholding test with
nω̄δ2

k = 2ω̄r logp, which converges to 0 for any s if ω̄r < �(β), that is,
{μJn(s,τ ),1 − μJn(s,τ ),0}/σJn(s,τ ),1 → 0. Similar to the proof of Proposition 3,
we can show that MJn = maxs∈Tn J̃n(s){1 + op(1)}, where J̃n(s) = (Jn(s) −
μJn(s,τ ),1)/σJn(s,τ ),1. Since P{a(logp)maxs∈Tn J̃n(s) − b(logp, c) ≤ x} →
exp(−e−x), where c = max(η − r + 2r

√
1 − η − β,η)I (r < 1 − η) + max(1 −

β,η)I (r > 1 − η). Then, similar to the proof in Proposition 2, we have P(MJn ≥
Gα|H1) = α{1 + o(1)} → 0, which implies that the type II error tends to 1 as
α → 0.

Next, we consider � is unknown. Let G�
α = {qα + b(logp,νθ/(ν + 1) −

η�)}/a(logp). If we choose αn = �̄{(logp)ε} → 0 as p → ∞ for any small num-
ber ε > 0, G�

α = O{(log logp)1/2}. We only show that if r > ω−1�ν,θ (β), the sum
of type I and II of M

Ĵn
converges to 0, since the proof that the sum of type I and II

of M
Ĵn

tends to 1 if r < ω̄−1�ν,θ (β) is similar to that for MJn . Notice that

P
(
M

Ĵn
≥ G�

α|H1
) ≥ P

(
Ĵn(s, τ ) − μ̂Jn(s,τ ),0

σ̂Jn(s,τ ),0
≥ G�

α|H1

)

≥ P
{(

Jn(s, τ ) − μJn(s,τ ),0

σJn(s,τ ),0
+ μJn(s,τ ),0 − μ̂Jn(s,τ ),0

σJn(s,τ ),0
(A.7)

+ op(1)

)
σJn(s,τ ),0

σ̂Jn(s,τ ),0
≥ G�

α|H1

}
,

where we have used the fact that if p = n1/θ for 0 < θ < 1, (Ĵn(s, τ ) −
μJn(s,τ ),0)/σJn(s,τ ),0 = (Jn(s, τ ) − μJn(s,τ ),0)/σJn(s,τ ),0 + op(1) given in the proof
of Theorem 3. Moreover, as shown in Zhong, Chen and Xu (2013), with p = n1/θ
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for 0 < θ < 1, {μJn(s,τ ),0 − μ̂Jn(s,τ ),0}/σJn(s,τ ),0 → 0, and σJn(s,τ ),0/σ̂Jn(s,τ ),0 →
1. Then the probability in (A.7) is determined by

Jn(s, τ ) − μJn(s,τ ),0

G�
ασJn(s,τ ),0

=
(

Jn(s, τ ) − μJn(s,τ ),1

G�
ασJn(s,τ ),1

+ μJn(s,τ ),1 − μJn(s,τ ),0

G�
ασJn(s,τ ),1

)
× σJn(s,τ ),1

σJn(s,τ ),0
,

where (Jn(s, τ )−μJn(s,τ ),1)/(G
�
ασJn(s,τ ),1) = op(1), and σJn(s,τ ),1 > σJn(s,τ ),0. As

long as we can show (μJn(s,τ ),1 − μJn(s,τ ),0)/(G
�
ασJn(s,τ ),1) → ∞, (A.7) tends 1.

From (A.6), we only need to show that with properly chosen s, M1/(G
�
αV1) → ∞.

As shown in Theorem 3, we need to choose s ∈ (1−νθ/(ν+1),1) if � is unknown
such that the asymptotic normality of the transformed thresholding test with �̂
can be established. The modification on the detection boundary can be derived by
adding the additional restriction s > 1 − νθ/(ν + 1) on the four cases in the proof
of Proposition 3. Similar to Delaigle, Hall and Jin (2011), and Zhong, Chen and Xu
(2013), the modified detection boundary is given by (4.6). As a result, we know
that M1/(G

�
αV1) → ∞ if ωr > �ν,θ (β). This shows that if r > ω−1�ν,θ (β), the

power of M
Ĵn

tends to 1.
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SUPPLEMENTARY MATERIAL

Supplement to “Two-sample and ANOVA tests for high dimensional
means” (DOI: 10.1214/18-AOS1720SUPP; .pdf). The Supplementary Material
provides the proofs of lemmas, propositions and Theorems 2, 3 and 5. It also
includes extra simulation results and an empirical study.
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