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ORACLE INEQUALITIES AND ADAPTIVE ESTIMATION
IN THE CONVOLUTION STRUCTURE DENSITY MODEL1

BY O. V. LEPSKI AND T. WILLER

Aix-Marseille Université

We study the problem of nonparametric estimation under Lp-loss, p ∈
[1,∞), in the framework of the convolution structure density model on R

d .
This observation scheme is a generalization of two classical statistical mod-
els, namely density estimation under direct and indirect observations. The
original pointwise selection rule from a family of “kernel-type” estimators is
proposed. For the selected estimator, we prove an Lp-norm oracle inequal-
ity and several of its consequences. Next, the problem of adaptive minimax
estimation under Lp-loss over the scale of anisotropic Nikol’skii classes is
addressed. We fully characterize the behavior of the minimax risk for dif-
ferent relationships between regularity parameters and norm indexes in the
definitions of the functional class and of the risk. We prove that the proposed
selection rule leads to the construction of an optimally or nearly optimally
(up to logarithmic factors) adaptive estimator.
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1. Introduction. In the present paper, we will investigate the following obser-
vation scheme introduced in Lepski and Willer (2017). Suppose that we observe
i.i.d. vectors Zi ∈R

d, i = 1, . . . , n, with a common probability density p satisfying
the following structural assumption:

(1.1) p = (1 − α)f + α[f � g], f ∈ Fg(R),α ∈ [0,1],
where α ∈ [0,1] and g : Rd → R are supposed to be known and f : Rd → R is
the function to be estimated. We will call the observation scheme (1.1) convolution
structure density model.

Here and later, for two functions f,g ∈ L1(R
d)

[f � g](x) =
∫
Rd

f (x − z)g(z)νd(dz), x ∈ R
d,

and for any α ∈ [0,1], g ∈ L1(R
d) and R > 1,

Fg(R)= {
f ∈ B1,d(R) : (1 − α)f + α[f � g] ∈P

(
R
d)}.

Here, P(Rd) denotes the set of probability densities on R
d , Bs,d(R) is the ball of

radius R > 0 in Ls(R
d) := Ls(R

d, νd),1 ≤ s ≤ ∞ and νd is the Lebesgue mea-
sure on R

d . The convolution structure density model (1.1) will be studied for an
arbitrary g ∈ L1(R

d) and f ∈ Fg(R). Then, except in the case α = 0, the function
f is not necessarily a probability density.

We remark that if one assumes additionally that f,g ∈ P(Rd), this model can
be interpreted as follows. The observations Zi ∈ R

d, i = 1, . . . , n, can be written
as a sum of two independent random vectors, that is,

(1.2) Zi = Xi + εiYi, i = 1, . . . , n,
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where Xi, i = 1, . . . , n, are i.i.d. d-dimensional random vectors with a com-
mon density f , to be estimated. The noise variables Yi, i = 1, . . . , n, are i.i.d.
d-dimensional random vectors with a known common density g. At last εi ∈
{0,1}, i = 1, . . . , n, are i.i.d. Bernoulli random variables with P(ε1 = 1) = α,
where α ∈ [0,1] is supposed to be known. The sequences {Xi, i = 1, . . . , n},
{Yi, i = 1, . . . , n} and {εi, i = 1, . . . , n} are supposed to be mutually independent.

The observation scheme (1.2) can be viewed as the generalization of two clas-
sical statistical models. Indeed, the case α = 1 corresponds to the standard decon-
volution model Zi = Xi + Yi, i = 1, . . . , n. Another “extreme” case α = 0 corre-
sponds to the direct observation scheme Zi = Xi, i = 1, . . . , n. The “intermediate”
case α ∈ (0,1), considered for the first time in Hesse (1995), can be treated as the
mathematical modeling of the following situation. One part of the data, namely
(1 − α)n, is observed without noise, while the other part is contaminated by addi-
tional noise. If the indexes corresponding to that first part were known, the density
f could be estimated using only this part of the data, with the accuracy correspond-
ing to the direct case. The question we address now is: can one obtain the same
accuracy if the latter information is not available? We will see that the answer to
the aforementioned question is positive, but the construction of optimal estimation
procedures is based upon ideas corresponding to the “pure” deconvolution model.

We want to estimate f using the observations Z(n) = (Z1, . . . ,Zn). By estima-
tor, we mean any Z(n)-measurable map f̂ : Rn → Lp(R

d). The accuracy of an
estimator f̂ is measured by the Lp-risk

R(p)
n [f̂ , f ] := (

Ef ‖f̂ − f ‖pp
)1/p

, p ∈ [1,∞),

where Ef denotes the expectation with respect to the probability measure Pf of
the observations Z(n) = (Z1, . . . ,Zn). Also, ‖ · ‖p , p ∈ [1,∞), is the Lp-norm on
R
d and without further mentioning we will assume that f ∈ Lp(R

d).

1.1. Oracle approach via local selection. Let F(H) = {f̂�h, �h ∈ H} be a fam-
ily of “kernel-type” estimators (see Section 2.1), parameterized by a collection of
multibandwidths H built from the observation Z(n). We want to construct a Z(n)-
measurable random map �h : Rd → H and for any p ∈ [1,∞) and n ≥ 1 to bound
from above the Lp-risk of the selected estimator f̂�h(·). Our selection rule presented
in Section 2.1 can be viewed as a generalization and modification of statistical pro-
cedures proposed in Kerkyacharian, Lepski and Picard (2001) and Goldenshluger
and Lepski (2014). In Section 2.2, the following risk bound will be established:

(1.3) R(p)
n [f̂�h(·);f ] ≤ C1

∥∥∥ inf
�h∈H

An(f, �h, ·)
∥∥∥
p

+C2n
− 1

2 ∀f ∈ Fg(R).

Here, C1 and C2 are numerical constants which depend on d and p only, and
An(·, ·, x), x ∈ R

d , is an explicitly known functional. We call (1.3) an Lp-norm
oracle inequality obtained by local selection. Since the selection rule from the
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considered family is done pointwisely, that is, for any x ∈ R
d , this allows to take

into account the “local structure” of the function to be estimated. The Lp-norm
oracle inequality is then obtained by the integration of the pointwise risk of the
proposed estimator, which is a kernel estimator with the bandwidth being a mul-
tivariate random function. This, in its turn, allows us to derive different minimax
adaptive results thanks to an unique Lp-norm oracle inequality. It is worth not-
ing in this context that estimation procedures based on a local selection scheme
can be applied to the estimation of functions belonging to much more general
functional classes than those based on global selection schemes; see, for instance,
Goldenshluger and Lepski (2011) and Goldenshluger and Lepski (2014) for com-
parison. We will see however that although An(·, ·, x), x ∈ R

d , is known explicitly,
its computation in particular problems is not a simple task. The main difficulty here
is mostly related to the fact that (1.3) is proved without any assumption (except for
the model requirements) imposed on the underlying function f . It turns out that
under some nonrestrictive assumptions imposed on f , the obtained bound can be
considerably simplified; see Section 3.

1.2. Adaptive estimation. Let � be a given subset of Lp(R
d). For any esti-

mator f̃n, define its maximal risk by R(p)
n [f̃n;�] = supf∈� R(p)

n [f̃n;f ] and its
minimax risk on � is given by

φn(�) := inf
f̃n

R(p)
n [f̃n;�].

Here, the infimum is taken over all possible estimators. An estimator whose max-
imal risk is bounded, up to some constant factor, by φn(�), is called minimax
on �.

Let {�ϑ,ϑ ∈
} be a collection of subsets of Lp(R
d, νd), where ϑ is a nuisance

parameter which may have a very complicated structure.
The problem of adaptive estimation can be formulated as follows: is it possible

to construct a single estimator f̂n which would be simultaneously minimax on each
class �ϑ,ϑ ∈ 
, that is,

lim sup
n→∞

φ−1
n (�ϑ)R(p)

n [f̂n;�ϑ ]< ∞ ∀ϑ ∈
?

We refer to this question as the problem of minimax adaptive estimation over the
scale of {�ϑ,ϑ ∈
}. If such an estimator exists, we will call it optimally adaptive.

From oracle approach to adaptation. Let the oracle inequality (1.3) be estab-
lished. Define

Rn(�ϑ)= sup
f∈�ϑ

∥∥∥ inf
�h∈H

An(f, �h, ·)
∥∥∥
p

+ n− 1
2 , ϑ ∈ 
.

We immediately deduce from (1.3) that for any ϑ ∈


lim sup
n→∞

R−1
n (�ϑ)R(p)

n [f̂�h(·);�ϑ ] <∞.
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Hence, the minimax adaptive optimality of the estimator f̂�h(·) is reduced to the
comparison of the normalization Rn(�ϑ) with the minimax risk φn(�ϑ). Indeed,
if one proves that for any ϑ ∈ 


lim inf
n→∞ Rn(�ϑ)φ

−1
n (�ϑ) <∞,

then the estimator f̂�h(·) is optimally adaptive over the scale {�ϑ,ϑ ∈ 
}. Using

the modern statistical language we call the estimator f̂n nearly optimally adaptive
if

lim sup
n→∞

φ−1
n

lnn
(�ϑ)R(p)

n [f̂n;�ϑ ] <∞ ∀ϑ ∈ 
.

Objectives. In the framework of the convolution structure density model, we will
be interested in adaptive estimation over the scale

�ϑ = N�r,d( �β, �L)∩ Fg,∞(R,Q), ϑ = ( �β, �r, �L,R,Q),

where Fg,∞(R,Q) := {f ∈ Fg(R) : (1 − α)f + α[f � g] ∈ B∞,d (Q)} and
N�r,d( �β, �L) is the anisotropic Nikol’skii class; see Definition 1 below. Here, we
only mention that the adaptive estimation over the scale {N�r,d( �β, �L), ( �β, �r, �L) ∈
(0,∞)d × [1,∞]d × (0,∞)d} is usually viewed as the adaptation to anisotropy
and inhomogeneity of the function to be estimated. As to the assumption f ∈
Fg,∞(R,Q), it simply means that the common density of observations p is
uniformly bounded by Q. In particular, this is always the case if α = 1 and
‖g‖∞ < ∞.

Additionally, we will study the adaptive estimation over the collection

�ϑ = N�r,d( �β, �L)∩ Fg(R)∩B∞,d(Q), ϑ = ( �β, �r, �L,R,Q).

We will show that the boundedness of the underlying function allows to improve
considerably the accuracy of estimation.

Historical notes. The minimax adaptive estimation is a very active area of math-
ematical statistics, and the interested reader can find a very detailed overview as
well as several open problems in adaptive estimation in Lepski (2015). Below we
will discuss only the articles whose results are relevant to our consideration, that
is, the density setting under Lp-loss, from a minimax perspective. As already said,
the convolution structure density model includes itself the density estimation under
direct and indirect observations.

Direct case, α = 0. There is a vast literature dealing with minimax and minimax
adaptive density estimation; see, for example, Efroı̆movich (1986), Hasminskii and
Ibragimov (1990), Golubev (1992), Donoho et al. (1996), Devroye and Lugosi
(1997), Rigollet (2006), Rigollet and Tsybakov (2007), Samarov and Tsybakov
(2007), Birgé (2014), Giné and Nickl (2009), Akakpo (2012), Gach, Nickl and
Spokoiny (2013), Lepski (2013), among many others. Special attention was paid
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to the estimation of densities with unbounded support; see Juditsky and Lambert-
Lacroix (2004), Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011). The most
general results can be found in Goldenshluger and Lepski (2011, 2014) and in
Section 4 we will compare in detail our results with those obtained in these papers.

Intermediate case, α ∈ (0,1). To the best of our knowledge, adaptive estimation
in the case of partially contaminated observations has not been studied yet. We
were able to find only two papers dealing with minimax estimation. The first one
is Hesse (1995) (where the discussed model was introduced in dimension 1) in
which the author evaluated the L∞-risk of the proposed estimator over a functional
class formally corresponding to the Nikol’skii class N∞,1(2,1). In Yuan and Chen
(2002), the latter result was extended to the multidimensional setting, that is, to the
minimax estimation on N∞,d(�2,1). The most intriguing fact is that the accuracy of
estimation in partially contaminated noise is the same as in the direct observation
scheme; however, none of these articles studied the optimality of the proposed
estimators. We will come back to the aforementioned papers in Section 1.3 in
order to compare the assumptions imposed on the noise density g.

Deconvolution case, α = 1. First, let us remark that the behavior of the Fourier
transform of the function g plays an important role in all the works dealing with de-
convolution. Indeed ill-posed problems correspond to Fourier transforms decaying
toward zero. Our results will be established for “moderately” ill posed problems,
so we detail only results in papers studying that type of operators. This assumption
means that there exist �μ = (μ1, . . . ,μd) ∈ (0,∞)d and ϒ1 > 0,ϒ2 > 0 such that
the Fourier transform ǧ of g satisfies

(1.4) ϒ1

d∏
j=1

(
1+ t2

j

)−μj
2 ≤ ∣∣ǧ(t)∣∣≤ϒ2

d∏
j=1

(
1+ t2

j

)−μj
2 ∀t = (t1, . . . , td) ∈ R

d .

Some minimax and minimax adaptive results in dimension 1 over different classes
of smooth functions can be found in particular in Stefanski (1990), Stefanski and
Carroll (1990), Fan (1991, 1993), Pensky and Vidakovic (1999), Fan and Koo
(2002), Comte, Rozenholc and Taupin (2006), Butucea and Tsybakov (2008), Hall
and Meister (2007), Meister (2009), Lounici and Nickl (2011), Kerkyacharian,
Pham Ngoc and Picard (2011).

There are very few results in the multidimensional setting. It seems that Masry
(1993) was the first paper where the deconvolution problem was studied for mul-
tivariate densities. It is worth noting that Masry (1993) considered more general
weakly dependent observations and this paper formally does not deal with the
minimax setting. However, the results obtained in this paper could be formally
compared with the estimation under L∞-loss over the isotropic Hölder class of
regularity 2, that is, N∞,d(�2,1) which is exactly the same setting as in Yuan and
Chen (2002) in the case of partially contaminated observations. Let us also remark
that there is no lower bound result in Masry (1993). The most general results in
the deconvolution model were obtained in Comte and Lacour (2013) and Rebelles
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(2016) and in Section 4 we will compare in detail our results with those obtained
in these papers.

1.3. Assumption on the function g. Later on for any U ∈ L1(R
d), let Ǔ de-

note its Fourier transform. All our results will be established under the following
condition.

ASSUMPTION 1. (1) If α �= 1, then there exists ε > 0 such that∣∣1 − α + αǧ(t)
∣∣≥ ε ∀t ∈ R

d .

(2) If α = 1, then there exists �μ= (μ1, . . . ,μd) ∈ (0,∞)d and ϒ0 > 0 s.t.∣∣ǧ(t)∣∣≥ϒ0

d∏
j=1

(
1 + t2

j

)−μj
2 ∀t = (t1, . . . , td) ∈ R

d .

Note that Assumption 1(1) is very weak and it is verified for many distributions,
including centered multivariate Laplace and Gaussian ones. Note also that this as-
sumption always holds with ε = 1 − 2α if α < 1/2. Additionally, it holds with
ε = 1 − α if ǧ is a real positive function. The latter is true, in particular, for any
probability law obtained by an even number of convolutions of a symmetric distri-
bution with itself. At last, our Assumption 1(1) is weaker than the conditions im-
posed in Hesse (1995) and Yuan and Chen (2002). In these papers, ǧ ∈ C

(2)(Rd),
ǧ(t) �= 0 for any t ∈ R

d and |1−α+αǧ(t)| ≥ 1−α for any t ∈ R
d . As to Assump-

tion 1(2) [cf. (1.4)], it is much more restrictive. The centered multivariate Laplace
law is an example in which this condition is satisfied.

2. Pointwise selection rule and Lp-norm oracle inequality. To present our
results in an unified way, let us define �μ(α) = �μ, α = 1, �μ(α) = (0, . . . ,0), α ∈
[0,1). Let K : Rd → R be a continuous function belonging to L1(R

d),
∫
R
K = 1,

and such that its Fourier transform Ǩ satisfies the following condition.

ASSUMPTION 2. There exist k1 > 0 and k2 > 0 such that∫
Rd

∣∣Ǩ(t)
∣∣ d∏
j=1

(
1 + t2

j

)μj (α)

2 dt ≤ k1,

∫
Rd

∣∣Ǩ(t)
∣∣2 d∏

j=1

(
1 + t2

j

)μj (α) dt ≤ k2
2.

Set H = {ek, k ∈ Z} and let Hd = {�h = (h1, . . . , hd) : hj ∈ H, j = 1, . . . , d}.
Define for any �h= (h1, . . . , hd) ∈ Hd

K�h(t)= V −1
�h K(t1/h1, . . . , td/hd), t ∈ R

d,V�h =
d∏

j=1

hj .

Later on for any u, v ∈ R
d the operations and relations u/v, uv, u∨v,u∧v, u ≥ v,

au, a ∈ R, are understood in coordinatewise sense. In particular, u ≥ v means that
uj ≥ vj for any j = 1, . . . , d .
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2.1. Pointwise selection rule from the family of kernel estimators. For any �h ∈
(0,∞)d , let M(·, �h) satisfy the operator equation

K�h(y)= (1 − α)M(y, �h)+ α

∫
Rd

g(t − y)M(t, �h)dt, y ∈ R
d .(2.1)

Note that although the explicit expression of M(·, �h) is not available, its Fourier
transform can be easily deduced from (2.1); see Section 5.1.2. Define

f̂�h(x)= n−1
n∑

i=1

M(Zi − x, �h), x ∈ R
d, �h ∈ Hd .

Our first goal is to propose for any given x ∈ R
d a data driven selection rule from

the family of estimators F(H)= {f̂�h(x), �h ∈H}, where H is an arbitrary subset of
Hd . Set for any �h ∈ Hd and x ∈ R

d

Ûn(x, �h)=
√

2n−1λn(�h)σ̂ 2(x, �h)+ 4

3
n−1M∞λn(�h)

d∏
j=1

h−1
j (hj ∧ 1)−μj (α),

where we have put σ̂ 2(x, �h)= 1
n

∑n
i=1 M

2(Zi − x, �h) and

λn(�h)= 4 ln(M∞)+ 6 ln (n)+ (8p + 26)
d∑

j=1

[
1 + μj (α)

]∣∣ ln(hj )∣∣,
M∞ = [

(2π)−d{ε−1‖Ǩ‖11α �=1 +ϒ−1
0 k11α=1

}]∨ 1.

Pointwise selection rule. Let H be an arbitrary subset of Hd . For any �h ∈ H

and x ∈ R
d , introduce Û∗

n (x,
�h) = sup�η∈H:�η≥�h Ûn(x, �η),

R̂�h(x) = sup
�η∈H

[∣∣f̂�h∨�η(x)− f̂�η(x)
∣∣− 4Ûn(x, �h∨ �η)− 4Ûn(x, �η)]+,

�h(x) = arg inf
�h∈H

[
R̂�h(x)+ 8Û∗

n (x,
�h)].(2.2)

Our final estimator is f̂�h(x)(x), x ∈ R
d and we will call (2.2) the pointwise selec-

tion rule. Note that the estimator f̂�h(·)(·) does not necessarily belong to the col-

lection F(H) since the multibandwidth �h(·) is a d-variate function, which is not
necessarily constant on R

d . The latter fact allows to take into account the “local
structure” of the function to be estimated. Moreover, �h(·) is chosen with respect to
the observations and, therefore, it is a random vector function.

2.2. Lp-norm oracle inequality. Introduce for any x ∈ R
d and �h ∈ Hd

U∗
n (x,

�h) = sup
�η∈Hd :�η≥�h

Un(x, �η), S�h(x, f )=
∫
Rd

K�h(t − x)f (t)νd(dt),
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where we have put

Un(x, �η)=
√

2n−1λn(�η)σ 2(x, �η)+ 4

3
n−1M∞λn(�η)

d∏
j=1

η−1
j (ηj ∧ 1)−μj (α)

and σ 2(x, �η)= ∫
Rd M2(t − x, �η)p(t)νd(dt).

For any H⊆ Hd , �h ∈H and x ∈ R
d introduce also

B∗
�h(x, f )= sup

�η∈H
∣∣S�h∨�η(x, f )− S�η(x, f )

∣∣,
B�h(x, f )= ∣∣S�h(x, f )− f (x)

∣∣.(2.3)

THEOREM 1. Let Assumptions 1 and 2 be fulfilled. Then for any H ⊆ Hd ,
n ≥ 3, p ∈ [1,∞) and any f ∈ Fg(R)

R(p)
n [f̂�h(·), f ] ≤

∥∥∥ inf
�h∈H

{
2B∗

�h(·, f )+B�h(·, f )+ 49U∗
n (·, �h)}∥∥∥

p
+ Cpn

− 1
2 .

The explicit expression for the constant Cp (independent of f , n and H) can
be found in the proof of the theorem. Later on we will pay attention to a special
choice for the collection of multibandwidths, namely

Hd
isotr := {�h ∈ Hd : �h= (h, . . . , h), h ∈H

}
.

In Section 4, the selection from the corresponding family of kernel estimators
will be used for the adaptive estimation over the collection of isotropic Nikol’skii
classes. Note also that if H= Hd

isotr then obviously

B∗
�h(·, f )≤ 2 sup

�η∈Hd
isotr:η≤h

B�η(·, f ) ∀�h= (h, . . . , h) ∈ Hd
isotr

and we come to the following corollary of Theorem 1.

COROLLARY 1. Let Assumptions 1 and 2 be fulfilled and the selection rule
runs H =Hd

isotr. Then for any n≥ 3, p ∈ [1,∞) and any f ∈ Fg(R)

R(p)
n [f̂�h(·), f ] ≤

∥∥∥ inf
�h∈Hd

isotr

{
5 sup

�η∈Hd
isotr:η≤h

B�η(·, f )+ 49U∗
n (·, �h)

}∥∥∥
p

+ Cpn
− 1

2 .

The oracle inequality proved in Theorem 1 is particularly useful since it does
not require any assumption on the underlying function f (except for the restric-
tions ensuring the existence of the model and of the risk). However, the quantity
appearing in the right-hand side of this inequality, namely∥∥∥ inf

�h∈H
{
2B∗

�h(·, f )+B�h(·, f )+ 49U∗
n (·, �h)}∥∥∥

p
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is not easy to analyze. In particular, in order to use the result of Theorem 1 for
adaptive estimation, one has to be able to compute

sup
f∈F

∥∥∥ inf
�h∈H

{
2B∗

�h(·, f )+B�h(·, f )+ 49U∗
n (·, �h)}∥∥∥

p

for a given class F ⊂ Lp(R
d) ∩ Fg(R) with either H = Hd or H = Hd

isotr. It turns
out that under some nonrestrictive assumptions imposed on f , the obtained bounds
can be considerably simplified. Moreover, new inequalities will allow us to better
understand the way for proving adaptive results.

3. Abstract upper bound theorem. Define ∀u ∈ [1,∞],D > 0,

Fg,u(R,D) := {
f ∈ Fg(R) : (1 − α)f + α[f � g] ∈ B

(∞)
u,d (D)

}
,

where B
(∞)
u,d (D) is the ball of radius D in the weak-type space Lu,∞(Rd), that is,

B
(∞)
u,d (D) = {λ :Rd →R : ‖λ‖u,∞ <D}, where

‖λ‖u,∞ = inf
{
C : νd(x : ∣∣λ(x)∣∣> z

)≤ Cuz−u,∀z> 0
}
.

As usual B(∞)
∞,d(D) = B∞,d(D) and obviously B

(∞)
u,d (D) ⊃ Bu,d(D).

It is worth noting that the assumption f ∈ Fg,u(R,D) simply means that the

common density of the observations p belongs to B
(∞)
u,d (D). Our objective is to

bound from above supf∈FR
(p)
n [f̂�h(·), f ] for any F ⊂ Fg,u(R,D)∩Bq,d(D), where

q ∈ [1,∞]. Since F is an arbitrary set, this bound can be applied to the adaptation
over different scales of functional classes. In particular, the results below form the
basis for our consideration in Section 4.

Introduce for any �h ∈ Hd

Fn(�h)=
√

lnn+∑d
j=1 | lnhj |

√
n
∏d

j=1 h
1
2
j (hj ∧ 1)μj (α)

, Gn(�h)= lnn+∑d
j=1 | lnhj |

n
∏d

j=1 hj (hj ∧ 1)μj (α)
.

Furthermore let H be either Hd or Hd
isotr and for any v, z > 0 define

H(v) = {�h ∈ H : Gn(�h)≤ av
}
, H(v, z)= {�h ∈ H(v) : Fn(�h)≤ avz− 1

2
}
.

Here, a > 0 is a numerical constant whose explicit expression is given in the begin-
ning of Section 5.2. Put also for any v > 0, lH(v) = vp−1(1 + | ln (v)|)t (H), where
t (H)= d − 1 if H= Hd and t (H)= 0 if H= Hd

isotr.

REMARK 1. Note that whatever the values of v > 0 and z ≥ 2, H(v) �= ∅ and
H(v, z) �= ∅ since one can find b > 1 such that

(lnn+ d lnb)
(
nbd

)−1 ≤ [
a2v2z−1]∧ av.

The latter means that �b = (b, . . . , b) ∈ H(v, z)∩H(v).
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All the results in this section will be proved under an additional condition im-
posed on the kernel K .

ASSUMPTION 3. Let K(x) = ∏d
j=1 K(xj ), x ∈ R

d , where K : R → R is a
compactly supported, bounded function and

∫
K = 1.

Without loss of generality, we will assume that ‖K‖∞ ≥ 1 and supp(K) ⊂
[−cK, cK] with cK ≥ 1.

Introduce the following notation. Set for any h ∈ H and j = 1, . . . , d

b∗
h,f,j (·) =

∣∣∣∣ ∫
R

K(u)f (·+uhej )ν1(du)−f (·)
∣∣∣∣, bh,f,j (·)= sup

η∈H:η≤h

b∗
η,f,j (·),

where (e1, . . . , ed) denotes the canonical basis of Rd . Introduce ∀s ∈ [1,∞]
B∗
j,s,F(h)= sup

f∈F

∑
h∈H:h≤h

∥∥b∗
h,f,j

∥∥
s,

Bj,s,F(h)= sup
f∈F

‖bh,f,j‖s, j = 1, . . . , d.

For any v > 0 and j = 1, . . . , d , set Vj (v) = {h ∈ H : Bj,∞,F(h)≤ cv} and

J (�h, v) = {
j ∈ {1, . . . , d} : hj ∈ Vj (v)

}
, �h ∈ Hd,

where c = (20d)−1[max(2cK‖K‖∞,‖K‖1)]−d . As usual the complement of
J (�h, v) will be denoted by J̄ (�h, v). Furthermore, the summation over the empty
set is supposed to be zero.

For any �s = (s1, . . . , sd) ∈ [1,∞)d , u ≥ 1 and v > 0 introduce

��s(v,F,u)= inf
z≥2

inf
�h∈H(v,z)

[ ∑
j∈J̄ (�h,v)

v−sj
[
Bj,sj ,F(hj )

]sj + z−u
]
;(3.1)

��s(v,F)= inf
�h∈H(v)

[ ∑
j∈J̄ (�h,v)

v−sj
[
Bj,sj ,F(hj )

]sj + v−2F 2
n (

�h)
]
.(3.2)

Since the sets H(v) and H(v, z) both depend on n, the quantities above depend on
n as well. We omit this dependence to simplify the notation.

THEOREM 2. Let assumptions of Theorem 1 be fulfilled and suppose ad-
ditionally that K satisfies Assumption 3. Then for any n ≥ 3, p > 1,q > 1,
R > 1,D > 0,0 < v ≤ v ≤ ∞,u ∈ (p/2,∞],u ≥ q, �s ∈ (1,∞)d , �q ∈ [p,∞)d

and any F ⊂ Bq,d(D)∩ Fg,u(R,D)

sup
f∈F

R(p)
n [f̂�h(·), f ] ≤ C(2)

[
lH(v)+

∫ v

v
vp−1[��s(v,F,u)∧ ��s(v,F)

]
dv

+ vp��q(v,F,u)
] 1
p + Cpn

− 1
2 .
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If additionally q ∈ (p,∞), one has also

sup
f∈F

R(p)
n [f̂�h(·), f ] ≤ C(2)

[
lH(v)+

∫ v

v
vp−1[��s(v,F,u)∧ ��s(v,F)

]
dv

+ vp−q
] 1
p + Cpn

− 1
2 .

Moreover, if q = ∞ one has

sup
f∈F

R(p)
n [f̂�h(·), f ] ≤ C(2)

[
lH(v)+

∫ v

v
vp−1[��s(v,F,u)∧ ��s(v,F)

]
dv

+ ��s(v,F,u)
] 1
p + Cpn

− 1
2 .

Finally, if H = Hd
isotr all the assertions above remain true for any �s ∈ [1,∞)d if

one replaces in (3.1)–(3.2) Bj,sj ,F(·) by B∗
j,sj ,F

(·).

In all the assertions, the third terms are assumed to be zero when v = ∞.
10. It is important to emphasize that C(2) depends only on �s, �q,g,K, d , R,D,u

and q. Note also that the assertions of the theorem remain true if we minimize
the right-hand sides of the obtained inequalities w.r.t. �s, �q since their left-hand
sides are independent of �s and �q . In this context, it is important to realize that
C(2) = C(2)(�s, . . .) is bounded for any �s ∈ (1,∞)d but C(2)(�s, . . .) is unbounded
if there exists j = 1, . . . , d such that sj = 1. Contrary to that C(2)(�s, . . .) < ∞ for
any �s ∈ [1,∞)d if H = Hd

isotr and it explains in particular the fourth assertion of
the theorem.

20. It is worth noting that all the bounds presented in the theorem are mostly
based on the result given in (5.39) of Section 5.2. This is an Lp-norm oracle in-
equality on Fg,u(R,D) ∩ Bq,d(D) having independent interest. In particular, it
does not require Assumption 3 and it is established for any compactly supported
K satisfying Assumption 2.

30. Note also that D,R,u,q are not involved in the construction of our point-
wise selection rule. That means that one and the same estimator can be actually
applied on any F ⊂ ⋃

R,D,u,q Bq,d(D) ∩ Fg,u(R,D). Moreover, the assertion of
the theorem has a nonasymptotical nature; we do not suppose that the number of
observations n is large.

40. As we see, the application of our results to some functional class is mainly
reduced to the computation of the functions Bj,s,F(·), j = 1, . . . , d , for some prop-
erly chosen s. Note however that this task is not necessary for many functional
classes, at least for the classes defined by the help of kernel approximation. In-
deed, a typical description of F can be summarized as follows. Let λj :R+ →R+,
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be such that λj (0) = 0, λj ↑ for any j = 1, . . . , d . Then the functional class is
defined as a collection of functions satisfying

(3.3) ‖bh,f,j‖rj ≤ λj (h) ∀h ∈H
for some �r ∈ [1,∞]. It yields obviously Bj,rj ,F(·) ≤ λj (·) for any j = 1, . . . , d ,
and the result of Theorem 2 remains valid if we replace formally Bj,rj ,F(·) by
λj (·) in all the expressions appearing in this theorem.

In the Appendix (proof of Lemma 4), we show that for some particular kernel
K∗, the anisotropic Nikol’skii class N�r,d( �β, �L) is included into the class defined
by (3.3) with λj (h)= Ljhβj , whatever the values of �β, �L and �r .

4. Adaptive estimation over the scale of anisotropic classes. As we have
seen, the estimator f̂�h depends on H and later on we will consider two choices of
the set H, namely H =Hd and H =Hd

isotr. So, to present our results we will write
f̂�h,H to underline the aforementioned dependence.

4.1. Anisotropic Nikol’skii classes. Let (e1, . . . , ed) denote the canonical ba-
sis of R

d . For some function G : Rd → R
1 and real number u ∈ R define the

first-order difference operator with step size u in direction of the variable xj by
�u,jG(x)=G(x + uej )−G(x), j = 1, . . . , d . By induction, the kth order differ-
ence operator with step size u in direction of the variable xj is

�k
u,jG(x)=�u,j�

k−1
u,j G(x)=

k∑
l=1

(−1)l+k

(
k

l

)
�ul,jG(x).

DEFINITION 1. For given vectors, �β = (β1, . . . , βd) ∈ (0,∞)d , �r = (r1, . . . ,

rd) ∈ [1,∞]d , and �L = (L1, . . . ,Ld) ∈ (0,∞)d we say that a function G : Rd →
R

1 belongs to the anisotropic Nikol’skii class N�r,d( �β, �L) if ‖G‖rj ≤ Lj for all
j = 1, . . . , d and there exists natural number kj > βj such that∥∥�kj

u,jG
∥∥
rj

≤ Lj |u|βj ∀u ∈ R,∀j = 1, . . . , d.

If βj = β ∈ (0,∞), rj = r ∈ [1,∞] and Lj = L ∈ (0,∞) for any j = 1, . . . , d
the corresponding Nikol’skii class, denoted furthermore Nr,d (β,L), is called
isotropic. The following quantities related to the parameters of the Nikol’skii class
will be very important in the sequel:

1

β(α)
=

d∑
j=1

2μj (α)+ 1

βj
,

1

ω(α)
=

d∑
j=1

2μj (α)+ 1

βj rj
,

L(α)=
d∏

j=1

L

2μj (α)+1
βj

j .
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Define also for any 1 ≤ s ≤ ∞ and α ∈ [0,1]
κα(s)= ω(α)

(
2 + 1/β(α)

)− s, τ (s)= 1 − 1/ω(0)+ 1/
(
sβ(0)

)
.

4.2. Construction of kernel K . We keep Assumption 2 and enforce Assump-
tion 3 by Assumption 4 below related to the following specific construction of ker-
nel K used in the definition of the family of estimators {f̂�h(·), �h ∈ Hd} [see, e.g.,
Kerkyacharian, Lepski and Picard (2001) or Goldenshluger and Lepski (2014)].
Let � be an integer number, K : R1 → R

1 be a compactly supported continuous
function satisfying

∫
R1 K(y)dy = 1. Put

K�(y)=
�∑

i=1

(
�

i

)
(−1)i+1 1

i
K
(
y

i

)
,

and add the following structural condition to Assumption 2.

ASSUMPTION 4. K(x)=∏d
j=1 K�(xj ),∀x ∈ R

d .

4.3. Main results. Set δn = L(α)n−1 ln(n), t (H) = d − 1 if H = Hd and
t (H)= 0 if H= Hd

isotr and let

bn(H)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
ln(n)

]t (H)
, κα(p) > pω(α);

ln
1
p (n)∨ [

ln(n)
]t (H)

, κα(p) = pω(α);
ln

1
p (n), κα(p) = 0;

1 otherwise.

4.3.1. Bounded case. The first problem we address is the adaptive esti-
mation over the collection of the functional classes {N�r,d( �β, �L) ∩ Fg(R) ∩
B∞,d(Q)} �β,�r, �L,R,Q. The results obtained in Theorem 3 together with those from
Theorem 2 in Lepski and Willer (2017) show that the boundedness of the function
belonging to N�r,d( �β, �L)∩ Fg(R) is a minimal condition allowing to eliminate the
inconsistency zone, as it was conjectured in Lepski and Willer (2017). Define

ρ(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1/p

1 − 1/ω(α)+ 1/β(α)
, κα(p) > pω(α);

β(α)

2β(α)+ 1
, 0 < κα(p)≤ pω(α);

τ(p)ω(α)β(0)

z(α)
, κα(p)≤ 0, τ (∞) > 0;

ω(α)

p
, κα(p)≤ 0, τ (∞)≤ 0.

THEOREM 3. Let α ∈ [0,1], � ∈N
∗ and g ∈ L1(R

d), satisfying Assumption 1,
be fixed. Let K satisfy Assumptions 2 and 4:
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(1) Then for any p ∈ (1,∞), Q> 0, R > 0, L0 > 0, �β ∈ (0, �]d , �r ∈ (1,∞]d
and �L ∈ [L0,∞)d there exists C <∞, independent of �L, such that

lim sup
n→∞

sup
f∈N�r,d ( �β, �L)∩Fg(R)∩B∞,d (Q)

bn
(
Hd)−1

δ−ρ(α)
n R(n)

p [f̂�h,Hd ;f ] ≤ C.

(2) For any p ∈ (1,∞), Q> 0, R > 0,L0 > 0, β ∈ (0, �], r ∈ [1,∞] and L ∈
[L0,∞) there exists C <∞, independent of L, such that

lim sup
n→∞

sup
f∈Nr,d (β,L)∩Fg(R)∩B∞,d (Q)

bn
(
Hd

isotr
)−1

δ−ρ(α)
n R(n)

p [f̂�h,Hd
isotr

;f ] ≤ C.

10. Our estimation procedure is completely data driven, that is, independent
of �β, �r, �L,R, Q and the assertions of Theorem 3 are completely new if α �= 0.
Comparing the results obtained in Theorem 3 with those proved in Theorem 2 in
Lepski and Willer (2017), we can assert that our estimator is optimally adaptive if
κα(p) < 0 and nearly optimally adaptive if 0 < κα(p) < pω(α). The construction
of an estimation procedure which would be optimally adaptive when κα(p) ≥ 0
is an open problem, and we conjecture that the lower bounds for the asymptotics
of the minimax risk found in Theorem 2 in Lepski and Willer (2017) are sharp
in order. This conjecture in the case α = 1 is partially confirmed by the results
obtained in Comte and Lacour (2013) and Rebelles (2016). Since both articles
deal with the estimation of unbounded functions we will discuss them in the next
section.

20. We note that the asymptotic of the minimax risk under partially contami-
nated observations, α ∈ (0,1), is independent of α and coincides with the asymp-
totic of the risk in the direct observation model, α = 0. This phenomenon was
discovered in Hesse (1995) and Yuan and Chen (2002). In the very recent papers,
Duval (2017) and Lepski (2018), the particular case �r = (r, . . . , r), r ∈ (1,∞)

was studied. In Duval (2017), the isotropic classes, compactly supported densi-
ties and α < 1/2 were considered and a nearly optimally adaptive estimator was
built via wavelet thresholding. In Lepski (2018), the anisotropic classes on Rd with
r = p were studied under the same condition α < 1/2, except for the case p = 2,
in which α ∈ (0,1), and an optimally adaptive estimator was built via a plug-in
method.

30. As to the direct observation scheme, α = 0, our results coincide with those
obtained recently in Goldenshluger and Lepski (2014), when pω(0) > κ0(p).
However, for the tail zone pω(0) ≤ κ0(p), our bound is slightly better since the

bound obtained in the latter paper contains an additional factor ln
d
p (n). It is in-

teresting to note that although both estimator constructions are based upon lo-
cal selections from the family of kernel estimators, the selection rules are differ-
ent.
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40. Let us discuss the results corresponding to the tail zone, κα(p) > pω(α).
The lower bound for the minimax risk is given by [L(α)n−1]ρ(α) [see Lepski and
Willer (2017)], while the accuracy provided by our estimator is[

ln(n)
]t (H)[

L(α)n−1 ln(n)
]ρ(α)

.

As it was mentioned, the passage from [L(α)n−1]ρ(α) to [L(α)n−1 ln(n)]ρ(α)
seems to be an unavoidable payment for the application of a local selection
scheme. It is interesting to note that the additional factor [ln(n)]t (H) disappears in
the dimension d = 1. First, note that if α = 0 the one-dimensional setting was con-
sidered in Juditsky and Lambert-Lacroix (2004) and Reynaud-Bouret, Rivoirard
and Tuleau-Malot (2011). The setting of Juditsky and Lambert-Lacroix (2004)
corresponds to r = ∞, while Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011)
deal with the case of p = 2 and τ(2) > 0. Both settings rule out the sparse zone.
The rates of convergence found in these papers are easily recovered from our re-
sults corresponding to the tail and dense zones. Also, we remark that the afore-
mentioned factor appears only when anisotropic functional classes are considered,
as can be seen in the second assertion of Theorem 3. A natural question is whether
the [ln(n)]d−1-factor is an unavoidable payment for anisotropy of the underlying
function or not?

50. We finish our discussion with the following remark. If α �= 1, the as-
sumption f ∈ Fg,∞(R,Q) implies in many cases that f is uniformly bounded
and, therefore, Theorem 3 is applicable. In particular, it is always the case if
the model (1.2) is considered. Indeed f,g ∈ P(Rd) in this case, which implies
‖f ‖∞ ≤ (1 − α)−1‖p‖∞ ≤ (1 − α)−1Q. Another case is ‖g‖∞ < ∞ and recall
that this assumption was used in the proofs of Theorems 1 and 2 in Lepski and
Willer (2017). We obviously have that

‖f ‖∞ ≤ (1 − α)−1[Q+ αR‖g‖∞
]
.

More generally, ‖f ‖∞ ≤ (1 − α)−1(Q + αD) if f ∈ Fg,∞(R,Q) and
‖f �g‖∞ ≤D. Since the definition of the Nikol’skii class implies that ‖f ‖r∗ ≤L∗,
where r∗ = supj=1,...,d rj and L∗ = supj=1,...,d Lj , the latter condition can be ver-
ified in particular if ‖g‖q < ∞,1/q = 1−1/r∗. All these facts explain why, under
our general assumption f ∈ Fg,∞(R,Q), we study the estimation of unbounded
functions only in the case α = 1.

4.3.2. Unbounded case, α = 1. The problem we address now is the
adaptive estimation over the collection of functional classes {N�r,d( �β, �L) ∩
Fg,∞(R,Q)} �β,�r, �L,R,Q. Since, if ‖g‖∞ < ∞, then Fg,∞(R,Q) = Fg(R) for any
Q ≥ R‖g‖∞, there is no consistent estimator if either p = 1 or κα(p) ≤ 0,
τ (p) ≤ 0,maxj=1,...,d rj ≤ p in view of Theorem 1 in Lepski and Willer (2017).
For this reason, later on we will only consider the parameters �β, �r belonging to the
set Pp, �μ defined below:

Pp, �μ = (0,∞)d × [1,∞]d \
{ �β, �r : κα(p)≤ 0, τ (p) ≤ 0, max

j=1,...,d
rj ≤ p

}
.
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Set z(α)= ω(α)(2 + 1/β(α))β(0)τ (∞)+ 1, p∗ = [maxl=1,...,d rl] ∨ p and let

�(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1/p

1 − 1/ω(α)+ 1/β(α)
, κα(p) > pω(α);

β(α)

2β(α)+ 1
, 0 < κα(p)≤ pω(α);

τ(p)ω(α)β(0)

z(α)
, κα(p)≤ 0, τ

(
p∗)> 0;

ω(α)(1 − p∗/p)
κα(p∗)

, κα(p)≤ 0, τ
(
p∗)≤ 0.

We will assume 0/0 = 0, which implies in particular 1−p∗/p
κα(p∗) = 0 if p∗ = p and

κα(p) = 0. Note also that κα(p
∗)/p∗ = −1 if p∗ = ∞.

THEOREM 4. Let � ∈ N
∗ and g ∈ L1(R

d), satisfying Assumption 1 be fixed
and let K satisfy Assumptions 2 and 4:

(1) Then for any p > [minj=1,... μj ]−1, R,Q> 0, 0 <L0 ≤ L∞ <∞, ( �β, �r) ∈
Pp, �μ ∩ {(0, �]d × (1,∞]d} and �L ∈ [L0,L∞]d there exists C < ∞, independent
of �L, such that

lim sup
n→∞

sup
f∈N�r,d ( �β, �L)∩Fg,∞(R,Q)

bn
(
Hd)−1

δ−�(1)
n R(n)

p [f̂�h,Hd ;f ] ≤ C.

(2) For any p > [minj=1,... μj ]−1, R,Q > 0, 0 < L0 ≤ L∞ < ∞, (β, r) ∈
Pp, �μ ∩ {(0, �] × [1,∞]} and L ∈ [L0,L∞] there exists C < ∞, independent of
L, such that

lim sup
n→∞

sup
f∈Nr,d (β,L)∩Fg,∞(R,Q)

bn
(
Hd

isotr
)−1

δ−�(1)
n R(n)

p [f̂�h,Hd
isotr

;f ] ≤ C.

10. Note that ‖g‖1 < ∞,‖g‖∞ < ∞ implies that ‖g‖2 < ∞ and, therefore, the
Parseval identity together with Assumption 1 allows us to assert that

‖g‖∞ < ∞ ⇒ μj > 1/2 ∀j = 1, . . . , d.

Hence, the condition p > [minj=1,... μj ]−1 is automatically checked if p ≥ 2 and
‖g‖∞ < ∞. Also, it is worth noting that considering the adaptation over the col-
lection of isotropic classes, we do not require that the coordinates of �μ would be
the same. The latter is true for the second assertion of Theorem 3 as well. At last,
analyzing the proof of the theorem, we can assert that the second assertion remains
true under the slightly weaker assumption p > d(μ1 + · · · +μd)

−1.
20. The assertion of Theorem 4 has no analogue in the existing literature ex-

cept for the results obtained in Comte and Lacour (2013) and Rebelles (2016).
Comte and Lacour (2013) deals with the particular case p = 2, �r = (2, . . . ,2)
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while Rebelles (2016) studied the case �r = (p, . . . , p), p ∈ (1,∞). It is easy to
check that in both papers whatever the value of �β and �μ, the corresponding set
of parameters belongs to the dense zone. Note also that the estimation procedures
used in Comte and Lacour (2013) as well as in Rebelles (2016), if p ≥ 2 (both
based on a global version of the Goldenshluger–Lepski method) are optimally
adaptive. They attain the asymptotic of the minimax risks corresponding to the
dense zone found in Theorem 1 in Lepski and Willer (2017), while our method is
only nearly optimally adaptive. However, it is well known that the global selec-
tion from the family of standard kernel estimators leads to correct results only if
�r = (p, . . . , p) when the Lp-risk is considered; see, for instance, Goldenshluger
and Lepski (2011, 2014). On the other hand, estimation procedures based on a
local selection scheme, which can be applied to the estimation of functions be-
longing to much more general functional classes, often do not lead to an optimally
adaptive method. Fortunately, the loss of accuracy inherent to local procedures is
logarithmic w.r.t. the number of observations.

30. Together with Theorems 1 and 2 in Lepski and Willer (2017), Theorems 3
and 4 provide the full classification of the asymptotics of the minimax risks over
anisotropic/isotropic Nikol’skii classes for the class parameters belonging to the
sparse zone and, up to some logarithmic factor, belonging to the tail and dense
zones as well as the boundaries. We mean that the results of these theorems are
valid for any fixed �β ∈ (0,∞)d, �r ∈ (1,∞]d and �L ∈ (0,∞)d . Indeed, for given �β
and �L one can choose L0 = minj=1,...,d Lj , L∞ = maxj=1,...,d Lj and the num-
ber �, used in the construction of kernel K�, as any integer strictly larger than
maxj=1,...,d βj .

5. Proofs of Theorems 1–2.

5.1. Proof of Theorem 1. The main ingredients of the proof of the theorem are
given in Proposition 1. Their proofs are postponed to Section 5.1.2. Introduce for
any �h ∈ Hd :

ξn(x, �h) = 1

n

n∑
i=1

[
M(Zi − x, �h)−EfM(Zi − x, �h)], x ∈ R

d .

PROPOSITION 1. Let Assumptions 1 and 2 be fulfilled. Then for any n ≥ 3 and
any p > 1:

(i)
∫
Rd

Ef

{
sup
�h∈Hd

[∣∣ξn(x, �h)∣∣−Un(x, �h)]p+}νd(dx) ≤Cpn
−p

2 ,

(ii)
∫
Rd

Ef

{
sup
�h∈Hd

[
Ûn(x, �h)− 3Un(x, �h)]p+}νd(dx) ≤ C′

pn
−p

2 ,

(iii)
∫
Rd

Ef

{
sup
�h∈Hd

[
Un(x, �h)− 4Ûn(x, �h)]p+}νd(dx) ≤ C′

pn
−p

2 .
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The explicit expression of constant Cp and C′
p can be found in the proof.

5.1.1. Proof of the theorem. We start by proving the so-called pointwise oracle
inequality for losses.

Pointwise oracle inequality for losses. Let �h ∈ H and x ∈ R
d be fixed. We have

in view of the triangle inequality∣∣f̂�h(x)(x)− f (x)
∣∣≤ ∣∣f̂�h(x)∨�h(x)− f̂�h(x)(x)

∣∣+ ∣∣f̂�h(x)∨�h(x)− f̂�h(x)
∣∣

+ ∣∣f̂�h(x)− f (x)
∣∣.(5.1)

10. First, note that obviously f̂�h(x)∨�h(x)= f̂�h∨�h(x)(x) and, therefore,∣∣f̂�h(x)∨�h(x)− f̂�h(x)(x)
∣∣= ∣∣f̂�h∨�h(x)(x)− f̂�h(x)(x)

∣∣
≤ R̂�h(x)+ 4Ûn

(
x, �h(x)∨ �h)+ 4Ûn

(
x, �h(x)).

Moreover, by definition, Ûn(x, �η)≤ Û∗
n (x, �η) for any �η ∈ Hd . Next, for any �h, �η ∈

Hd we have obviously Ûn(x, �h∨ �η)≤ Û∗
n (x,

�h)∧ Û∗
n (x, �η). Thus,

(5.2)
∣∣f̂�h(x)∨�h(x)− f̂�h(x)(x)

∣∣≤ R̂�h(x)+ 8Û∗
n

(
x, �h(x)).

Similarly, we have

(5.3)
∣∣f̂�h(x)∨�h(x)− f̂�h(x)

∣∣≤ R̂�h(x)(x)+ 8Û∗
n (x,

�h).
The definition of �h(x) implies that for any �h ∈ H,

R̂�h(x)(x)+ 8Û∗
n

(
x, �h(x))+ R̂�h(x)+ 8Û∗

n (x,
�h) ≤ 2R̂�h(x)+ 16Û∗

n (x,
�h)

and we get from (5.1), (5.2) and (5.3) for any �h ∈ H,

(5.4)
∣∣f̂�h(x)(x)− f (x)

∣∣≤ 2R̂�h(x)+ 16Û∗
n (x,

�h)+ ∣∣f̂�h(x)− f (x)
∣∣.

20. We obviously have for any �h, �η ∈Hd ,∣∣f̂�h∨�η(x)− f̂�η(x)
∣∣≤ ∣∣EfM(Z1 − x, �h∨ �η)−EfM(Z1 − x, �η)∣∣

+ ∣∣ξn(x, �h∨ �η)∣∣+ ∣∣ξn(x, �η)∣∣.
Note that, for any h ∈Hd ,

EfM(Z1 − x, �h) :=
∫
Rd

M(t − x, �h)p(t)νd(dt)

= (1 − α)

∫
Rd

M(t − x, �h)f (t)νd(dt)

+ α

∫
Rd

M(t − x, �h)[f � g](t)νd(dt),
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in view of the assumption (1.1) imposed on the density p. Note that

(1 − α)

∫
Rd

M(t − x, �h)f (t)νd(dt)+ α

∫
Rd

M(t − x, �h)[f � g](t)νd(dt)

=
∫
Rd

f (z)

[
(1 − α)M(z− x, �h)+ α

∫
Rd

M(u, �h)g(u− z+ x)νd(du)
]
νd(dz)

and, therefore, in view of the definition of M(·, �h) [cf. (2.1)], we obtain

(5.5) EfM(Z1 − x, �h)=
∫
Rd

K�h(z− x)f (z)νd(dz) =: S�h(x, f ) ∀h ∈ Hd .

We deduce from (5.5) that∣∣EfM(Z1 − x, �h∨ �η)−EfM(Z1 − x, �η)∣∣= ∣∣S�h∨�η(x, f )− S�η(x, f )
∣∣

and, therefore, for any �h, �η ∈Hd ,∣∣f̂�h∨�η(x)− f̂�η(x)
∣∣≤ ∣∣S�h∨�η(x, f )− S�η(x, f )

∣∣
+ ∣∣ξn(x, �h∨ �η)∣∣+ ∣∣ξn(x, �η)∣∣.(5.6)

30. Set for any �h ∈ Hd and any x ∈ R
d

υ(x) = sup
�η∈Hd

[∣∣ξn(x, �η)∣∣−Un(x, �η)]+,
�1(x)= sup

�h∈Hd

[
Un(x, �h)− 4Ûn(x, �h)]+,

�2(x)= sup
�h∈Hd

[
Ûn(x, �h)− 3Un(x, �h)]+.

We obtain in view of (5.6) that for any �h ∈ H (since obviously �h∨ �η ∈ Hd for any
�h, �η ∈Hd )

R̂�h(x)≤ B∗
�h(x, f )+ 2υ(x)+ 2�1(x).(5.7)

Using the obvious inequality (supα Fα − supα Gα)+ ≤ supα(Fα −Gα)+ get

(5.8)
[
Û∗
n (x,

�h)− 3U∗
n (x,

�h)]+ ≤ sup
�η∈Hd

[
Ûn(x, �η)− 3Un(x, �η)]+ =:�2(x).

We get from (5.4), (5.7) and (5.8)∣∣f̂�h(x)(x)− f (x)
∣∣≤ 2B∗

�h(x, f )+ 4υ(x)+ 4�1(x)+ 48U∗
n (x,

�h)
+ 16�2(x)+ ∣∣f̂�h(x)− f (x)

∣∣.
It remains to note that∣∣f̂�h(x)− f (x)

∣∣≤ B�h(x, f )+ ∣∣ξn(x, �h)∣∣≤ B�h(x, f )+Un(x, �h)+ υ(x)
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and we obtain for any x ∈ R
d , putting z(x)= 5υ(x)+ 4�1(x)+ 16�2(x),∣∣f̂�h(x)(x)− f (x)

∣∣≤ 2B∗
�h(x, f )+B�h(x, f )+ 49U∗

n (x,
�h)+ z(x) ∀�h ∈ H.

Noting that the left-hand side of the latter inequality is independent of �h we obtain
for any x ∈R

d :

(5.9)
∣∣f̂�h(x)(x)− f (x)

∣∣≤ inf
�h∈H

{
2B∗

�h(x, f )+B�h(x, f )+ 49U∗
n (x,

�h)}+ z(x).

This is the pointwise oracle inequality for losses.
Application of Proposition 1. Set for any x ∈R

d

Rn(x)= inf
�h∈H

{
2B∗

�h(x, f )+B�h(x, f )+ 49U∗
n (x,

�h)}.
Applying Proposition 1, we get from (5.9) and the triangle inequality

R(p)
n [f̂�h(·), f ] ≤ ‖Rn‖p + 5

[∫
Rd

Ef

{
υ(x)

}p] 1
p + 4

[∫
Rd

Ef

{
�1(x)

}p] 1
p

+16
[∫

Rd
Ef

{
�2(x)

}p] 1
p

≤ ‖Rn‖p + Cpn
− 1

2 ,

where Cp = 5(Cp)
1
p + 20(C′

p)
1
p . The theorem is proved. �

5.1.2. Proof of Proposition 1. Since the proof of the proposition is quite long
and technical, we divide it into several steps.

Preliminaries. We start the proof with the following simple remark. Let M̌(t, �h), t ∈
R
d , denote the Fourier transform of M(·, �h). Then we obtain in view of the defini-

tion of M(·, �h):
M̌(t, �h) = Ǩ(t �h)[(1 − α)+ αǧ(−t)

]−1
, t ∈ R

d .

10. Note that Assumptions 1 and 2 guarantee that M̌(·, �h) ∈ L1(R
d) ∩ L2(R

d)

for any �h ∈ Hd and, therefore,∥∥M(·, �h)∥∥∞ ≤ (2π)−d
∥∥M̌(·, �h)∥∥1,

∥∥M(·, �h)∥∥2 = (2π)−d
∥∥M̌(·, �h)∥∥2.

Thus, putting M∞(�h)= M∞
∏d

j=1 h
−1
j (hj ∧ 1)−μj (α), we obtain ∀�h ∈ Hd

(5.10)
∥∥M(·, �h)∥∥∞ ≤ M∞(�h), ∥∥M(·, �h)∥∥2 ≤M2

d∏
j=1

h
− 1

2
j (hj ∧ 1)−μj (α),

in view of Assumptions 1 and 2. Here, we have put

M2 = [
(2π)−d{ε−1‖Ǩ‖21α �=1 +ϒ−1

0 k21α=1
}]∨ 1.
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Additionally we deduce from (5.10) for any �h ∈ Hd

(5.11)
∥∥M(·, �h)∥∥4

4 ≤M2
2M

2∞
d∏

j=1

h−3
j (hj ∧ 1)−4μj (α).

Let L(·, �h) be either M(·, �h) or M2(·, �h) and let L∞(�h) denote either M∞(�h) or
M2∞(�h).

We have in view of (5.10), denoting T (�h)=∑d
j=1[1 + μj (α)]| ln(hj )|,

(5.12) L−1∞ (�h)∨L∞(�h)≤M2∞e2T (�h) ∀�h ∈ Hd .

Additionally, we get from (5.10) and (5.11)

(5.13)
∥∥L(·, �h)∥∥2

2 ≤M2
2M

2∞e4T (�h) ∀�h ∈ Hd .

Set σL(x, �h) =
√∫

Rd L2(t − x, �h)p(t)νd(dt) and note that in view of (5.13)

(5.14)
∫
Rd

[
σL(x, �h)]2νd(dx) = ∥∥L(·, �h)∥∥2

2 ≤M2
2M

2∞e4T (�h) ∀�h ∈ Hd .

Next, we have in view of (5.12)

(5.15)
∥∥σL(·, �h)∥∥∞ ≤ L∞(�h)≤M2∞e2T (�h).

20. Define for any x ∈ R
d and �h ∈ Hd

ζL(x, �h)= n−1
n∑

i=1

[
L(Zi − x, �h)−EL(Zi − x, �h)],

zn(x, �h)= 3 ln(n)+ (8p + 22)T (�h)+ 2
∣∣ ln ({σL(x, �h)}∨ {

n−3/2L∞(�h)})∣∣,
V L(x, �h)= σL(x, �h)

√
2n−1zn(x, �h)+ (4/3)n−1zn(x, �h)L∞(�h),

UL(x, �h)= σL(x, �h)
√

2n−1λn(�h)+ (4/3)n−1λn(�h)L∞(�h),
where remind λn(�h)= 4 ln(M∞)+ 6 ln (n)+ (8p + 26)T (�h).

Noting that supz∈[a,b] | ln z| ≤ | lna| ∨ | lnb| for any 0 < a < b < ∞ we deduce

from (5.15) zn(x, �h) ≤ λn(�h) for any x ∈ R
d and, therefore,

(5.16) V L(x, �h)≤UL(x, �h) ∀�h ∈ Hd .

First step. Let x ∈ R
d and �h ∈ Hd be fixed. Put b = 8p + 22. We obtain for any

z ≥ 1 and q ≥ 1 by the integration of the Bernstein inequality

Ef

{∣∣ζL(x, �h)∣∣−√
2n−1zσL(x, �h)− (4/3)n−1zL∞(�h)}q+

≤ 2�(q + 1)
[√

2n−1σL(x, �h)+ (4/3)n−1L∞(�h)]q exp {−z},
where � is the Gamma function.
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10. Choose z = zn(x, �h). Noting that for any n ∈N
∗ and x ∈ R

d

√
2n−1zσL(x, �h)+ (4/3)n−1L∞(�h)≤ 3L∞(�h)n− 1

2

and taking into account that exp {−| ln(y)|} ≤ y for any y > 0, we get

Ef

{∣∣ζL(x, �h)∣∣− V L(x, �h)}q+
≤ 2 × 3q�(q + 1)n− q

2 −3Lq∞(�h)ebT (�h)({σL(x, �h)}∨ {
n−3/2L∞(�h)})2(5.17)

≤ C(1)
q n− q

2 −3e(2q−b)T (�h)({σL(x, �h)}∨ {
n−3/2L∞(�h)})2.

Here, to get the second inequality, we have used (5.12) and put C(1)
q = 2M2q∞ 3q ×

�(q + 1).
Set X (�h) = {x ∈ R

d : σL(x, �h) ≥ n−3/2L∞(�h)}, X̄ (�h) = R
d \ X (�h) and later

on the integration over the empty set is supposed to be zero.
Putting C

(2)
p = C

(1)
p M2

2M
2∞, we have in view of (5.16), (5.14) and (5.17) applied

with q = p that for any �h ∈ Hd

(5.18)
∫
X (�h)

Ef

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+νd(dx)≤ C(2)
p n−p

2 e(2p+4−b)T (�h).

20. Introduce the following notation. For any i = 1, . . . , n, set

�i(x, �h) = 1{|L(Zi−x,�h)−EL(Zi−x,�h)|≥n−1L∞(�h)}

and define the random event D(x, �h) = {∑n
i=1 �i(x, �h) ≥ 2}. As usual, the

complementary event will be denoted by D̄(x, �h). Set finally π(x, �h) =
Pf {�1(x, �h) = 1}.

We obviously have |ζL(x, �h)|1
D̄(x,�h) ≤ 3n−1L∞(�h) < UL(�h) and, therefore,

(5.19) 1
D̄(x,�h)

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+ = 0.

Applying the Cauchy–Schwarz inequality, we deduce from (5.19) that

Ef

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+ ≤ E

1
2
f

{∣∣ζL(x, �h)∣∣−UL(x, �h)}2p
+ P

1
2
f

{
D(x, �h)}.

Using (5.17) with q = 2p and (5.12), we obtain for any x ∈ X̄ (�h)

(5.20) Ef

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+ ≤ C(3)
p n−p+6

2 ecpT (�h)[Pf

{
D(x, �h)}] 1

2 ,

where we have put C(3)
p = [C(1)

2p ] 1
2M2∞ and cp = 2p + 2 − b/2.
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For any λ > 0, we have in view of the exponential Markov inequality

Pf

{
D(x, �h)}= Pf

{
n∑

i=1

�i(x, �h)≥ 2

}

≤ e−2λ[eλπ(x, �h)+ 1 − π(x, �h)]n
= e−2λ[(eλ − 1

)
π(x, �h)+ 1

]n
≤ exp

{−2λ+ n
(
eλ − 1

)
π(x, �h)}.

Tchebychev inequality yields π(x, �h) ≤ n2L−2∞ (�h)[σL(x, �h)]2 and we get

Pf

{
D(x, �h)}≤ exp

{−2λ+ n3L−2∞ (�h)[σL(x, �h)]2(eλ − 1
)} ∀�h ∈ Hd .

Note that the definition of X̄ (�h) implies n3L−2∞ (�h)[σL(x, �h)]2 < 1 for any x ∈
X̄ (�h). Hence, choosing λ= ln 2 − 2 ln {n3/2L−1∞ (�h)σL(x, �h)} we have

Pf

{
D(x, �h)}≤ (

e2/4
)
n6L−4∞ (�h)[σL(x, �h)]4 ∀x ∈ X̄ , (�h).

It yields, together with (5.12), (5.14) and (5.20) and for any �h ∈ Hd

(5.21)
∫
X̄ (�h)

Ef

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+νd(dx)≤ C(4)
p n−p

2 e(2p+10−b/2)T (�h),

where C
(4)
p = C

(3)
p (e/2)M6∞M2

2 . Putting C
(5)
p = C

(2)
p +C

(4)
p and noting that 2p +

10 − b/2 < 0 we obtain from (5.18) and (5.21) for any �h ∈Hd

(5.22)
∫
Rd

Ef

{∣∣ζL(x, �h)∣∣−UL(x, �h)}p+νd(dx)≤ C(5)
p n−p

2 e(2p+10−b/2)T (�h).

30. Choosing L = M and L∞ = M∞, we get from (5.22) and the definition of
b for any �h ∈ Hd :

(5.23)
∫
Rd

Ef

{∣∣ξn(x, �h)∣∣−Un(x, �h)}p+νd(dx) ≤ C(5)
p n−p

2 e−T (�h).

The first assertion follows from (5.23) with Cp = C
(5)
p
∑

k∈Zd e
−∑d

j=1 |kj |.

Second step. Denoting χ(x, �h) = {|σ̂ 2(x, �h)− σ 2(x, �h)| − Un(x, �h)}+,

Un(x, �h) = σM2
(x, �h)

√
2n−1λn(�h)+ (4/3)n−1λn(�h)M2∞(�h),

and choosing L = M2 and L∞ = M2∞, we get from (5.22) for any �h ∈Hd ,

(5.24)
∫
Rd

Ef

{
χp(x, �h)}νd(dx) ≤ C(5)

p n−p
2 e(2p+10−b/2)T (�h).

Note that σM2
(x, �h) ≤ M∞(�h)σ(x, �h) and, therefore, for any x ∈ R

d ,

Un(x, �h) ≤ M∞(�h)Un(x, �h) ∀�h ∈ Hd .
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This implies

2n−1λn(�h)σ̂ 2(x, �h) ≤ 2n−1λn(�h)σ 2(x, �h)+ 2n−1λn(�h)M∞(�h)Un(x, �h)
+ 2n−1λn(�h)M∞(�h)χ∗(x, �h),

where we have denoted χ∗(x, �h) = M−1∞ (�h)χ(x, �h). Hence

(5.25) Ûn(x, �h) ≤Un(x, �h)+
√

2n−1λn(�h)M∞(�h)[Un(x, �h)+ χ∗(x, �h)].
By the same reason,

(5.26) Un(x, �h) ≤ Ûn(x, �h)+
√

2n−1λn(�h)M∞(�h)[Un(x, �h)+ χ∗(x, �h)].
Note that the definition of Ûn(x, �h) and Un(x, �h) implies that

(5.27) 2n−1λn(�h)M∞(�h)≤ (3/2)min
[
Ûn(x, �h),Un(x, �h)].

Using the inequality
√|ab| ≤ 2−1(|ay| + |b/y|), y > 0 we get from (5.25), (5.26)

and (5.27)

Ûn(x, �h) ≤ (
1 +

√
3/2 + (3/4)y

)
Un(x, �h)+ (2y)−1χ∗(x, �h);

Un(x, �h) ≤ (
1 + (3/4)y

)
Ûn(x, �h)+ (2y)−1Un(x, �h)+ (2y)−1χ∗(x, �h).

Choosing y = 1/2 in the first inequality and y = 1 in the second we get for any
x ∈ R

d and �h ∈ Hd , [
Ûn(x, �h)− 3Un(x, �h)]+ ≤ χ∗(x, �h);(5.28) [
Un(x, �h)− 4Ûn(x, �h)]+ ≤ χ∗(x, �h).(5.29)

Remembering that b = 8p + 22 we obtain from (5.28), (5.29), (5.24) and (5.12)
for any �h ∈ Hd , denoting C′

p = M
2p∞ C

(5)
p ,∫

Rd
Ef

[
Ûn(x, �h)− 3Un(x, �h)]p+νd(dx)≤ C ′

pn
−p

2 e−T (�h);(5.30) ∫
Rd

Ef

[
Un(x, �h)− 4Ûn(x, �h)]p+νd(dx)≤ C ′

pn
−p

2 e−T (�h).(5.31)

The second and third assertions follow from (5.30) and (5.31). �

5.2. Proof of Theorem 2. The proof of the theorem is very long and techni-
cal and we break it on two parts, which in its turn are divided on several steps.
Introduce the following notation: c1 = M2

√
2D, c2 = 4M∞

3 ,

a = {
196

[
(c1

√
c3)∨ (c2c3)

]}−1
,

where c3 = 2 max{4 ln(M∞), (8p + 26)maxj=1,...,d [1 + μj (α)]}.
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5.2.1. Preliminaries. Recall that for any locally integrable function λ : Rd →
R its strong maximal function is defined as

(5.32) M[λ](x) := sup
H

1

νd(H)

∫
H
λ(t)dt, x ∈ R

d,

where the supremum is taken over all possible rectangles H in R
d with sides par-

allel to the coordinate axes, containing point x. It is well known that the strong
maximal operator λ �→ M[λ] is of the strong (t, t)-type for all 1 < t ≤ ∞, that is,
if λ ∈ Lt(R

d) then M[λ] ∈ Lt(R
d) and there exists a constant Ct depending on t

only such that

(5.33)
∥∥M[λ]∥∥t ≤ Ct‖λ‖t, t ∈ (1,∞].

Let m[λ] be defined by (5.32), where, instead of rectangles, the supremum is taken
over all possible cubes H in R

d with sides parallel to the coordinate axes, con-
taining point x. Then it is known that λ �→m[λ] is of the weak (1,1)-type, that is,
there exists C1 depending on d only s.t. for any λ ∈ L1(R

d),

(5.34) νd
{
x : ∣∣m[λ](x)∣∣≥ z

}≤ C1z
−1‖λ‖1 ∀z> 0.

The results presented below deal with the weak property of the strong maximal
function. The following inequality can be found in de Guzmán (1975). There exists
a constant C > 0 depending on d only such that

νd
{
x : ∣∣M[λ](x)∣∣≥ z

}≤ C
∫
Rd

|λ(x)|
z

{
1 +

(
ln+

|λ(x)|
z

)d−1}
dx, z> 0,

where for all z ∈ R, ln+(z) := max{ln(z),0}.

LEMMA 1. For any given d ≥ 1,R > 0, Q > 0 and q ∈ (1,∞] there exists
C(d,q,R,Q) such that for any λ ∈ B1,d(R)∩Bq,d(Q),

νd
{
x : ∣∣M[λ](x)∣∣≥ z

}≤ C(d,q,R,Q)z−1(1 + ∣∣ ln(z)∣∣)d−1 ∀z> 0

The proof of the lemma is an elementary consequence of the aforementioned
result and can be omitted.

Recall also the particular case of the Young inequality for weak-type spaces;
see Grafakos (2008), Theorem 1.2.13. For any u ∈ (1,∞], there exists Cu > 0
such that for any λ1 ∈ L1(R

d) and λ2 ∈ Lu,∞(Rd) one has

(5.35) ‖λ1 � λ2‖u,∞ ≤ Cu‖λ1‖1‖λ2‖u,∞.

Let J denote the set of all the subsets of {1, . . . , d} endowed with the empty
set ∅. For any J ∈ J and y ∈ R

d , set yJ = {yj , j ∈ J } ∈ R
|J | and we will write

y = (yJ , yJ̄ ), where as usual J̄ = {1, . . . , d} \ J .



ORACLE INEQUALITIES AND ADAPTATION 259

For any j = 1, . . . , d introduce the d × d matrix Ej = (0, . . . , ej , . . . ,0) where,
recall, (e1, . . . , ed) denotes the canonical basis of Rd . Set also E[J ] = ∑

j∈J Ej .
Later on E0 = E[∅] denotes the matrix with zero entries.

To any J ∈ J and any λ :Rd →R, associate the function

λJ (yJ , zJ̄ )= λ
(
z+ E[J ](y − z)

)
, y, z ∈ R

d

with the obvious agreement λJ ≡ λ if J = {1, . . . , d}, which is always the case if
d = 1. For any �h ∈ Hd and J ⊆ {1, . . . , d}, set K�h,J (uJ ) = ∏

j∈J h−1
j K(uj/hj )

and define for any y ∈ R
d ,

[K�h ◦ λ]J (y)=
∫
R|J̄ |

K�h,J̄ (uJ̄ − yJ̄ )λ(yJ , uJ̄ )ν|J̄ |(duJ̄ ),

where ν|J̄ | is the Lebesgue measure on R
|J̄ |. For any �h, �η ∈ Hd , set

B�h,�η(x, f )= ∣∣S�h∨�η(x, f )− S�η(x, f )
∣∣.

LEMMA 2. Let Assumption 3 hold. One can find k ∈ {1, . . . , d} and a collec-
tion of indexes {j1 < j2 < · · · < jk} ∈ {1, . . . , d} such that for any x ∈ R

d and any
f :Rd →R:

B�h,�η(x, f )≤
k∑

l=1

([|K�h∨�η| ◦ bhjl ,f,jl
]
Jl
(x)+ [|K�η| ◦ bhjl ,f,jl

]
Jl
(x)

)
,

B�h(x, f )≤
k∑

l=1

[|K�h| ◦ bhjl ,f,jl
]
Jl
(x), Jl = {j1, . . . , jl}.

The proof of the lemma can be found in Lepski (2015), Lemma 2. Also, let us
mention the following bound which is a trivial consequence of the Young inequal-
ity and the Fubini theorem. If λ ∈ Lt(R

d), then for any t ∈ [1,∞]
(5.36) sup

J∈J
∥∥[K�h ◦ λ]J

∥∥
t ≤ ‖K‖d1‖λ‖t ∀�h ∈ Hd .

To any J ∈ J and any locally integrable function λ : Rd → R+, we associate the
operator

(5.37) MJ [λ](x) = sup
H|J̄ |

1

ν|J̄ |(H|J̄ |)

∫
H|J̄ |

λ
(
t + E[J ][x − t])ν|J̄ |(dtJ̄ ),

where the supremum is taken over all hyper-rectangles in R
|J̄ | containing xJ̄ =

(xj , j ∈ J̄ ) and with sides parallel to the axis.
As we see, MJ [λ] is the strong maximal operator applied to the function ob-

tained from λ by fixing the coordinates whose indices belong to J . It is obvious
that M∅[λ] ≡ M[λ] and M{1,...,d}[λ] ≡ λ.
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The following result is a direct consequence of (5.33) and of the Fubini theorem.
For any t ∈ (1,∞], there exists Ct such that for any λ ∈ Lt(R

d)

(5.38) sup
J∈J

∥∥MJ [λ]∥∥t ≤ Ct‖λ‖t.

Note that C∞ = 1.

5.2.2. Part I. For any �h ∈ Hd and any v > 0, let

B�h(·, f )= 2B∗
�h(·, f )+B�h(·, f ), A(�h,f, v)= {

x ∈ R
d : B�h(x, f )≥ 2−1v

}
.

Introduce for any v > 0 and f ∈ Fg,u(R,D)

�(v,f ) = inf
�h∈H(v)

[
νd
(
A(�h,f, v))+ v−2F 2

n (
�h)],

�(v,f,u)= inf
z≥2

inf
�h∈H(v,z)

[
νd
(
A(�h,f, v))+ z−u],

�p(v, f,u)= inf
z≥2

inf
�h∈H(v,z)

[∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx)+ vpz−u

]
.

Note that �p(∞, f,u) ≡ 0. Let K be a compactly supported function satisfying
Assumption 2. The goal of Part I is to prove the following bound.

For any n ≥ 3, p > 1,q > 1,R > 1,D > 0,0 < v ≤ v ≤ ∞,u ∈ (p/2,∞],u ≥
q and any f ∈ Fg,u(R,D)∩Bq,d(D),

R(p)
n [f̂�h(·), f ] ≤ C(1)

[
lH(v)+

∫ v

v
vp−1{�(v,f )∧�(v,f,u)

}
dv

+�p(v, f,u)
] 1
p + Cpn

− 1
2 .

(5.39)

Here, C(1) is a constant independent of f and n. Its explicit expression can be
found in the proof of the theorem. We remark also that only this constant depends
on q. Since the risk of our estimator is independent of v,v > 0, we can minimize
the right-hand side of (5.39) w.r.t. these parameters.

Auxiliary results. Let us prove several simple facts. First, note that for any n ≥ 3
for any �h ∈ Hd

(5.40) λn(�h)≤ c3

[
ln (n)+

d∑
j=1

∣∣ ln(hj )∣∣
]
.

Next, it is easy to see that for any any n≥ 3 and �η, �h ∈ (0,∞)d : �η ≥ �h
Fn(�η)≤ Fn(�h)

√
l(V�η/V�h), Gn(�η)≤Gn(�h)l(V�η/V�h),
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where l(v) = v−1(1 + lnv). Since �η ≥ �h implies V�η ≥ V�h and l(v) ≤ 1 if v ≥ 1,
we have

(5.41) Fn(�η)≤ Fn(�h), Gn(�η)≤Gn(�h) ∀�η, �h ∈ (0,∞)d : �η ≥ �h.
Then by (5.40) and the second inequality in (5.41), we have

(5.42) sup
�η∈Hd :�η≥�h

4M∞λn(�η)
3n
∏d

j=1 ηj (ηj ∧ 1)μj (α)
≤ c2c3Gn(�h).

Now let us establish two bounds for ‖U∗
n (·, �h)‖∞.

10a. Let u = ∞. We have, in view of the second inequality in (5.10) for any
�η ∈ Hd ,

σ(x, �η)≤ √
D
∥∥M(·, �η)∥∥2 ≤M2

√
D

d∏
j=1

η
− 1

2
j (ηj ∧ 1)−μj (α) ∀x ∈ R

d .

It yields for any x ∈R
d in view of the first inequality in (5.41)

(5.43) sup
�η∈Hd :�η≥�h

√
2n−1λn(�η)σ 2(x, �η)≤ sup

�η∈Hd :�η≥�h
c1

√
c3Fn(�η)≤ c1

√
c3Fn(�h).

Then gathering (5.42), (5.43) and by definition of a, we have

(5.44)
∥∥U∗

n (·, �h)∥∥∞ ≤ (196a)−1[Fn(�h)+Gn(�h)].
10b. Another bound for ‖U∗

n (·, �h)‖∞ is available regardless of the value of u.
Indeed for any �η ∈ Hd in view of the first inequality in (5.10)

σ(x, �η)≤ ∥∥M(·, �η)∥∥∞ ≤M∞
d∏

j=1

η−1
j (ηj ∧ 1)−μj (α) ∀x ∈ R

d .

It yields for any x ∈R
d and any n≥ 3

sup
�η∈Hd :�η≥�h

√
2n−1λn(�η)σ 2(x, �η)

≤ sup
�η∈Hd :�η≥�h

√
2c3M∞

√
ln (n)+∑d

j=1 | ln(ηj )|√
n
∏d

j=1 ηj (ηj ∧ 1)μj (α)
≤
√

2c3n

ln (n)
M∞Gn(�h).

Then gathering with (5.42) again, we have∥∥U∗
n (·, �h)∥∥∞ ≤√

2c3M∞ ∨ (c2c3)
√
n/ lnnGn(�h) ∀�h ∈ Hd .

Denoting �b[b] = (b, . . . , b), we obtain from the previous bound

(5.45) inf
�h∈H

∥∥U∗
n (·, �h)∥∥∞ ≤ inf

b≥1

∥∥U∗
n

(·, �b[b])∥∥∞ = 0.
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20. Let now u < ∞. Let us prove that for any z > 0, s ∈ {1,u} and any f ∈
Fg,u(R,D)

νd

(
x ∈R

d : sup
�η∈Hd :�η≥�h

Un(x, �η,f )≥ z
)

≤ c5
[
D̃z−2F 2

n (
�h)]s,(5.46)

where we have put U2
n(·, �η,f ) = 2n−1λn(�η)σ 2(·, �η) and D̃ = 1 if s = 1 and D̃ =

D if s = u. Indeed, if s = 1, applying the Markov inequality, we obtain in view of
the second inequality in (5.10) for any �η ∈ Hd

νd
(
x ∈ R

d : Un(x, �η,f )≥ z
)≤ 2

(
nz2)−1

λn(�η)
∫
Rd

σ 2(x, �η)νd(dx)

= 2
(
nz2)−1

λn(�η)
∥∥M(·, �η)∥∥2

2

≤ 2M2
2
(
nz2)−1 λn(�η)∏d

j=1 ηj (ηj ∧ 1)2μj (α)

≤ c6z
−2F 2

n (�η).

(5.47)

Here, we have put c6 = 2M2
2c

2
1c3 and to get the last inequality we have used (5.40).

To get a similar result if s = u, we remark that σ 2(·, �η) = M2(·, �η) � p(·) and that
M2(·, �η) ∈ L1(R

d) in view of the second inequality in (5.10). It remains to note
that f ∈ Fg,u(R,D) implies p ∈ B

(∞)
u,d (D) and to apply inequality (5.35).

It yields together with the second inequality in (5.10) for any �η ∈ Hd ,

(5.48) νd
(
x ∈R

d : Un(x, �η,f )≥ z
)≤ [

c6CuDz−2F 2
n (�η)

]u
.

Denoting C̃ = 1 if s = 1 and C̃ = Cu if s = u, we get from (5.47), (5.48)

νd

(
x ∈ R

d : sup
�η∈Hd :�η≥�h

Un(x, �η,f )≥ z
)

≤ [
c6C̃D̃z−2]s ∑

�η∈Hd :�η≥�h
F 2s
n (�η).

It remains to note that since �η, �h ∈ Hd and �η ≥ �h we can write ηj = emj hj with
mj ≥ 0 for any j = 1, . . . , d . Putting m = (m1, . . . ,md) ∈ N

d , the latter result
yields together with the first inequality in (5.41)

∑
�η∈Hd :�η≥�h

F 2s
n (�η)≤ F 2s

n (�h) ∑
m∈Nd

(
1 +

d∑
j=1

mj

)s

e
−s

∑d
j=1 mj =: c7F

2s
n (�h).

Thus, (5.46) with c5 = c7[c6C̃]s is established.
30. Let cK ≥ 1 be s.t. supp(K)⊂ [−cK, cK ]d . We have ∀�h ∈ (0,∞)d

∣∣S�h(x, f )
∣∣= ∣∣∣∣ ∫

Rd
K�h(t − x)f (t)νd(dt)

∣∣∣∣≤ (2cK)
d‖K‖d∞M

[|f |](x).
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If �h = (h, . . . , h), h ∈ (0,∞), the latter inequality holds with m[|f |] instead of
M[|f |]. Thus,

(5.49) sup
�h∈H

∣∣B�h(x, f )
∣∣≤ 3(2cK)

d‖K‖∞MH

[|f |](x)+ ∣∣f (x)∣∣ ∀x ∈ R
d,

where we have denoted MH = M if H = Hd and MH = m if H = Hd
isotr. More-

over, we deduce from (5.49) and (5.45) putting T�h(x, f )= B�h(x, f )+ 49U∗
n (·, �h)

that

(5.50) inf
�h∈H

∣∣T�h(x, f )
∣∣≤ 3(2cK)

d‖K‖∞MH

[|f |](x)+ ∣∣f (x)∣∣.
Proof of (5.39). Put T(x, f ) = inf�h∈H |T�h(x, f )| and introduce Cv = {x ∈ R

d :
T(x, f )≥ v}, v > 0. For any given v > 0, one has

(5.51)
∥∥T(·, f )∥∥pp ≤ p

∫ v

0
vp−1νd(Cv)dv +

∫
Cv

∣∣T(x, f )∣∣pνd(dx).
Note that the second term disappears if one chooses v = ∞. Denoting Wv = {x ∈
R
d : 49U∗

n (x,
�h)≥ 2−1v}, we have for any �h ∈ H and v > 0

νd(Cv) ≤ νd
(
A(�h,f, v))+ νd

(
Wv(�h,f ));(5.52) ∣∣T(x, f )∣∣p1Cv (x) ≤ 2p

∣∣B�h(x, f )
∣∣p1A(�h,f,v) + 98p

∣∣U∗
n (x,

�h)∣∣p1Wv (x);(5.53)

νd(Cv) ≤ νd
(
x ∈ R

d : 3(2cK)
d‖K‖∞MH

[|f |](x)+ ∣∣f (x)∣∣> v
)
.(5.54)

The last inequality follows from (5.50).
10. Set U∗

n (x,
�h,f ) = sup�η∈Hd :�η≥�hUn(x, �η,f ). Noting that U∗

n (x,
�h) ≤

U∗
n (x,

�h,f )+ (196a)−1Gn(�h) in view of (5.42), we get for any �h ∈ H(v)

(5.55) Wv ⊆ {
x ∈ R

d : 49U∗
n (x,

�h) ≥ 4−1v
} := W̃v.

Applying (5.46) with s = 1, we deduce from (5.52) that

νd(Cv)≤ νd
(
A(�h,f, v))+ 1962c5v

−2F 2
n (

�h) ∀�h ∈H(v).

Since the left-hand side of the latter inequality is independent of �h, we get

νd(Cv)≤ max
[
1,1962c5

]
�(v,f ).(5.56)

20. Let us establish the following bounds, where c9 is given in the paragraph
20b. below. For any u ∈ [1,∞] and v > 0,

(5.57) νd(Cv)≤ max
[
1, c51962, c51962uDua2u]{�(v,f )∧�(v,f,u)

}
and for any u ∈ (p/2,∞],
(5.58)

∫
Cv

∣∣T(x, f )∣∣pνd(dx) ≤ max
[
2p,98pc9

]
�p(v,f,u) ∀v > 0.
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20a. Let u = ∞. Note that minimum over z in the definition of �(·, ·,∞) and
�p(·, ·,∞) is obviously attained for z = 2. Also, we remark that Wv = ∅ for any
�h ∈ H(v,2) in view of (5.44). Thus, we deduce from (5.52) and (5.53), since the
left-hand sides of both inequalities are independent of �h,

(5.59) νd(Cv)≤�(v,f,∞),

∫
Cv

∣∣T(x, f )∣∣pνd(dx)≤�p(v,f,∞).

This inequality and (5.56) ensure that (5.57) and (5.58) hold if u = ∞.
20b. Let u <∞. Applying (5.46) with s = u, we obtain in view of (5.55)

νd(Wv)≤ c51962uDuv−2uF 2u
n (�h)≤ c51962uDua2uz−u ∀�h ∈ H(v, z).

It yields together with (5.52)

(5.60) νd(Cv)≤ max
[
1, c51962uDua2u]�(v,f,u).

This inequality and (5.56) ensure that (5.57) holds if u <∞.
What is more, we have in view of (5.42) and (5.55) for any �h ∈ H(v),∣∣U∗

n (x,
�h)∣∣p1Wv ≤ 2p

∣∣U∗
n (x,

�h,f )∣∣p1W̃v
.

Moreover, applying (5.46) with s = u, we have for any y > 0 and �h ∈ H(v, z)

νd(W̃y)≤ c51962uDuy−2uF 2u
n (�h)≤ c51962uDuy−2u(av)2uz−u.

Hence, if additionally u >p/2, we have for any �h ∈ H(v, z)∫
Wv

∣∣U∗
n (x,

�h)∣∣pνd(dx) ≤ 2pp
∫ ∞
v

yp−1νd(W̃y)dy

≤ c51962uDua2u2ppv2uz−u
∫ ∞
v

yp−1−2u dy =: c9v
pz−u.

This yields together with (5.53)

(5.61)
∫
Cv

∣∣T(x, f )∣∣pνd(dx)≤ max
[
2p,98pc9

]
�p(v,f,u).

This inequality ensures that (5.58) holds if u < ∞.
30. Recall that f ∈ Fg(R) implies that f ∈ B1,d(R). Since additionally f ∈

Bq,d(D), q > 1, Lemma 1 as well as (5.34) is applicable and we obtain in view of
(5.54) νd(Cv) ≤ c10v

−1(1 + | lnv|)t (H) for any v > 0. It yields for any v > 0 and
p > 1

(5.62) p

∫ v

0
vp−1νd(Cv)dv ≤ c11v

p−1(1 + | lnv|)t (H)
.

In the case of t (H)= 0, the last inequality is obvious and if t (H)= d−1 it follows
by integration by parts. The bound (5.39) follows now from (5.51), where the
bound (5.62) is used when the integration is made over [0,v], the estimate (5.57)
for integration over [v,v] and the bound (5.58) with v = v.



ORACLE INEQUALITIES AND ADAPTATION 265

5.2.3. Part II. In the subsequent proof c1, c2, . . . , stand for constants depend-
ing only on �s, �q,g,K, d , R,D,u and q.

10. We start with the following obvious observation. For any λ : Rd → R+,
�u ∈R

d and J ∈ J,

(5.63) [K�u ◦ λ]J (x)≤ (
2cK‖K‖∞

)d
MJ [λ](x) ∀x ∈ R

d .

Putting C1 = (2cK‖K‖∞)d , we get for any �h, �η ∈ Hd in view of (5.63) and asser-
tions of Lemma 2 that

B�h,�η(·, f )≤ 2C1

d∑
j=1

sup
J∈J

MJ [bhj ,f,j ](·), B�h(·, f )≤ C1

d∑
j=1

sup
J∈J

MJ [bhj ,f,j ](·).

Thus noting that the right-hand side of the first inequality above is independent of
�η, we obtain

(5.64) B�h(x, f )≤ 5C1

d∑
j=1

sup
J∈J

MJ [bhj ,f,j ](x) ∀x ∈R
d,∀�h ∈ Hd .

Applying (5.38) with t = ∞, we have for any v > 0 in view of the definition of
J (�h, v),
B�h(x, f ) ≤ 5C1

[ ∑
j∈J̄ (�h,v)

sup
J∈J

MJ [bhj ,f,j ](x)+ ∑
j∈J (�h,v)

sup
J∈J

∥∥MJ [bhj ,f,j ]
∥∥∞

]

≤ 5C1
∑

j∈J̄ (�h,v)
sup
J∈J

MJ [bhj ,f,j ](x)+ 5C1
∑

j∈J (�h,v)
Bj,∞,F(hj )(5.65)

≤ 5C1
∑

j∈J̄ (�h,v)
sup
J∈J

MJ [bhj ,f,j ](x)+ 4−1v ∀f ∈ F.

We obtain for any f ∈ F, v > 0 and �s = (s1, . . . , sd) ∈ (1,∞)d , applying con-
secutively the Markov inequality and (5.38) with t = sj ,

νd
{
A(�h,f, v)}≤ νd

(⋃
J∈J

⋃
j∈J̄ (�h,v)

{
x : 5C1MJ [bhj ,f,j ](x) ≥ (4d)−1v

})

≤ c1
∑

j∈J̄ (�h,v)
v−sj ‖bhj ,f,j‖sjsj(5.66)

≤ c1
∑

j∈J̄ (�h,v)
v−sj

[
Bj,sj ,F(hj )

]sj .
Noting that the right-hand side of the latter inequality is independent of f and the
left-hand side is independent of �s, we get for any v > 0 and �s ∈ (1,∞)d ,

c−1
1 sup

f∈F
{
�(v,f )∧�(v,f,u)

}≤ ��s(v,F,u)∧ ��s(v,F).(5.67)
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20. Note also that in view of (5.65), we have for any v > 0:∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx)

≤ c2

∫
A(�h,f,v)

∣∣∣∣ ∑
j∈J̄ (�h,v)

sup
J∈J

MJ [bhj ,f,j ](x)
∣∣∣∣pνd(dx)

+ c3v
pνd

{
A(�h,f, v)}(5.68)

≤ c4

[ ∑
j∈J̄ (�h,v)

∫
A(�h,f,v)

∣∣∣ sup
J∈J

MJ [bhj ,f,j ](x)
∣∣∣pνd(dx)

+ vpνd
{
A(�h,f, v)}].

For any v > 0 and j = 1, . . . , d , introduce Aj (v) = A(�h,f, v)∩ Āj (v), where

Aj (v) =
{
x ∈ R

d : sup
J∈J

MJ [bhj ,f,j ](x)≥ (40C1)
−1v

}
.

Noting that in view of (5.65) for any v > 0 and any j ∈ J̄ (�h, v),
Aj (v)⊆

{
x ∈R

d : 5C1
∑

k∈J̄ (�h,v),k �=j

sup
J∈J

MJ [bhj ,f,k](x) ≥ v/8
}

⊆
{
x ∈R

d : 5C1
∑

k∈J̄ (�h,v)
sup
J∈J

MJ [bhj ,f,k](x) ≥ v/8
}

=: A∗(�h,f, v),

we deduce from (5.68) that for any �q ∈ [p,∞)d ,∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx) ≤ c4

∑
j∈J̄ (�h,v)

∫
Aj (v)

∣∣∣ sup
J∈J

MJ [bhj ,f,j ](x)
∣∣∣pνd(dx)

+ c5v
p[νd{A∗(�h,f, v)}+ νd

{
A(�h,f, v)}]

(5.69)
≤ c6

∑
j∈J̄ (�h,v)

vp−qj
∥∥∥ sup
J∈J

MJ [bhj ,f,j ]
∥∥∥qj
qj

+ c5v
p[νd{A∗(�h,f, v)}+ νd

{
A(�h,f, v)}].

It remains to note that similarly (5.66) for any �s ∈ (1,∞)d

νd
{
A∗(�h,f, v)}≤ c7

∑
j∈J̄

(�h, v)v−sj ‖bhj ,f,j‖sjsj

and to apply (5.38) with t = qj to the each term in the sum appeared in
(5.69). All of this together with (5.66), applied with �s = �q yields for any v > 0
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and �q ∈ [p,∞)d∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx)≤ c9

∑
j∈J̄ (�h,v)

vp−qj
[
Bj,qj ,F(hj )

]qj .
Noting that the right-hand side of the latter inequality is independent of f and the
left-hand side is independent of �q , the we get

(5.70) sup
f∈F

�p(v,f,u)≤ c9v
p��q(v,F,u) ∀v > 0, �q ∈ [p,∞)d .

The first assertion follows from (5.67), (5.70) and (5.39).
30. Remark that in view of (5.49) and (5.33) f ∈ Bq,d(D) implies

(5.71)
∥∥B�h(·, f )

∥∥
q ≤ [

3(2cK)
d‖K‖d∞Cq + 1

]
D ∀�h ∈ (0,∞)d,

where Cq is the constant which appeared in (5.33). Hence for any v > 0 and q ∈
[p,∞),

(5.72)
∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx)≤ 2q−pvp−q∥∥B�h(·, f )

∥∥q
q ≤ c10v

p−q.

Remind that H(v) �= ∅, H(v, z) �= ∅ whatever v > 0 and z ≥ 2; see Remark 1.
Hence, in view of (5.72) for any f ,

�p(v,f,u)≤ inf
z≥2

[
c10v

p−q + z−u]= c10v
p−q.

It remains to note that the right-hand side of the obtained inequality is independent
of f and the second assertion of the theorem follows from this inequality, (5.67)
and (5.39).

40. Since C∞ = 1, we obtain in view of (5.71) for all f ∈ B∞,d (D):∥∥B�h(·, f )
∥∥∞ ≤ [

3(2cK)
d‖K‖d∞ + 1

]
D ∀�h ∈ (0,∞)d .

It yields for any �s ∈ (1,∞) in view of (5.66) if q = ∞,∫
A(�h,f,v)

∣∣B�h(x, f )
∣∣pνd(dx) ≤ c12

∑
j∈J̄ (�h,v)

v−sj
[
Bj,s,F(hj )

]sj .
Since the left-hand side of the obtained inequality is independent of f and the
left-hand side is independent of �s we conclude that

sup
f∈F

�p(v,f,u)≤ c12��s(v,F,u) ∀v > 0, �s ∈ (1,∞)d .(5.73)

The third assertion of the theorem follows now from (5.67), (5.73) and (5.39).
50. We have seen (Corollary 1), that B∗

�h(·, f ) ≤ 2 supη∈H:η≤h B�η(·, f ) if �h =
(h, . . . , h) ∈ Hd

isotr. Therefore, by the definition of B�h(·, f ),

(5.74) B�h(·, f )≤ 5 sup
η∈H:η≤h

B�η(·, f )≤ 5 sup
η∈H:η≤h

d∑
j=1

sup
J∈J

[|K�η| ◦ b∗
η,f,j

]
J (x),
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where, remind �η = (η, . . . , η) ∈ Hd
isotr. We remark that (5.74) is similar to (5.64)

but the maximal operator is not involved in this bound. This, in its turn, allows to
consider �s ∈ [1,∞)d . Indeed, similar to (5.65) we have for any v > 0, applying
(5.36) with t = ∞,

(5.75) B�h(x, f )≤ 5 sup
η∈H:η≤h

∑
j∈J̄ (�h,v)

sup
J∈J

[|K�η| ◦ b∗
η,f,j

]
J (x)+ 4−1v ∀f ∈ F.

We obtain for any f ∈ F, v > 0 and �s = (s1, . . . , sd) ∈ [1,∞)d applying consecu-
tively the Markov inequality and (5.36) with t = sj ,

νd
(
A(�h,f, v))≤ c14

∑
j∈J̄ (h,y)

v−sj
[
B∗
j,sj ,F

(h)
]sj .

We note that the obtained inequality coincides with (5.66) if one replaces Bj,sj ,F(·)
by B∗

j,sj ,F
(·). It remains to note that Bj,sj ,F(·) ≤ B∗

j,sj ,F
(·). Indeed,

bv,f,j (x)= lim
k→∞ sup

h∈H:e−k≤h≤v
b∗
h,f,j (x).

Therefore, by the monotone convergence theorem and the triangle inequality for
any s ∈ [1,∞),

Bj,s,F(h) := sup
f∈F

‖bv,f,j‖s = sup
f∈F

lim
k→∞

∥∥∥ sup
h∈H:e−k≤h≤h

b∗
h,f,j

∥∥∥
s

≤ sup
f∈F

lim
k→∞

∑
h∈H:e−k≤h≤h

∥∥b∗
h,f,j

∥∥
s = sup

f∈F

∑
h∈H:h≤h

∥∥b∗
h,f,j

∥∥
s =: B∗

j,s,F(v).

The fourth statement of the theorem follows now from (5.67), (5.70), (5.72) and
(5.39). �

6. Proof of Theorems 3 and 4. In the subsequent proof c, c1,C,C1, . . . ,
stand for constants that can depend on g,L0,L∞, Q,R, �β , �r , d and p, but are
independent of �L and n. These constants can be different on different appearances.
The proofs are based on the application of Theorem 3 and on some auxiliary as-
sertions presented below.

The bandwidth’s construction presented below as well as auxiliary statements
from the next section will be exploited not only for proving Theorems 3 and 4, but
also in the consideration forming some future Part II of this work. By this reason,
we formulate them in a bit more general form than what is needed for our current
purposes.

6.1. Special set of bandwidths. Let J∞ = {j = 1, . . . , d : rj = ∞} and put
p± = [supj∈J̄∞ rj ] ∨ p, where J̄∞ is complimentary to J∞. Introduce

(6.1) qj =
{
p±, j ∈ J̄∞,

∞, j ∈ J∞,
, γj =

⎧⎪⎨⎪⎩
βjτ(p±)
τ (rj )

, j ∈ J̄∞,

βj , j ∈ J∞.
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Let c = (20d)−1[max(2cK�
‖K�‖∞,‖K�‖1)]−d and let L > 0 be any number sat-

isfying

(6.2) L ≤ 1 ∧ (
C−1

1 c
)∧L0.

Set for any r, s ∈ [1,∞]

κα(r, s)= sω(α)(2 + 1/β(α))

(s +ω(α))
− r, α ∈ [0,1].

Recall that δn = L(α)n−1 lnn and introduce for any v > 0, s ∈ [1,∞],

η̃j (v, s) = (
LL−1

j

) 1
βj
{
a−2δn

} sω(α)
(s+ω(α))βj rj v

1
βj

− sω(α)(2+1/β(α))
(s+ω(α))βj rj ;(6.3)

η̂j (v, s) = (
LL−1

j

) 1
γj
{
a−2δn

} sυ(α)
(s+υ(α))γj qj v

1
γj

− sυ(α)(2+1/γ (α))
(s+υ(α))γj qj ,(6.4)

where 1
γ (α)

:=∑d
j=1

2μj (α)+1
γj

, 1
υ(α)

:=∑d
j=1

2μj (α)+1
γj qj

.

The constant a> 0 will be chosen differently in accordance with some special
relationships between the parameters �β , �r , �μ, α and p.

Determine hj (·, s) and hj (·, s), j = 1, . . . , d , from the relations

hj (v, s) = max
{
h ∈ H : h≤ η̃j (v, s)

}
, v > 0;(6.5)

hj (v, s) = max
{
h ∈ H : h≤ η̂j (v, s)

}
, v > 0,(6.6)

and set �h(·, s)= (h1(·, s), . . . ,hd(·, s)) and �h(·, s) = (h1(·, s), . . . ,hd(·, s)).

6.2. Auxiliary statements. All the results formulated below are proved in Sec-
tion 7. Let

z(v)= 2
(
a−2δn

)− ω(α)
ω(α)+u v

ω(α)(2+1/β(α))
ω(α)+u , u ∈ [1,∞],

and remark that z(·)≡ 2 if u = ∞. Note also that

(6.7) z(v)≥ 2 ∀v ≥ (
a−2δn

) 1
2+1/β(α) =: v.

Introduce the following notation: μ(α)= minj=1,...,d μj (α),

X = 1

2β(α)
− 1

2β(0)
=

d∑
j=1

μj (α)

βj
, Y = 1

2ω(α)
− 1

2ω(0)
=

d∑
j=1

μj (α)

βj rj
.

Recall that z(α)= ω(α)(2 + 1/β(α))β(0)τ (∞)+ 1 and define

(6.8) v = (
a−2δn

) 1
1−1/ω(α)+1/β(α) , v = (

a−2δn
)ω(α)τ(∞)β(0)

z(α)+ω(α)/u .

Set u∗ = [−τ(∞)β(0)]−1 if τ(∞) < 0 and let u∗ = ∞ if τ(∞) ≥ 0. Put finally
y = u∗ ∨ p∗ and Zy,u(α)= Y − [X + 1]y−1 + 1/u.



270 O. V. LEPSKI AND T. WILLER

PROPOSITION 2. Let �β , �r , L0,L∞, �μ, α and p be given. Assume that �L ∈
[L0,L∞]d . Then:

(1) There exists a> 0 independent of �L such that for all n large enough

�h(v,1) ∈H(v) ∀v ∈ [v,1].
(2) There exists a > 0 independent of �L and u > 1 such that �h(v,u) ∈

H(v, z(v)) for all large n if either τ(∞)≥ 0 or Zy,u(α)≥ 0, τ(p∗)≥ 0.

Recall that v → 0, n→ ∞, is defined in (6.7) and introduce

v1 = (
a−2δn

) 1
1−u/ω(0)+1/β(0) , v3 = (

a−2δn
)− Y+1/u

π(u)∨0 ,(6.9)

where π(u)= [1/ω(0)− 1/u][1 +X] − 1/β(0)[Y + 1/u]. Define also

(6.10) v = v1{τ(p∗)>0} + v21{τ(p∗)≤0}, v2 = (
a−2δn

) uω(1)
κ1(p

∗,u)(ω(1)+u) .

Note that v1 → ∞, n → ∞, if ∞ > u ≥ u∗ ∨ p∗ (it will be proved in Proposi-
tion 3 below). However, v1 = 1 if u = ∞. As it is shown in the proof of Propo-
sition 2, formulae (7.12), v < v for all n large enough. Also v2 → ∞, n → ∞, if
κ1(p

∗,u) < 0. At last v3 → ∞, n → ∞, since ω(0) > ω(1). Moreover, v3 = ∞
if π(u)≤ 0. Introduce finally

Iu(α)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[v,1], p∗ = ∞,

[v,v1], α �= 1,p∗ <∞;
[v,v], α = 1,p∗ <∞,Zy,u(α)≥ 0;
[v,v3], α = 1,p∗ <∞,Zy,u(α) < 0.

PROPOSITION 3. Let �β , �r , L0,L∞, �μ, α and p be given and let �L ∈
[L0,L∞]d , u ∈ [y,∞]. Then there exists a> 0 independent of �L and u such that
for all n large enough �h(v,u) ∈ H(v, z(v)), v ∈ Iu(α).

In the current paper, we will use the statements of Proposition 2 and 3 only with
u = ∞. In this context, we remark that κα(·)≡ κα(·,∞).

We finish this section with the following observations which will be useful in
the sequel.

LEMMA 3. For any u ∈ (1,∞] and α ∈ [0,1],
Zy,u(α)≥ 0, τ

(
p∗)≥ 0 ⇒ z(α)/ω(α)− 1 + 2/u ≥ 0;(6.11)

Zy,u(α)≥ 0, τ
(
p∗)≤ 0 ⇒ κα

(
p∗,u

)
< 0;(6.12)

κα

(
p∗,u

)≤ 0, τ
(
p∗)> 0 ⇒ z(α)+ω(α)/u > 0;(6.13)

τ(∞)≥ 0 or Zy,u(α)≥ 0, τ
(
p∗)≥ 0 ⇒ z(α)+ω(α)/u > 0;(6.14)

μ(α)+ 1/u − 1/y ≥ 0 ⇒ Zy,u(α)≥ 0.(6.15)
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The proof of the lemma is put into the Appendix.
Moreover, set r(α)= 1−1/p

1−1/ω(α)+1/β(α) ∧ β(α)
2β(α)+1 . If κα(p

∗)≥ 0, one has

(6.16) �(α)= r(α), ρ(α)= r(α)∧ [
ω(α)/p

]
.

If κα(p
∗) < 0, one has

�(α) = r(α)∧
[
τ(p)ω(α)β(0)

z(α)
1{τ(p∗)>0} + ω(α)(1 − p∗/p)

κα(p∗)
1{τ(p∗)≤0}

]
;(6.17)

ρ(α) = r(α)∧
[
τ(p)ω(α)β(0)

z(α)
1{τ(∞)>0} + ω(α)

p
1{τ(∞)≤0}

]
.(6.18)

6.3. Several bounds. Let us collect some bounds for several terms appearing
in Theorem 2 and used in the proofs of Theorems 3 and 4 simultaneously. The
proof of the following lemma is put into the Appendix.

LEMMA 4. For any v ∈ [v,v] ∪ I∞(α),

��r
(
v,N�r,d( �β, �L),∞)≤ C1δ

ω(α)
n v−ω(α)(2+1/β(α)) ∀v ∈ I∞(α);

��r
(
v,N�r,d( �β, �L))≤ C1δ

ω(α)
ω(α)+1
n v

−ω(α)(2+1/β(α))
ω(α)+1 ∀v ∈ [v,v].

If additionally τ(p∗) > 0, the following inequality with �q defined in (6.1) holds:

vp��q
(
v,N�r,d( �β, �L),∞)≤ C2δ

ω(α)τ(p)β(0)
z(α)

n .

10. From now on, we choose v = v. In view of the first and the second bounds
from Lemma 4 and the definitions of v and v, we get∫ v

v
vp−1[��r

(
v,N�r,d( �β, �L),∞)∧ ��r

(
v,N�r,d( �β, �L))]dv

≤ c4
[
δ

ω(α)
ω(α)+1
n vp−ω(α)(2+1/β(α))

ω(α)+1 1{κα(p)>pω(α)}

+ δ
ω(α)

ω(α)+1
n v

p−ω(α)(2+1/β(α))
ω(α)+1 1{κα(p)<pω(α)}

+ δω(α)n vp−ω(α)(2+1/β(α))1{κα(p)>0}

+ δω(α)n vp−ω(α)(2+1/β(α))1{κα(p)<0}

+ ln (n)
(
δ

ω(α)
ω(α)+1
n 1{κα(p)=pω(α)}

+ δω(α)n 1{κα(p)=0}
)]

=:An + c2δ
ω(α)
n vp−ω(α)(2+1/β(α))1{κα(p)<0}.

(6.19)
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After elementary computations and taking into account (6.16), we obtain

(6.20) An ≤ c5b
p
n (H)δpρ(α)n , An ≤ c5b

p
n (H)δp�(α)n .

These bounds are not surprising because �(α)= ρ(α) if κα(p)≥ 0.

20. We have �H(v) ≤ c6δ

p−1
1−1/ω(α)+1/β(α)
n (lnn)t(H), which yields by (6.16), (6.17)

and (6.18):

(6.21) �H(v)≤ c1b
p
n (H)δpρ(α)n , �H(v)≤ c1b

p
n (H)δp�(α)n .

6.4. Proof of Theorem 3. Furthermore, F = N�r,d( �β, �L) ∩ Fg(R) ∩ B∞,d(Q).
Since Fg(R)∩B∞,d(Q) ⊂ Fg,∞(R,D) with D = Q[1 − α + α‖g‖1], Theorem 2
with u = ∞, q = ∞, D =Q[1 − α + α‖g‖1] ∨Q is applicable with F = F .

10. Consider the case τ(∞) ≤ 0. Choose v = 1 and remark that the statements
of Propositions 2 and 3 hold for any v ∈ [v,v]. Indeed, it suffices to note that
I∞(α) ⊇ [v,v] := [v,1], because v1,v2,v3 > 1 and v ≥ 1 if τ(∞) ≤ 0, τ (p∗) >
0,Zy,∞(α)≥ 0 since in this case v ≥ 1 by (6.14). Then we can apply all the bounds
obtained above, in particular we get from the first inequality of Lemma 4

��r
(
1,N�r,d( �β, �L),∞)≤ C1λ1(1)≤ c6δ

ω(α)
n ≤ c6b

p
n (H)δpρ(α)n ,(6.22)

since ω(α) ≥ pρ(α) in both considered cases in view of the second equality in
(6.16) and of (6.18). Applying the third assertion of Theorem 2, we obtain from
(6.19), (6.20), (6.22) and (6.21)

sup
f∈F

R(p)
n [f̂�h(·), f ] ≤C

[
(c1 + c4 + c5 + c6)b

p
n (H)δpρ(α)n

] 1
p ≤ c7bn(H)δρ(α)n

and the assertion of Theorem 3 follows in both considered cases.
20. Consider the case τ(∞) > 0.
Choose v = v and remark that the statements of Propositions 2 and 3 hold for

any v ∈ [v,v]. Indeed, τ(∞) > 0 implies v < 1 in view of (6.14) and, therefore,
[v,v] ⊆ I∞(α). We deduce from (6.19), (6.20), the third bound in Lemma 4, (6.21)
and applying the first assertion of Theorem 2 that

(6.23) sup
f∈F

R(p)
n [f̂�h(·), f ] ≤ C

[
c8δ

ω(α)τ(p)β(0)
z(α)

n + (c3 + c6)b
p
n (H)δpρ(α)n

] 1
p .

This completes the proof of Theorem 3 in view of (6.18).

6.5. Proof of Theorem 4. In the following, we assume p∗ < ∞, since p∗ =
∞ implies by definition of the anisotropic Nikol’skii class that N�r,d( �β, �L) ⊂
B∞,d(L∞). Hence, the results in that case follow from Theorem 3 since �(α) =
ρ(α) when p∗ = ∞.

Moreover, we remark that the imposed condition p > [minj=1,... μj ]−1 implies
Zy,∞(α) ≥ 0 in view of (6.15) proved in Lemma 3. This, first, makes the second
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assertion of Proposition 2 applicable in the case τ(p∗) > 0. Next, it allows (recall
that p∗ < ∞ and α = 1) to rewrite I∞(1) which appeared in Proposition 3 as
I∞(1) = [v,v].

10. Consider the case τ(p∗) > 0.
Taking into account that �L ∈ [L0,L∞] we remark that in view of Nikol’skii

(1977) [Theorem 6.9.1, Section 6.9] N�r,d( �β, �L) ⊂ Bp∗,d(c9L∞), where c9 is in-
dependent of �L. Thus, Theorem 2 is applicable with u = ∞, q = p∗ and D =
c9L∞ ∨ Q. Choose v = v and remark that the statements of Propositions 2 and 3
hold since v = v. The assertion of the theorem is obtained from (6.19), (6.20), the
third bound in Lemma 4, (6.21), (6.17) and the first assertion of Theorem 2 by the
same computations that led to (6.23).

20. Consider the case τ(p∗) ≤ 0. Since Zy,∞(α) ≥ 0, we have κ1(p
∗) < 0

in view of (6.12) of Lemma 3. This in its turn implies that p∗ > p in this case
because we consider only class parameters belonging to Pp, �μ. Since the defi-
nition of the anisotropic Nikol’skii class implies that N�r,d( �β, �L) ⊂ Bp∗,d(L∞),
we assert that the second assertion of Theorem 2 is applicable with u = ∞,
q = p∗ and D = L∞ ∨ Q. Choose v = v2 and note that v = v2 in the con-
sidered case. Thus, we deduce from (6.19), (6.20), (6.21) and (6.17), denoting
F =N�r,d( �β, �L)∩ Fg,∞(R,Q),

sup
f∈F

R(p)
n [f̂�h(·), f ] ≤C

[
c9δ

ω(1)−ω(1)κ1(p,∞)

κ1(p
∗,∞)

n + (c3 + c6)b
p
n (H)δp�(α)n + δ

ω(1)(p−p∗)
κ1(p

∗,∞)

n

] 1
p

and the assertion of the theorem follows in this case. Theorem 4 is proved.

7. Proofs of Propositions 2 and 3. Without further mentioning, we will as-
sume that n is large enough to provide a−2δn ≤ 1. The proof of the following
lemma is in the Appendix.

LEMMA 5. For any �β , �r , �μ, p ≥ 1 and α ∈ [0,1], the following is true:

1/γ (α)− 1/β(α) = [
τ(∞)β(0)

]−1[1/ω(α)− 1/υ(α)
]
.

7.1. Proof of Proposition 2. We start the proof with several remarks which
will be useful in the sequel. First, obviously there exists 0 < T := T ( �β, �r, �μ,p) <
∞ independent of �L such that

(7.1) lim
n→∞ sup

α∈{0,1}
sup

s∈[1,∞]
sup

v∈[v,1∨v]

d∑
j=1

{ | ln (hj (v,1))| + | ln (hj (v, s))|
lnn

}
= T.

Next, for any s ∈ [1,∞] and any v > 0,

(7.2)
lnn

n

d∏
j=1

(̃
ηj (v, s)

)−1−2μj (α) = 2L
− 1

β(α) a2v2z−1(v).
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(1) Let us proceed to the proof of the first assertion. Note that for all n ≥ 3,

(7.3) �h(v,1) ∈ (0,1]d ∀v ∈ [v,1].
Indeed for any v > 0 we have since L ≤L0,

(7.4) η̃
βj rj
j (v,1) ≤ (

a−2δn
) ω(α)

1+ω(α) v
rj−ω(α)(2+1/β(α))

1+ω(α) , j ∈ J̄∞.

Therefore, for any v ∈ [v,1] one has, in view of the definition of v,

η̃
βj rj
j (v,1)≤ (

a−2δn
) ω(α)

1+ω(α) v1−ω(α)(2+1/β(α))
1+ω(α) = 1, j ∈ J̄∞.

Note that for any j ∈ J∞,

η̃j (v,1)= (
LL−1

j v
) 1
βj ≤ v

1
βj ≤ 1 ∀v ≤ 1

and the proof of (7.3) is completed since hj (·,1)≤ η̃j (·,1) by construction.

Set T0 = [T + 2]ed+2
∑d

j=1 μj (α)L
− 1

β(α) and remark that in view of (7.1), (7.2)
and (7.3) for all n large enough and any v ∈ [v,1],

Gn

(�h(v,1)
)≤ (T + 2) lnn

n
∏d

j=1(hj (v,1))1+μj (α)
≤ T0L

1
β(α) lnn

n
∏d

j=1(̃ηj (v,1))1+μj (α)

≤ T0L
1

β(α) lnn

n
∏d

j=1(̃ηj (v,1))1+2μj (α)
= T0a

2
1+ω(α) δ

ω(α)
1+ω(α)
n v

2−ω(α)/β(α)
1+ω(α) .

(7.5)

Here, we have taken into account that hj (v, s) ≥ e−1ηj (v, s). Since

T0a
2

1+ω(α) δ
ω(α)

ω(α)+1
n v

2−ω(α)/β(α)
1+ω(α) ≤ T0a

2v ⇔ v ≥ v

denoting a = √
a/T0 we assert that

Gn

(�h(v,1)
)≤ av ∀v ∈ [v,1].

The first assertion is established.
(2) Before proving the second assertion, let us make several remarks.
10. For any u ∈ [1,∞], the following is true:

η̂j (v,u) = (
LL−1

j v
) 1
βj , j ∈ J∞;(7.6)

η̂j (v,u) = (
LL−1

j

) 1
γj
(
a−2δn

) ω(α)τ(p±)β(0)
γj [z(α)+ω(α)/u] , j ∈ J̄∞.(7.7)

The equality (7.6) follows directly from the definition of η̂j (v,u) since, we remind
γj = βj , qj = ∞ if j ∈ J∞. Thus, let us prove the equality (7.7):

η̂
γj qj
j (v,u)= (

LL−1
j

)p±(a−2δn
) uυ(α)

u+υ(α) vp±− uυ(α)(2+1/γ (α))
u+υ(α) ∀j ∈ J̄∞.
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Here, we used that qj = p± for any j ∈ J̄∞. Using the definition of v, we get

η̂
γj qj
j (v,u)= (

LL−1
j

)p±(a−2δn
) uυ(α)

u+υ(α)
+ω(α)τ(∞)β(0)

z(α)+ω(α)/u [p±− uυ(α)(2+1/γ (α))
u+υ(α)

]

for any j ∈ J̄∞ Using the definition of z(α), we obtain

A := uυ(α)
u + υ(α)

+ ω(α)τ(∞)β(0)

z(α)+ω(α)/u

[
p± − uυ(α)(2 + 1/γ (α))

u + υ(α)

]

= ω(α)τ(∞)β(0)p±
z(α)+ω(α)/u

+ uυ(α)[1 +ω(α)/u −ω(α)τ(∞)β(0){1/γ (α)− 1/β(α)}]
(u + υ(α))(z(α)+ω(α)/u)

.

We obtain applying Lemma 5

A= ω(α)τ(∞)β(0)p±
z(α)+ω(α)/u

+ uυ(α)ω(α)[1/s + 1/υ(α)]
(u + υ(α))(z(α)+ω(α)/u)

= ω(α)τ(p±)β(0)p±
z(α)+ω(α)/u

.

Thus, (7.7) is established.
20. Next, let us prove that

(7.8) �h(v,u) ∈ (0,1]d ∀u ∈ (1,∞].
If J∞ �= ∅, which is equivalent to p∗ = ∞, the definition of v implies that v ≤ 1
for all n large enough, since τ(p∗) = τ(∞) ≥ 0 and in view of (6.14). We deduce
from (7.6)

hj (v,u)≤ η̂j (v,u)= (
LL−1

j v
) 1
βj ≤ v

1
βj ≤ 1 ∀j ∈ J∞

and (7.8) is proved for any j ∈ J∞.
It remains to note that τ(p±)≥ τ(p∗) since p∗ ≥ p± and, therefore, if τ(p∗)≥

0 we have hj (v,u)≤ η̂j (v,u)≤ 1, for any j ∈ J̄∞ and all n large enough in view

of (6.14), (7.7) and since LL−1
j ≤ 1. Thus, (7.8) is proved.

30. For any u ∈ (1,∞], one has

a−2δn

d∏
j=1

η̂
−1−2μj (α)

j (v,u) ≤ T −1(α)
(
a−2δn

)1−ω(α)τ(∞)β(0)/β(α)+1
z(α)+ω(α)/u ;(7.9)

a−2δn

d∏
j=1

η̂−1
j (v,u) ≤ T −1(0)

(
a−2δn

)1− ω(α)
z(α)+ω(α)/u ,(7.10)

where T (α)= inf �L∈[L0,L∞]d
∏

j∈J∞(LL−1
j )

1+2μj (α)

βj
∏

j∈J̄∞(LL−1
j )

1+2μj (α)

γj .
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Indeed, we have in view of (7.6), (7.7) and the definition of v
d∏

j=1

η̂
1+2μj (α)

j (v,u)≥ T −1(α)
(
a−2δn

) ω(α)τ(p±)β(0)
γ±(α)[z(α)+ω(α)/u]+ ω(α)τ(∞)β(0)

β∞(α)[z(α)+ω(α)/u] ;

d∏
j=1

η̂j (v,u)≥ T −1(0)
(
a−2δn

) ω(α)τ(p±)β(0)
γ±(0)[z(α)+ω(α)/u]+ ω(α)τ(∞)β(0)

β∞(0)[z(α)+ω(α)/u] ,

where we have put 1
β∞(α)

= ∑
j∈J∞

1+2μ(α)
βj

, 1
γ±(α) = ∑

j∈J̄∞
1+2μ(α)

γj
. Note that

for any α ∈ [0,1],
τ(p±)
γ±(α)

+ τ(∞)

β∞(α)
= ∑

j∈J̄∞

(1 + 2μ(α))τ (rj )

βj
+ τ(∞)

β∞(α)
= τ(∞)

β(α)
+ 1

ω(α)β(0)

and (7.9) and (7.10) are established.
40. Simple algebra shows that for any u ∈ [1,∞],(

a−2δn
)1−ω(α)τ(∞)β(0)/β(α)+1

z(α)+ω(α)/u = 2v2z−1(v),

and we deduce from (7.9) for any u ∈ (1,∞] (recall that z≡ 2 if u = ∞)

δn

d∏
j=1

η̂
−1−2μj (α)

j (v,u)≤ 2T −1(α)a2v2z−1(v).(7.11)

Let us also prove that for any u ∈ [1,∞] and all n large enough

v > v := (
a−2δn

) 1
2+1/β(α) ⇒ z(v)≥ 2.(7.12)

The latter inclusion follows from (6.7). Indeed, if τ(∞) ≤ 0 then v ≥ 1 ≥ v. If
τ(∞) > 0, then in view of (6.14)

ω(α)τ(∞)β(0)

z(α)+ω(α)/u
− 1

2 + 1/β(α)
= − 1 +ω(α)/u

[z(α)+ω(α)/u][2 + 1/β(α)] < 0

so v > v. Note at last that for any u ∈ (1,∞]
(7.13) vz−1(v) = 2

(
a−2δn

)ω(α)τ(u)β(0)
z(α)+ω(α)/u .

50. Let us proceed to the proof of the second assertion. Choose a2 <

a2T (α)/(4T0) < 1. We get from (7.1), (7.9) and (7.11) similar to (7.5)

F 2
n

(�h(v,u)
)≤ T0δn∏d

j=1(̂ηj (v,u))1+2μj (α)
≤ 2T0T

−1(α)a2v2z−1(v)

≤ 2−1a2v2z−1(v).

(7.14)

Thus to prove the assertion all we need to show is that �h(v,u) ∈ H(v), that is,
Gn(�h(v,u))≤ av. Let us distinguish three cases.
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50a. Let τ(∞) ≥ 0. We remark that the definition of v in this case yields v ≤ 1
for all n large enough and we obtain from (7.11) and (7.12) that

(7.15) δn

d∏
j=1

η̂
−1−2μj (α)

j (v,u)≤ T −1(α)a2v.

Then we have in view of (7.1), (7.8), (7.9) and (7.15) similar to (7.5)

(7.16) Gn

(�h(v,u)
)≤ T0δn∏d

j=1(̂ηj (v,u))1+2μj (α)
≤ T0T

−1(α)a2v ≤ av.

50b. Let τ(∞) < 0, τ (p∗) ≥ 0 and α �= 1. Then by the imposed assumption
u ≤ u∗, and, therefore, τ(u)≥ 0. We get from (7.13), (6.14) and (7.14)

(7.17) Gn

(�h(v,u)
)= F 2

n

(�h(v,u)
)≤ a2v < av.

50c. Let τ(∞) < 0, τ (p∗)≥ 0, α = 1. We have as previously

G2
n

(�h(u))≤ (T + 2) lnn

n
∏d

j=1(hj (v,u))1+2μj (α)

(T + 2) lnn

n
∏d

j=1 hj (v,u)

≤ 2T 2
0 T

−1(1)T1a
4v2z−1(v)

[
T (0)a−2δn∏d
j=1 η̂j (v,u)

]
.

(7.18)

Here, we have used (7.11) and put T1 = T −1(0)L−1/β(0). Our goal now is to show
that for any u ∈ [1,∞] and all n large enough

(7.19) T (0)a−2δnz
−1(v)

d∏
j=1

η̂−1
j (v,u)≤ 1.

In view of (7.10) and of the definition of z(·) in order to establish (7.19), it suffices
to show that z(1)/ω(1)−1+2/u ≥ 0. Since we assumed τ(∞) < 0 and τ(p∗)≥ 0,
the required results follows from (6.11). Thus, (7.19) is proved. Then choosing a

such that T0(2T −1(1)T1)
1/2a2 ≤ a, we obtain from (7.18) and (7.19) that

Gn

(�h(v,u)
)≤ T0

(
2T −1(α)T1

)1/2
a2v ≤ av

for all all n large enough. The second assertion is proved. �

7.2. Proof of Proposition 3. We start the proof with several remarks which
will be useful in the sequel.

10. Let us show that for all n large enough

(7.20) �h(v,u) ∈ (0,1]d ∀v ∈ Iu(α),∀u ≥ y.

In view of the definition of η̃j (·,u), j = 1, . . . , d ,

(7.21) η̃
βj rj
j (v,u)= (

LL−1
j

)rj {a−2δn
} uω(α)

u+ω(α) v
rj− uω(α)(2+1/β(α))

u+ω(α) , j ∈ J̄∞.
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Therefore, for any v ∈ [v,1] one has, taking into account that L ≤ L0,

η̃
βj rj
j (v,u)≤ {

a−2δn
} uω(α)

u+ω(α) v1− uω(α)(2+1/β(α))
u+ω(α) = 1, j ∈ J̄∞.

It remains to note that v > v for all n large enough and, therefore,

(7.22) η̃j (v,u)≤ 1, j ∈ J̄∞,∀v ∈ [v,1] ∩ Iu(α).

We also have in view of the definition of η̃j (·,u), j = 1, . . . , d ,

η̃j (v,u)= (
LL−1

j v
) 1
βj ≤ 1, j ∈ J∞

for any v ≤ 1. This together with (7.22) proves (7.20) in the cases when Iu(α) =
[v,1]. Noting that p∗ < ∞ is equivalent to J∞ = ∅, we deduce from (7.21) for
any v ≥ 1 and any j = 1, . . . , d ,

η̃
βj rj
j (v,u)≤ {

a−2δn
} uω(α)

u+ω(α) v
p∗− uω(α)(2+1/β(α))

u+ω(α) ≤ {
a−2δn

} uω(α)
u+ω(α) v−κα(p

∗,u).

Thus, for any v ≥ 1, j = 1, . . . , d and for all n large enough

(7.23) η̃
βj rj
j (v,u)≤ 1{κα(p∗,u)≥0} + {

a−2δn
} uω(α)

u+ω(α) ṽ−κα(p
∗,u)1{κα(p∗,u)<0},

where we denoted ṽ = v1 if α �= 1 and ṽ = v if α = 1.
Let α = 1,p∗ < ∞, τ (p∗) > 0. Then ṽ = v and we have for any j = 1, . . . , d

and v ∈ [1,v], using the definition of v,{
a−2δn

} uω(1)
u+ω(1)−κ1(p

∗,u)ω(1)τ (∞)β(0)
z(1)+ω(1)/u = {

a−2δn
}p∗τ(p∗)ω(1)

z(1)+ω(1)/u → 0, n→ ∞
in view of (6.13). Hence, (7.20) follows from (7.23) in this case.

Let α = 1, τ (p∗) ≤ 0. Then ṽ = v2 and we have for any v ∈ [1,v2] in view of
the definition of v2

η̃
βj rj
j (v,u)≤ η̃

βj rj
j (v2,u)= {

a−2δn
} uω(1)

u+ω(1) v−κ1(p
∗,u)

2 = 1, j = 1, . . . , d

and, therefore (7.20) follows from (7.23) in this case.
Let α �= 1,u <∞. First, we note that τ(∞) < 0 and u ≥ y imply

1 − u/ω(0)+ 1/β(0) = 1 − u + uτ(u)≤ 1 − u + uτ(y)≤ 1 − u < 0

since either y = p∗, which is equivalent to τ(p∗)≤ 0, or y = u∗ and then τ(y)= 0.
Thus v1 → ∞, n → ∞ and, therefore, in view of (7.23) for any v ∈ [1,v1] and
j = 1, . . . , d one has

η̃
βj rj
j (v,u)≤ 1{κα(p∗,u)≥0} + {

a−2δn
} uω(α)

u+ω(α) v1
−κ0(p

∗,u)1{κα(p∗,u)<0}.
Note that 1 − u/ω(0) + 1/β(0) = κ0(p

∗,u)[1/u + 1/ω(0)] − (u − p∗)[1/u +
1/ω(0)] and, therefore,

− κ0(p
∗,u)

1 − u/ω(0)+ 1/β(0)
≥ − uω(0)

u +ω(0)
⇒ v−κ0(p

∗,u)
1 ≤ {

a−2δn
}− uω(0)

u+ω(0) .



ORACLE INEQUALITIES AND ADAPTATION 279

It remains to note that if τ(∞)≥ 0 then u∗ = ∞ and, therefore, u = ∞. It implies
v1 = 1 and Iu(α) = [v,1] and this case has been already treated. This completes
the proof of (7.20).

20. Remark that there obviously exists 0 < S := S( �β, �r, �μ,p) <∞ independent
of �L such that

lim
n→∞(lnn)−1 sup

α∈{0,1}
sup

u∈[1,∞]
sup

v∈Iu(α)

d∑
j=1

∣∣ ln (hj (v,u)
)∣∣= S.

Hence, in view of (7.20) one has for all n large enough and v ∈ Iu(α),

Fn

(�h(v,u)
)≤

√
(S + 2)n−1 lnn

d∏
j=1

(
hj (v,u)

)− 1
2 −μj (α);(7.24)

Gn

(�h(v,u)
)≤ (S + 2)n−1 lnn

d∏
j=1

(
hj (v,u)

)−1−μj (α).(7.25)

Taking into account that hj (v,u)≥ e−1η̃j (v,u) and setting

S0 = [S + 2]ed+2
∑d

j=1 μjL
− 1

β(1) ,

we obtain from (7.2) for any α ∈ [0,1] and v ∈ Iu(α),

(7.26) (S + 2)n−1 ln (n)
d∏

j=1

(
hj (v, s)

)1+2μj (α) ≤ 2S0a
2v2z−1(v).

From now on, we choose a≤ a/(2S0) < 1. It yields in view of (7.24), (7.26)

(7.27) F 2
n

(�h(v,u)
)≤ a2v2z−1(v) ∀v ∈ Iu(α).

30. Since (7.27) holds, to complete the proof of Proposition 3 all we need to
show is that Gn(�h(v,u))≤ av,∀v ∈ Iu(α). Let us distinguish three cases.

30a. Let p∗ = ∞ or α �= 1,u = ∞. First, we note that in these cases Iu(α) =
[v,1]. Next, in view of the second inequality in (7.24), (7.20), (7.26) and (7.27)
we obtain for any v ∈ Iu(α):

(7.28) Gn

(�h(v,u)
)≤ (S + 2) lnn

n
∏d

j=1(hj (v,u))1+2μj (α)
≤ a2v2z−1(v) ≤ av.

To get the last inequality, we have used that a < 1, z(·)≥ 2 and v ≤ 1.
30b. Let α �= 1,p∗ < ∞,u < ∞. We have in view of (7.25) and (7.26)

Gn

(�h(v,u)
)≤ a2v2z−1(v) ∀v ∈ Iu(0).

Here, we have also used that μj (α)= 0 for all j . Simple algebra shows that

vz−1(v) = {
a−2δn

} uω(0)
u+ω(0) v

u−ω(0)−ω(0)/β(0)
u+ω(0) , u �= ∞,
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and since u −ω(0)−ω(0)/β(0) > 0 for any u ≥ u∗, the result follows from

sup
v∈Iu(0)

vz−1(v) = v1z
−1(v1)= 1.

30c. Let α = 1,p∗ < ∞. For any v ∈ Iu(1), we have in view of the second
inequality in (7.24) and (7.26), denoting S1 = S0L

−1/β(0),

G2
n

(�h(v,u)
)≤ (S + 2) lnn

n
∏d

j=1(hj (v,u))1+2μj (α)

(S + 2) lnn

n
∏d

j=1(hj (v,u))

≤ S1a
2a2v2z−1(v)a−2δn

d∏
j=1

η̃−1
j (v,u).

(7.29)

Our goal now is to show that for all n large enough

(7.30) sup
v∈Iu(1)

a−2δnz
−1(v)

d∏
j=1

η̃−1
j (v,u)≤ 1.

Denoting P(v) = a−2δnz
−1(v)

∏d
j=1 η̃−1

j (v,u) we easily compute

(7.31) P(v) = 2−1{a−2δn
} 2uω(1)(Y+1/u)

ω(1)+u v
2uω(1)π(u)

u+ω(1) , v > 0.

It yields obviously

(7.32) sup
v∈Iu(1)

a−2δnz
−1(v)

d∏
j=1

η̃−1
j (v,u)≤ max

[
P(v),P (̃v)

]
,

where ṽ ∈ {v,v3}. We deduce from (7.31) that for any u ∈ [1,∞],
(7.33) P(v)= 2−1{a−2δn

} 2+1/β(α)−1/β(0
2+1/β(α) → 0, n→ ∞.

30c1. Consider the case Zy,u(α)≥ 0. Here, ṽ = v.
If τ(p∗) > 0, then v = v. Moreover, y = u∗ since u∗ = ∞ if τ(∞) ≥ 0 and

τ(u∗)= 0 if τ(∞) < 0. Hence z(1)/ω(1)− 1 + 2/u ≥ 0 in view of (6.11) and we
have, in view of the definition of v,

(7.34) P(v) = 2−1{a−2δn
} uω(1)(1/ω(1)−1/ω(0)+2/u)

ω(1)+u + uω2(1)τ (∞)β(0)π(u)
[u+ω(1)][z(α)+ω(α)/u] .

Note that

uω(1)(1/ω(1)− 1/ω(0)+ 2/u)
ω(1)+ u

+ uω2(1)τ (∞)β(0)π(u)
[u +ω(1)][z(1)+ω(1)/u]

= 1 − ω(1)[1/ω(0)− 1/u]
z(1)+ω(1)/u

− ω(1)τ (∞)

z(1)+ω(1)/u
= 1 − ω(1)[1 − 1/u]

z(1)+ω(1)/u
> 0.
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To get the last inequality, we have used that

1 − ω(1)[1 − 1/u]
z(1)+ω(1)/u

> 0 ⇔ z(1)/ω(1)− 1 + 2/u > 0.

Thus, we conclude that P(v) ≤ 1, for all large n, which together with (7.33) im-
plies (7.30) in the considered case.

If τ(p∗)≤ 0, then v = v2 and, moreover, y = p∗. Also, κ1(p
∗,u) < 0 thanks to

(6.12) of Lemma 3. We have, in view of the definition of v2,

(7.35) P(v2)= 2−1{a−2δn
} uω(1)(1/ω(1)−1/ω(0)+2/u)

ω(1)+u + [uω(1)]2π(u)
κ1(p

∗,u)[u+ω(1)]2 .

After routine computations, we come to the following equality:

uω(1)(1/ω(1)− 1/ω(0)+ 2/u)
ω(1)+ u

+ [uω(1)]2π(u)
κ1(p∗,u)[u +ω(1)]2

= −2uω(1)p∗[Y − (X + 1)(y)−1 + 1/u]
κ1(p∗,u)[u +ω(1)] ≥ 0.

Hence, P(v2) ≤ 1 for all n large enough, which together with (7.33) allows us to
assert (7.30) in the considered case.

30c3. Consider the case Zy,u(α) < 0. Here, ṽ = v3. If π(u) ≤ 0, then v3 = ∞
and obviously P(v3)=0. If π(u) > 0, then P(v3) = 1 in view of (7.31) and the
definition of v3. This completes the proof (7.30).

Finally, in the case 30c, choosing a≤ √
1/S1, we deduce from (7.29) and (7.30)

that for all n large enough Gn(�h(v,u))≤ √
S1aav ≤ av, v ∈ Iu(1). �

APPENDIX

PROOF OF LEMMA 3. Note that

z(α)+ω(α)/u = ω(α)
(
2 + 1/β(α)

)
β(0)τ

(
p∗)+ 1 −ω(α)

(
2 + 1/β(α)

)(
p∗)−1

+ω(α)/u

= ω(α)
(
2 + 1/β(α)

)
β(0)τ

(
p∗)− (

p∗)−1(1 +ω(α)/u
)
κα

(
p∗,u

)
and (6.13) follows. On the other hand, we have

z(α)/ω(α)− 1 + 2/u = (2 + 2X)β(0)τ (∞)+ 2Y + 2/u

and (6.11) is checked if τ(∞) ≥ 0 since X,Y ≥ 0. If τ(∞) < 0 and τ(p∗) ≥ 0,
then we note first that necessarily u∗ ≥ p∗ since τ(u∗) = 0 and τ(·) is strictly
decreasing. Hence y = u∗ and we have

z(α)/ω(α)− 1 + 2/u = 2
{
Y − (X + 1)y−1 + 1/u

}= 2Zy,u(α)≥ 0
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and (6.11) is established. Let us prove (6.12). We obviously have

κα(p
∗,u)(u +ω(α))

p∗uω(α)
= −2

[
Y − (X + 1)/p∗ + 1/u

]+ τ
(
p∗)− 1 + 1/u.

If τ(p∗)≤ 0, then necessarily y = p∗ and, therefore, for any u > 1,

κα(p
∗,u)(u +ω(α))

p∗uω(α)
= −2Zy,u(α)+ τ

(
p∗)− 1 + 1/u < 0,

since we have supposed that Zy,u(α)≥ 0.
Let us prove (6.14). If τ(∞)≥ 0, then z(α)≥ 1 and (6.14) follows. If Zy,u(α)≥

0, τ(p∗)≥ 0, then (6.14) follows from (6.11) since u > 1.
It remains to prove (6.15). If α �= 1, (6.15) is trivial because μ(α)= Y =X = 0.

If α = 1, noting that rj ≤ p∗ ≤ y for any j = 1, . . . , d , we have

Y − [X + 1]y−1 + 1/u ≥ μ(1)
[
1 − τ(y)

]− 1/y + 1/u ≥ μ(1)− 1/y + 1/u

and (6.15) follows. To get the last inequality, we have used that τ(u∗)= 0 and that
τ(·) is strictly decreasing, so τ(y)≤ 0. �

PROOF OF LEMMA 4. Let us first prove the following assertions.
10. Let � ∈ N

∗, p > 1 and K satisfying Assumption 4 be fixed. Then for any
�β ∈ (0, �]d , �r ∈ [1,∞]d and �L ∈ (0,∞)d one can find C1 > 0 independent of �L
such that ∀�h ∈ Hd :

(A.2) B
j,rj ,N�r,d ( �β, �L)(hj )≤ C1Ljh

βj
j , j = 1, . . . , d.

If additionally τ(p∗) > 0, then

(A.3) B
j,qj ,N�r,d ( �β, �L)(hj )≤ C1Ljh

γj
j , j = 1, . . . , d.

At last, (A.2) and (A.3) remain true if one replaces the quantity B by B∗.
10a. In view of Lemma 5 in Lepski (2015), if τ(p∗) > 0 then

(A.4) N�r,d( �β, �L)⊆N�q,d( �γ , c2 �L),
where c2 is independent on �L. Note also that γj ≤ βj for any j = 1, . . . , d .

Let (�π, �s) be either ( �β, �r) or ( �γ , �q) and without further mentioning the couple
( �γ , �q) is used below under the condition τ(p∗) > 0. We obviously have for any
�h ∈ H

bh,f,j (x) := sup
h∈H:h≤h

∣∣∣∣ ∫
R

K�(u)
[
f (x + uhej )− f (x)

]
ν1(du)

∣∣∣∣
= sup

h∈H:h≤h

∣∣∣∣ ∫
R

K�(u)
[
�uh,jf (x)

]
ν1(du)

∣∣∣∣.
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For j = 1, . . . , d , we have∫
R

K�(u)�uh,jf (x)ν1(du)=
∫
R

�∑
i=1

(
�

i

)
(−1)i+1 1

i
K�

(
u

i

)[
�hu,jf (x)

]
ν1(du)

= (−1)�−1
∫
R

K�(z)

�∑
i=1

(
�

i

)
(−1)i+�[�izh,j f (x)

]
ν1(dz)

= (−1)�−1
∫
R

K�(z)
[
��

zh,j f (x)
]
ν1(dz).

The last equality follows from the definition of the �th order difference operator
determined in Definition 1. Hence, for any j ∈ J∞ we have in view of the defini-
tion of the Nikol’skii class (remind that γj = βj , j ∈ J∞)

‖bh,f,j‖∞ ≤ Lj sup
h∈H:h≤h

h
πj
j

∫
R

∣∣K�(z)
∣∣|z|πj ν1(dz).

This yields for any h ∈H
(A.5) B

j,∞,N�r,d ( �β, �L)(h)≤ c1Ljhπj ,

and (A.2) and (A.3) are proved for any j ∈ J∞.
Let j ∈ J̄∞. Choosing k from the relation ek = h (recall that h ∈ H), we have

for any x ∈R
d ,

bh,f,j (x)= sup
k≤k

∣∣∣∣ ∫
R

K�(z)
[
��

zek,j
f (x)

]
ν1(dz)

∣∣∣∣
=: lim

l→−∞ sup
l≤k≤k

∣∣∣∣ ∫
R

K�(z)
[
��

zek,j
f (x)

]
ν1(dz)

∣∣∣∣.
Using the monotone convergence theorem and the triangle inequality,

‖bh,f,j‖sj = lim
l→−∞ sup

l≤k≤k

∥∥∥∥∫
R

K�(z)
[
��

zek,j
f (·)]ν1(dz)

∥∥∥∥
sj

≤
k∑

k=−∞

∥∥∥∥∫
R

K�(z)
[
��

zek,j
f (·)]ν1(dz)

∥∥∥∥
sj

.

By the Minkowski inequality for integrals [see, e.g., Folland (1999), Section 6.3],
we obtain

‖bv,f,j‖sj ≤
k∑

k=−∞

∫
R

∣∣K�(z)
∣∣∥∥��

zek,j
f
∥∥
sj
ν1(dz), j = 1, . . . , d

Taking into account that f ∈ N�r,d( �β, �L) and (A.4), we have for any h ∈ H and
j = 1, . . . , d ,

(A.6) ‖bh,f,j‖sj ≤
[∫

R

∣∣K�(z)
∣∣|z|βj ν1(dz)

]
Lj

k∑
k=−∞

ekπj ≤ c1Ljhπj .

This proves (A.2) and (A.3) for any j ∈ J̄∞.
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10b. Set F =N�r,d( �β, �L) and recall that

B∗
j,sj ,F

(h) := sup
f∈F

∑
h∈H:h≤h

∥∥∥∥∫
R

K�(u)
[
f (x + uhej )− f (x)

]
ν1(du)

∥∥∥∥
sj

≤ sup
f∈F

∑
h∈H:h≤h

‖bh,f,j‖sj .

Hence, (A.2) and (A.3) with B∗ instead of B follows from (A.5) and (A.6).

20. First, we remark that hj (·,1)≡ hj (·,∞)≡ hj (·,∞)≤ (LL−1
j )

1
βj , j ∈ J∞.

Then we get, from (A.2) and (6.2) for any j ∈ J∞,

B
j,∞,N�r,d ( �β, �L)

(
hj (v,1)

)= B
j,∞,N�r,d ( �β, �L)

(
hj (v,∞)

)
= B

j,∞,N�r,d ( �β, �L)
(
hj (v,∞)

)
≤ cv ∀v > 0.

It yields, in particular, that for any v > 0,

(A.7) J
(�h(v,1), v

)⊇ J∞, J
(�h(v,∞), v

)⊇ J∞, J
(�h(v,∞), v

)⊇ J∞.

Thus, putting

λ2(v) = ∑
j∈J̄∞

v−rj L
rj
j

[
hj (v,1)

]rj βj + v−2(lnn/n)
d∏

j=1

(
hj (v,1)

)−1−2μj (α)

we obtain in view of (A.2), Propositions 2, 3, (A.7) and the definition of �h(·, s), s ∈
{1,∞} that for any v ∈ I∞(α) and v ∈ [v,1], respectively,

��r
(
v,N�r,d( �β, �L),∞)≤ C1

∑
j∈J̄∞

v−rj L
rj
j

[
hj (v,∞)

]rj βj
(A.8)

≤ C3δ
ω(α)
n v−ω(α)(2+1/β(α));

��r
(
v,N�r,d( �β, �L))≤ C4λ2(v) ≤ C5δ

ω(α)
ω(α)+1
n v

−ω(α)(2+1/β(α))
ω(α)+1 .(A.9)

To get (A.9), we have used that for all n large enough and all v ∈ [v,1],

Fn

(�h(v,1)
)≤ C2(lnn/n)

d∏
j=1

(
hj (v,1)

)−1−2μj (α),

where C2 is independent of �L. This follows from assertions (7.1) and (7.3) estab-
lished in the proof of Proposition 2. The first and second assertions of the lemma
follow now from (A.8) and (A.9), respectively.
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Moreover, if τ(p∗) > 0 we get in view of (A.3), Propositions 2 and (A.7)

vp��q
(
v,N�r,d( �β, �L),∞)≤C1

∑
j∈J̄∞

v−qj L
qj
j

[
hj (v,∞)

]qj γj
≤ C2δ

ω(α)τ(p)β(0)
z(α)

n

and the third assertion of the lemma is established. �

PROOF OF LEMMA 5. Note that

1/γ (α)− 1/β(α) = 1/γ±(α)− 1/β±(α)

= ∑
j∈J±

1 + 2μj (α)

βj

[
τ(rj )/τ (p±)− 1

]

= [
β(0)τ (p±)

]−1 ∑
j∈J±

1 + 2μj (α)

βj
(1/rj − 1/p±)

= [
τ(p±)β(0)

]−1[1/ω(α)− 1/
(
β±(α)p±

)]
.

Moreover, in view of the latter inequality,

1/ω(α)− 1/υ(α) = 1/ω(α)− 1/
(
p±γ±(α)

)
= 1/ω(α)− 1/

(
p±β±(α)

)
− [

τ(p±)β(0)p±
]−1[1/ω(α)− 1/

(
β±(α)p±

)]
= {

1 − [
τ(p±)β(0)p±

]−1}[1/ω(α)− 1/
(
β±(α)p±

)]
.

Note that 1 − [τ(p±)β(0)p±]−1 = τ(∞)/τ (p±) and the lemma follows. �
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