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FEATURE ELIMINATION IN KERNEL MACHINES
IN MODERATELY HIGH DIMENSIONS1

BY SAYAN DASGUPTA∗, YAIR GOLDBERG† AND MICHAEL R. KOSOROK∗

University of North Carolina at Chapel Hill∗ and University of Haifa†

We develop an approach for feature elimination in statistical learning
with kernel machines, based on recursive elimination of features. We present
theoretical properties of this method and show that it is uniformly consistent
in finding the correct feature space under certain generalized assumptions. We
present a few case studies to show that the assumptions are met in most prac-
tical situations and present simulation results to demonstrate performance of
the proposed approach.

1. Introduction. With recent advancement in data collection and storage, we
have large amounts of information at our disposal, especially with respect to the
number of explanatory variables or “features.” When these features contain re-
dundant or noisy information, estimating the functional connection between the
response and these features can become quite challenging, and that often hampers
the quality of learning. One way to overcome this is by finding a smaller set of
features or explanatory variables that can perform the learning task sufficiently
well.

In this paper, we discuss feature elimination in statistical learning with kernel
machines. Kernel machines (KM), which we review in Section 2, are a collection
of optimization algorithms for learning in pattern analysis and regression. These
algorithms attempt to minimize a regularized version of the empirical risk over a
reproducing kernel Hilbert space (RKHS) of functions defined on the input space
X [referred to as H(X )] for a given loss function L. Of the many KM algorithms,
the linear support vector machine (SVM), where each f ∈ H(X ) is a linear com-
bination of the attributes in X , is the simplest case. In general, the term kernel
machine is reserved for the more general version of the problem with nonlinear
transformation of the feature space. The popularity of these algorithms is moti-
vated by the fact that these are easy-to-compute techniques that enable estimation
under weak or no assumptions on the distribution [see Steinwart and Christmann
(2008)]. The standard KM decision function typically utilizes all the input features.
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However, the prediction quality of these methods often suffers under high noise-
to-signal ratio, even if the dimension of the input space is only moderately high.
In Section S5 of the Supplementary Material [Dasgupta, Goldberg and Kosorok
(2018)], we present an example (see Table S5.1) for a nonlinear classification with
only ten features, of which only two are relevant. We see that applying a meaning-
ful feature selection method there can cut classification error in half, from 31% to
about 12–14%, for a sample size of n = 100. It is thus a very important task to be
able to select the correct feasible set of input features on which the learning can be
applied.

Multiple methods have been proposed for the case when the assumed functional
form of the decision rule is linear. For example, many embedded methods2 with
different modifications have been proposed; such as redefining the linear KM train-
ing to include sparsity in Weston et al. (2003), using the l1 penalty as in Bradley
and Mangasarian (1998), Zhu et al. (2003), the SCAD penalty in Zhang et al.
(2006a), the lq penalty [Liu et al. (2007)] or the elastic net [Wang, Zhu and Zou
(2006)]. Although these methods have strong theoretical guarantees, they are rel-
evant only in linear KMs (or SVMs), and become ineffectual in the framework
of RKHSs with nonlinear kernels (such as the Gaussian RBF kernel). The widely
applicable linear version is the most popular and well known of the general class
of KM problems, and has been the focus of most of the prevalent feature selection
techniques. Nonlinear versions of the algorithm have however become increas-
ingly important recently, and many statistical learning problems explicitly depend
on functional relationships that are strictly nonlinear in nature, for example, in pro-
tein classification [see Leslie et al. (2004)], in image classification [see Chapelle,
Haffner and Vapnik (1999)], etc. Thus, feature selection for nonlinear kernel ma-
chines is the key focus for us in this paper.

A few techniques do exist that can be effectively catered to the nonlinear kernel
machines framework. For example, Guyon et al. (2002) developed a wrapper3-
based backward elimination procedure by recursively computing the learning func-
tion, known widely as recursive feature elimination (RFE). Although RFE was
developed as an off-the-shelf technique for linear KMs, the authors included an
analogous formulation for the nonlinear transformed space as well. The RFE al-
gorithm performs a recursive ranking of a given set of features. At each recursive
step of the algorithm, it calculates the change in the RKHS norm of the estimated
function after deletion of each of the features remaining in the model, and removes
the one with the lowest change in such norm, thus performing an implicit ranking
of features. A number of approaches have been developed inspired by RFE [see
Rakotomamonjy (2003), Tang, Zhang and Huang (2007), Mundra and Rajapakse

2Methods that construct the learning algorithm in a way to include feature elimination as an in-built
phenomenon.

3Methods that use the learning method itself to score feature subsets.
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(2010)]. RFE has been studied extensively in the bioinformatics and computer sci-
ence literature [see, e.g., Zhang et al. (2006b), Aksu et al. (2010), Aksu (2014)].
It has also been used for feature selection in many recent applications [see, e.g.,
Hu et al. (2010), Hidalgo-Muñoz et al. (2013), Louw and Steel (2006)]. Recently,
a new multistage embedded optimization method has been proposed [see Allen
(2013)]. However, the key drawback of most of these methods is that their theoret-
ical properties have never been studied rigorously.

A key reason behind this lack of theory is the absence of a well-established
framework for building, justifying and collating the theoretical foundation of such
a feature elimination method. This paper aims at building such a framework and
modifying RFE to create a recursive technique that can be validated as a theo-
retically sound procedure for feature elimination in kernel machines. Our main
contributions include:

(1) We develop a theoretical framework that can validate feature elimination
in KMs. For example, since optimization is restricted within the RKHS H(X ) in
KMs, one important task here is to redefine H(·) on any lower dimensional domain
of X , so that it retains its RKHS properties.

(2) We modify the criterion for deletion and ranking of features from Guyon
et al.’s RFE, and call it the risk-RFE algorithm. The ranking of the features here
is based on the lowest difference observed in the regularized empirical risk after
removing each feature from the existing model. This is done to enable theoretical
consistency.

(3) We establish asymptotic consistency of the modified risk-RFE algorithm in
finding the “correct” feature space, both when the dimension of the input space is
fixed, and when the dimensionality is allowed to grow with the sample size. We
discuss at length the necessary conditions for achieving consistency under both se-
tups, and for the latter, establish a range of allowed rates of dimensionality growth
that can guarantee consistency. We believe these are some of the first theoretical
results on feature selection in kernel machines.

(4) We discuss the applicability of our methods in some important learning
problems, including image classification.

(5) We discuss a practical method of using our algorithm to select an optimal
feature set for learning.

The paper is organized as follows: In Section 2, we present a short summary
of the problem, the proposed feature elimination algorithm for kernel machines,
and the main theoretical results of the article. In Section 3, we present an in depth
analysis of the various assumptions for the risk-RFE algorithm and discuss their
implications. In Section 4, we prove our main results under the most general set-
ting, following which several case studies are discussed in-depth in Section 5. In
Section 6, we provide simulation results to demonstrate how risk-RFE can be used
in intelligent selection of features, and assess its performance in various settings of
nonlinearity. In Section 7, we apply our algorithm to several applied data settings,
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both in classification and regression. A discussion is provided in Section 8, while
additional materials and detailed proofs are given in the Supplementary Material
[Dasgupta, Goldberg and Kosorok (2018)], along with a link to the software codes.

2. The risk-recursive feature elimination algorithm (risk-RFE). In this
section, we summarize the main findings of the paper. We first briefly describe
the relevant problem, along with its mathematical formulation, and then follow up
with the risk-RFE algorithm and our main consistency results.

2.1. The problem description. Given a set of training data D = {(X1, Y1), . . . ,

(Xn,Yn)} ∈ (X ×Y)n, a typical goal in statistical learning is to estimate a rule that
can be used to predict Y for a given input feature vector X. In kernel machines, this
is done by minimizing a regularized version of the empirical risk (for a given loss
function L) of functional rules obtained from a reproducing kernel Hilbert space
(RKHS). An RKHS H is typically represented by a bi-linear function k(·, ·), and
for a given transformation φ of the feature space, the appropriate RKHS H is the
one with kernel k satisfying k(x1, x2) = 〈φ(x1), φ(x2)〉H .

Linear KM for binary classification with the hinge loss LHL(X,Y,f (X)) =
max(1 − Yf (X),0) is the most popular version of the kernel machines algorithm,
but for the untransformed feature space. It has been extensively studied, under sev-
eral feature selection methods (especially, the Lp penalized forms of the algorithm
as they are easily interpretable in the linear case). However, feature selection in
general kernel machines is still a relatively new area of research, and one key goal
here is to lay the theoretical foundation of a feature selection method in nonlinear
KMs.

2.2. Mathematical formulation. The notation and the oracle bounds used
throughout the paper will closely follow Steinwart and Christmann (2008) (here-
after abbreviated SC08). Consider the measurable space (X ,A,P d

X ) such that
X ⊆ B ⊂ Rd is a valid metric space, with B a d-dimensional open Euclidean
ball centered at 0. Let Y be a closed subset of R and P d

X×Y := P d be a measure
on X ×Y , such that P d

X is a restriction of P d on X , and let d0 denote the number
of relevant features in X . We start by defining the kernel machine algorithm in its
most general forms.

REMARK 1. The L-risk (for a given loss function L) of the measur-
able function f is given as RL,P (f ) = EP [L(X,Y,f (X))]. The Bayes’ risk
R∗

L,P is defined as inff RL,P (f ), where the infimum is taken over L0(X ) =
{f : X �→ R, f is measurable}, the set of all measurable functions. A func-
tion f ∗

P that achieves this infimum is called a Bayes’ decision function. Let F
be a given optimization space, and fP,F = arg minf ∈F EP [L(X,Y,f (X))] =
arg minf ∈F RL,P (f ) be the minimizer of infinite-sample risk within F . We denote
this minimal risk as R∗

L,P,F =RL,P (fP,F ).
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REMARK 2. The loss L is called convex when L(x, y, ·) is convex for ev-
ery x ∈ X and y ∈ Y . It is also locally Lipschitz continuous if for every a > 0,
supx∈X ,y∈Y |L(x, y, s)−L(x, y, ś)| < cL(a)|s − ś|, s, ś ∈ [−a, a] for a given local
constant cL(·). Note that the results developed here are equally valid for regression
under certain regular assumptions on Y .

KERNEL MACHINE (KM): Consider now a loss function L, which is convex,
locally Lipschitz continuous and measurable, and H (note that H is a special form
of the optimization space F ), a separable RKHS of a measurable kernel k on X ,
and fix a λ > 0. The general KM solution is the function fP,λ,H ∈ H that satisfies

fP,λ,H = arg min
f ∈H

λ‖f ‖2
H +RL,P (f ).(1)

For the observed data D, the empirical KM decision function fD,λ,H is then given
as

fD,λ,H = arg min
f ∈H

λ‖f ‖2
H +RL,D(f ).(2)

REMARK 3. The kernel k of the RKHS H is a unique, real-valued sym-
metric function k : X × X �→ R. The kernel k has the reproducing property that
f (x) = 〈f, k(·, x)〉H for all f ∈ H , and all x ∈ X , where 〈·, ·〉H is the inner prod-
uct induced by H . Moreover, we also have k(·, x) ∈ H , for all x ∈ X .

2.3. The feature elimination algorithm. Limitations of Guyon et al.’s RFE as
a margin-maximizing feature elimination were studied explicitly in Aksu et al.
(2010). Hence, as opposed to Guyon et al., who used the Hilbert space norm
λ‖f ‖2

H to eliminate features recursively, we use the entire objective function (the
regularized empirical risk) for deletion.

For a probability measure Q and the optimization space F , define the regular-
ized Q-risk as

Rreg,λ
L,Q,F (f ) = λ‖f ‖2

F +RL,Q(f ).(3)

Also define the restricted space FJ (often referred to as a pseudo-subspace of F )
as follows.

DEFINITION 1. Let J be a set of indices J ⊆ {1,2, . . . , d}. Then for a given
functional space F , define FJ = {g : g = f ◦ πJc

,∀f ∈ F}, where πJc
is the

projection map that takes element x ∈ Rd and maps it to xJ ∈ Rd , by substituting
elements in x indexed in the set J , by zero, and leaving the remaining elements
unchanged.

REMARK 4. Note that we can subsequently define the space X J = {πJc
(x) :

x ∈ X }. Thus the above formulation allows us to create lower dimensional versions
of a given functional space F .
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REMARK 5. One important aspect of the problem is the dimensionality (di-
mension d of X and the number of signals d0). With a recent surge in interest in
the high dimensional version of standard problems, wherein the asymptotic prop-
erties of the design size d are studied along with those of the sample size n, it is
important that we evaluate risk-RFE in the same light as well. In this article, we
consider both the standard fixed dimensional setting, as well as the setting where d

and d0 grow with n, but with the restriction d > d0 > 0. The varying dimensional
setting requires additional technical details beyond the standard one, and hence in
the following sections we will study our algorithm in the fixed dimensional setting
first (often P will replace P d in such cases), followed by modifications and other
technical requirements for the varying dimensional setting.

For most practical purposes, the algorithm will be used under the paradigm of
fixed dimension only, as shown below. For now, assume d and d0 (the number of
relevant features) to be fixed constants. The risk-RFE algorithm, defined for the
parameters {λn, δn} is given as the following.

ALGORITHM 1 (risk-RFE in the fixed dimensional setting). For a given RKHS
H , we start off with J ≡ [·] empty and let Z ≡ [1,2, . . . , d].

STEP 1: In the kth iteration, choose feature ik ∈ Z \ J which minimize

Rreg,λn

L,D,HJ∪{i}(fD,λn,HJ∪{i}) −Rreg,λn

L,D,HJ (fD,λn,HJ ),(4)

STEP 2: Update J = J ∪ {ik}. Go to STEP 1.

Continue this until the difference

min
i∈Z\J R

reg,λn

L,D,HJ∪{i}(fD,λn,HJ∪{i}) −Rreg,λn

L,D,HJ (fD,λn,HJ )

becomes larger than a pre-determined quantity δn, and output J as the set of indices
for the features to be removed from the model.

The quantity λn is the tuning parameter associated with the Hilbert norm of the
functional rule and controls over-fitting. The quantity δn is the other tuning param-
eter controlling feature selection. It is given as the maximum limit of increment
allowed in the objective function during two successive steps of feature selection
in the risk-RFE algorithm. The oracle choices for the parameters λn and δn will be
discussed in Section 2.6. Now, consider the situation when both d , the dimension
of X , and (potentially) d0, the number of relevant features, go to infinity with n.
The modified feature selection algorithm for the varying dimensional one is given
as the following.

ALGORITHM 2. Replace the stopping condition in Algorithm 1 from δn to
δP d

n (d − |J |), where δP d

n (·) is a positive monotone decreasing function.
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FIG. 1. Stopping rule for the modified algorithm in the growing design size setting: A potential
case.

The only modification of the algorithm lies in the stopping rule. The fixed
tuning parameter δn in the fixed design problem is replaced by the function
δP d

n : {1, . . . , d} �→ R. Figure 1 shows a visual representation of the stopping con-

dition in this case. Extending the rationale from the fixed design case, δP d

n acts
as a functional upper bound for the difference of the regularized risks (the ob-
jective function for risk-RFE). In other words, at iteration i of the algorithm,
δP d

n (d − i) acts as the maximal allowance that the difference of regularized risks
(between models at subsequent iterations) can attain at this iteration. Hence,
the point where this difference finally jumps above δP d

n (·), is where our algo-
rithm is stopped, and the features left in the model are retained as potential sig-
nals.

One thing to note is that Algorithm 2 is a natural extension of Algorithm 1,
presented here to illustrate the changes of the underlying dynamics in the vary-
ing dimensional setting. For most practical purposes, dimension d of the covariate
space will be fixed, and we will really use Algorithm 1, presented earlier. In that
case, δP d

n (·) reduces to the fixed δn, the optimal choice of which, in practical set-
tings, will be discussed in Section 6.1.

2.4. Number of features removed in each iteration of risk-RFE. In Algo-
rithm 1 above, we discussed removing only one feature at each iteration. Similarly,
one can also consider removing multiple features (say k) in a single iteration. In
that case, the k indices that produce the k smallest values of the objective function
(4) are removed in that iteration. This number can also be defined adaptively, with
different numbers of features removed in different iterations of the algorithm. For
simplicity, we have set it to 1 for our theory, but in numerical simulations we often
define it adaptively to speed up computations.
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2.5. Heuristics on why risk-RFE is consistent. Consider risk minimization in
the fixed dimensional case given the optimization space F , and let our goal be to
find a solution f ∈F that minimizes a given empirical criterion (such as “regular-
ized empirical” risk in kernel machines). If it so happens that the minimizer of the
infinite-sample risk resides in a space spanned by a lower dimensional subspace
of X (say X ∗), then it may actually suffice to find the empirical minimizer over
the restriction of F on X ∗. To avoid over-fitting, this indeed becomes necessary.
Hence the motivation for our algorithm stems from the following two heuristics:
(a) if any feature is superfluous for the given problem, then given all other features
in the model, its contribution to the functional relationship between the output vari-
able and the feature space should only be due to random fluctuations, and should
therefore be small. Thus the incremental risk associated with a solution in the sub-
space defined by ignoring this surplus feature, when compared to the solution in
the original feature space, should be minimal; (b) if a signal is removed from the
model, we will expect this incremental risk to be substantial, and greater than some
unknown oracle specific to the design of the problem. We will refer to this quantity
as ε0.

2.6. Consistency results for risk-RFE. The main results of this paper will
be summarized as consistency statements for our algorithm under two separate
paradigms. These will be defined by a set of regularity conditions and different
underlying assumptions, which we summarize below along with the main results
in the form of three separate theorems.

Let us first start with the consistency statements that we want to establish for
our algorithm. For the risk-RFE Algorithm 1 for kernel machines with a RKHS
H and tuning parameters (δn, λn), we want to show that the following statements
hold:

(CS1) The risk-RFE algorithm finds the correct lower dimensional subspace of
the input space X with probability tending to 1.

(CS2) The function chosen by risk-RFE achieves the minimal risk within the
given RKHS H asymptotically.

REMARK 6. We will denote this correct lower dimensional subspace by X J∗ ,
such that variables that carry no signal are indexed by the set J∗, which means X J∗

contains only the signals (or relevant variables). This will be formally established
by equation (8) in Section 3.1.

Next, we provide a set of regularity conditions that will be necessary for the
consistency arguments to hold. Before that, let us recall that for a given metric
space (T , d) and for any integer n ≥ 1, the ith entropy number of (T , d) is defined
as

(5) ei(T , d) := inf

{
ε > 0 : ∃s1, . . . , s2i−1 ∈ T such that T ⊂

2i−1⋃
j=1

Bd(sj , ε)

}
,
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where Bd(s, ε) is the closed ball of radius ε centered at s, with respect to the
metric d . If S : E �→ F is a bounded linear operator between normed spaces E and
F , we write ei(S) = ei(SBE,‖ · ‖F ), where BE is the unit closed ball in E.

The regularity conditions are:

(RC0) Let H be as defined before, and assume L satisfies L(x, y,0) ≤ 1 for all
(x, y) ∈ X ×Y , and the kernel k on X is such that ‖k‖∞ ≤ 1. Also let {λn} ∈ [0,1]
be such that λn → 0 and limn→∞ λnn = ∞.

REMARK 7. Conditions L(x, y,0) ≤ 1, and ‖k‖∞ ≤ 1 above are assumed for
simplicity and equivalent conditions such as L(x, y,0) ≤ M and ‖k‖∞ ≤ ksup for
constants M,ksup > 1 can also guarantee the desired result.

Regularity conditions (RC0) are standard conditions that are assumed for deriv-
ing oracle bounds for KM solutions [e.g., see Steinwart and Christmann (2008)].
Now note that the approximation error A

J∗
2 (λ) is defined as the difference between

the regularized risk of the oracle minimizer of such and the minimum risk achieved
within the space HJ∗ (see Glossary for a precise definition). Now we define the
next set of regularity conditions (RC1).

(RC1) Assume, for fixed n ≥ 1, there exist constants a ≥ 1 and p ∈ (0,1) such
that the following entropy condition holds:

EDX∼P n
X

ei

(
id : H �→ L∞(DX )

) ≤ ai
− 1

2p , i ≥ 1,(6)

where EDX∼P n
X

is the expectation with respect to the product measure P n
X for

data DX ≡ {X1, . . . ,Xn} being i.i.d. copies of X ∼ PX . We also assume that there
exists c > 0 and β ∈ (0,1] such that A

J∗
2 (λ) ≤ cλβ for all λ ≥ 0.

Regularity conditions (RC1) are necessary for establishing consistency when d and
d0 are fixed. These are additional conditions on the entropy of the RKHS H and the
approximation error that were also naturally assumed in Steinwart and Christmann
(2008) to derive the oracle bounds under the fixed dimensional setting.

REMARK 8. Sometimes, it will be useful to replace the entropy condition (6)
by a slightly different condition (7) given below [as will be seen in the Supple-
mentary Material (Section S8.3)], under which, all our statements will continue to
hold. For fixed n ≥ 1, we assume there exists constants a ≥ 1 and p ∈ (0,1) such
that for any J ⊆ {1,2, . . . , d},

EDX∼P n
X

ei

(
id : HJ �→ L2(DX )

) ≤ ai
− 1

2p , i ≥ 1.(7)

Now we will briefly introduce the last set of regularity conditions.
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(RC2) When both d and d0 grow with sample size n, different bounds on the
entropy and the approximation error are needed than those given in (RC1), and we
will call them regularity conditions (RC2). Because they involve further technical
details, we postpone their actual definition to Section 3.5.

Let us now note the different conditions under which consistency for the risk-
RFE algorithm can be attained.

CONDITION 1 (Existence of a null model). Heuristically, this condition states
that there exists a nontrivial subset of the covariate set, which is the correct set of
features for the given problem. The precise definition is given by equation (8) in
Section 3.1.

CONDITION 2A (Nestedness/denseness). This condition assumes that the re-
producing kernel Hilbert space H admits the nestedness or denseness property.
H admits the nestedness property if HJ2 ⊆ HJ1 holds whenever the index sets
J1, J2 are such that J1 ⊆ J2. H admits the denseness property when it is dense in
a functional class that admits the nestedness property.

We will define these properties more explicitly in Section 3.2. Most common
optimization spaces satisfy either nestedness (e.g., linear RKHS produced by the
Euclidean inner product) or denseness (e.g., RKHS generated by the Gaussian
RBF kernel), and will be sufficient for consistency statements (CS1) and (CS2) to
hold. We are now ready to give our first result.

THEOREM 1. Assume that d , the dimension of X , and the number of rele-
vant features d0, are fixed. Then for δn = ε0 −R(n), where R(n) > 0 is such that

R(n)n
β

2β+1 → C for some C ∈ (0,∞) and β is the constant appearing in (RC1),
consistency statements (CS1) and (CS2) hold under Conditions 1 and 2a, and reg-
ularity conditions (RC0) and (RC1).

REMARK 9. We heuristically defined ε0 in Section 2.5, but we give a more
formal definition in Section 3.4 when we discuss the finite gap condition in more
detail.

REMARK 10. In Section 3.3.3, we will introduce a more general version of
Theorem 1 referred to as Theorem 1A, and finally in Section 4.1, we will provide
a proof for Theorem 1A.

The above theorem assumes that d , the dimension of X , and d0, the number of
relevant features, are fixed. In this scenario, we can always define a “gap” as the
infimum difference of minimized risks attained (for the problem) in the “correct”
restriction of H and any of its incorrect restrictions. This will be further elaborated
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in Remark 13, and in the definition of Assumption (A2) in Section 3.4, which
becomes a natural extension of the nestedness/denseness condition in this setting.
But when both d and d0 grow with sample size n, the idea of a fixed gap is no
longer a natural consequence, because it might diminish and shrink to 0 as d tends
to infinity. Hence, for our consistency results to hold in that setting, we need an
additional condition given below:

CONDITION 2B (Asymptotically vanishing gap). This condition says that
when the design size d grows with sample size n, the infimum of the difference
between minimized risk attained within the “correct” restriction of H and any of
its incorrect restrictions, shrinks asymptotically to 0.

The precise definition of the asymptotically vanishing gap condition (Condi-
tion 2b) will be given below as (A2*) in Section 3.5. Before we give our third and
final result of this paper, note that as δP d

n (·) replaces δn in Algorithm 2 for the vary-

ing dimensional setting, the quantity ε0 is also replaced by the functional εP d

0 (·) by
similar logic. We will study these quantities in more detail in Sections 3.2 and 3.3.

THEOREM 2. Assume that d , the dimension of X , and d0, the number of rel-
evant features, grow with n. Then for some γ ∈ (0,

β
2β+1 ] where β is the constant

appearing in (RC1), and δP d

n (·) = εP d

0 − P(n) such that P(n)nγ → K for some
K ∈ [0,∞), consistency statements (CS1) and (CS2) hold under Conditions 1, 2a
and 2b, and regularity conditions (RC0) and (RC2).

REMARK 11. We will introduce a more general version of Theorem 2 (re-
ferred to as Theorem 2A) in Section 3.3.3. The proof of Theorem 2A will be pro-
vided as modifications to the proof of Theorem 1A in Section 4.2.

3. Assumptions for risk-RFE. In this section, we discuss the above condi-
tions in further details. We will verify some of them for a few examples later in
Section 5. We start by looking at the “existence of a null model” condition.

3.1. Existence of a null model. Let F be a general optimization space. Exis-
tence of a null model means that there exists an index set J∗ such that

R∗
L,P,F = R∗

L,P,FJ∗ .(8)

REMARK 12. Note that the above does not claim the uniqueness of J∗, but
that for any set of covariates with the above property (8), there always exists a
(possibly nonunique) maximal set satisfying it. Also observe that J∗ can be empty
when fP,F spans through all the sub-dimensions of F , and that would mean that
we need the entire space F for the optimization.
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3.2. The nestedness/denseness property. Here, we discuss the scope of risk-
RFE when the functional space admits certain nice properties such as nestedness
or denseness.

3.2.1. Nested spaces in risk minimization. In risk minimization, we say F
admits the nestedness property, if for a pair of index sets J1, J2 ∈ {1,2, . . . , d}
with J1 ⊆ J2, we have FJ2 ⊆ FJ1 . This translates to admitting nested inequalities
of the form R∗

L,P,FJ1
≤ R∗

L,P,FJ2
. One simple example is the linear space, F =

{f (x1, . . . , xd) = ∑
i aixi : |ai | ≤ M,M < ∞}.

In general, RKHSs need not be nested within each other. We will see below,
however, that dot-product kernels do have this property.

LEMMA 3. Dot product kernels produce nested RKHSs.

The proof is given in the Supplementary Material (Section S8.1). Dot product
kernels (e.g., linear kernels) appear quite regularly in KM problems. Other kernels
may also display the nestedness property.

3.2.2. Dense spaces in risk minimization. We say F admits the denseness
property, if it is dense in a functional class that admits the nestedness property
[e.g., the space of bounded measurable functions L∞(X ) or the space of continu-
ous and bounded functions C(X )]. Note that all universal kernels produce RKHSs
that are dense in C(X ) and attain the Bayes’ risk (i.e., R∗

L,P,F =R∗
L,P ) if the loss

function is convex and locally Lipschitz continuous, and X is compact. All non-
trivial radial kernels (e.g., Gaussian RBF kernel) share this property as well [see
Micchelli, Xu and Zhang (2006)], and hence this is a fairly typical framework for
KM problems.

3.2.3. Implications of the nestedness/denseness condition. In spaces which
admit the nestedness property, the existence of a null model condition is equivalent
to stating that there exists a minimizer of infinite-sample risk in F , which also be-
longs to FJ∗ . This then trivially implies R∗

L,P,FJ = R∗
L,P,FJ∗ whenever J ⊆ J∗.

If F is now dense in a functional space G admitting the nestedness property [e.g.,
L∞(X )], then by Lemma S3 of the Supplementary Material (Section S1.1), FJ

is dense in GJ for any J ∈ {1,2, . . . , d}. Hence “denseness” does not necessarily
imply “nestedness,” but we do have the “almost nestedness” property in the sense
that any function g ∈ FJ2 can be well approximated by a sequence of functions
{fn} ∈ FJ1 for J1 ⊆ J2. This actually implies (8) (given above) for any J ⊆ J∗.

REMARK 13. Note that when d and d0 are fixed, we can define ε0 =
minJ◦�J∗ R∗

L,P,FJ◦ − R∗
L,P,FJ∗ . The above then means that R∗

L,P,FJ◦ ≥
R∗

L,P,FJ∗ + ε0 holds whenever J◦ � J∗, and J∗ is unique.
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REMARK 14. The “nestedness structure” is essentially different from the
nested model setup in Tsybakov (2004). Tsybakov (2004) started with a pre-
decided nested sequence of classifier sets (or models) and obtained a solution from
each of these classifier sets. In contrast, here we have a graph of nested models that
can include many subtrees in the sense that in every intermediate step, we are pre-
sented with multiple models within the parent model. We select the best classifier
from each of these models and opt for the one among them obtaining the best
performance.

3.3. The risk equivalence condition. In this section, we propose an alternative
and a more general condition, called “the risk equivalence condition,” that can
replace Condition 2a in Theorem 1. This allows us to move beyond the premise that
F admits the nestedness or denseness property, and allows risk-RFE to perform
consistently under more general setups. Note that the risk equivalence condition is
indeed necessary for establishing theoretical consistency for a backward selection
algorithm in the spirit of risk-RFE.

CONDITION 2A∗ (Risk equivalence). This condition heuristically says that
there exists at least one sequence of subspaces, starting from X down to the correct
feature space X J∗ , such that the minimum infinite-sampled (or oracle) risk attained
by the restriction of F on each of these subspaces is the same. That is, F satisfies
property (A1) given below:

(A1) Let J∗ be as defined in (8). Then for any pair (d1, d2) satisfying d1 ≤ d2 ≤
d − d0, there exist Jd1 and Jd2 with Jd1 ⊆ Jd2 ⊆ J∗ and |Jd1 | = d1 and |Jd2 | = d2,
such that R∗

L,P,FJ∗ =R∗
L,P,FJd1

=R∗
L,P,FJd2

.

REMARK 15. This condition is a weaker version of the nestedness/denseness
condition, which means that whenever F satisfies nestedness or denseness, it au-
tomatically satisfies the risk equivalency property (A1), as can be seen from our
discussions in Section 3.2.3.

REMARK 16. Assumption (A1) says that there exists a “path” from the orig-
inal input space X to the correct lower dimensional space X J∗ such that each of
the spaces FJ s along this “path” obtains the same minimized risk. Note that this
path need not be unique, and there can be more than one path going down to a
given J∗.

The following examples show that assumption (A1) is in fact necessary for a
well-defined backward selection algorithm to work in the absence of nestedness or
denseness.
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3.3.1. Necessity for existence of a path in (A1).

EXAMPLE 1. Consider the following empirical risk minimization framework.
Let X = [−1,1]2 and let Y = 0. Let X1 ∼ U where U is some distribution on
[−1,1] and X2 ≡ −X1. Let F be given as {c1X1 + c2X2, c1, c2 > 1}, and note
that F neither admits the nestedness property nor is dense in L∞(X ) or in any
other space admitting the nestedness property. Let us consider the squared er-
ror loss, that is, L(x, y, f (x)) = (y − f (x))2. By Definition 1 in Section 2.3,
F {1} = {c2X2, c2 > 0} and F {2} = {c1X1, c1 > 0} and F {1,2} = {0}. We see that
RL,P (fP,F ) = RL,P (fP,F {1,2}) = 0 but both RL,P (fP,F {1}) and RL,P (fP,F {2})
are strictly positive. Thus the minimizer of the risk belongs to F {1,2}, but there is
no path from F to F {1,2} in the sense of (A1). This shows that although the correct
lower dimensional space may have minimized risk the same as that of the original,
if there exists no path going down to that space, a backward selection algorithm
will never find it.

3.3.2. Necessity for equality in (A1). The following example shows that
equality in (A1) cannot be replaced by “≤.”

EXAMPLE 2. Consider another empirical risk minimization framework and
assume (A1) holds with equality replaced by “≤.” Let Y ∼ U(−1,1) and X ⊂
R3 such that Y = X3 = X2 + 1 = X1 − 1. Let F = {c1X1 + c2X2 + c3X3,

c1, c2, c3 ≥ 1}, and let the loss function be squared error loss. Now by def-
inition, F {1} = {c2X2 + c3X3, c2, c3 ≥ 1}, F {2} = {c1X1 + c3X3, c1, c3 ≥ 1},
F {3} = {c2X2 + c1X1, c1, c2 ≥ 1}, F {1,2} = {c3X3, c3 ≥ 1}, F {1,3} = {c2X2,

c2 ≥ 1}, F {2,3} = {c1X1, c1 ≥ 1}, and F {1,2,3} = {0}. By simple calculations, we
see that R∗

L,P,F = R∗
L,P,F {1} = R∗

L,P,F {2} = 4/3, R∗
L,P,F {3} = R∗

L,P,F {1,2,3} = 1/3,
R∗

L,P,F {1,3} = R∗
L,P,F {2,3} = 1 and R∗

L,P,F {1,2} = 0. Note that the correct dimen-

sional subspace of the input space is X{1,2} and there exists paths leading to this
space via X → X{1} → X{1,2} (since R∗

L,P,F = R∗
L,P,F {1} > R∗

L,P,F {1,2}) or via

X → X{2} → X{1,2} (since R∗
L,P,F = R∗

L,P,F {2} > R∗
L,P,F {1,2}). However, there

also exists a blind path X → X{3} (since R∗
L,P,F > R∗

L,P,F {3}), which does not
lead to the correct subspace. So a recursive search with modified (A1) is not guar-
anteed to lead to the correct subspace.

3.3.3. More general versions of Theorems 1 and 2. It is worthwhile to note
that our consistency statements from Theorems 1 and 2 continue to hold if the
nestedness/denseness condition (Condition 2a) is replaced by the risk equivalence
Condition 2a∗ as summarized by the following results.

THEOREM 1A. Consistency statements (CS1) and (CS2) continue to hold un-
der the premise of Theorem 1, if we replace Condition 2a by 2a∗.
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THEOREM 2A. Consistency statements (CS1) and (CS2) continue to hold un-
der the premise of Theorem 2, if we replace Condition 2a by 2a∗.

REMARK 17. Note that to prove the main results under Condition 2a (Theo-
rems 1 and 2), it is enough to have AJ

2 (λ) ≤ cλβ hold for J = J∗ as in (RC1), but
to do the same under Condition 2a∗ (Theorems 1A and 2A), we actually need the
bound to hold for any J ⊆ J∗.

3.4. The finite gap condition in the fixed design setting. As discussed in Sec-
tion 2.5, a feature is defined as a signal if and only if the risk of the model is
inflated in its absence. Equivalently, if a feature does not contribute to the model at
all, the increase in risk (regularized or nonregularized) on its removal should be in-
consequential. We now formally define the quantity ε0, which we hypothesized as
a lower bound for the increment of risk when a signal is removed from the model.
When the design size d is finite, note that assumption (A1) (similar to what we
deduced in Remark 13) implies:

(A2) Let J1,J2, . . . ,JN be the exhaustive list of such paths from X to X J∗ ,
and let J̃ := ⋃N

i=1 Ji . There exists ε0 > 0 such that whenever J /∈ J̃ , R∗
L,P,FJ ≥

R∗
L,P,FJ∗ + ε0.

Equality in (A1) guarantees that the recursive search will never select an impor-
tant dimension j ∈ J c∗ for redundancy because then (A2) would be violated. Hence
(A1) ensures that we follow the correct path recursively, and (A2) gives us a stop-
ping condition to halt at the correct input space X J∗ .

3.5. The asymptotically vanishing gap condition in the varying design set-
ting. When d and d0 grow with n, (A2) does not follow naturally from nested-
ness/denseness or risk equivalence as we saw above. A fixed gap makes sense when
d is fixed, but in a varying design problem, this gap might diminish and shrink to 0
as d tends to infinity. Thus we propose the existence of a function εP d

0 (·), a strictly
positive and monotonically decreasing function from {1, . . . , d} �→ R, such that
εP d

0 (d − d0) goes to zero in limit, when d → ∞, and we modify (A2) to (A2*)
below to accommodate these changing dynamics.

(A2*) Let J1,J2, . . . be an enumeration of paths from X to X J∗ , and let J̃ :=⋃
i Ji . There exists a positive, monotonically decreasing (perhaps to 0 in the limit)

function εP d

0 (·), such that for J1 ∈ J̃ , J2 /∈ J̃ with |J2| = |J1| + 1, we have

R∗
L,P d,FJ2

≥ R∗
L,P d,FJ1

+ εP d

0
(
d − |J1|).(9)

As mentioned, given the nature of the problem P d , εP d

0 (·) can go to zero in the
limit, when d → ∞. d0 can potentially grow with n as well, but we will restrict to
the case when d − d0 necessarily grows with n, for example, when d grows with
n and d0 = O(dα) for 0 < α < 1.
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REMARK 18. Recall δP d

n (·) from Theorem 2. Note that there are two different

asymptotic conditions acting on δP d

n (·) with δP d

n (·) → εP d

0 (·) as n → ∞ by Theo-

rem 2. Now from above we also see that δP d

n (d − d0) → 0 as d and n go to infinity

and as εP d

0 (d − d0) goes to zero in the limit.

In the next section, we will formally establish the main results which were dis-
cussed in Section 2.6.

4. Theoretical results. In this section, we will prove Theorems 1A and 2A.
To establish these theorems, we need a few additional results, most of which are
provided in the Supplementary Material (Section S3). Here, we have summarized
these results in two lemmas, one for each of the two settings, that we provide
before going into the proofs.

LEMMA 4. Assume the conditions of Theorem 1A in Section 2.6. Then, for a

sequence τ = o(n
2β

2β+1 ) with τ → ∞, the following statements hold:

(i) For J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗, there is a positive sequence {εn}
with εn → 0 for which we have with P n probability greater than 1 − 2e−τ ,

Rreg,λn

L,D,HJ2
(fD,λn,HJ2 ) ≤ Rreg,λn

L,D,HJ1
(fD,λn,HJ1 ) + εn.

(ii) For J1 ∈ J̃ , J2 /∈ J̃ with J1 ⊂ J2, and for the same sequence {εn} defined
above in (i), we have with P n probability greater than 1 − 2e−τ ,

Rreg,λn

L,D (fD,λn,HJ2 ) ≥ Rreg,λn

L,D (fD,λn,HJ1 ) + ε0 − εn.

(iii) ORACLE PROPERTY FOR RISK-RFE IN KM: The infinite-sampled regu-
larized risk for the empirical solution fD,λn,HJ , Rreg,λn

L,P,HJ (fD,λn,HJ ) converges in
measure to R∗

L,P,H [and hence to R∗
L,P if the RKHS H is dense in L∞(X )] iff

J ∈ J̃ .

The proof of Lemma 4 is given in the Supplementary Material (Section S8.2).
We are now ready to prove Theorem 1A.

4.1. Proof of Theorem 1A (from Section 3.3.3). PROOF. (CS1) Let X J∗ be
the correct input space and J∗ be the correct set of dimensions to be removed with
|J∗| = d − d0. To prove the first part of Theorem 1A, we show that, starting with
the input space X , the probability that we reach the space X J∗ is 1 asymptotically.
First, let us assume that there exists only one correct “path” from X to X J∗ . Let
J ◦ be that correct path and J ◦ = {J ◦

0 ≡ {·}, J ◦
1 , . . . , J ◦

d−d0
≡ J∗}.
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For notational ease, let us further define (we will use these later as well),

RRQ1
Q2

(J1, J2) := Rreg,λn

L,Q2,H
J1

(fQ1,λn,HJ1 ) −Rreg,λn

L,Q2,H
J2

(fQ1,λn,HJ2 ),

RRQ1
Q2

(J ) := Rreg,λn

L,Q2,H
J (fQ1,λn,HJ ) −R∗

L,P,HJ .(10)

From equation (3) in the proof of (i) in the Supplementary Material (Sec-
tion S8.2), we have RRD

D(J ◦
i+1, J

◦
i ) ≤ εn with probability at least 1 − 2e−τ , for

εn = (2c+24
√

2τ +48K2a
2p)n

− β
2β+1 +40τn

− 4β+1
2(2β+1) . Now if Ji+1 �= J ◦

i+1 be any
other J such that J ◦

i ⊂ Ji+1 with |Ji+1| = |J ◦
i |+1, then we have from equation (4)

in the Supplementary Material (Section S8.2) that RRD
D(Ji+1, J

◦
i ) > ε0 − εn with

probability at least 1 − 2e−τ . Now as ε0 is a fixed constant, ∃ a finite Nε0 > 0 such
that ∀n ≥ Nε0 , 2εn ≤ ε0. Without loss of generality, assuming n ≥ Nε0 , note that
we also have RRD

D(J ◦
i+1, J

◦
i ) ≤ εn ≤ ε0 − εn with probability at least 1 − 2e−τ .

Now if we choose τ = o(n
2β

2β+1 ) with τ → ∞, then εn is such that εnn
β

2β+1 → C

for some C ∈ (0,∞). Hence for δn := ε0 − εn with εn as defined above, we have
RRD

D(Ji+1, J
◦
i ) > δn, and RRD

D(J ◦
i+1, J

◦
i ) ≤ δn with probability at least 1−2e−τ .

Then

P
(
“risk-RFE finds the correct space”

)
≥ P

(
“risk-RFE follows the path J ◦ to the correct dimension space”

)
= P

(
J0 := J ◦

0 , J1 := J ◦
1 , . . . , Jd−d0 := J ◦

d−d0
, Jd−d0+1 := ∅

)
= P

(
J0 := J ◦

0
)
P

(
J1 := J ◦

1 |J ◦
0
) · · ·P (

Jd−d0 := J ◦
d−d0

|J ◦
0 , . . . , J ◦

d−d0−1
)

× P
(
Jd−d0+1 := ∅|J ◦

0 , . . . , J ◦
d−d0

)
,

where “Jd−d0+1 := ∅” means the algorithm stops at that step. Note that
P(J0 := J ◦

0 ) = 1 and then observe

P
(
Ji+1 := J ◦

i+1|J ◦
0 , . . . , J ◦

i

)
= P

(
Ji+1 := J ◦

i+1|J ◦
i

) (
∵

{
J ◦

0 , . . . , J ◦
i−1

}
have already been removed

)
= P

(
RRD

D

(
J ◦

i+1, J
◦
i

) ≤ δn,

RRD
D

(
J ◦

i+1, J
◦
i

)
< RRD

D

(
J •

i+1, J
◦
i

) ∀J •
i+1 �= J ◦

i+1
)

≥ P
(
RRD

D

(
J ◦

i+1, J
◦
i

) ≤ δn, δn <RRD
D

(
J •

i+1, J
◦
i

) ∀J •
i+1 �= J ◦

i+1
)

≥ 1 − P
(
RRD

D

(
J ◦

i+1, J
◦
i

)
> δn

) − ∑
J •
i+1 �=J ◦

i+1

P
(
RRD

D

(
J •

i+1, J
◦
i

) ≤ δn

)
≥ 1 − 2e−τ − 2(d − i − 1)e−τ

= 1 − 2(d − i)e−τ .
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Also note that

P
(
Jd−d0+1 := ∅|J ◦

0 , . . . , J ◦
d−d0

)
= P

(
RRD

D

(
Jd−d0+1, J

◦
d−d0

)
> δn ∀Jd−d0+1 ⊇ J ◦

d−d0

) ≥ 1 − 2d0e
−τ .

Hence P(“risk-RFE finds the correct space”) ≥ ∏d−d0
i=0 (1 − 2(d − i)e−τ ). Now

for τ = o(n
2β

2β+1 ) with τ → ∞, P(“risk-RFE finds the correct space”) → 1 as
n → ∞.

Now let us prove the same assertion for the case when there is more than one
correct “path” from X to X J∗ . Let J1, . . . ,JN be an enumeration of all possible
such paths. Define “C-set” for a given set Ji (where index i denotes the ith iteration
of risk-RFE) as C(Ji) := {Ji+1 : Ji, Ji+1 ∈ Jk for some k}. Now,

P
(
“risk-RFE finds the correct space”

)
≥ P

(
J0 := J ◦

0 , J1 := J ◦
1 ∈ C

(
J ◦

0
)
, . . . , Jd−d0+1 := ∅

)
= P

(
J0 := J ◦

0
)
P

(
J1 := J ◦

1 ∈ C
(
J ◦

0
)|J ◦

0
) · · ·P (

Jd−d0+1 := ∅|J ◦
d−d0

)
.

Again as before P(J0 := J ◦
0 ) = 1 and P(Jd−d0+1 := ∅|J ◦

d−d0
) ≥ 1−2d0e

−τ . Now
note

P
(
Ji+1 := J ◦

i+1 ∈ C
(
J ◦

i

)|J ◦
i

)
≥ P

(
RRD

D

(
J ◦

i+1, J
◦
i

) ≤ δn ∀J ◦
i+1 ∈ C

(
J ◦

i

)
,

δn < RRD
D

(
J •

i+1, J
◦
i

) ∀J •
i+1 /∈ C

(
J ◦

i

))
≥ 1 − ∑

J ◦
i+1∈C(J ◦

i )

P
(
RRD

D

(
J ◦

i+1, J
◦
i

)
> δn

)
− ∑

J •
i+1 /∈C(J ◦

i )

P
(
RRD

D

(
J •

i+1, J
◦
i

) ≤ δn

)
≥ 1 − 2

∣∣C(
J ◦

i

)∣∣e−τ − 2
∣∣C(

J ◦
i

)c∣∣e−τ = 1 − 2(d − i)e−τ ,

since |C(J ◦
i )| + |C(J ◦

i )c| = d − i. Hence again we have that

P
(
“risk-RFE finds the correct space”

) ≥
d−d0∏
i=0

(
1 − 2(d − i)e−τ )

.

Now for τ = o(n
2β

2β+1 ) with τ → ∞, P(“risk-RFE finds the correct space”) → 1
as n → ∞.

(CS2) To prove the second part of Theorem 1A, suppose that Jend is the last iter-
ation of the algorithm in risk-RFE. Then using (5) in the Supplementary Material
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(Section S8.2), and observing that ηn < εn < δn ∀n ≥ Nε0 , repeating arguments
given at the beginning of the first part of the proof we have that

P
(∣∣Rreg,λn

L,P,HJend
(fD,λn,HJend ) −R∗

L,P,H

∣∣ ≤ δn

)
= P

(∣∣Rreg,λn

L,P,HJ∗ (fD,λn,HJ∗ ) −R∗
L,P,H

∣∣ ≤ δn

)
P(Jend = J∗)

+ P
(∣∣Rreg,λn

L,P,HJ∗ (fD,λn,HJ∗ ) −R∗
L,P,H

∣∣ ≤ δn|Jend �= J∗
)
P(Jend �= J∗)

≥ P
(∣∣Rreg,λn

L,P,HJ∗ (fD,λn,HJ∗ ) −R∗
L,P,H

∣∣ ≤ δn

)
P(Jend = J∗)

≥ (
1 − e−τ ) d0∏

i=0

(
1 − 2(d − i)e−τ )

.

So for τ = o(n
2β

2β+1 ) with τ → ∞,

P
(∣∣Rreg,λn

L,P,HJend
(fD,λn,HJend ) −R∗

L,P,H

∣∣ ≤ δn

) → 1

with n → ∞. �

4.2. Proof of Theorem 2A (from Section 3.3.3). We only note the modifica-
tions that are required in the above proof to establish Theorem 2A. But first we
formally define the regularity conditions (RC2) below:

(RC2) There exist constants ã ≥ 1 and some p ∈ (0,1) such that for i ≥ 1,

E
DX∼P

d,n
X

ei(id : H �→ L∞(DX )) ≤ f (d)ãi
− 1

2p , and there exists a c̃ > 0 and β ∈
(0,1] such that A

J∗
2 (λ) ≤ g(d0)c̃λ

β (for J∗ and d0 defined before), for all λ ≥ 0,
and for functions f (·), g(·) on N �→ R. We also assume that there exist γ1, γ2 >

0 with max(2γ1, γ2) ≤ β
2β+1 , such that (i) f (d) = O(n

β
2(2β+1)

−γ1), (ii) g(d0) =
O(n

β
2β+1 −γ2), and (iii) d = o(e0.5n

2β
2β+1

).

Under condition (RC2), it can be seen that the modifications required for the
bounds given in Lemma S4–Corollary S7 from the Supplementary Material (Sec-
tion S3) can be achieved by replacing a by f (d)ã and c by g(d0)c̃. Lemma 4
can now be restated as Lemma 4* below, by replacing εn by εn,d = (2c̃g(d0) +
24

√
2τ + 48K2ã

2pf (d)2p)n
− β

2β+1 + 40τn
− 4β+1

2(2β+1) .

LEMMA 4*. Assume the conditions of Theorem 2A in Section 2.6. Then for a

sequence τ = o(n
2β

2β+1 ), the following statements continue to hold:

(i) For J1, J2 ∈ J̃ such that J1 ⊆ J2 ⊆ J∗ and a positive sequence {εn,d} with

εn,d → 0, Rreg,λn

L,D,HJ2
(fD,λn,HJ2 ) ≤ Rreg,λn

L,D,HJ1
(fD,λn,HJ1 ) + εn,d occurs with P d,n

greater than 1 − 2e−τ .
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(ii) For J1 ∈ J̃ , J2 /∈ J̃ with J1 ⊂ J2, and for the same sequence {εn,d} defined

above in (i), Rreg,λn

L,D,HJ2
(fD,λn,HJ2 ) ≥ Rreg,λn

L,D,HJ1
(fD,λn,HJ1 )+ εP d

0 (d − |J1|)− εn,d

occurs with P d,n probability greater than 1 − 2e−τ .
(iii) ORACLE PROPERTY FOR RISK-RFE: Continues to hold as before.

Under the modified statements, consistency can be established. It can be easily
observed that the initial steps in the proof of Theorem 1A in Section 4.1 continue
to hold by taking δP d

n (d − |J |) = εP d

0 (d − |J |) − εn,d for design X J , and now we

can further assume that supd∈N lim infn→∞
εPd

0 (d−d0)

εn,d
> 2. This allows us to define

a sequence {N1, . . . ,Nd, . . . }, such that 2εn,d ≤ εP d

0 (d − d0), whenever n > Nd .

Since εP d

0 (·) is a decreasing function, the subsequent steps follow and we arrive at

P
(
“RFE finds the correct space”

) ≥
d−d0∏
i=0

(
1 − 2(d − i)e−τ )

�
(
1 − 2de−τ )d

,(11)

where the last approximate inequality follows if we can ensure that 2de−τ < 1 for
sufficiently large n, d . Also see that the above implies

(
1 − 2de−τ )d =

((
1 − 2d

eτ

)− eτ

2d
)− 2d2

eτ

.(12)

Thus if we require d2e−τ → 0 when n,d → ∞, then (11) is satisfied, and (12)
converges to 1. Consequently, for consistency results to hold, d needs to grow
slower than a certain rate in terms of the sample size n. Since τ can be chosen

to be o(n
2β

2β+1 ) with τ → ∞, it implies that de−τ/2 ≈ de−0.5n
2β

2β+1
, and hence

d = o(e0.5n
2β

2β+1
) suffices. We now need to ensure that asymptotically εn,d goes

to 0. Since we can let τ = o(n
2β

2β+1 ), and p is a constant in (0,1) [from Propo-
sition S5 in the Supplementary Material (Section S3)], this forces εn,d to satisfy

εn,d ≤ c1g(d0)n
− β

2β+1 + c2f (d)2n
− β

2β+1 + o(1). Now using conditions on f (d)

and g(d0) from (RC2), it can be seen that εn,d < c̃1n
−γ2 + c̃2n

−2γ1 . Hence for
γ = min(2γ1, γ2), εn,d satisfies the condition that εn,dnγ → K as n,d → ∞, for
some K ∈ [0,∞).

REMARK 19. The functional bounds f (·) and g(·) are characteristics of the
data generating mechanism of the input X and the output Y through P d,n, the
RKHS H used for optimization, and the loss function L. Thus for a given problem,
we have a specific representation of the functions f (·) and g(·), and restrictions
on the dimensionality growth for risk-RFE is obtained by making sure conditions
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on f , g and d given in (RC2) hold. Let us now look at the allowed dimensionality
growth under some special forms of f (·) and g(·). Note that (RC2C) summa-
rizes the allowed dimensionality growth in a typical kernel machines classification
framework with the Gaussian RBF kernel.

(RC2A) f (d) = c1 and g(d0) = c2. Under this setting, we can allow rates as

high as d = o(e0.5n
2β

2β+1
) with d0 = O(dα) < d where 0 < α < 1, and the algorithm

will continue to be consistent for γ = β
2β+1 .

(RC2B) f (d) = ed and g(d0) = ed0 . Under this setting, it can be seen that we
need d = O(logn). We can still allow d0 = O(dα) < d with 0 < α < 1, and the
algorithm is consistent for 0 < γ <

β
2β+1 .

(RC2C) DIMENSIONALITY GROWTH IN THE GAUSSIAN RBF KERNEL:
f (d) = ed and g(d) = d

cd0
0 . Under this, we can continue to have d = O(logn)

but now we need d0 logd0 = O(logn) with d0 < d , and the algorithm is consistent
for 0 < γ <

β
2β+1 .

5. Case studies. In this section, we show the validity of our results in some
known settings of learning through risk minimization. We discuss two pertinent
examples here, and two more case studies (simple linear regression and protein
classification) are discussed in the Supplementary Material (Section S4).

5.1. Case study 1: Kernel machines with a Gaussian RBF kernel. Here, we
study the application of risk-RFE in the classic KM premise for classification us-
ing a Gaussian RBF kernel. Assume that Y = {1,−1}. We want to find a function
f : X �→ {1,−1} such that for almost every x ∈ X , P(f (x) = Y |X = x) ≥ 1/2.
In this case, the desired decision rule is the Bayes’ function f ∗

L,P for the classi-
fication loss LBC(x, y, f (x)) = 1{y · sign(f (x)) �= 1}. In practice, since LBC is
nonconvex, it is usually replaced by the hinge loss function LHL(x, y, f (x)) =
max{0,1 − yf (x)}. For KMs with a Gaussian RBF kernel, we minimize the
regularized empirical criterion λ‖f ‖2 + 1

n

∑n
i=1 max{0,1 − yif (xi)} for the ob-

served sample D = {(x1, y1), . . . , (xn, yn)} within the RKHS Hγ (X ) with kernel

kγ (x, y) = e−γ 2‖x−y‖2
2 , where σ := 1/γ is the width of the kernel kγ .

LEMMA 5. For classification using kernel machines with a Gaussian RBF

kernel, the risk-RFE defined for δ = ε0 − R(n) where R(n)−1 is O(n
β

2β+1 ),
with β = α

α+1 and 0 < α < ∞ being the geometric noise exponent of P on

X × {−1,1}.4

4For a discussion on the geometric noise exponent, we refer our readers to Steinwart and Scovel
(2007).
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Lemma 5 gives us a precise characterization of δn in this setting, in terms of the
geometric noise exponent of P on X ×{1,−1}. In the proof of Lemma 5, which is
given in the Supplementary Material (Section S8.3), we show that the assumptions
and conditions required for consistency of the risk-RFE algorithm in classification
with the Gaussian RBF kernel are properly satisfied.

5.2. Case study 2: Image classification with χ2 kernel. Using color his-
tograms as an image representation technique is a useful tool in indexing or re-
trieving images because of the reasonable performance that can be obtained in
spite of their extreme simplicity [see Swain and Ballard (1992)]. Image classifica-
tion using histogram representation has become a popular option in such settings,
and the kernel machines approach is considered a good classification technique
here [see Chapelle, Haffner and Vapnik (1999)].

Selecting the kernel is important in these problems, and generalized RBF ker-
nels of the form Kd-RBF

ρ (x, y) = e−ρd(x,y) have proven useful for classification
here. When the inputs are images, the histograms produced generate discrete den-
sities and suitable comparison functions such as the χ2 function are preferred over
the L2 norm that generates the usual Gaussian RBF kernel and have been used
extensively for histogram comparisons [Schiele and Crowley (1996)]. The χ2 dis-

tance is given as dχ2(x, y) = ∑
i

(xi−yi)
2

xi+yi
, and hence the χ2 kernel has the form

Kχ2-RBF
ρ (x, y) = e

−ρ
∑

i
(xi−yi )

2

xi+yi .

To establish consistency for risk-RFE here, we need to verify regularity conditions
(RC0) and (RC1) given in Section 2.6. Note that we have already established the

conditions for hinge loss LHL in the case study 5.1. The K
χ2-RBF
ρ kernel is con-

tinuous, and the input space is separable; hence separability of H
χ2-RBF
ρ follows

from Lemma 4.33 of SC08. It also follows that ‖Kχ2-RBF
ρ ‖∞ ≤ 1. Since the kernel

K
χ2-RBF
ρ is infinitely many times differentiable (such as the standard RBF kernel),

Theorem 6.26 along with arguments in Theorem 7.34 with Corollary 7.31 of SC08,
can give us an explicit formulation for the average entropy of this RKHS class,
which is very similar to the ones that we saw in the Supplementary Material (Sec-

tion S8.3), with a := cε,pρ
(1−p)(1+ε)d

4p for all ρ ≥ 1, for all ε > 0, d/(d +τ) < p < 1,
and constant cε,p which depends only on p and a given ε, and where τ ∈ (0,∞] is
the tail exponent of the distribution PX (see Chapter 7 of SC08, for definition of
the tail exponent of a distribution). Hence consistency follows.

6. Simulation studies. Now we illustrate the usefulness of risk-RFE for fea-
ture elimination in KMs through a simulation study. The first key step is to formu-
late the stopping rule for risk-RFE in a practical setting, thus we start off with a
discussion of how to intelligently select the subset of features using the risk-RFE
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algorithm for a given problem below. We also evaluate the performance of risk-
RFE in an extensive simulation exercise incorporating various linear and nonlinear
settings, with focus mainly on the nonlinear setup. For brevity, however, the details
of these simulations and a comprehensive discussion of our findings are provided
in the Supplementary Material (Section S5). Nonetheless, we will briefly discuss
our findings from our simulations incorporating the nonlinear settings here.

6.1. Selection of features. One crucial question we face in feature elimination
is when to stop. The original RFE algorithm can only output the ranked features,
so one crucial aspect of risk-RFE is that it can be used not only to rank features,
but also for automatic selection of the optimal subset. This is seen by noting that
in our theory, we proposed the existence of a gap ε0, and showed that asymptoti-
cally the empirical regularized risk of a model with at least one important feature
missing exceeds that of a correct model by at least this amount. Practically, it is
very difficult to characterize this gap for a given setting from the theory directly,
but its existence can be observed from plotting the objective function values at
each iteration for the entire set of features. Here, we use a “Scree graph” of the
objective function (see Figure 2) to build an auto-selection rule [see Chapter 6 of
Jolliffe (2002) for scree graphs].

Looking at Figure 2, which plots the objective function values obtained at suc-
cessive runs of the algorithm for a given setting, it seems plausible that a change-
point model can be used for curve-fitting here, as we expect a change in the slope
of the objective function as soon as we start eliminating signals from the model
(because of the aforementioned gap). Thus, one can fit a change-point regression
model on the empirical values of the objective function and infer the estimated
change point as the ad hoc stopping rule. Different trends (linear, quadratic, etc.)

FIG. 2. Reverse scree graph of the objective function values for one simulation run in d = 30,
d0 = 5, with (a) KM classification with Gaussian kernel and (b) KM regression with Gaussian kernel.
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FIG. 3. Linear-quadratic mixture change-point analysis when d = 30, d0 = 5, for (a) KM classi-
fication with Gaussian kernel for comparable cross validation values of λ and kernel width γ and
(b) KM regression with Gaussian kernel for comparable cross validation values of λ for varying
sample sizes. The bold dots represent the estimated change points.

can be fit on each side of the change point, depending on how the values for the
objective function are scattered on the graph. For our simulation examples, a mix-
ture of linear trend on the left and quadratic trend on the right seemed to work best.
Figure 3 shows our analysis using the mixture of linear-quadratic fits.

6.2. Performance of risk-RFE in the nonlinear space (results). In the Supple-
mentary Material (Section S5), we look at some nonlinear settings in both classi-
fication and regression to ascertain the performance of risk-RFE when the under-
lying functional form of the decision function is nonlinear. As a first confirmatory
step, we compare the performance of risk-RFE (RRFE) with the original RFE
(GRFE) proposed by Guyon et al. (2002). We also compare it with linear selec-
tion methods like SCAD-SVM (linear KM with SCAD) and logistic regression
with LASSO (Log Reg Lasso) in classification, and with linear regression with
LASSO (Lin Reg Lasso) in regression, to show the necessity of considering non-
linear feature selection methods when the underlying relationship in nonlinear. For
risk-RFE, we consider feature selection through the proposed change-point model
(CP), and also through a naive ranks approach (NR), that only considers the first
d0 highest ranked signals, using the oracle knowledge of the true number of sig-
nals d0 in each setting. This is done to make it comparable to GRFE, which does
not have an inherent subset selection rule. Table S5.1 compiles results from the
different nonlinear simulation settings in classification, while Table S5.2 compiles
those from regression, both under the presence and absence of colinearity. Here,
we summarize our findings from that analysis:

(1) The risk-RFE procedures (both RRFE-NR with naive ranks, and RRFE-
CP with the change-point model) dominate performance in choosing the correct
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features consistently, supporting our asymptotic claims for consistency of the al-
gorithm.

(2) GRFE-NR does relatively well in classification, although never better than
RRFE-NR, and this dominance increases with dimension size. In regression, how-
ever, its performance is quite poor, and in higher dimensions, it struggles to find
any signals. The test set performance is consistently better for RRFE-NR than for
GRFE-NR both in classification and regression, unless they perform equally well.

(3) In classification, the RRFE-CP procedure yields higher misclassification
error rates than both the NR procedures, owing to the fact that the NR methods
depend on knowing the oracle number of signals beforehand.

(4) In regression, RRFE-NR dominates RRFE-CP in test error rates, but the
RRFE-CP procedure dominates GGRE-NR in that metric more often than not,
especially when the latter struggles to find features.

(5) As expected, the linear selection methods like SVM-SCAD and logistic
regression with LASSO in classification and linear regression with LASSO in re-
gression perform very poorly in most situations, both in terms of feature selection,
and in terms of misclassification or average test error rates.

(6) The test set performances of the standard KM procedure without selection
is consistently worse than those obtained after using the RFE procedures. Using
a linear feature selection method often yields test set performance which is even
worse than the standard nonlinear KM procedure without selection, showing the
usefulness of nonlinear feature selection methods like risk-RFE.

(7) In classification risk-RFE performs equally well when we have colinearity
versus when we do not. In regression, it tends to do better when there is no co-
linearity, and this effect is most pronounced when dimension (and signal) sizes
increase.

Overall we can conclude that in moderately high-dimensional classification and
regression, when there is enough suspicion that the underlying structure is not
linear, using risk-RFE is a very safe option.

7. Example applications. We apply the risk-RFE algorithm to three feature
selection applications: feature selection in vowel recognition data, feature selec-
tion in predicting total UPDRS (unified Parkinson’s disease rating scale) scores
in people with early-stage Parkinson’s disease and feature selection in predicting
“Per Capita Violent Crimes” in the Crimes dataset. We briefly discuss our results
here, while detailed discussions on each dataset and results for each analysis, are
given in the Supplementary Material (Section S7).

• In the classification analysis with vowel recognition data, risk-RFE only
chooses 4 out of 10 features, and is able to achieve a more than 40% drop in
misclassification error than its nearest competitor (see Table 1).

• In the regression analysis with Parkinson’s data, risk-RFE algorithm only
chooses 3 out of 20 features, and achieves a 13% drop in test error rates from
when we use all of the 20 features (see Table 2).
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TABLE 1
Results from the data analyses (classification)

Vowel data

Mean Ave. no
Method test error of features

KM wRisk-RFE 0.08 4
KM woSEL 0.18 10
SCAD SVM 0.14 8
Log Reg wLASSO 0.19 9

• In the regression analysis with Crimes dataset, the risk-RFE algorithm does
not show any improvement in test error rates over the competing methods, but it
yields a final model which is much more parsimonious than any of the competing
methods, choosing only 11 features out of 101 (see Table 2).

8. Discussion. We proposed an algorithm for feature elimination in kernel
machines for moderately high dimensions. We studied its theoretical properties,
and showed that it is consistent in finding the correct feature space, even when
the size of the design matrix grows with the sample size. We discussed the natural
assumptions required to enable this consistency, and showed that these are satis-
fied in many practical settings through the study of a few case studies where our
method becomes readily applicable. We also provided a short simulation study to
illustrate the method and discussed a practical way for choosing the correct subset
of features. We established the existence of a gap in the rate of change of the ob-
jective function at the point where our feature elimination method starts removing
the essential features of the learning problem. This motivated us to use a scree plot
of the objective function values at each iteration, and indeed our simulation results
support our approach by visually exhibiting this gap in the plots. Moreover, the
graphical interpretation of the scree plot motivated the use of change-point regres-
sion to select the correct feature space. It would thus be interesting to conduct a

TABLE 2
Results from the data analyses (regression)

Parkinsons data Crimes data

Mean Ave. no Mean Ave. no
Method test error of features test error of features

KM wRisk-RFE 10.08 3 0.02 10.8
KM woSEL 11.42 20 0.02 101
Lin Reg wLASSO 87.80 17.4 0.02 37.8
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more detailed and formal analysis of this gap in real life settings to facilitate more
efficient and automated practical solutions.

From our discussion in Section 4.2, we saw that when dimension d grows with
n, risk-RFE is most effective when used under certain restrictions on the design
size d relative to the sample size n. The theory for the consistency of the algorithm
also accounted for a gradual growth in the signal size d0 relative to the growth
on n. However, as one of our reviewers pointed out, in real-life problems with
truly high-dimensional covariate spaces, and/or problems with a relatively large
number of signals, the risk-RFE algorithm may not be as scalable as some of the
current state of the art ultrahigh-dimensional feature selection methods like the
sure independence screening (SIS) method of Fan and Lv (2008) (or other SIS
based methods such as DC-SIS [Li, Zhong and Zhu (2012)]), and thus risk-RFE
needs to be used with some caution in problems which either have a very large
covariate size or have the potential to contain a large number of signals. Typically,
in linear models, methods like SIS are used to effectively screen models from ultra
high dimensions to a lower dimensional setting, wherein more meaningful lower
dimensional methods such as SCAD and LASSO become applicable. That is what
we propose here as well, that is, when dealing with ultrahigh dimensions in KM,
risk-RFE should be used in conjunction with one of these methods. As we saw,
if the underlying model is nonlinear, using risk-RFE after initial feature screening
would enhance the performance of the KM function compared to other available
techniques.

To our knowledge, only very limited analysis has been done on the properties
of variable selection algorithms under such general transformations of the input
space as occur in kernel machines. Hence, the results generated in this paper are
a good starting point for similar analyses in other settings. It would also be in-
teresting to analyze risk-RFE in censored support vector regression [see Goldberg
and Kosorok (2017)], other machine learning problems (including reinforcement
learning), or other penalized risk minimization problems.

GLOSSARY

k: k(x, y) = 〈φ(x),φ(x)〉H , the kernel function associated with a given
reproducing kernel Hilbert space (RKHS).

RL,P : RL,P (f ) = EP [L(X,Y,f (X))].
L0: The set of all measurable functions on a given space, that is,

L0(X ) = {f : X �→R, f is measurable}.
fP,F : fP,F = arg minf ∈F RL,P (f ) is the minimizer of infinite-sample

risk within F .
R∗: The minimal risk attained within a space, for example, R∗

L,P,F =
RL,P (fP,F ).

L: L : X × Y × R �→ [0,∞] is a convex, locally Lipschitz continuous
and measurable loss function.
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H : A separable RKHS of the measurable kernel k on X .
fP,λ,H : The infinite-sampled version of the Kernel Machines solution. For

mathematical definition see (1).
fD,λ,H : The empirical Kernel Machines solution. For mathematical defini-

tion see (2).
RL,D : RL,D(f ) = 1

n

∑n
i=1 L(Xi,Yi, f (Xi)) for a given data D of size n.

reg: Implies regularized risk, for example Rreg,λ
L,Q,F (f ) = λ‖f ‖2

F +
RL,Q(f ).

π : The projection map. See Definition 1.
ei : The ith entropy number for a given metric space, for mathematical

definition see (5).
A2: The approximation error for a given optimization space and a λ, for

example, AJ
2 (λ) = Rreg,λ

L,P,HJ (fP,λ,HJ ) −R∗
L,P,HJ .

EDX∼P n
X

: The expectation w.r.t. P n
X for data DX ≡ {X1, . . . ,Xn} being i.i.d.

copies of X ∼ PX . Similarly ED∼P n for the joint measure P and full data D.
L∞(DX ): The space of equivalence classes of all bounded measurable func-

tions w.r.t. the measure DX .
L∞: The set of all bounded measurable functions on a given space, that

is, L∞(X ) = {f : X �→R, f measurable and ‖f ‖∞ < ∞}.
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SUPPLEMENTARY MATERIAL

Additional materials and Matlab codes (DOI: 10.1214/18-AOS1696SUPP;
.pdf). Due to space constraint, all remaining proofs and additional details are pro-
vided in a separate file. Codes are available at http://www.bios.unc.edu/~kosorok/
RFE.html.
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