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ASYMPTOTIC DISTRIBUTION-FREE CHANGE-POINT DETECTION
FOR MULTIVARIATE AND NON-EUCLIDEAN DATA1

BY LYNNA CHU AND HAO CHEN

University of California, Davis

We consider the testing and estimation of change-points, locations where
the distribution abruptly changes, in a sequence of multivariate or non-
Euclidean observations. We study a nonparametric framework that utilizes
similarity information among observations, which can be applied to vari-
ous data types as long as an informative similarity measure on the sample
space can be defined. The existing approach along this line has low power
and/or biased estimates for change-points under some common scenarios. We
address these problems by considering new tests based on similarity infor-
mation. Simulation studies show that the new approaches exhibit substantial
improvements in detecting and estimating change-points. In addition, under
some mild conditions, the new test statistics are asymptotically distribution-
free under the null hypothesis of no change. Analytic p-value approximations
to the significance of the new test statistics for the single change-point alterna-
tive and changed interval alternative are derived, making the new approaches
easy off-the-shelf tools for large datasets. The new approaches are illustrated
in an analysis of New York taxi data.

1. Introduction. Change-point analysis is regaining attention as we enter the
big data era. Massive amounts of data are collected in many fields for studying
complex phenomena over time and/or space. Such data often involve sequences of
high-dimensional or non-Euclidean measurements that cannot be analyzed through
traditional approaches. Insights on such data often come from segmentation, which
divides the sequence into homogeneous temporal or spatial segments. In this pa-
per, we consider this segmentation problem. Let the sequence of observations be
{yi : i = 1, . . . , n}, indexed by time or some other meaningful orderings. We are
concerned with testing the null hypothesis:

(1.1) H0 : yi ∼ F0, i = 1, . . . , n

against the single change-point alternative

(1.2) H1 : ∃1 ≤ τ < n, yi ∼
{
F0, i ≤ τ,

F1, otherwise
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or the changed interval alternative

(1.3) H2 : ∃1 ≤ τ1 < τ2 < n, yi ∼
{
F0, i = τ1 + 1, . . . , τ2,

F1, otherwise,

where F0 and F1 are two different probability measures. We consider the problem
that observations are independent over time. (More discussions on violation of this
independence assumption can be found in Supplement I [Chu and Chen (2019)].)

The segmentation problem has been widely studied for univariate data. See
monograph Carlstein, Müller and Siegmund (1994) for a survey. However, in many
modern applications, {yi}’s could be a sequence of vectors [e.g., cross-sample copy
number variation analysis, Zhang et al. (2010)], images [e.g., brain image, Park
et al. (2015)], or networks [e.g., social network, Kossinets and Watts (2006)].

When yi ∈ R
d and the d dimensions are independent, the problem becomes the

analysis of d independent sequences and it has been studied in a number of works;
see, for example, Zhang et al. (2010) and Siegmund (2013). For more generic
multivariate observations, most existing methods are based on parametric mod-
els [see, e.g., Chen and Gupta (2012), Csörgő and Horváth (1997) and references
therein]. Parametric methods have been proposed for network data sequences as
well. For example, Heard et al. (2010) designed a two-stage Bayesian method to
detect anomalies by modeling the communication between nodes over time as a
counting process where increments of the process follow a Bayesian probability
model. Wang et al. (2014) designed locality-based scan statistics to detect change
arising in the connectivity matrix of networks generated by a stochastic block
model where the block membership of the vertices are fixed across time. All of
these parametric methods provide useful tools when the assumptions made in the
paper are reasonably true. However, these assumptions are many times too strong
in real applications.

Nonparametric methods have been proposed for the change-point detec-
tion problem for multivariate/non-Euclidean observations as well [Jirak (2015),
Matteson and James (2014), Lung-Yut-Fong, Lévy-Leduc and Cappé (2015), Cule,
Samworth and Stewart (2010), Desobry, Davy and Doncarli (2005)]. Nonparamet-
ric methods are usually more flexible in terms of model specification. However, it
is in general more difficult to conduct theoretical analysis, such as controlling the
type I error.

Recently, Chen and Zhang (2015) proposed a nonparametric approach that can
be applied to data in arbitrary dimension and to non-Euclidean data. They also
provided analytical p-value approximations for type I error control, making their
approach easy to be applied to large data sets. Through simulation studies, they
showed that their approach achieves substantial power gains when dimension is
moderate to high compared with existing parametric change-point methods.

However, while the method proposed by Chen and Zhang (2015) is effective
for locational alternatives, it is less effective for scale alternatives and even worse



384 L. CHU AND H. CHEN

provides biased estimates for the location of the change-point when detected. Also,
if the change-point is not in the middle of the sequence, the detection power could
be low (more details of these problems are discussed in Section 2).

In this paper, we improve upon the limitations of the test statistic in Chen and
Zhang (2015) and propose three new test statistics. The new test statistics exhibit
better estimates to the location of the change-points for a wider range of alter-
natives and also exhibit substantial power gains when the change is not in the
middle of the sequence. In addition, under some mild regularity conditions, the
new statistics are asymptotically distribution-free under the null hypothesis of no
change. The new approaches are implemented in an R package gSeg.

The organization of the rest of the paper is as follows. In Section 2, we describe
and explain in more details the problems of the method in Chen and Zhang (2015).
To tackle the problems, three new scan statistics are proposed in Section 3. The
asymptotic behaviors of the new test statistics are studied and analytical p-value
approximations for the tests are provided in Section 4. Section 5 examines the
performance of the new test statistics under more simulation settings. The new
methods are illustrated in the analysis of New York taxi data in Section 6. We
conclude with discussion in Section 7.

2. Restrictions of the method in Chen and Zhang (2015). In this section,
we state the restrictions of the method in Chen and Zhang (2015) and explore the
underlying reasons for these restrictions.

2.1. Scenarios when the method breaks down. The method in Chen and
Zhang (2015) for detecting change-point is a typical scan statistic maxt Z(t),
with Z(t) a standardized two-sample test statistic for comparing {y1, . . . ,yt } and
{yt+1, . . . ,yn}. Ideally, when the method works, Z(t) would be maximized around
the true change-point. Figure 1 plots Z(t) from typical simulation runs under three
different scenarios: (a) a mean change, (b) a change in both mean and variance
with the variance larger after the change and (c) a change in both mean and vari-
ance with the variance smaller after the change. In each scenario, the change occurs
at the center of the sequence, indicated by a blue dashed vertical line in each plot.
The estimated change-point is indicated by a black solid vertical line in each plot.
From the plots, the method works perfectly well in scenario (a). However, it has
serious problems in correctly estimating the location of the change-point in sce-
narios (b) and (c). From the plots, we see that the estimated change-point is biased
toward the direction with a larger variance.

In addition, even when the change is only in mean, the method also has biased
change-point estimates along with power loss when the change is not near the
middle of the sequence. Table 1 shows the performance of the method in Chen
and Zhang (2015) under two choices of the location of the change-point (middle
versus one-third of the sequence). It lists the number of trials, out of 100, that the
null hypothesis of homogeneity is rejected at the 0.05 level with the number in the
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FIG. 1. Plots of the scan statistic for the method in Chen and Zhang (2015). Multivariate Gaussian
data, d = 100, n = 500. Before the change, the data is drawn from N (0, Id) and after the change,
data drawn from (a) N (μ, Id) where ‖μ‖2 = 1.4, (b) N (μ, σ 2Id) where ‖μ‖2 = 1.4, σ = 1.2 and
(c) N (μ, Id) where ‖μ‖2 = 1.4, σ = 0.8. The change occurs at t = 250 for all scenarios. The solid
vertical line indicates the true change-point. The dashed vertical line indicates the estimated change–
point by the method in Chen and Zhang (2015). The similarity graphs are the 5-MST constructed
using the Euclidean distance.

parentheses those trials both rejecting the null and estimating the location of the
change-point reasonably well (within 20 indices from the true change-point). In
both settings, the change happens at τ = 250 and the change is in the mean only
[N (0, Id) versus N (μ, Id) where ‖μ‖2 = 1.4 and d = 100].
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TABLE 1
The number of trials, out of 100, that the null hypothesis is rejected at 0.05 significance level with

the number in the parentheses the number of trials that the null hypothesis is rejected and the index
difference between the estimated change-point and true change-point less than 20. The change

happens at τ = 250. The length of the sequence is n. Before the change, the observations are drawn
from N (0, Id), d = 100; after the change, the observations are drawn from N (μ, Id),‖μ‖2 = 1.4

n = 500 n = 750

97 83
(89) (24)

When the length of the sequence is n = 500, the change happens at the middle
of the sequence, and the method does very well. When n = 750, since the change
happens at τ = 250, there are twice as many observations after the change com-
pared to n = 500. Intuitively, the increase in sample size should increase the power
of the test. However, different from what we would expect, the performance of the
test becomes worse (97 → 83). Even worse is the dramatic decrease in the num-
ber in the parentheses (89 → 24), indicating the poor ability of the the method
in estimating the location of the change-point correctly when the change does not
happen in the middle of the sequence.

2.2. Understanding the graph-based approach. Here, we look closer at the
method in Chen and Zhang (2015). It is a scan statistic Z(t) calculated based on
a graph-based two-sample test. First, a similarity graph G is constructed on the
observations based on a distance measure defined on the sample space up to a
criterion. For example, G could be a minimum spanning tree (MST), which is a
tree connecting all observations such that the sum of the distances of edges in the
tree is minimized; G could also be a nearest neighbor graph (NNG) where each
observation connects to its nearest neighbors. Then the number of edges in G that
connect observations before t and observations after t are counted. A relative low
count indicates the observations before and after t are less mixed, which implies
distributional difference. This graph-based two-sample test was first proposed by
Friedman and Rafsky (1979) and the intuition behind this is that if the distributions
of the two samples are different, observations would tend to be closer to those
from the same sample. Thus, edges in the similarity graph would be more likely to
connect observations within the same sample. Chen and Zhang (2015) adapts this
graph-based two-sample test to the change-point setting and Z(t) is a standardized
version of the raw count by the mean and standard deviation of the raw count
(with a sign flip so that large Z(t) values imply change-points). We refer to this
underlying graph-based two-sample test as the edge-count two-sample test for easy
reference.

The rationale of the edge-count two-sample test holds for low-dimensional
data. However, when the dimension is high, the edge-count two-sample test can
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be powerless for some very common types of alternatives due to the curse-of-
dimensionality [Chen and Friedman (2017)]. For example, if two distributions dif-
fer in variance and when the dimension is moderate to high, such as d = 50, the
two samples would be separated into two layers with the sample with a smaller
variance in the inner layer and the other sample in the outer layer. Since the vol-
ume of a d-dimensional space increases exponentially in d , the phenomenon that
points in the outer layer find themselves to be closer to points in the inner layer
than other points in the outer layer is common unless the number of points in the
outer layer is extremely large (exponential in d). Then, for typical sample sizes, the
between-sample edge-count is still high under this alternative and the edge-count
two-sample test is unable to reject the null hypothesis. To address this issue, Chen
and Friedman (2017) proposed a generalized edge-count two-sample test.

Meanwhile, Chen, Dou and Qiao (2014) found that, starting from the equal
sample size scenario, the estimated power of the edge-count two-sample test de-
creased when one sample size was doubled and the other kept the same. As seen
in Table 1, even for locational alternatives, this is counterintuitive since increasing
the sample size adds more information, which should increase the power of the
test. They found that the decrease in power is due to a variance boosting problem
when the sample sizes are unequal. To address this issue, Chen, Dou and Qiao
(2014) proposed a weighted edge-count two-sample test.

In the following, we adapt these two extended graph-based two-sample tests,
generalized edge-count two-sample test and the weighted edge-count two-sample
test, as well as a new version of the edge-count two-sample test, which we refer to
as the max-type edge-count two-sample test, to the change-point setting.

3. New test statistics. The new test statistics for testing the null H0 (1.1)
versus the single change-point alternative H1 (1.2) and versus the changed interval
alternative H2 (1.3) are presented below. Under the null hypothesis H0 (1.1), the
joint distribution of the observations in the sequence is the same if we permute
the order of the observations. In the following, we work under the permutation
null distribution that places 1/n! probability on each of the n! permutations of
{yi : i = 1, . . . , n}. With no further specification, we use P,E, Var, and Cov to
denote probability, expectation, variance, and covariance, respectively, under the
permutation null distribution.

3.1. Generalized edge-count scan statistic for single change-point alternative.
Here, we define the test statistic for the generalized edge-count two-sample test
when testing the null H0 (1.1) versus the single change-point alternative H1 (1.2).

Each possible value of τ divides the sequence of observations into two groups:
Observations that come before or at τ and observations that come after τ . Let G be
the similarity graph on yi . We use G to denote both the graph and its set of edges
when its vertex set is implicitly obvious. For more discussions on the choice of G,
see Chen and Zhang (2015). For any event x let Ix be the indicator function that
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takes value 1 if x is true and 0 otherwise. We define gi(t) as an indicator function
for the event that yi is observed after t , gi(t) = Ii>t . For an edge e = (i, j), we
define

Je(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if gi(t) �= gj (t),

1 if gi(t) = gj (t) = 0,

2 if gi(t) = gj (t) = 1.

For any candidate value t of τ , we define

(3.1) Rk(t) = ∑
e∈G

IJe(t)=k, k = 0,1,2.

Then R0(t) is the number of edges connecting observations before and after t

(which is the test statistic for the edge-count two-sample test), R1(t) is the number
of edges connecting observations prior to t and R2(t) is the number of edges that
connect observations after t .

The generalized edge-count two-sample test at t is defined as

(3.2) S(t) =
(
R1(t) − E

(
R1(t)

)
R2(t) − E

(
R2(t)

))T

�−1(t)

(
R1(t) − E

(
R1(t)

)
R2(t) − E

(
R2(t)

)) .

Here, �(t) is the covariance matrix of the vector (R1(t),R2(t))
T under the per-

mutation null distribution. The test statistic is defined in this way so that either
direction of deviations of the number of within-group edges from its null expec-
tation would contribute to the test statistic. Under location alternatives, we would
expect both R1(t) and R2(t) to be larger than their null expectations, which would
lead to a large S(t). Under scale alternatives, the group with the smaller variance
would have a within-edge count larger than its null expectation and the group with
the larger variance would have a within-edge count smaller than its null expecta-
tion, which would also lead to a large S(t). Therefore, this test is powerful for both
location and scale alternatives.

Figure 2 illustrates the computation of R1(t) and R2(t) on a small artificial
dataset of length n = 40. The first 20 observations are generated from N (0, I2).
The second 20 observations are generated from N ((2,2)T , I2) (the 2-dimensional
data is chosen for illustration purposes, while the method is not limited by dimen-
sionality). The similarity graph G is the MST on Euclidean distance. Notice that
the graph G is determined by the values of yi ’s and not the order of their appear-
ance. Thus it remains constant under permutation. As t changes, the group identify
of some points changes.

Under the permutation null, the analytic expressions for E(R1(t)), E(R2(t))

and �(t) = (�i,j (t))i,j=1,2 can be calculated through combinatorial analysis, and
they can be obtained straightforwardly following Chen and Friedman (2017). Their
expressions are listed below. Let Gi be the subgraph of G containing all edges that
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FIG. 2. The computation of R1(t) and R2(t) for nine different values of t . The first 20 observations
are generated from N (0, I2). The second 20 observations are generated from N ((2,2)T , I2). The
similarity graph G shown here is the MST on Euclidean distance. Each t divides the observations
into two groups: one group for observations before t (shown as solid circles) and the other group for
observations shown after t (shown as open circles). Edges in red connect observations before t and
the number of these edges is R1(t). Edges in blue connect observations after t and the number of
these edges is R2(t). Notice that as t changes, the group identities change but the graph G does not
change.

connect to node yi . Then |Gi | is the number of edges in Gi or the degree of node
yi in G. We have

E
(
R1(t)

) = |G| t (t − 1)

n(n − 1)
,

E
(
R2(t)

) = |G|(n − t)(n − t − 1)

n(n − 1)
,
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�11(t) = E
(
R1(t)

)(
1 − E

(
R1(t)

))
+ t (t − 1)(t − 2)(

∑n
i=1 |Gi |2 − 2|G|)

n(n − 1)(n − 2)

+ t (t − 1)(t − 2)(t − 3)(|G|2 − ∑n
i=1 |Gi |2 + |G|)

n(n − 1)(n − 2)(n − 3)
,

�22(t) = E
(
R2(t)

)(
1 − E

(
R2(t)

))
+ (n − t)(n − t − 1)(n − t − 2)(

∑n
i=1 |Gi |2 − 2|G|)

n(n − 1)(n − 2)

+
[
(n − t)(n − t − 1)(n − t − 2)(n − t − 3)

×
(
|G|2 −

n∑
i=1

|Gi |2 + |G|
)]

× [
n(n − 1)(n − 2)(n − 3)

]−1

�12(t) = �21(t)

= t (t − 1)(n − t)(n − t − 1)(|G|2 − ∑n
i=1 |Gi |2 + |G|)

n(n − 1)(n − 2)(n − 3)

− E
(
R1(t)

)
E

(
R2(t)

)
.

To test H0 versus H1, we use the following scan statistic:

(3.3) max
n0≤t≤n1

S(t),

where n0 and n1 are pre-specified constraints for the range of τ , such as n0 = 20,
n1 = n − n0, as we need some observations in each group to ‘represent’ the dis-
tribution. The null hypothesis is rejected if the maxima is greater than a threshold.
Details about how to choose the threshold to control the type I error rate are dis-
cussed in Section 4.

Figure 3 shows the S(t) process for the dataset in Figure 2 where there is a
change-point in the middle (left) and by contrast a typical result when there is no
change (right). It is clear that the maxn0≤t≤n1 S(t) in the left panel is much larger.

3.2. Weighted edge-count scan statistic for single change-point alternative.
Here, we present the weighted edge-count two-sample test statistic for testing the
null H0 (1.1) versus the single change-point alternative H1 (1.2). Following the
same notation in Section 3.1, for any candidate value t of τ , the weighted edge-
count two-sample test statistic is

Rw(t) = q(t)
∑
e∈G

IJe(t)=1 + p(t)
∑
e∈G

IJe(t)=2 = q(t)R1(t) + p(t)R2(t),
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FIG. 3. On the left, the profile of S(t) against t for the example data set in Figure 2. On the right,
the profile of S(t) against t on a sequence of points with no change-point in a typical simulation run.
(The scale on the y-axis are different in the two plots.)

where p(t) = t−1
n−2 and q(t) = 1 − p(t). As it is more difficult for the sample with

a smaller sample size to form an edge within the sample, R1(t) and R2(t) are
weighted by the inverse of their corresponding sample sizes. The test statistic de-
fined in this way resolves the variance boosting problem [Chen, Dou and Qiao
(2014)]. Relatively large values of Rw(t) are evidence against the null hypothesis.

Since the null distribution of Rw(t) depends on t , Rw(t) is standardized so that
it is comparable across t . Let

(3.4) Zw(t) = Rw(t) − E[Rw(t)]√
Var[Rw(t)] .

Analytic formulas for E(Rw(t)) and Var(Rw(t)) are given below:

E
(
Rw(t)

) = |G|(t − 1)(n − t − 1)

(n − 1)(n − 2)
,

Var
(
Rw(t)

) = t (t − 1)(n − t)(n − t − 1)

n(n − 1)(n − 2)(n − 3)

×
(
|G| −

∑n
i=1 |Gi |2
(n − 2)

+ 2|G|2
(n − 1)(n − 2)

)
.

To test H0 versus H1, the following scan statistic is used:

(3.5) max
n0≤t≤n1

Zw(t),

where n0 and n1 are pre-specified constraints for the range of τ . The null hypoth-
esis is rejected if the maxima is greater than a threshold. Details about how to
choose the threshold to control the type I error are discussed in Section 4.

For illustration, Figure 4 shows the Zw(t) processes for the same illustration
dataset as in Figure 2. We see that Zw(t) peaks at the true change-point τ = 20.
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FIG. 4. On the left, the profile of Zw(t) against t for the example data set in Figure 2. On the right,
the profile of Zw(t) against t on a sequence of points with no change-point. (The scale on the y-axis
are different in the two plots.)

For contrast, when there is no change-point, Zw(t) exhibits random fluctuation and
attains a much smaller maximum value compared to when there is a change-point.

3.3. Scan statistics for changed interval alternative. For testing the changed
interval alternative H2 (1.3), each possible interval (t1, t2] partitions the obser-
vations into two groups: one group containing all observations observed during
(t1, t2], and the other group containing all observations observed outside of this
interval. Then, for any candidate changed interval (t1, t2], we have that R0(t1, t2)

is the number of edges connecting observations within and outside the interval
(t1, t2], R1(t1, t2) is the number of edges connecting observations outside of the in-
terval (t1, t2], and R2(t1, t2) is the number of edges connecting observations within
the interval (t1, t2]. Then the two-sample test statistics for testing the changed in-
terval alternative can be defined in a similar manner to the single change-point case
in Sections 3.1 and 3.2. For example, the generalized edge-count two-sample test
statistic, S(t1, t2), for testing H0 (1.1) versus H2 (1.3) is defined as

(
R1(t1, t2) − E

(
R1(t1, t2)

)
R2(t1, t2) − E

(
R2(t1, t2)

)
)T

�−1(t1, t2)

(
R1(t1, t2) − E

(
R1(t1, t2)

)
R2(t1, t2) − E

(
R2(t1, t2)

)
)
.

Under the permutation null, the explicit expression for E(R1(t1, t2)), E(R2(t1,

t2)) and the covariance matrix can be obtained similarly as in the single change-
point setting. The explicit expressions can be found in Supplement A.1 [Chu and
Chen (2019)]. The scan statistic involves a maximization over t1 and t2, that is,
max1≤t1<t2≤n,l0≤t2−t1≤l1 S(t1, t2), where l0 and l1 are constraints on the window
size. For example, we can set l1 = n − l0 so that only alternatives where the num-
bers of observations in either group is larger than l0 are considered.
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Complete details of the generalized edge-count scan statistic and weighted
edge-count scan statistic for the changed alternative are given in Supplement A.1
and A.2, respectively [Chu and Chen (2019)].

3.4. Max-type edge-count two-sample test. Here, we present a new test statis-
tic, based on the following lemma.

LEMMA 3.1. The generalized edge-count scan statistic can be expressed as

S(t) = Z2
w(t) + Z2

diff(t),

S(t1, t2) = Z2
w(t1, t2) + Z2

diff(t1, t2),

where Zw(t), Zw(t1, t2) are the standardized weighted edge-count two-sample test
statistic defined in (3.4) and (A.3), respectively, and

Zdiff(t) = Rdiff(t) − E(Rdiff(t))√
Var(Rdiff(t))

,(3.6)

Zdiff(t1, t2) = Rdiff(t1, t2) − E(Rdiff(t1, t2))√
Var(Rdiff(t1, t2))

,(3.7)

with Rdiff(t) = R1(t) − R2(t) and Rdiff(t1, t2) = R1(t1, t2) − R2(t1, t2).

The proof of this lemma is in Supplement C.1 [Chu and Chen (2019)]. The
analytical expressions for the expectation and variance of Rdiff(t) and Rdiff(t1, t2)

under the permutation null are

E
(
Rdiff(t)

) = |G|(2t − n)

n
,

E
(
Rdiff(t1, t2)

) = |G|(2(t2 − t1) − n)

n
,

Var
(
Rdiff(t)

) = t (n − t)(
∑n

i=1 |Gi |2 − 4|G|2
n

)

n(n − 1)
,

Var
(
Rdiff(t1, t2)

) = (t2 − t1)(n + t2 − t1)(
∑n

i=1 |Gi |2 − 4|G|2
n

)

n(n − 1)
.

From the above lemma, we can see that S(t) is the sum of squares of two uncor-
related quantities (these two quantities are further asymptotically independent, see
in Section 4). Here, Zw(t) tends to be sensitive to locational alternatives. When the
change is locational, Zw(t) tends to be large. On the other hand, Zdiff(t) tends to be
sensitive to scale alternative. When the change is in the spread of the distribution,
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|Zdiff(t)| tends to be large. The sign of Zdiff(t) depends on whether the distribu-
tion after the change has a larger spread or not. Hence, we propose the following
max-type edge-count two-sample test statistic:

(3.8) M(t) = max
(∣∣Zdiff(t)

∣∣,Zw(t)
)

for the single change-point alternative and

(3.9) M(t1, t2) = max
(∣∣Zdiff(t1, t2)

∣∣,Zw(t1, t2)
)

for the changed-interval alternative. The corresponding scan statistics are

(3.10) max
n0≤t≤n1

M(t),

for the single change-point alternative and

(3.11) max
1≤t1<t2≤n
l0≤t2−t1≤l1

M(t1, t2),

for the changed-interval alternative.
As it will come later, this max-type statistic is of particular interest as its perfor-

mance is similar to S(t) and we can obtain more accurate p-value approximations
(details in Section 4).

A more detailed discussion on the relationship of the three test statistics
(S,Zw,M) and an extension to the max-type statistic can be found in Supple-
ment H [Chu and Chen (2019)].

4. Analytical p-value approximations. Given the scan statistics, the next
question is how large do they need to be to constitute sufficient evidence against
the null hypothesis of homogeneity. In order words, we are concerned with the tail
probability of the scan statistics under H0. For the generalized edge-count two-
sample test, that is,

(4.1) P
(

max
n0≤t≤n1

S(t) > b
)

for the single change-point alternative, and

(4.2) P
(

max
1≤t1<t2≤n
l0≤t2−t1≤l1

S(t1, t2) > b
)

for the changed interval alternative. For the weighted edge-count two-sample test,
that is,

(4.3) P
(

max
n0≤t≤n1

Zw(t) > b
)

for the single change-point alternative, and

(4.4) P
(

max
1≤t1<t2≤n
l0≤t2−t1≤l1

Zw(t1, t2) > b
)
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for the changed interval alternative. For the max-type edge-count two-sample test,
that is,

(4.5) P
(

max
n0≤t≤n1

M(t) > b
)

for the single change-point alternative, and

(4.6) P
(

max
1≤t1<t2≤n
l0≤t2−t1≤l1

M(t1, t2) > b
)

for the changed interval alternative.
For small n, we can directly sample from the permutation distribution to approx-

imate (4.1)–(4.6). However, when n is large, permutation is very time consuming.
Therefore, to make the method instantly applicable, we derive analytical expres-
sions to approximate these tail probabilities.

To derive the analytical expressions, we study the asymptotic properties of
the stochastic processes {S(t)}, {S(t1, t2)}, {Zw(t)}, {Zw(t1, t2)}, {M(t)} and
{M(t1, t2)}, and then make adjustments for finite samples. By Lemma 3.1 and how
M(t) is defined, these stochastic processes boil down to two pairs of basic pro-
cesses: {Zdiff(t)} and {Zw(t)} for the single change-point case and {Zdiff(t1, t2)}
and {Zw(t1, t2)} for changed-interval. So we first study the properties of these ba-
sic stochastic processes.

4.1. Asymptotic null distributions of the basic processes. In this section, we
derive the limiting distributions of {Zdiff([nu]) : 0 < u < 1} and {Zw([nu]) : 0 <

u < 1} for the single change-point alternative, and {Zdiff([nu], [nv]) : 0 < u < v <

1} and {Zw([nu], [nv]) : 0 < u < v < 1} for the changed-interval alternative (we
use [x] to denote the largest integer that is no larger than x).

We first introduce some notation. For edge e = (e−, e+), where e− < e+ are the
indices of the nodes connected by the edge e, let

(4.7) Ae = Ge− ∪ Ge+,

be the subgraph in G that connect to either node e− or node e+, and

(4.8) Be = ⋃
e∗∈Ae

Ae∗,

be the subgraph in G that connect to any edge in Ae.
In the following, we write an = O(bn) when an has the same order as bn, and

write an = o(bn) when an has order smaller than bn.

THEOREM 4.1. When |G| = O(nα),1 ≤ α < 1.5,
∑

e∈G |Ae||Be| = o(n1.5α),∑
e∈G |Ae|2 = o(nα+0.5), and

∑n
i=1 |Gi |2 − 4|G|2

n
= O(

∑n
i=1 |Gi |2), as n → ∞:
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1. {Zdiff([nu]) : 0 < u < 1} and {Zw([nu]) : 0 < u < 1} converge to indepen-
dent Gaussian processes in finite dimensional distributions, which we denote as
{Z∗

diff(u) : 0 < u < 1} and {Z∗
w(u) : 0 < u < 1}, respectively.

2. {Zdiff([nu], [nv]) : 0 < u < v < 1} and {Zw([nu], [nv]) : 0 < u < v < 1}
converge to independent two-dimension Gaussian random fields in finite di-
mensional distributions, which we denote as {Z∗

diff(u, v) : 0 < u < v < 1} and
{Z∗

w(u, v) : 0 < u < v < 1}, respectively.

The proof for this theorem utilizes Stein’s method [Chen and Shao (1994)] and
the details of the proof are in Supplement C.2 [Chu and Chen (2019)].

REMARK 4.2. The condition |G| = O(nα),1 ≤ α < 1.5 ensures that the
graph is dense enough but not too dense. The conditions

∑
e∈G |Ae||Be| = o(n1.5α)

and
∑

e∈G |Ae|2 = o(nα+0.5) ensure that the graph does not have a large hub or a
cluster of small hubs, where a hub is a node with a large degree. The condition∑n

i=1 |Gi |2 − 4|G|2
n

= O(
∑n

i=1 |Gi |2) ensures Zdiff to be well defined.
These conditions are quite mild. For example, for k-MST, when k = O(1), we

have |G| = k(n − 1) = O(n), and the conditions boil down to
∑

e∈G |Ae||Be| =
o(n1.5) and

∑n
i=1 |Gi |2 − 4|G|2

n
= O(

∑n
i=1 |Gi |2). Based on Theorems 5.1 and 5.2

in Chen and Friedman (2017), both conditions are satisfied for k-MST constructed
on Euclidean distance for k = O(1).

More discussions on the conditions of the graph can be found in Supplement G
[Chu and Chen (2019)].

Let ρ∗
w(u, v) = Cov(Z∗

w(u),Z∗
w(v)) and ρ∗

diff(u, v) = Cov(Z∗
diff(u),Z∗

diff(v)).
The next theorem state explicitly the covariance functions of the limiting Gaussian
processes, {Z∗

w(u),0 < u < 1} and {Z∗
diff(u),0 < u < 1}.

THEOREM 4.3. The exact expressions for ρ∗
diff(u, v) and ρ∗

w(u, v) are

ρ∗
w(u, v) = (u ∧ v)(1 − (u ∨ v))

(u ∨ v)(1 − (u ∧ v))
,

ρ∗
diff(u, v) = (u ∧ v)(1 − (u ∨ v))√

(u ∧ v)(1 − (u ∧ v))(u ∨ v)(1 − (u ∨ v))
,

where u ∧ v = min(u, v) and u ∨ v = max(u, v).

The above theorem is proved through combinatorial analysis and details are
given in the Supplement C.3 [Chu and Chen (2019)]. From the above theorem, we
see that the limiting processes, {Z∗

w(u),0 < u < 1} and {Z∗
diff(u),0 < u < 1}, do

not depend on G at all.
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4.2. Asymptotic p-value approximations. We now examine the asymptotic be-
havior of the tail probabilities (4.1)–(4.6). Our approximations require the function
ν(x) defined as

(4.9) ν(x) = 2x−2 exp

(
−2

∞∑
m=1

m−1�

(
−1

2
xm1/2

))
, x > 0.

This function is closely related to the Laplace transform of the overshoot over the
boundary of a random walk. A simple approximation given in Siegmund and Yakir
(2007) is sufficient for numerical purpose:

(4.10) ν(x) ≈ (2/x)(�(x/2) − 0.5)

(x/2)�(x/2) + φ(x/2)
,

where �(·) and φ(·) denote the standard normal cumulative density function and
standard normal density function, respectively. Following similar arguments in the
proof for Proposition 3.4 in Chen and Zhang (2015), when the conditions on G

in Theorem 4.1 hold, n,b,n0, n1 → ∞ in a way such that for some b0 > 0 and
0 < x0 < x1 < 1, b/

√
n → b0, n0

n
→ x0 and n1

n
→ x1, then as n → ∞, we have

P
(

max
n0≤t≤n1

Z∗
w(t/n) > b

)

∼ bφ(b)

∫ x1

x0

h∗
w(x)ν

(
b0

√
2h∗(x)

)
dx,

P
(

max
n0≤t2−t1≤n1

Z∗
w(t1/n, t2/n) > b

)

∼ b3φ(b)

∫ x1

x0

(
h∗

w(x)ν
(
b0

√
2h∗

w(x)
))2

(1 − x)dx,

P
(

max
n0≤t≤n1

∣∣Z∗
diff(t/n)

∣∣ > b
)

∼ 2bφ(b)

∫ x1

x0

h∗
diff(x)ν

(
b0

√
2h∗

diff(x)
)
dx,

P
(

max
n0≤t2−t1≤n1

∣∣Z∗
diff(t1/n, t2/n)

∣∣ > b
)

∼ 2b3φ(b)

∫ x1

x0

(
h∗

diff(x)ν
(
b0

√
2h∗

diff(x)
))2

(1 − x)dx,

where

h∗
w(x) = lim

u↗x

∂ρ∗
w(u, x)

∂u
≡ − lim

u↘x

∂ρ∗
w(u, x)

∂u
,

h∗
diff(x) = lim

u↗x

∂ρ∗
diff(u, x)

∂u
≡ − lim

u↘x

∂ρ∗
diff(u, x)

∂u
.
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It can be shown that

h∗
w(x) = 1

x(1 − x)
,(4.11)

h∗
diff(x) = 1

2x(1 − x)
.(4.12)

Since Z∗
w and Z∗

diff are independent, we have

P
(

max
n0≤t≤n1

M∗(t/n) > b
)

= 1 − P
(

max
n0≤t≤n1

∣∣Z∗
diff(t)

∣∣ < b
)
P

(
max

n0≤t≤n1
Z∗

w(t) < b
)
,

P
(

max
n0≤t2−t1≤n1

M∗(t1/n, t2/n) > b
)

= 1 − P
(

max
n0≤t2−t1≤n1

∣∣Z∗
diff(t1, t2)

∣∣ < b
)
P

(
max

n0≤t2−t1≤n1
Z∗

w(t1, t2) < b
)
.

For the tail probabilities for maxn0≤t≤n1 S(t) and maxl0≤t2−t2≤l1 S(t1, t2), some
additional works are needed and the results are stated in the following proposition.

PROPOSITION 4.4. Assume that |G| = O(nα),1 ≤ α < 1.5,
∑

e∈G |Ae||Be| =
o(n1.5α),

∑
e∈G |Ae|2 = o(nα+0.5), and

∑n
i=1 |Gi |2 − 4|G|2

n
= O(

∑n
i=1 |Gi |2),

n,b,n0, n1 → ∞ in a way such that for some b1 > 0 and 0 < x0 < x1 < 1,
b/n → b1, n0

n
→ x0 and n1

n
→ x1, then as n → ∞,

P
(

max
n0≤t≤n1

S∗(t/n) > b
)

(4.13)

≈ b e−b/2

2π

∫ 2π

0

∫ x1

x0

u∗(x,ω)ν
(√

2b1u∗(x,ω)
)
dx dω,

P
(

max
n0≤t2−t1≤n1

S∗(t1/n, t2/n) > b
)

(4.14)

≈ b2e−b/2

π

∫ 2π

0

∫ x1

x0

(
u∗(x,ω)ν

(√
2b1u∗(x,ω)

))2
(1 − x)dx dω,

where u∗(x,ω) = h∗
w(x) sin2(ω) + h∗

diff(x) cos2(ω), with h∗
w(x) and h∗

diff(x) pro-
vided in (4.11) and (4.12), respectively.

The proof of this proposition is in Supplement C.4 [Chu and Chen (2019)].
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Based on the above results, we can approximate the tail probabilities (4.1)–(4.6)
by

P
(

max
n0≤t≤n1

S(t) > b
)

(4.15)

≈ be−b/2

2π

∫ 2π

0

∫ n1
n

n0
n

u∗(x,ω)ν
(√

2bu∗(x,ω)/n
)
dx dω,

P
(

max
n0≤t2−t1≤n1

S(t1, t2) > b
)

(4.16)

≈ b2e−b/2

π

∫ 2π

0

∫ n1
n

n0
n

(
u∗(x,ω)ν

(√
2bu∗(x,ω)/n

))2
(1 − x)dx dω,

P
(

max
n0≤t≤n1

Zw(t) > b
)

(4.17)

≈ bφ(b)

∫ n1
n

n0
n

h∗
w(x)ν

(
b
√

2h∗(x)/n
)
dx,

P
(

max
n0≤t2−t1≤n1

Zw(t1, t2) > b
)

(4.18)

≈ b3φ(b)

∫ n1
n

n0
n

(
h∗

w(x)ν
(
b
√

2h∗
w(x)/n

))2
(1 − x)dx,

P
(

max
n0≤t≤n1

M(t) > b
)

(4.19)

= 1 − P
(

max
n0≤t≤n1

∣∣Zdiff(t)
∣∣ < b

)
P

(
max

n0≤t≤n1
Zw(t) < b

)
,

P
(

max
n0≤t2−t1≤n1

M(t1, t2) > b
)

(4.20)

= 1 − P
(

max
n0≤t2−t1≤n1

∣∣Zdiff(t1, t2)
∣∣ < b

)
P

(
max

n0≤t2−t1≤n1
Zw(t1, t2) < b

)
,

where

P
(

max
n0≤t≤n1

∣∣Zdiff(t)
∣∣ < b

)
(4.21)

≈ 1 − 2bφ(b)

∫ n1
n

n0
n

h∗
diff(x)ν

(
b
√

2h∗
diff(x)/n

)
dx
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and

P
(

max
n0≤t2−t1≤n1

∣∣Zdiff(t1, t2)
∣∣ < b

)
(4.22)

≈ 1 − 2b3φ(b)

∫ n1
n

n0
n

(
h∗

diff(x)ν
(
b
√

2h∗
diff(x)/n

))2
(1 − x)dx,

and P(maxn0≤t≤n1 Zw(t) < b) and P(maxn0≤t2−t1≤n1 Zw(t1, t2) < b) easily follow
from (4.17) and (4.18), respectively.

REMARK 4.5. In practice, when using (4.15)–(4.20) to approximate the tail
probabilities, we use hw(n, x) in place of h∗

w(x), where hw(n, x) is the finite-
sample equivalent of h∗

w(x). That is,

hw(n, x) = n lim
s↗nx

∂ρw(s, nx)

∂s
,

with ρw(s, t) := Cov(Zw(s),Zw(t)). The explicit expression for hw(n, x) can also
be derived and simplified to be

(4.23) hw(n, x) = (n − 1)(2nx2 − 2nx + 1)

2x(1 − x)(n2x2 − n2x + n − 1)
.

It is clear from the above expression that hw(n, x) does not depend on the graph
G as well. Also, it is easy to show that limn→∞ hw(n, x) = h∗

w(x).
The finite-sample equivalent version of h∗

diff(x) is exact the same as h∗
diff(x).

That is,

hdiff(n, x) = n lim
s↗nx

∂ Cov(Zdiff(s),Zdiff([nx]))
∂s

= 1

2x(1 − x)
.

4.3. Skewness correction. Analytical approximations become less precise
when the minimum window length decreases (see numerical results in Section 4.4).
This is mainly because the convergence of Zw(t) and Zdiff(t) to normal is slow if
t/n is close to 0 or 1 and the convergence of Zw(t1, t2) and Zdiff(t1, t2) to normal
is slow if t2−t1

n
is close to 0 or 1. This problem becomes more severe when dimen-

sion is high. Figure 5 plots the skewness of Zw(t) and Zdiff(t) with G being MST
constructed on the Euclidean distance. We can see from the plot that the statistic
Zw(t) is right skewed. The p-value approximations (4.17) and (4.18) would then
underestimate the true tail probabilities. On the other hand, Zdiff(t) is right skewed
for small values of t and left skewed for large values of t , which would also affect
the analytic p-value approximation derived based on asymptotic results.

Hence, we perform skewness correction to improve the analytical p-value ap-
proximations for finite sample sizes. As illustrated in Figure 5, the extent of the
skewness depends on t , so we adopt a skewness correction approach discussed in
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FIG. 5. Plots of skewness of Zw(t) and of Zdiff(t) against t for a sequence of 1000 points
randomly generated from N (0, I100). The graph is MST constructed on Euclidean dis-
tance.

Chen and Zhang (2015) that does the correction up to different extents based on the
amount of skewness at each value of t . In particular, the approach provides a bet-
ter approximation to the marginal probability, P(Zw(t) ∈ b + dx/b), P(Zdiff(t) ∈
b+dx/b), P(Zw(t1, t2) ∈ b+dx/b) and P(Zdiff(t1, t2) ∈ b+dx/b), through a cu-
mulant generating function ψ(θ) = log EP (eθz). By applying a change of measure
dQθ = eθZ−ψ(θ) dP , we can approximate the marginal probability by

1√
2π(1 + γ θb)

exp
(−θbb − xθb/b + θ2

b (1 + γ θb/3)/2
)
,

where θb is chosen such that ψ̇(θb) = b. By a third Taylor approximation, we get
θb ≈ (−1 + √

1 + 2γ b)/γ , where γ := EP(Z3).
Notice that E(Z3

w(t1, t2)) = E(Z3
w(t2 − t1)) and E(Z3

diff(t1, t2)) = E(Z3
diff(t2 −

t1)). Let γw(t) = E(Z3
w(t)) and γdiff(t) = E(Z3

diff(t)). The p-value approxima-
tions, after correcting for skewness, are

P
(

max
n0≤t≤n1

Zw(t) > b
)

(4.24)

≈ bφ(b)

∫ n1
n

n0
n

Kw(nx)hw(n, x)ν
(
b
√

2hw(n, x)/n
)
dx,

P
(

max
n0≤t2−t1≤n1

Zw(t1, t2) > b
)

(4.25)

≈ b3φ(b)

∫ n1
n

n0
n

Kw(nx)
(
hw(n, x)ν

(
b
√

2hw(n, x)/n
))2

(1 − x)dx,
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where Kw(t) = exp( 1
2 (b−θ̂b,w(t))2+ 1

6 γw(t)θ̂b,w(t)3)√
1+γw(t)θ̂b,w(t)

with θ̂b,w(t) = −1+√
1+2γw(t)b
γw(t)

, and

P
(

max
n0≤t≤n1

Zdiff(t) > b
)

(4.26)

≈ bφ(b)

∫ n1
n

n0
n

Kdiff(nx)hdiff(n, x)ν
(
b
√

2hdiff(n, x)/n
)
dx,

P
(

max
n0≤t2−t1≤n1

Zdiff(t1, t2) > b
)

(4.27)

≈ b3φ(b)

∫ n1
n

n0
n

Kdiff(nx)
(
hdiff(n, x)ν

(
b
√

2hdiff(n, x)/n
))2

(1 − x)dx,

where Kdiff(t) = exp( 1
2 (b−θ̂b,diff(t))

2+ 1
6 γdiff(t)θ̂b,diff(t)

3)√
1+γdiff(t)θ̂b,diff(t)

with θ̂b,diff(t) =
−1+√

1+2γdiff(t)b
γdiff(t)

.
The only unknown quantities in the above expressions are γw(t) and γdiff(t).

Since

E
[
Z3

w(t)
] = E(R3

w(t)) − 3E(Rw(t))Var(Rw(t)) − E3(Rw(t))

(Var(Rw(t)))3/2 ,

E
[
Z3

diff(t)
] = E(R3

diff(t)) − 3E(Rdiff(t))Var(Rdiff(t)) − E3(Rdiff(t))

(Var(Rdiff(t)))3/2 ,

and the analytic expressions for the expectation and variance of Rw(t) and Rdiff(t)

can be found in Section 3, we only need to figure out the analytic expressions
of E(R3

w(t)) and E(R3
w(t1, t2)). The exact analytic expressions of E(R3

w(t)) and
E(R3

w(t1, t2)) are quite long and they are provided in Appendix B.

REMARK 4.6. When the marginal distribution is highly left-skewed, it is pos-
sible that the third moment of the test statistic, γ (t), is too small for 1 + 2γ (t)b

to be positive. In order to obtain a better approximation to θb, higher moments are
needed. However, since this problem usually occurs when t/n is close to 0 or 1,
we apply a heuristic fix discussed in Chen and Zhang (2015) that extrapolates θ̂ by
using its values outside the problematic region.

REMARK 4.7. Skewness corrected p-value approximations for
maxn0≤t≤n1 S(t) = max0≤w≤2π maxn0≤t≤n1(Zw(t) sin(w) + Zdiff(t) cos(w)) can
be derived by jointly correcting for the marginal probabilities of Zw(t) and Zdiff(t).
After correcting for skewness, the integrand in (4.15) becomes

KS(x,ω)u(x,ω)ν
(√

2bu(x,ω)/n
)
,
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where

KS(t,ω) =
[
exp

(
1

2

((√
b cos(ω) − θ̂b,1(t)

)2 + (√
b sin(ω) − θ̂b,2(t)

)2)

+ 1

6

(
γ1(t)θ̂b,1(t)

3 + γ2(t)θ̂b,2(t)
3))]

× [√(
1 + γ1(t)θ̂b,1

)(
1 + γ2(t)θ̂b,2

)]−1

with γ1(t) = E[Z3
1(t)], θ̂b,1(t,ω) = −1+

√
1+2γ1(t)

√
b cos(ω)

γ1(t)
, and γ2(t) and θ̂b,2(t,ω)

defined similarly. However, this integrand could easily be nonfinite in each quad-
rant in terms of w, and the method relies heavily on extrapolation. We thus do not
perform skewness correction on S(t).

4.4. Checking p-value approximations for finite samples. Here, we check how
the p-value approximations based on asymptotic results directly and with skew-
ness correction work for finite samples. To do so, we compare the critical values
obtained from (4.15), (4.17), (4.19), (4.24) and (4.26) to the critical values ob-
tained from doing 10,000 permutations directly, under various simulation settings.
We here focus on the single change-point alternative here. For the changed interval
alternative, the results are similar and details can be found in Supplement D.2 [Chu
and Chen (2019)].

In each simulation, sequences of length 1000 were generated from a given dis-
tribution F0 in R

d . We considered three distributions (multivariate normal, mul-
tivariate t with 5 degrees of freedom and multivariate log-normal) under various
dimensions (d = 10, d = 100, and d = 1000). Here, we present the results only for
multivariate normal with d = 10 (denoted by (C1) in Tables 2, 3 and 4), multivari-
ate t5 with d = 100 [denoted by (C2)], and multivariate log-normal with d = 1000
[denoted by (C3)]. The complete tables showing all three distributions under these
three dimensions with more cases are in Supplement D.1 [Chu and Chen (2019)].
The analytical approximations depend on constraints on the sequence in which
the change-point is searched over (n0 and n1). To make things simple, we let
n1 = n − n0.

Since the asymptotic p-value approximations (without skewness correction) do
not depend on G, the critical value is determined by n, n0 and n1 only (here, n1
is set to be n − n0). The first table of Tables 2, 3 and 4 labeled “A1” presents
the analytical critical values without skewness correction. On the other hand, the
skewness corrected p-value approximations and permutation p-values depend on
certain characteristics of the structure of the graph G. In this simulation, the MST
is used. As the structure of MST depends on the observations, the critical value
vary by simulation runs. We show results for 2 randomly simulated sequences in
each setting. Two characteristics of the graph are also reported: the sum of squared
node degrees (

∑
i |Gi |2) and the maximum node degree (dmax). These quantities
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TABLE 2
Critical values for the single change-point scan statistic maxn0≤t≤n1 S(t) based on MST at 0.05

significance level. n = 1000

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 13.10 13.38 13.70 14.11

Critical values Graph

n0 = 100 n0 = 75 n0 = 50 n0 = 25

Per Per Per Per
∑ |Gi |2 dmax

(C1)
12.87 13.29 14.04 15.17 5394 8
13.02 13.42 13.71 15.65 5368 8

(C2)
13.47 14.20 15.48 17.81 14,302 42
13.32 13.77 14.96 17.11 12,424 39

(C3)
14.50 15.83 18.14 21.96 46,876 83
16.12 18.38 22.00 29.07 106,524 208

give some intuitions on the size and density of the hubs in the graph. The skew-
ness corrected critical values are presented in Tables 3 and 4 under the column
“A2.” The column “Per” denotes critical values obtained through 10,000 random
permutations directly.

We first focus on the results of the generalized edge-count test statistic maxS(t).
Since we do not perform skewness correction for S(t), Table 2 compares these an-
alytical critical values (A1) with the critical values obtained from doing 10,000
permutations (Per). The main factors that influence the approximation accuracy of
the analytical critical values are the minimum window size (n0) and the structure
of the graph. We see that, when the graph is relatively flat [such as in (C1) that the
largest degree in the graph is relatively small], the asymptotic p-value approxima-
tion is doing reasonably well when n0 ≥ 50. As the graph becomes to have larger
and larger hubs, n0 needs to be larger to achieve a similar degree of accuracy.

Table 3 shows the results for maxZw(t). Similar to S(t), as window size de-
creases and/or the maximum degree in the graph increases, the analytical critical
values become less precise. However, the skewness corrected critical values per-
form much better than the critical values without skewness correction. Under (C1),
the maximum degree of the graph is in general small and the skewness-corrected
p-value approximations are doing reasonably well for n0 as low as 25. When the
maximum degree of the graph is less than 50, the skewness-corrected p-value ap-
proximations are doing quite well for n0 ≥ 50 and not bad for n0 = 25. For even
larger maximum degree scenarios, the skewness-corrected p-value approximations
are somewhat less conservative for n0 ≤ 100 but the discrepancy is not that bad.
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TABLE 3
Critical values for the single change-point scan statistic maxn0≤t≤n1 Zw(t) based on MST at 0.05

significance level. n = 1000

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 2.98 3.02 3.08 3.14

Critical values Graph

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
∑ |Gi |2 dmax

(C1)
3.05 3.02 3.12 3.11 3.22 3.22 3.4 3.48 5518 10
3.05 3.05 3.12 3.14 3.22 3.25 3.4 3.45 5442 8

(C2)
3.05 3.04 3.12 3.15 3.22 3.31 3.39 3.62 14,302 42
3.05 3.06 3.12 3.13 3.22 3.29 3.39 3.54 12,424 39

(C3)
3.04 3.11 3.11 3.25 3.21 3.37 3.38 3.82 46,876 83
3.03 3.20 3.10 3.40 3.19 3.61 3.35 3.99 106,524 208

TABLE 4
Critical values for the single change-point scan statistic maxn0≤t≤n1 M(t) based on MST at 0.05

significance level. n = 1000

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 3.23 3.27 3.32 3.38

Critical values Graph

n0 = 100 n0 = 75 n0 = 50 n0 = 25

A2 Per A2 Per A2 Per A2 Per
∑ |Gi |2 dmax

(C1)
3.27 3.26 3.33 3.34 3.41 3.42 3.56 3.66 5518 10
3.27 3.29 3.33 3.34 3.41 3.44 3.56 3.67 5442 8

(C2)
3.30 3.33 3.38 3.44 3.48 3.55 3.67 3.89 14,302 42
3.29 3.31 3.36 3.40 3.46 3.54 3.64 3.85 12,424 39

(C3)
3.33 3.34 3.41 3.49 3.53 3.69 3.74 4.22 46,876 83
3.39 3.51 3.49 3.75 3.63 4.06 3.88 4.58 106,524 208
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Table 4 shows the results for maxM(t). The pattern is somewhat similar to that
for maxZw(t) with the skewness-corrected p-value approximations for maxM(t)

slightly more tolerant for hubs. When the dimension is not too high [(C1) and
(C2)], the maximum degree is less than 50, and the skewness-corrected p-value
approximations are working very well when n0 ≥ 50. When the maximum degree
is large (C3), the skewness-corrected p-value approximations are still doing pretty
well for n0 ≥ 75 in general.

Overall, we see that the asymptotic critical values are on the right scale and
are enough for detecting big changes. However, if one would like to have more
accurate critical values, the skewness correction versions are recommended. When
this is needed, it would be good to first check the structure of the graph, such as its
maximum degree, so that we have a better idea on how well the critical values are.

5. Performance analysis. Here, we examine the performance of the three
new test statistics under more settings through simulation studies. Since the pro-
posed tests do not require the data to be from any specific distribution family, there
are many possible alternatives. To have a good idea of the performance of the
proposed tests, we examine the Gaussian data [yi ∼ Nd(μ,�)] where likelihood-
based methods are available. We also checked other distributions to check the ro-
bustness of the tests in terms of the underlying distribution and these tables can be
found in Supplement E [Chu and Chen (2019)].

Under the Gaussian setting, if one assumes that, at the change-point, only
the mean (μ) may change, the scan statistic over Hotelling’s T2 statistics can

be used: maxn0≤t≤n1 HT(t), with HT(t) = t (n−t)
n

(ȳt − ȳ∗
t )

T �̃t
−1

(ȳt − ȳ∗
t ) where

ȳt = ∑t
i=1 yi/t, ȳ∗

t = ∑n
i=t+1 yi/(n − t), and �̃t = (

∑t
i=1(yi − ȳt )(yi − ȳt )

T +∑n
i=t+1(yi − ȳ∗

t )(yi − ȳ∗
t )

T )/(n−2). If the variance may also change at the change-
point, the scan statistic over the generalized likelihood ratio statistic can be used:
maxn0≤t≤n1 GLR(t) with GLR(t) = n log |�̂n|− t log |�̂t |−(n− t) log |�̂∗

t |, where

�̂t =
∑n

i=1(yi−ȳt )(yi−ȳt )
T

t
and �̂∗

t =
∑n

i=t+1(yi−ȳ∗
t )(yi−ȳ∗

t )
T

n−t
.

In each simulation, we generated a sequence of n = 200 observations for vari-

ous dimensions d with y1, . . . ,yτ
i.i.d.∼ F0 and yτ+1, . . . ,yn

i.i.d.∼ F1. Here, τ is the
change-point. When there is a mean difference, we use � to denote the Euclidean
distance of the means of F0 and F1. When there is a variance difference, to make
the change less significant, only the first [d/5] of the diagonal elements of the
covariance matrix differ with a multiple of σ , and the rest are unchanged.

For the proposed methods, we also expand our study to denser graphs, the k-
MST, which is the union of the 1st, . . . , kth MSTs, where the 1st MST is the MST
and the ith MST (i > 1) is the spanning tree with the sum of the distances of the
edges in the tree minimized subject to the constraint that it does not use any of
the edge in the 1st, . . . , (i − 1)th MST(s). Simulation studies show that the edge-
count two-sample tests have higher power when the graph is slightly denser as
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TABLE 5
Multivariate Gaussian data, mean difference, τ at center

d 10 50 100 150 175 500 2000

� 0.8 1 1.2 1.6 2 2.5 3.4

HT 91 (83) 82 (72) 72 (60) 65 51 38 (26) – –

GLR 22 (9) 4 (0) – – – – –

Z 51 (46) 50 (44) 50 (46) 84 (80) 91 (88) 91 (91) 87 (84)

Zw 39 (28) 45 (31) 52 (32) 78 (66) 89 (79) 91 (85) 88 (78)

S 32 (21) 33 (23) 37 (23) 68 (55) 80 (69) 84 (80) 81 (71)

M 35 (26) 36 (26) 41 (25) 74 (63) 86 (76) 87 (82) 86 (75)

it contains more similarity information. However, the optimal choice of k is still
an open question. Chen and Friedman (2017) recommend to use 5-MST for the
generalized edge-count two-sample test. In the following simulation settings, for
simplicity, we set the graph to be the 5-MST constructed using Euclidean distance.

The performance of six methods are compared: two methods based on nor-
mal theory (max HT(t), max GLR(t)), the method in Chen and Zhang (2015)
(maxZ(t)), and three new tests (maxS(t), maxRw(t), maxM(t)). The estimated
power is calculated as the number of trials, out of 100, that the null hypothesis
is rejected at 0.05 level for each of these methods, with p-values determined by
10,000 permutation runs for fairness in comparison. To examine the accuracy of
the estimated change-point, the number of trials where the estimated change-point
is within 20 from the true change-point is provided in parentheses. Under each set-
ting, the specific alternative is chosen so that the tests have moderate power to be
comparable. The best one for each scenario is made bold. In the following, we use
“HT” to refer to the scan statistic over the Hotelling’s T 2 statistic and use “GLR”
to refer to the scan statistic over the generalized likelihood ratio statistic.

Tables 5–8 show results for multivariate Gaussian data under various alterna-
tives. When there is a mean change only (Tables 5 and 6), we see that in general
HT outperforms all other methods in low to moderate dimensions. As dimension
becomes larger, the graph-based tests take over. When the location change occurs
in the middle of the sequence, the scan statistic Z(t) from Chen and Zhang (2015)
outperforms all other tests as dimension increases (Table 5) and the advantage of
Zw(t) becomes evident (Table 6).

Results for scale change only can be found in Table E.1 in Supplement E [Chu
and Chen (2019)]. Under this setting, when dimension is low GLR dominates in
power. But starting at d = 20, the graph-based methods exceed GLR in power and
S(t) and M(t) have much higher power among the graph-based methods. More
details can be found in Supplement E [Chu and Chen (2019)].
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TABLE 6
Multivariate Gaussian data, mean difference, τ at three quarters

d 10 50 100 150 175 500 2000

� 0.8 1 1.2 1.6 2 2.5 3.4

HT 75 (63) 70 (66) 48 (38) 40 (28) 34 (30) – –

GLR 16 (8) 12 (8) – – – – –

Z 25 (15) 14 (5) 17 (7) 17 (6) 42 (12) 37 (14) 30 (11)

Zw 29 (23) 25 (18) 31 (20) 52 (42) 63 (55) 67 (55) 68 (62)

S 25 (16) 17 (10) 25 (17) 35 (29) 50 (46) 49 (39) 48 (44)

M 25 (21) 20 (15) 29 (17) 41 (32) 53 (48) 62 (51) 58 (53)

When there is both location and scale change (Tables 7 and 8), we see that
when dimension is low, the parametric-based scan statistics dominate in power. As
dimension increases, the new graph-based methods exceed Z(t) and the paramet-
ric methods in power. Depending on the size of the change, the best graph-based
method is different. Generally, M(t) seems to be most effective in detecting and
estimating change-points for high dimension compared to the other graph-based
test statistics.

The overall pattern of the power tables show that when d increases the graph-
based statistics dominate the parametric tests. The new graph-based methods per-
form well under various scenarios. In general, Zw(t) dominates under the alterna-

TABLE 7
Multivariate Gaussian data, mean and scale difference, τ at center

d 10 50 100 150 175 500 2000

� 0.6 1 1.2 1.2 1.05 1 1

σ 1.3 1.3 1.1 1.1 1.1 1.1 1.05

HT 49 (34) 73 (60) 65 (53) 30 (16) 15 (5) – –

GLR 26 (17) 12 (0) – – – – –

Z 38 (28) 79 (66) 62 (52) 47 (34) 39 (29) 55 (33) 54 (18)

Zw 30 (14) 62 (55) 55 (43) 38 (28) 29 (21) 15 (4) 18 (5)

S 30 (17) 79 (70) 49 (37) 48 (30) 44 (36) 66 (42) 69 (44)

M 29 (12) 76 (67) 52 (40) 51 (29) 43 (34) 69 (50) 74 (51)
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tive of location change away from the center of the sequence whereas M(t) and
S(t) dominate under the alternatives of change not only in location. Even under
the scenario that is well suited for the method in Chen and Zhang (2015) (location
change at the center of the sequence), the new graph-based methods perform at a
comparable level to the old method. Based on these results, if one is certain that
the change is locational, the test based on Zw(t) is recommended; while for more
general changes, the tests based on S(t) and M(t) are recommended.

6. A real data example. We illustrate the new approaches on the yellow
taxi trip records, which is publicly available on the NYC Taxi and Limousine
Commission (TLC) website (http://www.nyc.gov/html/tlc/html/about/trip_record_
data.shtml). The trip records give information on the taxi pickup and drop-off
date/times, longitude and latitude coordinates of pickup and drop-off locations, trip
distances, fares, rate types, payments types and driver-reported passenger counts.

This dataset is very rich and many questions can be posed. Here, we illustrate
the new approach in detecting changes in travel from the John F. Kennedy Interna-
tional Airport for the months October through December of 2015. For simplicity,
the boundary of JFK airport was set to be 40.63 to 40.66 latitude and −73.80 to
−73.77 longitude.

For those trips that began with a pickup at JFK, we extract information on their
longitude and latitude drop-off coordinates. Using longitude/latitude coordinates,
we create a 30 by 30 grid of New York City and count the number of taxi drop-offs
that fall within each cell, where each cell represents a longitude, latitude coordi-
nate range. Then for each day, we have a 30 by 30 matrix such that each element
represents the number of taxi drop-offs in each location.

TABLE 8
Multivariate Gaussian data, mean and scale difference, τ at three quarters

d 10 50 100 150 175 500 2000

� 0.6 1 1.2 1.1 1.05 0.9 0.95

σ 1.3 1.15 0.9 0.85 0.85 0.8 0.6

HT 37 (28) 63 (53) 43 (36) 11 (4) 9 (3) – –

GLR 17 (8) 8 (5) – – – – –

Z 37 (23) 34 (20) 16 (0) 21 (0) 18 (0) 13 (0) 15 (0)

Zw 23 (16) 21 (12) 34 (29) 36 (22) 34 (23) 15 (9) 4 (1)

S 25 (18) 22 (12) 36 (29) 44 (34) 56 (45) 54 (48) 57 (52)

M 23 (15) 19 (10) 34 (27) 48 (38) 53 (41) 58 (52) 57 (54)

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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FIG. 6. Density heatmap of taxi drop-offs for four randomly selected days.

The NYC taxi dataset is immense in both size and information. To better visu-
alize the dataset, we plot heatmaps of the frequency of taxi drop-offs for a small
area of New York City that cover the drop-off locations. Figure 6, provides an il-
lustration of the 30 by 30 grid we construct and two randomly selected days in
our 3-month period: October 15 and November 20 for visualization. Heatmaps of
additional days can be found in Supplement F [Chu and Chen (2019)]. The overall
patterns are similar, but a more careful examination reveals there are some differ-
ences. To test whether differences are just by randomness or there is a significant
change, we apply the three new approaches together with the method in Chen and
Zhang (2015).

Let Ai be the 30 by 30 matrix on day i. We denote vi to be the vector form
of Ai , which is now 900 by 1. The L1 norm is used to construct the MST graph
representing similarity between days.

For the period of October 1 through December 31, the edge-count statis-
tic Z(t1, t2) reports 11/21/15–12/31/15 (Day 52–92) as the changed interval re-
sult. However, the new approaches all report the week right before Christmas,
12/18/15–12/25/15 (Day 79–86), as the changed interval (Table 9). All these tests
reject the null hypothesis of no change, with p-value < 0.001.

As there might be more than one changed interval, we further perform the tests
on the period October 1 through December 17. During this time period, Z(t1, t2)

selects 10/27/15–12/17/15 (Day 27–78) as the changed interval. The new test
statistics all report the week right before Thanksgiving, 11/20/15–11/27/15 (Day
51–58), as the changed interval. All these tests reject the null hypothesis of no
change as well, with p-value < 0.001.

We further continued this process by performing the test on the period October
1 through November 20. The original edge-count test Z(t1, t2) reports a changed
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TABLE 9
Changed interval results and corresponding p-values (reported in parentheses) for NYC taxi

pickups from JFK

Time period Z Zw S M

10/1–12/31 11/21–12/31 12/18–12/25 12/18–12/25 12/18–12/25
(< 0.001) (< 0.001) (< 0.001) (< 0.001)

10/1–12/17 10/27–12/17 11/20–11/27 11/20–11/27 11/20–11/27
(0.0011) (< 0.001) (< 0.001) (< 0.001)

10/1–11/20 10/22–11/19 11/16–11/19 11/16–11/19 11/16–11/19
(0.0017) (0.0414) (0.0109) (0.0428)

interval from 10/22/15–11/19/15 (Day 22–50). It rejects the null hypothesis of no
change as well, with a small p-value (0.0017). All three new tests report a changed
interval of 11/16/15–11/19/15 (Day 47–50) but fail to reject the null hypothesis at
the 0.01 significance level.

From the reported changed intervals, the results from the three new tests are
more sensible—the week right before Thanksgiving and the week right before
Christmas. To perform a more sanity check, we plot the distance matrix of this
whole period (Figure 7, left panel). It is evident that there is some change occurring
around Day 60 and Day 80, matching with the results from the new tests. On the
other hand, the distance matrix for the first 51 days seems much more uniform
(Figure 7, right panel).

FIG. 7. Left panel: Heatmap of L1 norm distance matrix of vector vi for i = 1, . . . ,92, correspond-
ing to dates October 1, 2015–December 31, 2015. Right panel: Heatmap of L1 norm distance matrix
of vector vi for i = 1, . . . ,51, corresponding to dates October 1, 2015–November 20, 2015.
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7. Discussion and conclusion. We propose new graph-based scan statistics
for the testing and estimation of change-points that improve upon the framework
proposed by Chen and Zhang (2015). Under various common scenarios, the new
tests have improved power to detect changes and produce more precise estimates
of the location of change-points.

The new scan statistics are based on two basic processes, Zw(t) and Zdiff(t),
with the former sensitive to locational alternatives and the latter sensitive to scale
alternatives. These two basic processes rescaled by the length of the sequence—
{Zw([nu]) : 0 < u < 1} and {Zdiff([nu]) : 0 < u < 1}—converge to independent
Gaussian processes in finite dimensional distributions under some mild conditions
of the graph. The covariance functions of the limiting Gaussian processes do not
depend on the graph, so the limiting processes are not affected by the distribution
of the observations.

Analytic p-value approximations based on limiting distributions (asymptotic p-
value approximation) are derived for all new statistics and the skewness-corrected
versions are derived for the weighted edge-count statistic and the max-type edge-
count statistic. The asymptotic p-value approximations provides a ballpark esti-
mate of the p-value. The skewness-corrected versions give more accurate approx-
imations. Based on simulation studies, even when the conditions for the graph in
deriving the limiting distribution were violated, the analytic p-value formulas still
give reasonable approximations. A more detailed discussion on the conditions is
in Supplement G [Chu and Chen (2019)].

The performance of the new tests are examined under a number of settings.
Simulation results show that the weighted edge-count statistic is extremely use-
ful when the change is locational and the change-point not close to the center of
the sequence. When the change in the variance of the distribution is also of in-
terest, the generalized edge-count statistic and the max-type edge-count statistic
are recommended. Together with the fact that the skewness-corrected p-value ap-
proximations can be easily obtained for the max-type edge-count statistic, the test
based on M(t) is preferred to use.

When the independence assumption is violated, instead of using the permutation
null, we could do block permutation, that is, the sequence is divided into blocks of
size b and the blocks are permuted. In this way, the local structure in the sequence
is retained. All these test statistics can be modified accordingly to account for local
dependence. The detailed information is in Supplement I [Chu and Chen (2019)].

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic distribution-free change-point detection for
multivariate and non-Euclidean data” (DOI: 10.1214/18-AOS1691SUPP; .pdf).
The supplementary material contains the new test statistics for the changed-
interval alternative, additional technical results and proofs, more illustrations of

https://doi.org/10.1214/18-AOS1691SUPP
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the data, additional power and analytical critical value tables and further discus-
sion on the conditions of the graph and the relationship between the new statistics,
including an extension of the max-type statistic.
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