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HIGH-DIMENSIONAL COVARIANCE MATRICES IN ELLIPTICAL
DISTRIBUTIONS WITH APPLICATION TO SPHERICAL TEST
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Northeast Normal University∗, Key Laboratory for Applied Statistics of MOE†,
Shanghai University of Finance and Economics‡, University of Macau§ and

National University of Singapore¶

This paper discusses fluctuations of linear spectral statistics of high-
dimensional sample covariance matrices when the underlying population fol-
lows an elliptical distribution. Such population often possesses high order
correlations among their coordinates, which have great impact on the asymp-
totic behaviors of linear spectral statistics. Taking such kind of dependency
into consideration, we establish a new central limit theorem for the linear
spectral statistics in this paper for a class of elliptical populations. This gen-
eral theoretical result has wide applications and, as an example, it is then
applied to test the sphericity of elliptical populations.

1. Introduction. Large-scale statistical inference develops rapidly in the last
two decades. This type of inference often relies on spectral statistics of certain
random matrices in high-dimensional frameworks, where both the dimension p of
the observations and the sample size n tend to infinity. Recall that a linear spectral
statistic (LSS) [Bai and Silverstein (2010)] of a p × p Hermitian random matrix
Rn is of the form

(1.1)
1

p

p∑
i=1

f (λi) =
∫

f (x) dFRn(x),

where λ1, . . . , λp are the p eigenvalues of Rn, f is a function defined on R and
FRn = (1/p)

∑p
i=1 δλi

is called the spectral distribution (SD) of Rn. Here, δa de-
notes the Dirac measure at the point a. In Ledoit and Wolf (2002) and Schott
(2007), most test statistics are actually LSSs of sample covariance matrices. Bai
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et al. (2009) made systematic corrections to several classical likelihood ratio tests
to overcome the effect of high dimension using LSSs of sample covariance ma-
trices and F-matrices. Later, Bai et al. (2015) derived the CLT for LSSs of a
high-dimensional Beta matrix, which can be broadly used in multivariate statistical
analysis, such as testing the equality of several covariance matrices, multivariate
analysis of variance and canonical correlation analysis; see Anderson (2003). Most
recently, based on an LSS of regularized canonical correlation matrices, Yang and
Pan (2015) proposed a test for the independence between two large random vec-
tors. Gao et al. (2017) applied LSSs of sample correlation matrices to the complete
independence test for p random variables and the equivalence test for p factor
loadings in a factor model. Clearly, it is of great interests to investigate the behav-
iors of LSSs under various circumstances.

Specifically, let x1, . . . ,xn be n observations of x ∈ R
p , whose mean is zero and

covariance matrix is �. The sample covariance matrix is

Bn = 1

n

n∑
j=1

xj x′
j .

Our attention in this paper is focused on the asymptotic properties of LSSs of Bn.
The earliest study on this problem dates back to Jonsson (1982), who obtained
the central limit theorem (CLT) for LSSs of Bn by assuming the population to
be standard multivariate normal. A remarkable breakthrough was done in Bai and
Silverstein (2004), where the population is allowed to be a linear transform of a
vector of independent and identically distributed (i.i.d.) random variables, that is,

(1.2) x = Az.

Here, A ∈ R
p×p is a non-random transformation matrix with rank(A) = p, and

z = (z1, . . . , zp)′ with i.i.d. zi ’s satisfying

(1.3) E(z1) = 0, E
(
z2

1
) = 1 and E

(
z4

1
) = 3.

The fourth moment condition was later extended by Pan and Zhou (2008) to
E(z4

1) < ∞. Though these assumptions are fairly weak, their requirement of lin-
early dependent structure in (1.2) still excludes a lot of important distributions. In
particular, it excludes almost all distributions from the elliptical family [Fang and
Zhang (1990)].

Elliptical distributions were originally introduced by Kelker (1970) to general-
ize the multivariate normal distributions. A random vector x with zero mean fol-
lows an elliptical distribution if and only if it has a stochastic representation [Fang
and Zhang (1990)]:

(1.4) x = ξAu,

where the matrix A ∈ R
p×p is nonrandom with rank(A) = p, ξ ≥ 0 is a scalar

variable representing the radius of x, and u ∈ R
p is the random direction, which is
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independent of ξ and uniformly distributed on the unit sphere Sp−1 in R
p , denoted

by u ∼ U(Sp−1) in the sequel. This family of distributions has been widely applied
in many areas, such as statistics, economics and finance, which can describe fat (or
light) tails and tail dependence among components of a population; see Fang and
Zhang (1990) and Gupta, Varga and Bodnar (2013). Evidently such distributions
with high order correlations cannot be modeled by the linear transform model
in (1.2).

A question raised immediately is that how the nonlinear dependency affects the
asymptotic behaviors of LSSs in high-dimensional frameworks? Indeed, Bai and
Zhou (2008) proved that the SD FBn of Bn converges to a common generalized
Marčenko–Pastur law almost surely if, for any sequence of symmetric matrices
{Cp} with bounded spectral norm,

(1.5) Var
(
x′Cpx

) = o
(
p2)

as p,n → ∞. This condition is also sharp for the convergence; see Li and Yao
(2018) for an example. What is more, this condition holds for a list of well-known
elliptical distributions, such as multivariate normal distributions, multivariate Pear-
son type II distributions, power exponential distributions and a more general fam-
ily of multivariate Kotz-type distributions [Kotz (1975)]; see Section 2 for more
details. However, the limit of SD is not enough for many procedures of statistical
inference, such as confidence interval and hypothesis testing. Therefore, in this pa-
per, we will explore the fluctuations of LSSs of Bn, when the population belongs
to elliptical distributions that satisfy the condition (1.5). Compared with the pio-
neer work of Bai and Silverstein (2004), the main difficulty of the current study
lies in the fact that both the radius ξ and direction u introduce nonlinear depen-
dence to the coordinates of the population x, which cannot be handled through the
same way as they did for the linearly dependent structure. Technically, we are fac-
ing the following three challenges. First, for paying the cost of dropping linearly
dependent structure, we have to add more moment conditions on ξ , because the
finite fourth moment of ξ/

√
p is no longer sufficient for the nonlinear dependence

case [see (2.5)]. This is totally different from the linearly dependent structure case.
Second, we need to figure out how the dependence of the entries of ξu influences
the fluctuations of LSSs of Bn (see Remark 2.3). Third, we have to extend many
fundamental conclusions in the independent case [Bai and Silverstein (2004)] to
accommodate our nonlinearly dependent structure; see Lemmas A.1–A.4 for ex-
ample.

The structure of this paper is as follows. First, in Section 2, we set up a new CLT
for LSSs of Bn under elliptical distributions satisfying (1.5). Then in Section 3,
based on the derived results, we theoretically investigate the problem of sphericity
test for covariance matrices. This is done by discussing a John’s-type test from
Tian, Lu and Li (2015) for general alternative models and a likelihood ratio test
from Onatski, Moreira and Hallin (2013) for spiked covariances under arbitrary
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elliptical distributions. For illustration, the John-type test is applied to analyze a
dataset of weekly stock returns in Section 4. Technical proofs of the main results
are gathered in Section 5. Some supporting lemmas are postponed to the Appendix.
The paper has also an on-line supplementary file which includes the following
materials: (i) CLT for general moment LSSs; (ii) simulations regarding the John-
type test; (iii) proofs of some lemmas.

2. High-dimensional theory for eigenvalues of Bn. This section investigates
asymptotic behaviors of the eigenvalues of Bn, referred as sample eigenvalues. We
begin with proposing an equivalent condition of (1.5) under the settings of the
elliptical model in (1.4).

LEMMA 2.1. Suppose that a p-dimensional random vector x has a stochastic
form x = ξAu as defined in (1.4) with the radius ξ normalized as E(ξ2) = p. If
the spectral norm of � = AA′ is uniformly bounded in p, then the following two
conditions are equivalent:

(a) Var
(
x′Cpx

) = o
(
p2), (b) E

(
ξ4) = p2 + o

(
p2),

as p → ∞, where {Cp} is any sequence of symmetric matrices with bounded spec-
tral norm.

REMARK 2.1. The fourth moment condition (b) together with the normaliza-
tion E(ξ2) = p characterize the class of elliptical distributions discussed in this
paper. For the normal case, the squared radius ξ2 ∼ χ2

p , and thus E(ξ2) = p and
E(ξ4) = p2 + 2p. In general, the typical order of E(ξ4) is p2 + τp + o(p) with
τ ≥ 0 a constant. Hence a specific elliptical distribution can be recognized by eval-
uating the ratio

(2.1) E
(
ξ4)/E2(ξ2) = 1 + τ/p + o

(
p−1),

as p → ∞. We note that the parameter τ has a nonnegligible effect on the limiting
distributions of LSSs of Bn; see Theorem 2.2. The proof of Lemma 2.1 is given in
the Supplementary Material [Hu et al. (2018)].

In the following, we provide three examples of elliptical family satisfying con-
dition (2.1). Some commonly seen elliptical distributions are also checked and the
results are summarized in Table 1.

EXAMPLE 2.1. A p-dimensional centered multivariate Pearson type II distri-
bution has a density function

(2.2) f (x) = cp|�p|− 1
2
[
1 − x′�−1

p x
] β

2 −1
,
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TABLE 1
Some elliptical distributions and their verification of t condition (2.1). The notation “⊥⊥” in the last

row denotes independence

x = ξAu ∈ R
p Distribution of ξ E(ξ4)/E2(ξ2) Condition (2.1)

Normal ξ2 ∼ χ2
p 1 + 2

p Holds (τ = 2).

Double exponential ξ ∼ Gamma(p,1) 1 + 4p+6
p(p+1)

Holds (τ = 4).

Exponential power ξ2s ∼ Gamma( p
2s

, 1
2 ) 1 + 2

sp + o(p−1) Holds (τ = 2
s ).

Student-t ξ2/p ∼ F(p,v), v > 4 1 + 2
v−4 + 2(v−2)

p(v−4)
Not hold.

Normal scale mixture ξ2 = w · v,w⊥⊥v, v ∼ χ2
p 1 + Var(w)

E2(w)
+ 2

p
E(w2)

E2(w)
Not hold.

where cp = π−p/2
[(β + p)/2]/
(β/2) and β > 0. The stochastic represen-

tation of such a distribution is x = ξ�
1/2
p u, where ξ2 follows the distribution

Beta(p/2, β/2); see Fang and Zhang (1990). Therefore, we have

E
(
ξ4)/E2(ξ2) = 1 + 2β/

(
p2 + βp + 2p

)
,

which verifies the condition in (2.1) with τ = 0.

EXAMPLE 2.2. The family of Kotz-type distributions introduced by Kotz
(1975) is an important class of elliptical distributions, which includes normal dis-
tributions, exponential power distributions and double exponential distribution as
special cases. The density function of a centered Kotz-type random variable x is

(2.3) f (x) = cp|�p|− 1
2
[
x′�−1

p x
]k−1 exp

{−β
[
x′�−1

p x
]s}

,

where cp = sβαπ−p/2
(p/2)
(α) with α = (k − 1 + p/2)/s > 0 and (β, s) > 0.

Write x = ξ�
1/2
p u. The 2s power of the radius is ξ2s = [x′�−1

p x]s which has the
characteristic function

(2.4) E
(
eitξ2s ) = cp

∫
eit[x′�−1

p x]s f (x) dx ∝
∫

eitxxα−1e−βx dx,

where the seconded integral is derived by polar coordinates transformation.
This characteristic function implies that ξ2s follows the Gamma distribution
Gamma(α,β). Simple calculations reveal that

E(ξ4)

E2(ξ2)
= 
(α + 2/s)
(α)


2(α + 1/s)
= 1 + 1

s2α
+ o

(
α−1),

which verifies the condition in (2.1) with τ = 2/s. For the mentioned three special
cases, their details are presented in the 2nd–4th rows of Table 1.
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EXAMPLE 2.3. Let x = ξAu with ξ2 = ∑p
j=1 y2

j independent of u, where
(yj ) is a sequence of i.i.d. random variables with

E
(
y2

1
) = 1 and E

(
y4

1
) = μ4 < ∞.

Then it is simple to check that E(ξ2) = p and E(ξ4) = p2 + (μ4 − 1)p which
verifies the condition in (2.1) with τ = μ4 − 1.

We should note that condition (2.1) excludes some elliptical distributions, such
as multivariate Student-t distributions and normal scale mixtures, as shown in the
5th–6th rows of Table 1. Indeed, sample eigenvalues from these distributions do
not obey the generalized Marčenko–Pastur law [El Karoui (2009), Li and Yao
(2018)], which are then out of the scope of this paper.

Now we are ready to investigate the asymptotic properties of sample eigenvalues
in high-dimensional frameworks, under the following assumptions.

ASSUMPTION (A). Both the sample size n and dimension p tend to infinity
in such a way that cn := p/n → c ∈ (0,∞).

ASSUMPTION (B). There are two independent arrays of i.i.d. random vari-
ables (uj )j≥1, u1 ∼ U(Sp−1), and (ξj )j≥1 satisfying for some τ ≥ 0 and ε > 0,

(2.5) E
(
ξ2

1
) = p, E

(
ξ4

1
) = p2 + τp + o(p) and E

∣∣∣∣ξ2
1 − p√

p

∣∣∣∣2+ε

< ∞,

such that for each p and n the observation vectors can be represented as xj =
ξjAuj , where A is a p × p matrix.

ASSUMPTION (C). The spectral distribution Hp of the matrix � := AA′
weakly converges to a probability distribution H , as p → ∞, referred to as Pop-
ulation Spectral Distribution (PSD). Moreover, the spectral norm of the sequence
(�) is uniformly bounded in p.

In the sequel, for any function G of bounded variation on the real line, its Stielt-
jes transform is defined by

m(z) =
∫ 1

λ − z
dG(λ), z ∈ C \ SG,(2.6)

where SG stands for the support of G. Then we have the following theorems.

THEOREM 2.1. Suppose that Assumptions (a)–(c) hold. Then, almost surely,
the empirical spectral distribution FBn converges weakly to a probability distribu-
tion Fc,H , whose Stieltjes transform m = m(z) is the only solution to the equation

m =
∫ 1

t (1 − c − czm) − z
dH(t), z ∈ C

+,(2.7)

in the set {m ∈C : −(1 − c)/z + cm ∈ C
+} where C

+ ≡ {z ∈C : (z) > 0}.
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REMARK 2.2. Theorem 2.1 follows from Lemma 2.1 and Theorem 1.1 in Bai
and Zhou (2008), and thus we omit its proof here. Let m = m(z) be the Stieltjes
transform of Fc,H = cF c,H + (1 − c)δ0. Then equation (2.7) can be reexpressed
as

(2.8) z = − 1

m
+ c

∫
t

1 + tm
dH(t), z ∈C

+,

which is the so-called Silverstein equation [Silverstein (1995)].

Let Fcn,Hp be the distribution defined by (2.7) with the parameters (c,H) re-
placed by (cn,Hp) and denote Gn = FBn − Fcn,Hp . We next study the fluctuation
of centralized LSSs with form∫

f (x) dGn(x) =
∫

f (x) d
[
FBn(x) − Fcn,Hp(x)

]
,

where f is a function on the real line.

THEOREM 2.2. Suppose that Assumptions (a)–(c) hold. Let f1, . . . , fk be
functions analytic on an open interval containing

(2.9)
[
lim inf
p→∞ λ�

minδ(0,1)(c)(1 − √
c)2, lim sup

p→∞
λ�

max(1 + √
c)2

]
.

Then the random vector

p

(∫
f1(x) dGn(x), . . . ,

∫
fk(x) dGn(x)

)
converges weakly to a Gaussian vector (Xf1, . . . ,Xfk

), with mean function

EXf = − 1

2π i

∮
C1

f (z)

∫
c(m′(z)t)2

m(z)(1 + tm(z))3 dH(t) dz

− τ − 2

2π i

∮
C1

f (z)

∫
(zm(z) + 1)m′(z)t

(1 + tm(z))2 dH(t) dz

and covariance function

Cov(Xf ,Xg) = − 1

2π2

∮
C1

∮
C2

f (z1)g(z2)m
′(z1)m

′(z2)

(m(z1) − m(z2))2 dz1 dz2

+ c(τ − 2)

∫
xf ′(x) dF (x)

∫
xg′(x) dF (x),

(f, g ∈ {f1, . . . , fk}), where the contours C1 and C2 are nonoverlapping, closed,
counterclockwise orientated in the complex plane and each enclosing the support
of the limiting spectral distribution Fc,H .
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REMARK 2.3. When the population is normal, or rather τ = 2, this theorem
coincides with the main result in Bai and Silverstein (2004). It implies that the
high order correlation among the components of the population affects both the
limiting mean vectors and the covariance matrices of LSSs by additive quantities
proportional to τ − 2. This factor can be further decomposed into two parts, τ and
−2, which correspond respectively to the effect from the radius ξ and that from
the direction u (considering the case ξ2 ≡ p). It is interesting to see that these
two kinds of dependency have opposite effects and they may cancel each other for
normal population.

As an application of Theorem 2.2, we consider β̂nj = ∫
xj dFBn(x), j = 1,2,

the first two moments of sample eigenvalues. Theorem 2.2 implies

p

(
β̂n1 − βn1

β̂n2 − βn2

)
D−→ N

((
v1
v2

)
,

(
ψ11 ψ12
ψ12 ψ22

))
,(2.10)

where the parameters possess explicit expressions as

βn1 = γn1, βn2 = γn2 + cnγ
2
n1, v1 = 0, v2 = cγ2 + c(τ − 2)γ1,

ψ11 = 2cγ2 + c(τ − 2)γ 2
1 , ψ12 = 4cγ3 + 4c2γ1γ2 + 2c(τ − 2)γ1

(
cγ 2

1 + γ2
)
,

ψ22 = 8cγ4 + 4c2γ 2
2 + 16c2γ1γ3 + 8c3γ 2

1 γ2 + 4c(τ − 2)
(
cγ 2

1 + γ2
)2

,

where γnj = ∫
tj dHp(t) and γj = ∫

tj dH(t) for j ≥ 1. For LSSs of higher order
moments, explicit formulas of their limiting means and covariances are discussed
in the Supplementary Material [Hu et al. (2018)].

We conduct a small simulation experiment to examine the fluctuations of β̂n1
and β̂n2. In the experiment, the PSD Hp is fixed at Hp = 0.5δ1 + 0.5δ2. The dis-
tribution of ξ is selected as (1) ξ ∼ k1 Gamma(p,1) with k1 = 1/

√
p + 1 and

(2) ξ2 ∼ k2 Beta(p/2,2) with k2 = p + 4, which correspond the CLT with τ = 4
and τ = 0, respectively. The factors k1 and k2 are selected to satisfy E(ξ2) = p.
The dimensional settings are (p,n, c) = (200,400,0.5), (400,200,2) and the
number of independent replications is 10,000. Normal QQ-plots for normalized
statistics, that is, p(β̂n1 − βn1)/

√
ψ11 and [p(β̂n1 − βn1) − v2]/√ψ22, are dis-

played in Figure 1. Their asymptotic standard normality is well confirmed in all
studied cases.

3. Testing for high-dimensional spherical distributions.

3.1. John’s test and its extension. In this section, we revisit the sphericity
test for covariance matrices in high-dimensional frameworks. For this particular
test problem, the underlying population can follow arbitrary elliptical distribution,
which may violate the condition in (1.5).
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FIG. 1. Normal QQ-plots for normalized β̂n1 and β̂n2 from 10,000 independent replications. Up-
per panels: ξ ∼ k1 Gamma(p,1) with k1 = 1/

√
p + 1. Lower panels: ξ2 ∼ k2 Beta(p/2,2) with

k2 = p + 4. The dimensional settings are (p,n, c) = (200,400,0.5), (400,200,2).

The sphericity test on the covariance matrix � is

(3.1) H0 : � = σ 2Ip vs. H1 : � �= σ 2Ip,

where σ 2 is an unknown scalar parameter. When the dimension p is fixed, for
normal populations, John (1972) proposed a locally most powerful invariant test
statistic to deal with the sphericity hypothesis based on the spectrum of sample
covariance matrices. Due to its concise form and broad applicability, this kind of
test is quite favorable for high-dimensional situations and has been extensively
studied in recent years; see, for example, Ledoit and Wolf (2002), Wang and Yao
(2013), Tian, Lu and Li (2015) for the linear transform model in (1.2), while Zou
et al. (2014) and Paindaveine and Verdebout (2016) for the elliptical model in
(1.4). In particular, the test statistic in Tian, Lu and Li (2015) synthesizes the first
four moments of sample eigenvalues, by which it gains extra powers for spike-
like alternative covariance matrices. However, this statistic is not valid for general
elliptical populations [Li and Yao (2018)]. Hence, we next develop an analogue test
procedure with the help of the theoretical results in Section 2, and then compare it
numerically with that from Paindaveine and Verdebout (2016).
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Since the hypotheses in (3.1) are only concerned with the shape component of
�, by convention, we transform the original samples into the so-called spatial-sign
samples, that is,

x̌j := √
pxj /‖xj‖ = √

pAuj /‖Auj‖, j = 1, . . . , n.

Therefore, testing the sphericity of � can now be converted to testing the identity
of �̌ = E(x̌1x̌′

1). This inference can be realized by constructing spectral statistics
of B̌n = ∑n

j=1 x̌j x̌′
j /n. Specifically, let

αnj = p−1 tr
(
�̌j ) and β̌nj = p−1 tr

(
B̌j

n

)
,

j = 0,1,2, . . . . By verifying the condition in (1.5) for x̌1, one may conclude that
Theorem 2.1 also holds for (�̌, B̌n) with all conditions on ξ removed. Then, simi-
lar to Tian, Lu and Li (2015), from the fact that β̌n1 ≡ 1, one may obtain estimators
of αn2 and αn4 as

α̌n2 = β̌n2 − cn, α̌n4 = β̌n4 − 4cnβ̌n3 − 2cn(β̌n2)
2 + 10c2

nβ̌n2 − 5c3
n,

respectively, and two simple statistics for the sphericity test as

T1 = α̌n2 − 1 and T2 = α̌n4 − 1.

Moreover, their joint null distribution is directly from (2.10) with τ = 0.

THEOREM 3.1. Suppose that Assumptions (a)–(c) [removing the moment con-
ditions in (2.5)] hold. Under the null hypothesis,

n(T1, T2)
D−→ N2(μ,�),

where μ = (−1,−6+c) and the covariance matrix � = (ωij ) with ω11 = 4,ω12 =
24, and ω22 = 8(18 + 12c + c2).

The two statistics T1 and T2, together with their null distributions, provide two
test procedures for the identity of �̌ (thus the sphericity of �). The test statistic
T1 agrees with that in Paindaveine and Verdebout (2016), where its null asymp-
totic distribution is proved to be universal whenever min{n,p} → ∞. For the case
where the population mean is unknown, see Zou et al. (2014). The test statistic T2
is new. Compared with T1, it is more sensitive to extreme eigenvalues of �̌, and
thus can serve as a complement of T1. Parallel to Tian, Lu and Li (2015), a joint
statistic of T1 and T2 can be constructed as

Tm = max
{
nT1 + 1

2
,

nT2 + 6 − cn√
8(18 + 12cn + c2

n)

}
,

where the two original statistics are both standardized according to their asymp-
totic null distributions.
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THEOREM 3.2. Suppose that Assumptions (a)–(c) [removing the moment con-
ditions in (2.5)] hold and let δp = p tr(�2)/ tr2(�) − 1.

(i) Under the null hypothesis, for any x ∈ R,

P(Tm ≤ x) →
∫ x

−∞

∫ x

−∞
1

2π

√
1 − ρ2

exp
{
−u2 − 2ρuv + v2

2(1 − ρ2)

}
dudv,

where ρ = 6/
√

2(18 + 12c + c2).
(ii) Under the alternative hypothesis, if nδp → ∞ then the power of the test Tm

goes to 1 as (n,p) → ∞.

The asymptotic null distribution of Tm is an immediate consequence of Theo-
rem 3.1. The consistency of Tm can be proved by showing either the consistency
of T1 or T2. As the consistency of T1 has been given in Zou et al. (2014), we omit
its proof.

We have run a simulation experiment for the tests T1, T2 and Tm to check
their finite-sample properties under similar model settings as in Tian, Lu and Li
(2015). The results show that all the three tests have satisfactory empirical sizes
and powers. In addition, compared with T1 and T2, the test Tm exhibits its robust-
ness against different types of alternative models; see the Supplementary Material
[Hu et al. (2018)].

3.2. Sphericity test under spiked alternative model. The sphericity test Tm ap-
plies to general alternative models. However, its consistency requires nδp → ∞
which excludes the well-known spiked covariance model [Johnstone (2001)].
For the simplest spiked model, the covariance matrix can be expressed as � =
σ 2(Ip +hvv′) where σ 2 and Ip are as before, h is a constant, and v is a unit vector
in R

p . Both h and v are unknown parameters. Thus the sphericity hypotheses in
(3.1) reduce to

(3.2) H0 : h = 0 vs. H1 : h > 0.

It is obvious that Tm will asymptotically fail to reject such alternatives since nδp →
0. What’s more, this testing problem will become more difficult but attractive when
the signal h falls below the threshold

√
c; see Berthet and Rigollet (2013), Onatski,

Moreira and Hallin (2013, 2014), Donoho and Jin (2015), and references therein.
Hence, applying the CLT for LSSs under elliptical distributions, we discuss a test
procedure for (3.2) proposed by Onatski, Moreira and Hallin (2013), which was
built under normal populations.

In Onatski, Moreira and Hallin (2013), the authors discussed a likelihood ratio
test based on the joint distribution of sample eigenvalues from normal populations.
This test was especially designed for the local alternative H1 : h ∈ (0,

√
c) and the
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employed statistic was approximated by a special LSS. In our settings, this LSS
can be formulated as

(3.3) TLR(s) =
∫

ln
(
z(s) − x

)
dF B̌n(z) −

∫
ln
(
z(s) − x

)
dF cn,δ1(x),

where s ∈ (0, s̄) is a testing parameter and z(s) = (1 + s)(cn + s)/s. The up-
per bound s̄ of s is chosen as s̄ = √

cn for h ∈ [0,
√

cn] and s̄ = h−1cn for
h ∈ (

√
cn,∞) such that z(s) is larger than the limit of λmax(B̌n), the largest sam-

ple eigenvalues. Applying Theorem 2.2, one may get the asymptotic distribution
of TLR(s) under general elliptical distributions.

THEOREM 3.3. Suppose that Assumptions (a)–(c) [removing the moment con-
ditions in (2.5)] hold. Under the null hypothesis, for any fixed s ∈ (0, s̄),

pTLR(s)
D−→ N

(
μs,σ

2
s

)
,(3.4)

where the respective mean and variance functions are

μs = 1

2
ln
(
1 − c−1s2)+ c−1s2 and σ 2

s = −2 ln
(
1 − c−1s2)− 2c−1s2.

The proof of Theorem 3.3 is given in the Supplementary Material [Hu et al.
(2018)]. Given a value of s ∈ (0, s̄) and a significance level α ∈ (0,1), the test
TLW(s) rejects H0 if pTLW(s) < σs�

−1(α) + μs , where �(x) denotes the stan-
dard normal distribution function. Unlike Onatski, Moreira and Hallin (2013), the
theoretical power of this test is not available at present since pTLR(s) is not a like-
lihood ratio statistic in elliptical distributions. Another reason is that Theorem 2.2
is inapplicable to this situation since the spatial-sign sample is not anymore ellip-
tically distributed under H1.

Let us take a step back and only consider the testing problem in elliptical distri-
butions satisfying (2.1). For simplicity, we assume σ is known and set σ = 1, so
that the test TLR(s) is still valid by simply substituting the sample covairance Bn

into B̌n, that is,

T̃LR(s) =
∫

ln
(
z(s) − x

)
dFBn(z) −

∫
ln
(
z(s) − x

)
dF cn,δ1(x),

whose asymptotic distribution under both the null and alternative hypotheses is
described in the following theorem.

THEOREM 3.4. Suppose that Assumptions (a)–(c) hold. Let h0 be the true
value of h and σ = 1, then for any fixed s ∈ (0, s̄),

pT̃LR(s)
D−→ N

(
μ̃s(h0), σ̃

2
s

)
,(3.5)
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TABLE 2
Number of stocks in each NAICS sector

Sector 1 2 3 4 5 6 7 8 9 10 11
Number of stocks 30 32 189 17 36 14 37 65 14 17 11

where the respective mean and variance functions are

μ̃s(h) = 1

2
ln
(
1 − c−1s2)+ (1 − τ/2)c−1s2 + ln

(
1 − c−1sh

)
,

σ̃ 2
s = −2 ln

(
1 − c−1s2)− (2 − τ)c−1s2.

This theorem is a direct conclusion of Theorem 2.2. It proof is similar to that of
Theorem 3.3 and we thus omit it here. From Theorem 3.4, the power function of
T̃LW(s) is

PH1

(
T̃LW(s) reject H0

) = �

[
�−1(α) − μ̃s(h0) − μ̃s(0)

σ̃s

]
, h0 > 0.

For normal populations (τ = 2), this power function reaches its maximum at s =
h0, which agrees with (5.1) in Proposition 9 of Onatski, Moreira and Hallin (2013).
In general, the maximizer may not locate at h0. An interesting case is τ = 0, for
which the power function tends to 1 as s → 0+. This is from the fact that

μ̃s(h0) − μ̃s(0) = −c−1sh0 + o(s) and σ 2
s = 2c−2s4 + o

(
s4).

At this time, T̃LW(s) will successfully detect any positive h0 as long as s is close
to zero.

4. An empirical study. For illustration, we apply the test procedure based
on Tm to analyze weekly returns of the stocks from S&P 500. The tests TLR and
T̃LR are not included in this analysis since there is a lack of evidence to fit the
data using the simplest spiked model. According to the North American Industry
Classification System (NAICS), which is used by business and government to clas-
sify business establishments, the 500 stocks can be divided into 20 sectors. Nine
of them are removed from our analysis since their numbers of stocks are all less
than 10. The remaining 11 sectors as well as their numbers of stocks are listed in
Table 2. Usually the stocks in the same sector are correlated, and the stocks in dif-
ferent sectors are uncorrelated. So it is expected that the weekly returns of stocks
in the same sector are not spherically distributed, and it is interesting to see if the
weekly returns of stocks in different sectors are spherically distributed. In the fol-
lowing, we apply Tm to stocks in the same sector and stocks in different sectors,
respectively.

The original data are the closing prices or the bid/ask average of these stocks for
the trading days in the first half of 2013, that is, from 1 January 2013 to 30 June
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2013, with total 124 trading days. This dataset is downloadable from the Center for
Research in Security Prices Daily Stock in Wharton Research Data Services. The
testing model is established as follows. Denote pl as the number of stocks in the lth
sector, uij (l) as the price of the ith stock in the lth sector on Wednesday of the j th
week. The reason that we choose Wednesday’s price here is to avoid the weekend
effect in stock market. Thus we get 22 returns for each stock. In order to meet
the condition of the proposed test, the original data uij (l) should be transformed
by logarithmic difference, which is a very commonly used procedure in finance.
There are a number of theoretical and practical advantages of using logarithmic
returns. One of them is that the sequence of logarithmic returns are independent
of each other for big time scales [e.g., ≥1 day, see Rama (2001)]. Denote xij (l) =
ln(ui(j+1)(l)/uij (l)), j = 1, . . . ,21 and X(l) = (xij (l))pl×n, where n = 21 is the
sample size.

Now applying Tm to the dataset X(l), l = 1, . . . ,11, respectively, we obtain 11
p-values, which are all below 10−9. Therefore, we have strong evidence to believe
that stocks in the same sector are not spherically distributed. This is consistent with
our intuition. Next, we consider stocks in different sectors. Specifically, we choose
one stock from each sector to make up a group of 11 cross-sectoral stocks and
then test whether these stocks are spherically distributed. Because there are about
9.79 × 1015 different groups, we just randomly draw 1,000,000 groups from them
to analyze. It turns out that the largest p-value is 0.3889, 231 p-values are bigger
than 0.05, and 69 p-values are bigger than 0.1. These results again demonstrate
that, when the number of stocks is not very small, it is hard to say weekly logarith-
mic returns for the stocks are spherically distributed. It is also very interesting to
analyze these spherically distributed stocks in different sectors, which have almost
the same variances.

5. Proof of Theorem 2.2. The proof of Theorem 2.2 relies on analyzing the
resolvent of the sample covariance matrix Bn and the general strategy follows
the approach in Bai and Silverstein (2004). Also see Bai et al. (2015) and Gao
et al. (2017) for recent developments. However, as we are dealing with the new
model equipped with nonlinear dependency, all technical steps of implementing
this strategy have to be updated, or at least revalidated. They are presented in this
section.

5.1. Sketch of the proof of Theorem 2.2. Let v0 > 0 be arbitrary, xr any number
greater than the right end point of interval (2.9) and xl any negative number if
the left end point of (2.9) is zero; otherwise, choose xl ∈ (0, lim infp→∞ λ�

min(1 −√
c)2). Let Cu = {x ± iv0 : x ∈ [xl, xr ]} and define a contour C

(5.1) C = {
x + iv : x ∈ {xr, xl}, v ∈ [−v0, v0]}∪ Cu.

By definition, this contour encloses a rectangular region in the complex plane con-
taining the support of the LSD Fc,H . Denote by mn(z) and mFcn,Hp (z) the Stieltjes
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transforms of the ESD FBn and the LSD Fcn,Hp , respectively. Their companion
Stieltjes transforms are given by

mn(z) = −1 − cn

z
+ cnmn(z) and mFcn,Hp (z) = −1 − cn

z
+ cnmFcn,Hp (z).

With these notation, we define an empirical process on C as

Mn(z) = p
[
mn(z) − mFcn,Hp (z)

] = n
[
mn(z) − mFcn,Hp (z)

]
, z ∈ C.

Since f�, � = 1, . . . , k, in Theorem 2.2 are analytic on an open region containing
the interval (2.9) (thus analytic on the region enclosed by C), by Cauchy’s integral
formula, we have for any k complex numbers a1, . . . , ak ,

k∑
�=1

pa�

∫
f�(x) dGn(x) = −

k∑
�=1

a�

2πi

∮
C
f�(z)Mn(z) dz,

when all sample eigenvalues fall in the interval (xl, xr), which is correct with over-
whelming probability. In order to remove the small probability event that some
sample eigenvalues fall outside the interval, we need a truncated version of Mn(z),
denoted by M̂n(z). Specifically, let {εn} be a sequence decreasing to zero satisfying
εn > n−a for some a ∈ (3/4,1). The truncated process M̂n(z) for z = x + iv ∈ C
is given by

M̂n(z) =

⎧⎪⎪⎨⎪⎪⎩
Mn(z), z ∈ Cn,

Mn

(
x + in−1εn

)
, x ∈ {xl, xr}, v ∈ [

0, n−1εn

]
,

Mn

(
x − in−1εn

)
, x ∈ {xl, xr}, v ∈ [−n−1εn,0

]
,

(5.2)

where

Cn = Cu ∪ {
x ± iv : x ∈ {xl, xr}, v ∈ [

n−1εn, v0
]}

,

on which M̂n(z) agrees with Mn(z), is a regularized set of C excluding a small
segment near the real line. Then we have the following.

LEMMA 5.1. Under the same assumptions in Theorem 2.2, we have for any
� > 0, ∮

C
f�Mn(z) dz =

∫
Cn

f�(z)M̂n(z) dz + op(1).

The proof of this lemma will be put in the Supplementary Material Hu et al.
(2018). Hence, Theorem 2.2 follows by similar arguments on pages 562–563 in
Bai and Silverstein (2004) and the following lemma.
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LEMMA 5.2. Under Assumptions (a)–(c), the random process M̂n(·) con-
verges weakly to a two-dimensional Gaussian process M(·) with the mean function

EM(z) =
∫

c(m′(z)t)2 dH(t)

m(z)(1 + tm(z))3

(5.3)

+ (τ − 2)

∫
(zm(z) + 1)m′(z)t dH(t)

(1 + tm(z))2

and covariance function

Cov
(
M(z1),M(z2)

) = 2m′(z1)m
′(z2)

(m(z1) − m(z2))2 − 2

(z1 − z2)2

(5.4)

+ τ − 2

c

(
m(z1) + z1m

′(z1)
)(

m(z2) + z2m
′(z2)

)
,

where z, z1, z2 ∈ C.

The proof of this lemma is the main task of this section and can be achieved by
four steps as described below. Notice that in the proof we will use several inequal-
ities frequently, which are presented as lemmas in the Appendix. We will show
how and where to use these lemmas in the following. Write for z ∈ Cn,

M̂n(z) = p
[
mn(z) − Emn(z)

]+ p
[
Emn(z) − mFcn,Hp (z)

]
:= M(1)

n (z) + M(2)
n (z).

Step 1: Truncation and rescaling of ξ . This step regularizes the variables {ξj }
in Bn = ∑n

j=1 ξ2
j Auj u′

jA
′/n such that {ξj } have proper bound for finite (n,p)

while maintaining the limiting distribution of the LSSs. Compared with the proof
in Bai and Silverstein (2004), this result is entirely new since their model does
not include a radius variable at all. Moreover, our key inequalities (Lemmas A.2–
A.4) are all built on this regularization, and thus their proofs have to be updated to
accommodate the elliptical model.

Step 2: Finite dimensional convergence of M
(1)
n (z) in distribution. This step

finds the joint limiting distribution of an r-dimensional vector (M
(1)
n (z�))1≤�≤r

by the martingale CLT. Lemmas A.2 and A.3 are used to simplify the expression
of the martingale difference and verify Lindeberg’s condition, respectively. The
(limiting) covariance function is calculated based on Lemma A.1 with the help of
Lemma A.3. A new finding here is that the nonlinear dependency comes up with
an extra term in the covariance function (Lemma A.1), which results in a novel
procedure of proving the convergence of this term.

Step 3: Tightness of M
(1)
n (z) on Cn. This step presents the basic idea for es-

tablishing the tightness. A key element is the uniform boundedness of E‖(Bn −
zI)−q‖ for q > 0 which is derived by Lemma A.4. By virtue of this and Lem-
mas A.2–A.4, the tightness can be verified following similar arguments in Bai and
Silverstein (2004).
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Step 4: Convergence of M
(2)
n (z). This final step mainly calculates the limit of

M
(2)
n (z), the limiting mean function of the LSSs. Akin to deriving the covariance

function in Step 2, the nonlinear effect again brings an additional quantity to the
mean function. Hence, most work in this part is to handle this new quantity. Note
that Lemma A.4 is useful in this step to obtain several convergence results and
uniform boundedness on Cn.

These detailed four steps are presented in the next subsection. We note that when
simplifying M

(1)
n (z) and M

(2)
n (z), one more straightforward method is used [see

(5.11) and (5.32), resp.], which are different from Bai and Silverstein (2004).

5.2. Truncation and rescaling of the ξ -variable. From the moment condition
E|(ξ2

1 − p)/
√

p|2+ε < ∞ for some ε > 0 in Assumption (b), we can choose a
sequence of δn > 0 such that

(5.5) δn → 0, δnn
1/2 → ∞, δ−2

n p−1E
[(

ξ2
1 − p

)2
I{|ξ2

1 −p|≥δnp}
] → 0.

Let B̂n = ∑n
j=1 x̂j x̂′

j /n where x̂j = ξ̂jAuj with ξ̂j = ξj I{|ξ2
j −p|<δnp}. We then

have

P(B̂n �= Bn) ≤ nP
(∣∣ξ2

1 − p
∣∣ ≥ δnp

)
(5.6)

≤ δ−2
n np−2E

[(
ξ2

1 − p
)2

I{|ξ2
1 −p|≥δnp}

] → 0.

Define B̃n = ∑n
j=1 x̃j x̃′

j /n where x̃j = ξ̃jAuj with ξ̃j = ξ̂j /σn and σ 2
n =

E(ξ̂2
1 )/p. By the assumptions in (5.5),∣∣1 − σ 2

n

∣∣ = E
(
ξ2

1 /p − 1
)
I{|ξ2

1 −p|≥δnp} + EI{|ξ2
1 −p|≥δnp}

(5.7)
≤ δ−1

n

(
1 + δ−1

n

)
p−2E

(
ξ2

1 − p
)2

I{|ξ2
1 −p|≥δnp} = o

(
p−1).

Therefore, we have

E
(
ξ̃2

1
) = p and E

(
ξ̃4

1
) = 1

σ 4
n

(
E
(
ξ4

1
)− Eξ4

1 I{|ξ2
1 −p|≥δnp}

) = p2 + τp + o(p).

On the other hand, write uj = zj /‖zj‖ where, and in the following zj ∼ N(0, Ip)

and ‖ · ‖ denotes the spectral norm for a matrix, or L2 norm for a vector. By the
strong law of large numbers, for any fixed 0 < η < 1, we have max{‖zj‖2/p : j =
1, . . . , n} ≥ 1 − η holds almost surely for large p. Hence we have for large p,

‖B̃n‖ =
∥∥∥∥∥1

n

n∑
j=1

ξ̃2
j /p

‖zj‖2/p
Azj z′

jA
′
∥∥∥∥∥ ≤ (1 + δn)

(1 − η)σ 2
n

‖�‖
∥∥∥∥∥1

n

n∑
j=1

zj z′
j

∥∥∥∥∥
almost surely. Thus, from Yin, Bai and Krishnaiah (1988), we know that

lim supn λ
B̃n
max (and similarly lim supn λ

B̂n
max) are almost surely bounded by

lim supp ‖�‖(1 + √
c)2.
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Let G̃n(x) and Ĝn(x) be the analogues of Gn(x) with the matrix Bn replaced
by B̃n and B̂n, respectively. From the arguments in Bai and Silverstein (2004) and
(5.7), we can get for f (x, z) = 1/(x − z) (z ∈ C), almost surely,

p2
∣∣∣∣∫ f (x) dĜn(x) −

∫
f (x) dG̃n(x)

∣∣∣∣2

≤
( p∑

j=1

K
∣∣λB̂n

j − λ
B̃n

j

∣∣)2

≤ 4K2
p∑

j=1

(√
λ

B̂n

j −
√

λ
B̃n

j

)2
p∑

j=1

(
λ

B̂n

j + λ
B̃n

j

)

≤ 4K2p
(
λB̂n

max + λB̃k
max

)1

n

n∑
j=1

(x̂j − x̃j )
′(x̂j − x̃j )

= 4K2p
(
λB̂n

max + λB̃k
max

) (1 − σ 2
n )2

σ 2
n (1 + σ 2

n )
tr(B̂n) → 0,

where K is an upper bound of |f ′
x(x, z)|. As a consequence of this and (5.6),

Mn(z) = p

∫
f (x) dGn(x) = p

∫
f (x) dG̃n(x) + op(1).

Therefore, we only need to find the limiting distribution of
∫

f (x) dG̃n(x). For
simplicity, we still use Bn, xj , ξj instead of B̃n, x̃j , ξ̃j , respectively, and assume
that

(5.8) ∀j,
∣∣ξ2

j − p
∣∣ < δnp, E

(
ξ2

1
) = p, E

(
ξ4

1
) = p2 + τp + o(p),

in the sequel.

5.3. Finite dimensional convergence of M
(1)
n (z) in distribution. We will show

in this part that for any positive integer r and any complex numbers z1, . . . , zr ∈ Cn,
the random vector [

M(1)
n (z1), . . . ,M

(1)
n (zr)

]
converges to a 2r-dimensional Gaussian vector. Because of Assumption (c), with-
out loss of generality, we may assume ‖�‖ ≤ 1 for all p. We will denote by K

any constant appearing in inequalities and it may take different values at different
places.

We first define some quantities which are frequently used in the sequel:

rj = (1/
√

n)xj , D(z) = Bn − zI, Dj (z) = D(z) − rj r
′
j ,

Dij (z) = D(z) − rir
′
i − rj r

′
j , εj (z) = r ′

jD
−1
j (z)rj − 1

n
tr�D−1

j (z),
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ζj (z) = r ′
jD

−2
j (z)rj − 1

n
tr�D−2

j (z), βj (z) = 1

1 + r ′
jD

−1
j (z)rj

,

β̄j (z) = 1

1 + n−1 tr�D−1
j (z)

, bn(z) = 1

1 + n−1E tr�D−1
j (z)

.

Note that, for any z = u+ iv ∈ C
+, the last three quantities are bounded in absolute

value by |z|/v. Moreover, D−1(z) and D−1
j (z) satisfy

(5.9) D−1(z) − D−1
j (z) = −D−1

j (z)rj r
′
jD

−1
j (z)βj (z).

From Lemma 2.6 in Silverstein and Bai (1995), for any p × p matrix B ,

(5.10)
∣∣tr(D−1(z) − D−1

j (z)
)
B
∣∣ ≤ ‖B‖

v
.

Let E0(·) denote expectation, and Ej(·) the conditional given the σ -field gen-

erated by r1, . . . , rj . Using the martingale decomposition, we can express M
(1)
n (z)

as

n∑
j=1

(Ej − Ej−1) trD−1(z)

=
n∑

j=1

(Ej − Ej−1) tr
[
D−1(z) − D−1

j (z)
]

= −
n∑

j=1

(Ej − Ej−1)βj (z)r
′
jD

−2
j rj =

n∑
j=1

(Ej − Ej−1)
d log(βj (z)/β̄j (z))

dz
,

where the second equality uses the identity (5.9). By the fact that

βj (z) = β̄j (z) − β̄j (z)βj (z)εj (z) = β̄j (z) − β̄2
j εj (z) + β̄2

j (z)βj (z)ε
2
j (z),

we have

(5.11) M(1)
n (z) = d

dz

n∑
j=1

(Ej − Ej−1) log
[
1 − β̄j (z)εj (z) + β̄j (z)βj (z)ε

2
j (z)

]
.

Notice that for all j > 0 and any z ∈ Cn, β̄j (z)εj (z) and β̄j (z)βj (z)ε
2
j (z) are al-

most surely away from 1 when n is large enough. In addition, by Lemma A.2 and
Burkholder’s inequality [Lemma 2.1 in Bai and Silverstein (2004)], we have

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)β̄j (z)βj (z)ε
2
j (z)

∣∣∣∣∣
2

= O
(
δ2
n

) → 0.
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Therefore, applying Taylor expansion,

M(1)
n (z) = − d

dz

n∑
j=1

(Ej − Ej−1)β̄j (z)εj (z) + op(1)

= − d

dz

n∑
j=1

Ej

(
β̄j (z)εj (z)

)+ op(1).

For any ε > 0,
n∑

j=1

E

∣∣∣∣Ej

d

dz
εj (z)β̄j (z)

∣∣∣∣2I(|Ej
d
dz

εj (z)β̄j (z)|≥ε)

≤ 1

ε2

n∑
j=1

E

∣∣∣∣Ej

d

dz
εj (z)β̄j (z)

∣∣∣∣4

≤ K

ε2

n∑
j=1

( |z|4E|ζj (z)|4
v4 + |z|8p4E|εj (z)|4

v16n4

)
,

which tends to zero according to Lemma A.3, and thus Lindeberg’s condition is
verified. Therefore, from the martingale CLT [Theorem 35.12 Billingsley (1995)],
the random vector (M

(1)
n (zj )) tends to a 2r-dimensional zero-mean Gaussian vec-

tor (M(zj )) with covariance function Cov(M(z1),M(z2)) being

(5.12) lim
n→∞

n∑
j=1

∂2

∂z1 ∂z2
Ej−1

(
Ejεj (z1)β̄j (z1) · Ejεj (z2)β̄j (z2)

)
,

provided that this limit exits in probability. The same argument on page 571 of Bai
and Silverstein (2004) implies that it suffices to show

(5.13)
n∑

j=1

Ej−1

2∏
k=1

Ej β̄j (zk)εj (zk)

converges in probability. In addition, by the martingale decomposition,

E
∣∣β̄j (z) − bn(z)

∣∣2
= ∣∣bn(z)

∣∣2n−2E

∣∣∣∣∣β̄1(z)

n∑
k=2

(Ek − Ek−1) tr
(
D−1

1 (z) − D−1
1k (z)

)∣∣∣∣∣
2

(5.14)

≤ K|z|4v−6n−1,

where the inequality is from (5.10).Thus it is sufficient to study the convergence
of

(5.15) bn(z1)bn(z2)

n∑
j=1

Ej−1
(
Ejεj (z1)Ejεj (z2)

)
,
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whose second mixed partial derivative yields the limit of (5.12). Applying
Lemma A.1, we know that

(5.16) (5.15) = n

(
Eξ4

p(p + 2)
− 1

)
T1 + 2Eξ4

p(p + 2)
T2,

where

T1 = bn(z1)bn(z2)
1

n3

n∑
j=1

tr
[
�EjD

−1
j (z1)

]
tr
[
�EjD

−1
j (z2)

]
,

T2 = bn(z1)bn(z2)
1

n2

n∑
j=1

tr
[
�EjD

−1
j (z1)�EjD

−1
j (z2)

]
.

We note that the statistic T2 has the same form as equation (2.8) in Bai and
Silverstein (2004), which has been handled under their model. Following their
calculations and using Lemmas A.2–A.3 instead, one may get

T2
i.p.−→

∫ a(z1,z2)

0

1

1 − z
dz,(5.17)

where

a(z1, z2) =
∫

cm(z1)m(z2)t
2 dH(t)

(1 + tm(z1))(1 + tm(z2))
= 1 + m(z1)m(z2)(z1 − z2)

m(z2) − m(z1)

and

(5.18)
∂2T2

∂z1 ∂z2

i.p.−→ m′(z1)m
′(z2)

(m(z1) − m(z2))2 − 1

(z1 − z2)2 .

Now we derive the limit of T1 and its second mixed partial derivative, which is
new compared with the linear transform model. Denote

βij (z) = (
1 + r ′

iD
−1
ij (z)ri

)−1
, b1(z) = (

1 + n−1E tr�D−1
12 (z)

)−1
.

By similar proofs of (5.14) and equation (4.3) of Bai and Silverstein (1998), one
may get |b1(z) − bn(z)| ≤ Kn−1 and |bn(z) − Eβ1(z)| ≤ Kn−1/2, respectively.
Also, by equation (2.2) of Silverstein (1995) and discussions in Section 5 of Bai
and Silverstein (1998), we obtain

Eβ1(z) = −zEmn(z) and
∣∣Emn(z) − mFcn,Hp (z)

∣∣ ≤ Kn−1,

respectively. Therefore, we get

(5.19)
∣∣b1(z) + zmFcn,Hp (z)

∣∣ ≤ Kn−1/2.

With the quantity b1(z), we define a nonrandom matrix L(z) for the purpose of
replacing Dj(z) in T1,

L(z) = −zI + n − 1

n
b1(z)�,
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which satisfies

(5.20)
∥∥L(z)

∥∥−1 ≤ |b−1
1 (z)|

(zb−1
1 (z))

≤ |b−1
1 (z)|
(z)

≤ 1 + p/(nv)

v
.

By the identity r ′
iD

−1
j (z) = βij (z)r

′
iD

−1
ij (z), we get their difference

D−1
j (z) − L−1(z) = b1(z)R1(z) + R2(z) + R3(z),(5.21)

where

R1(z) = −∑
i �=j

L−1(z)
(
rir

′
i − n−1�

)
D−1

ij (z),

R2(z) = −∑
i �=j

(
βij (z) − b1(z)

)
L−1(z)rir

′
iD

−1
ij (z),

R3(z) = −n−1b1(z)L
−1(z)�

∑
i �=j

(
D−1

ij (z) − D−1
j (z)

)
.

For any p × p (nonrandom) matrix M , from (5.10), (5.20) and Lemma A.3, we
get

E
∣∣trR1(z)M

∣∣
≤ nE1/2∣∣r ′

1D
−1
12 (z)ML−1(z)r1 − n−1 tr�D−1

12 (z)ML−1(z)
∣∣2(5.22)

≤ n1/2K‖M‖(1 + p/(nv))

v2 ,

E
∣∣trR2(z)M

∣∣
≤ nE1/2(∣∣β12(z) − b1(z)

∣∣2)E1/2∣∣r ′
1D

−1
12 ML−1(z)r1

∣∣2(5.23)

≤ n1/2K‖M‖|z|2(1 + p/(nv))

v5 ,

∣∣trR3(z)M
∣∣ ≤ ‖M‖|z|(1 + p/(nv))

v3 .(5.24)

Hence, plugging (5.21) into T1 and applying the inequalities (5.19), (5.22)–(5.24),
we have

2∏
k=1

trEjD
−1
j (zk)� =

2∏
k=1

trL−1(zk)� + Q1(z1, z2)

= p2
2∏

k=1

1

zk

∫
t dHp(t)

1 + tmFcn,Hp (zk)
+ Q2(z1, z2),
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where E|Qk(z1, z2)| ≤ Kn3/2, k = 1,2. We thus get

T1 =
2∏

k=1

mFcn,Hp (zk)

∫
cnt dHp(t)

1 + tmFcn,Hp (zk)
+ op(1)

i.p.−→
2∏

k=1

(
1 + zkm(zk)

)
whose second mixed partial derivative is

(5.25) ∂2T1/(∂z1 ∂z2)
i.p.−→ (

m(z1) + z1m
′(z1)

)(
m(z2) + z2m

′(z2)
)
.

The result in (5.25) can be obtained by Vitali’s convergence theorem [Lemma 2.3
in Bai and Silverstein (2004)].

Collecting results in (5.16), (5.18) and (5.25), we finally get

Cov
(
M(z1),M(z2)

) = (
m(z1) + z1m

′(z1)
)(

m(z2) + z2m
′(z2)

)
+ 2m′(z1)m

′(z2)/
(
m(z1) − m(z2)

)2 − 2/(z1 − z2)
2,

which completes the proof of Step 1.

5.4. Tightness of M
(1)
n (z). The tightness of M

(1)
n (z) can be established by ver-

ifying the moment condition (12.51) of Billingsley (1968), that is,

(5.26) sup
n,z1,z2∈Cn

E
∣∣M(1)

n (z1) − M(1)
n (z2)

∣∣2/|z1 − z2|2 < ∞.

By the martingale decomposition and the equality

mn(z1) − mn(z2) = (z1 − z2)p
−1 tr

(
D−1(z1)D

−1(z2)
)
,

to show (5.26), it is sufficient to prove the absolute second moment of

n∑
j=1

(Ej − Ej−1) tr
[
D−1(z1)D

−1(z2)
]

is bounded uniformly. We first show the uniformly boundedness of E‖D−q(z)‖
on C for any fixed q > 0. Note that D−1(z) is bounded on z ∈ Cu. While for z ∈
Cl ∪ Cr , applying Lemma A.4 with suitable large s, we have uniformly

E
∥∥D−1(z)

∥∥q ≤ K + 1

vq
P
(‖Bn‖ > ηr or λ

Bn

min < ηl

) ≤ K + o(1),

where lim supp ‖�‖(1 + √
c)2 < ηr < xr and xl < ηl < lim infp λ�

min(1 − √
c)2.

Analogously, E‖D−1
j (z)‖q has the same order, and we thus get

(5.27) max
{
E
∥∥D−1(z)

∥∥q
,E

∥∥D−1
j (z)

∥∥q
,E

∥∥D−1
ij (z)

∥∥q} ≤ Kq.

Then (5.26) can be obtained by the same procedure in Section 3 of Bai and Silver-
stein (2004), applying Lemmas A.2–A.4 together with (5.27). We omit the details.



550 HU, LI, LIU AND ZHOU

5.5. Convergence of M
(2)
n (z). Next, we will show that for z ∈ Cn, {M(2)

n (z)}
converges to (5.3), is bounded and forms a uniformly equicontinuous family.

We first introduce some auxiliary results, which can be verified by applying
Lemma A.4 in our theoretical framework through a similar proof of the same state-
ments in Bai and Silverstein (2004). First of all, we note that

sup
z∈Cn

∣∣Emn(z) − m(z)
∣∣ → 0 and sup

n,z∈Cn

∥∥V −1(z)
∥∥ < ∞,(5.28)

where V (z) = Emn(z)� + I . Then, for any nonrandom p × p matrix M ,

E
∣∣trD−1(z)M − E trD−1(z)M

∣∣2 ≤ K‖M‖2.(5.29)

Next, there exists a number θ ∈ (0,1) such that for all n large enough

sup
z∈Cn

∣∣∣∣cn

∫
(tEmn(z))

2

(1 + tEmn(z))
2 dHp(t)

∣∣∣∣ < θ.(5.30)

Lastly, from (4.12) of Bai and Silverstein (2004) and (5.2) in Bai and Silverstein
(1998), we have that

(5.31) M(2)
n (z) = − mFcn,Hp (z)Qn(z)

(1 − ∫ cnEmn(z)m
F

cn,Hp (z)t2 dHp(t)

(1+tEmn(z))(1+tm
F

cn,Hp (z))
)

,

where

Qn(z) = n

(
cn

∫
dHp(t)

1 + tEmn(z)
+ zcnEmn(z)

)
(5.32)

= nEβ1(z)
(
r ′

1D
−1
1 (z)V −1(z)r1 − n−1E trV −1(z)�D−1(z)

)
.

From (5.30) and an analog inequality involving mFcn,Hp (z), the denominator of
(5.31) is bounded away from zero. Therefore, we need only to study the limit of
Qn(z) for z ∈ Cn.

For simplicity, we suppress the variable z from expressions in the sequel when
there is no confusion. Let �1 := �1(z) = r ′

1D
−1
1 r1 − (1/n)E tr�D−1

1 . By the
equality,

β1 = bn − bnβ1�1 = bn − b2
n�1 + b2

nβ1�
2
1,(5.33)

we have Qn = Q
(1)
n + Q

(2)
n + Q

(3)
n , where

Q(1)
n = bnE

(
trD−1

1 V −1� − trV −1�D−1),
Q(2)

n = −nb2
nE�1

(
r ′

1D
−1
1 V −1r1 − n−1 trD−1

1 V −1�
)
,

Q(3)
n = nb2

nEβ1�
2
1
(
r ′

1D
−1
1 V −1r1 − n−1E trV −1�D−1).
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For Q
(1)
n , apply (5.9) and (5.33) again,

E trV −1�
(
D−1

1 − D−1)
= Eβ1r

′
1D

−1
1 V −1�D−1

1 r1(5.34)

= bnn
−1E trD−1

1 V −1�D−1
1 − bnEβ1�1r

′
1D

−1
1 V −1�D−1

1 r1.

By Lemma (A.2), Hölder’s inequality and the fact that r ′
1D

−1
1 V −1�D−1

1 r1, bn

and β1 are all bounded for z ∈ Cn, the second term in equation (5.34) is o(1).
Analogously, we can get that Q

(3)
n = o(1). Together with applying Lemma A.1 to

Q
(1)
n , we finally obtain that

Qn = −b2
nn

−1
(

Eξ4

p(p + 2)
− 1

)
E trD−1

1 �E trD−1
1 V −1�

− b2
nn

−1
(

2Eξ4

p(p + 2)
− 1

)
E trD−1

1 V −1�D−1
1 � + o(1)(5.35)

:= −(τ − 2)c−1
n b2

nQ
(4)
n − b2

nQ
(5)
n + o(1),

where Q
(4)
n = n−2E trD−1�E trD−1V −1� and Q

(5)
n = n−1E trD−1V −1� ×

D−1�. The limit of Q
(5)
n can be obtained by a similar approach to deriving (4.13)–

(4.22) in Bai and Silverstein (2004). It turns out that

Q(5)
n = cn

z2

∫
t2 dHp(t)

(1 + tEmn)
3

(
1 − cn

∫
(tEmn)

2 dHp(t)

(1 + tEmn)
2

)−1
+ o(1).(5.36)

The quantity Q
(4)
n is new under the elliptical model. To study its limit, similar

to (5.21), we approximate the matrix D−1(z) by

L̃ = −zI + bn�.

Notice that

bn = Eβ1 + O
(
n−1/2) = −zEmn + O

(
n−1/2) → −zm,

as n → ∞. By (5.28), it follows that L̃ is nonsingular and ‖L̃−1‖ is bounded.
Then, analogous to (5.21)–(5.24), we have

D−1 − L̃−1 = bnR̃1 + R̃2 + R̃3,(5.37)

where

|E tr R̃1M| ≤ n1/2K, |E tr R̃2M| ≤ n1/2K
(
E‖M‖4)1/4

,(5.38)

| tr R̃3M| ≤ K
(
E‖M‖2)1/2(5.39)



552 HU, LI, LIU AND ZHOU

for any p × p nonrandom matrix M with bounded norm. From (5.37)–(5.38), we
have that

n−1E trD−1� = −cn

z

∫
t dHp(t)

1 + tEmn

+ o(1),(5.40)

n−1E trD−1V −1� = −cn

z

∫
t dHp(t)

(1 + tEmn)
2 + o(1).(5.41)

Equations (5.40) and (5.41) imply that

(5.42) Q(4)
n = c2

n

z2

∫
t dHp(t)

1 + tEmn

∫
t dHp(t)

(1 + tEmn)
2 + o(1).

Combining (5.31), (5.35), (5.36) and (5.42), we finally get

M(2)
n (z) =

[
(τ − 2)cn

∫
tmFcn,Hp dHp(t)

1 + tEmn

∫
tm2

n dHp(t)

(1 + tEmn)
2

+ cn

∫
t2mFcn,Hp m2

n dHp(t)

(1 + tEmn)
3

(
1 − cn

∫
(tEmn)

2 dHp(t)

(1 + tEmn)
2

)−1]

×
(

1 − cn

∫
EmnmFcn,Hp t2 dHp(t)

(1 + tEmn)(1 + tmFcn,Hp )

)−1
+ o(1)

→ (τ − 2)

∫
(zm + 1)m′t dH(t)

(1 + tm)2 + c

∫
(m′t)2 dH(t)

m(1 + tm)3 ,

where m′ = m′(z) denotes the derivative of m(z) with respective to z.
The boundedness and uniform equicontinuity for z ∈ Cn can be verified directly

following the arguments on pages 592–593 of Bai and Silverstein (2004). So we
omit them here. Then the proof of Theorem 2.2 is complete.

APPENDIX

These lemmas can be viewed as extensions of independent cases. Their proofs
are postponed to the Supplementary Material [Hu et al. (2018)].

LEMMA A.1. Let x = ξu where ξ and u are defined in Assumption (b). Then,
for any p × p complex matrices C and C̃,

E
(
x′Cx − trC

)(
x′C̃x − tr C̃

)
(A.1)

= Eξ4

p(p + 2)

(
trC tr C̃ + trCC̃′ + trCC̃

)− trC tr C̃.

LEMMA A.2. Let x = ξu where ξ satisfies (5.8), independent of u ∼
U(Sp−1), then for any p × p complex matrix C and q ≥ 2,

(A.2) E
∣∣x′Cx − trC

∣∣q ≤ K‖C‖qδq−2
n pq−1,

where K is a positive constant depending only on q .
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LEMMA A.3. Let r = ξu/
√

n where ξ satisfies (5.8), independent of u ∼
U(Sp−1). Then, for any nonrandom p × p matrix Ck , k = 1, . . . , q1 and C̃l ,
l = 1, . . . , q2, q1, q2 ≥ 0,∣∣∣∣∣E

( q1∏
k=1

r ′Ckr

q2∏
l=1

(
r ′C̃lr − n−1 tr C̃l

))∣∣∣∣∣ ≤ Kn−(1∧q2)δ(q2−2)∨0
n

q1∏
k=1

‖Ck‖
q2∏
l=1

‖C̃l‖,

where K is a positive constant depending on q1 and q2.

LEMMA A.4. Suppose (5.8) holds. Then, for any positive s,

P
(‖Bn‖ > ηr

) = o
(
n−s),

whenever ηr > lim supp→∞ ‖�‖(1 + √
c)2. If 0 < lim infp→∞ λ�

minI(0,1](c) then

P
(
λ

Bn

min < ηl

) = o
(
n−s),

whenever 0 < ηl < lim infp→∞ λ�
minI(0,1)(c)(1 − √

c)2.
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SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional covariance matrices in elliptical distri-
butions with application to spherical test” (DOI: 10.1214/18-AOS1699SUPP;
.pdf). This supplementary material gives a general result for the CLT of the mo-
ments of sample eigenvalues, proofs of Theorem 3.3 and Lemmas 2.1, 5.1, A.1–
A.4, and additional simulations for assessing the tests T1, T2 and Tm.
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