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We show that the winding of the branches in a uniform spanning tree
on a planar graph converge in the limit of fine mesh size to a Gaussian free
field. The result holds assuming only convergence of simple random walk
to Brownian motion and a Russo–Seymour–Welsh type crossing estimate,
thereby establishing a strong form of universality. As an application, we prove
universality of the fluctuations of the height function associated to the dimer
model, in several situations.

The proof relies on a connection to imaginary geometry, where the scaling
limit of a uniform spanning tree is viewed as a set of flow lines associated to
a Gaussian free field. In particular, we obtain an explicit construction of the
a.s. unique Gaussian free field coupled to a continuum uniform spanning tree
in this way, which is of independent interest.
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1. Introduction.

1.1. Main results. Let G be a finite bipartite planar graph. A dimer covering of G is a set
of edges such that each vertex is incident to exactly one edge; in other words it is a perfect
edge-matching of its vertices. The dimer model on G is simply a uniformly chosen dimer
covering of G. It is a classical model of statistical physics, going back to work of Kasteleyn
[17] and Temperley–Fisher [41] who computed its partition function. It is the subject of an
extensive physical and mathematical literature; we refer the reader to [22] for a relatively
recent discussion of some of the most important progress. A key feature of this model is its
“exact solvability” which comes from its determinantal structure [17] and brings in tools from
subjects such as discrete complex analysis, algebraic combinatorics and algebraic geometry.
This is one reason the study of this model has been so successful.

An important tool for the dimer model is a notion of height function introduced by
Thurston [42] which turns a dimer configuration into a discrete random surface in R

3 (i.e.,
a random function indexed by the faces of G with values in R). Therefore a key question
concerns the large-scale behaviour of this height function. It is widely believed that in the
planar case and under very general assumptions, the fluctuations of the height function are
described by (a variant of) the Gaussian free field (see Figure 1).

In this paper, we present a robust approach to proving such results. We now state an ex-
ample of application of this technique. Consider lozenge tiling of the plane by lozenges with
angles π/3 and 2π/3 and sidelength δ, which can be seen equivalently as dimer configura-
tions on the hexagonal lattice of mesh size δ, or stack of cubes in R

3 of size δ. As usual,

FIG. 1. Height function of a dimer model (or lozenge tiling) with planar boundary conditions on a triangle.
Picture by R. Kenyon.
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we describe a tiling by its height function h#δ which we can take to be the z coordinate in
the stack of cubes at each point of the tiling. Given a bounded domain that can be tiled with
lozenges, we define the boundary height to be the curve in R

3 obtained by considering the
height function along the outermost lozenges (which does not depend on the tiling configura-
tion). Set χ = 1/

√
2 (this is the parameter in imaginary geometry associated with κ = 2; see

[33, 34]).

THEOREM 1.1. Let P be a plane in R
3 whose normal vector has positive coordinates,

and let D ⊂ R
2 be a simply connected bounded domain with locally connected boundary.

Then there exists a sequence of domains U#δ ⊂ R
2, which can be tiled by lozenges of size δ,

with the following properties. The boundary height of ∂U#δ stays at distance o(1) of P , ∂U#δ

converges to ∂D in Hausdorff sense, and

h#δ −E(h#δ)

δ
−−→
δ→0

1

2πχ
h0

GFF ◦ �,

in distribution where � is an explicit linear map determined by P and h0
GFF is a Gaussian

free field with Dirichlet boundary conditions in �(D).

Note that convergence holds in distribution on the Sobolev space H−1−η(D) for all η > 0,
once h#δ has been extended to a continuous function on D (essentially by interpolation); see
Section 5.2 for more details. We emphasise here that in Theorem 1.1 above we only prove
the existence of a sequence of domains U#δ such that the result holds. See Section 4.2 of [3]
for details of the construction of U#δ .

Theorem 1.1 is the consequence of a more general theorem (Theorem 1.2) which will
be the focus of this article. The connection between these two theorems is explained in [3]
and exploits a relation between the dimer model and the uniform spanning tree model on
a modified graph called the T-graph introduced in [27]. More precisely, this connection is
a generalisation of Temperley’s celebrated bijection, which equates the height function of a
dimer configuration to the winding of branches in an associated uniform spanning tree.

We now state the general theorem which concerns the winding of branches in a uniform
spanning tree (see Figure 2). Let G#δ be a sequence of planar (possibly directed) graphs

FIG. 2. A Uniform spanning tree and its winding field.
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properly embedded in the plane. We assume that G#δ satisfies some natural conditions (stated
precisely in Section 4.1). In particular, the two main assumptions are: (i) simple random walk
on G#δ converges to a Brownian motion as δ → 0, and (ii) a Russo–Seymour–Welsh type
crossing condition, namely, simple random walk can cross any rectangle of fixed aspect ratio
and size at least δ, with a probability uniformly positive over the position, orientation and
scale of the rectangle.

Let D ⊂ C be a bounded domain with locally connected boundary. Let D#δ be the graph
induced by the vertices of G#δ in D with boundary ∂D#δ (the precise description is in Sec-
tion 5.1). Recall also that a wired uniform spanning tree is simply the uniform spanning tree
on the graph obtained from D#δ by identifying all the boundary vertices of D#δ . For more
details on this topic, see Section 1.3 in the Supplementary Material [4] file as well as [32] for
(much) more background.

THEOREM 1.2. Let T #δ be a wired uniform spanning tree on D#δ , and for any v ∈ D#δ

let h#δ(v) denote the winding of the branch of T #δ connecting v and ∂D#δ . Then

h#δ −E
(
h#δ) −−→

δ→0

1

χ
h0

GFF

in the sense of distributions, where h0
GFF is a Gaussian free field with Dirichlet boundary

conditions in D.

By winding in Theorem 1.2, we mean the intrinsic winding, that is, the sum of the turning
angles along the path. See equation (2.3) for precise definition. Note that the scaling is some-
what different from Theorem 1.1 (there is no renormalisation here) because in that theorem
we measure the height defined by lozenges of diameter O(δ) whereas here we measure the
winding (unnormalised) along paths in the tree.

A more precise form of Theorem 1.2 is stated later on in Theorem 5.1. Furthermore, in
Theorem 6.1 we prove a stronger version of this theorem: we obtain the joint convergence
of the winding function and spanning tree to a pair (GFF, continuum spanning tree) which
are coupled together according to the imaginary geometry coupling. The connection to the
theory of imaginary geometry, initiated in [10] and further developed in a sequence of papers
of which [33] and [34] will be the most relevant here, will in fact play a crucial role in this
work. Very informally, imaginary geometry provides a coupling between a Gaussian free
field and an SLE curve so that the “pointwise values” of the field along the curve are given by
the “intrinsic winding” of the SLE curve. Hence this coupling can be viewed as a continuum
analogue of Temperley’s bijection, an observation already alluded to in [10]. In particular, our
approach provides an explicit construction of the a.s. unique Gaussian free field associated to
a continuum uniform spanning tree which may be of independent interest; see Theorem 3.1
for a statement and the discussion immediately below.

Theorem 1.2 may be applied to various other dimer models to show Gaussian free field
fluctuations. We give a brief overview of such examples:

• generalised Temperleyan domains, as described in [26], on graphs which satisfy the as-
sumptions of Section 4.1.

• dimers on double isoradial graphs with uniformly elliptic angles. This recovers and in fact
significantly strengthens a result of Li [31] as her work requires the discrete boundary of
the domain to contain a macroscopic straight line. (Note that the assumptions in Theo-
rem 1.2 are satisfied in this this case by results of Chelkak and Smirnov [7]: for instance,
the crossing assumption is an easy consequence of Theorem 3.10 in [7].)
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• dimers in random environment: for example, on Z
2 with random i.i.d. weights on the even

edges of Z
2 (in which case the law of the dimers is simply proportional to the product

of the weights). We restrict the randomness of the weights to the even sublattice in order
to apply the Temperley bijection, and assume for instance the weights to be balanced and
uniformly elliptic.

• dimers with a defect line: suppose the weight of all the edges in a horizontal line of Z2 is
changed from 1 to z > 0.

1.2. Discussion of the results.

Mean height in dimer models and spanning trees. Theorem 1.1 describes the limiting
distribution of h#δ − E(h#δ) and the reader might be interested to know what can be said
about the mean itself, E(h#δ). First, we point out that on the law of large number scale,
the mean height of the lozenge tiling is known by a result of Cohn, Kenyon and Propp [8]
to converge to a deterministic function which here is simply an affine function (due to our
assumptions about the boundary values of the height function).

Our approach yields further information about E(h#δ). In the spanning tree setting, if h#δ

is the winding of branches in a uniform spanning tree (as in the setup of Theorem 1.2) from
a fixed marked point x on the boundary then we obtain

E
(
h#δ) = m#δ + uD,x + π

2
+ o(1),

where uD,x is the harmonic extension of the anticlockwise winding from x (see equation (2.7)
for a precise definition) and m#δ depends only on the graph and the vertex v at which we are
computing the winding (but interestingly not the domain in which the spanning tree/dimer
configuration is being sampled). Note that a consequence of the above mentioned result of
Cohn–Kenyon–Propp [8] is that m#δ = o(1/δ) uniformly over the graph; in fact much better
bounds can be derived.

For many “reasonable” graphs we suspect that m#δ actually converges to 0, as it is essen-
tially the expected winding of a path converging to a full-plane SLE2. Nevertheless some
assumptions are clearly needed, as the fact that random walk converges to Brownian motion
alone is not enough to give control on the mean winding in a UST. For an example, take the
usual square grid and add a spiral path at every vertex. This example shows that it is only the
fluctuations which may be hoped to be universal, while the mean itself will usually depend
on the microscopic details of the graph.

Relation to earlier results on fluctuations of dimer models. The study of fluctuations in
dimer models has a long and distinguished history, which is not the purpose of this paper to
recall; see [22] for references. However, we mention a few highlights. In [18, 19], Kenyon
showed that the height function on the square lattice for Temperleyan domains (for which
the boundary conditions are planar of slope 0) converge to a multiple of the Gaussian free
field with Dirichlet boundary conditions. The study of dimers on graphs more general than
the square or hexagonal lattices was initiated in [25] where they consider tilings on arbitrary
periodic bipartite planar graphs. The nonperiodic case was first mentioned in [20], also in
the whole plane setting. Convergence to the full plane Gaussian free field on isoradial pe-
riodic bipartite graphs (including ergodic lozenge tilings of arbitrary slope), as well as on
Temperleyan superpositions of isoradial (not necessarily periodic) graphs, is a consequence
of a remarkable work by De Tilière [9].

The interest in the role of boundary conditions was sparked by the observation of the
arctic circle phenomenon: for some domains, in the limit the dimer configuration outside of
some region (the liquid or temperate region) is deterministic (also called frozen). This was
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first identified in the case of the aztec diamond by Jokusch, Propp and Shor [16] (see also
the more recent paper [38] by Romik for a different approach and fascinating connections
to alternating sign matrices). The case of general boundary conditions for the hexagonal
lattice was solved later by Cohn, Kenyon and Propp [8] who obtained a variational problem
determining the law of large numbers behaviour for the height function. This variational
principle was studied by Kenyon and Okounkov in [24] who discovered that in polygonal
domains the boundary between the frozen and liquid regions are always explicit algebraic
curves. In this direction we also point out the recent paper by Petrov [36] and by Bufetov–
Gorin [6] who obtained convergence of the height function fluctuations to the GFF in liquid
regions for some polygonal domains.

A paper by Kenyon [21] discusses the question of fluctuations, with the goal of proving
convergence of the centered height function to a (deformation of) the Gaussian free field in the
liquid region. Unfortunately, the crucial argument in his proof, Lemma 3.6, is incomplete and
at this point it is unclear how to fix it.1 The issue is the following. The central limit theorem
proved in [28] provides an information about convergence of discrete harmonic functions
to continuous harmonic functions. However what is needed in [21] is an estimate on the
discrete derivative of such functions (i.e., the entries of the inverse Kasteleyn matrix) as well
as a control on the speed of convergence so that the errors can be summed when integrating
along paths. (There is a more general question here, which is to better understand the links
between discrete and continuous harmonic functions on quasi-periodic graphs.) Our work
can be seen as a way to get around these issues but more importantly provides a unified and
robust approach to the convergence of fluctuations.

Finally, let us mention that all the above works on fluctuations rely on writing an exact
determinantal formula for the correlations between dimers. The main body of work is then
to find the asymptotic of the entries of these determinants using either exact combinatorics
or discrete complex analytic techniques. Our approach is completely orthogonal, relying on
properties of the limiting objects in the continuum rather than exact computations at the
microscopic level. This is one reason why the results we obtain are valid under less restrictive
conditions on the regularity of the boundary (while such assumptions are typically needed
for the tools of discrete complex analysis). In particular, we do not assume the domain to be
Jordan or smooth, only to have a locally connected boundary. This is the condition required so
that the conformal map from the unit disc to the domain extends to the boundary (Theorem 2.1
in [37]). It is plausible that even this mild condition can be relaxed by appealing to a suitable
notion of conformal boundary (e.g., prime ends; see Section 2.4 in [37]) but we did not pursue
this here in an attempt to keep the paper at a reasonable length.

1.3. A conjecture. Theorem 3.1 provides a continuum analogue of Theorem 1.2, in the
sense that the continuum field is regularised by truncating the SLE branches rather than dis-
cretisation. As already mentioned, this is of independent interest since it gives an explicit
construction of the GFF coupled to a uniform spanning tree according to imaginary geome-
try. We strongly believe that the same result holds for other values of κ . Our proof of The-
orem 3.1 is written in a way that is mostly independent of the value of κ except for a few
lemmas, gathered in Section 2.3. These lemmas concern fairly basic properties of flow lines
which seem very plausible for arbitrary values of κ . However, we did not try to establish
them, preferring to focus on the case κ = 2 only since we also need the analogous discrete
statements later on in the paper.

The above discussion suggests a number of results concerning interacting dimers recently
introduced by Giuliani, Mastropietro and Toninelli [15]. We conjecture that if one applies

1We thank Fabio Toninelli and Rick Kenyon for helpful discussions regarding this lemma.
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Temperley’s bijection to a configuration of interacting dimers as in [15], the Peano curve of
the resulting tree converges to certain space-filling SLEκ ′ defined by Miller and Sheffield
[34] in these cases and that by adjusting the interaction parameter one can at least obtain
any κ ′ ∈ (8 − ε,8 + ε). However, it is quite speculative at the moment as we lack tools
(like Wilson’s algorithm) to study interacting dimers or corresponding Temperleyan spanning
trees. See [14] (which appeared after a draft of our paper was first put on arxiv) for additional
support for our conjecture, and see [23] for a related question.

1.4. Overview of the proof. For the convenience of the reader, we summarise briefly the
main steps of the proof of Theorem 1.2.

Step 1. We first formulate in Theorem 3.1 a continuous analogue of this theorem, where
we study the winding of truncated branches in a continuum wired Uniform Spanning Tree.
Branches of this tree are SLE2 curves, and therefore a key idea is to introduce a suitable
notion of (intrinsic) winding. To do so we rely on a simple deterministic observation (see
Lemma 2.1), which shows that the intrinsic winding of a smooth simple curve is equal to the
sum of its topological winding with respect to either endpoints. After that, we prove by hand
a version of the change of coordinate formula in imaginary geometry:

h̃ ◦ ϕ − χ argϕ′ = h,

where ϕ : D → D̃ is a conformal mapping, χ = 2√
κ

−
√

κ
2 is the constant of imaginary geom-

etry (note that χ = 1/
√

2 for κ = 2), and h, h̃ are GFF with appropriate boundary conditions
in the domains D, D̃. This equation is taken as the starting point of the theory of imaginary
geometry (see, e.g., [33, 40]) but here it must be derived from the model and our definition
of winding. Together with the domain Markov property of the GFF and of the continuum
UST (inherited from the domain Markov property of SLE), this implies that the winding of a
continuum UST is a Gaussian free field with appropriate boundary conditions.

Step 2. After Theorem 3.1 is proved, we return to the discrete UST, and we write

(1.1) h#δ = h#δ
t + ε#δ,

where h#δ is the winding of the branches of the discrete tree, h#δ
t is the winding of the

branches truncated at capacity t , and ε#δ is the difference. When t is fixed and δ → 0 there is
no problem in showing that h#δ

t converges to the regularised winding of the continuum UST
(this follows from results of Yadin and Yehudayoff [43] and results about winding in Step 1).
By Theorem 3.1 mentioned above, we also know that as t → ∞, ht converges to a GFF.

Step 3. It remains to deal with the error term ε#δ . The main idea for this is to construct
a multiscale coupling (Theorem 4.21) with independent full plane USTs, which relies on a
modification of a lemma of Schramm [39]. This allows us to show that the terms ε#δ from
point to point have a fixed mean and are independent of each other, even if the points come
close to each other. This is enough to show that when we integrate against a test function, the
contribution of these terms will vanish.

Step 4. In order to do so, we need to evaluate the moments of h#δ integrated against a
test function; however this requires precise a priori bounds on the moments of the discrete
winding to deal with bad events when the coupling fails. We therefore first derive a priori tail
estimates on the winding of loop-erased random walks (Proposition 4.12). This is where we
make use of our RSW crossing assumptions.

1.5. Organisation of the paper. The paper is organised as follows. In Section 2, some
background and definitions are provided. In Section 3 we formulate and prove the continuum
analogue of Theorem 1.2, Theorem 3.1. In Section 4, we derive the required a priori estimates
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on winding and describe the multiscale coupling. We put all those ingredients together in
Section 5, which completes the proof of Theorem 1.2.

The paper includes fairly technical proofs related to several different areas. This makes a
full account quite long. For the sake of brevity and readability, we will defer the proofs of
some technical statements to a separate file containing the Supplementary Material [4].

Throughout the paper, c, C, c′, C′ etc. will denote constants whose numerical value may
change from line to line. Arg will denote the principal branch of argument with branch cut
(−∞,0]. Also all our domains are bounded unless explicitly stated.

Throughout this paper, universal constants mean constants which do not depend upon any-
thing else in consideration. This should not be confused with our results of “universality”
which is the main topic of this article.

2. Background. For background on SLE and Gaussian free field we refer the reader to
Section A of the Supplementary Material [4]. Our normalisation of the Gaussian free field is
such that the two point function blows up like − log |z − w| as w → z.

NOTATION. For z ∈ D, we denote by R(z,D) the conformal radius of z in the domain
D. That is, if g is any conformal map sending D to the unit disc D and z to 0, then R(z,D) =
|g′(z)|−1.

2.1. Winding of curves. In this section, we recall simple facts about the winding of
smooth curves, which we think are important motivations for the definitions we will use
later. Let γ : [0,1] → C be a (continuous) curve. For 0 ≤ s < t ≤ 1, we will write γ [s, t] for
the curve γ |[s,t].

Topological winding. The topological winding of a curve around a point p /∈ γ [0,1] is
defined as follows. We can write

(2.1) γ (t) − p = r(t)eiθ(t),

where the function θ(t) : [0,∞) 
→ [0,∞) is taken to be continuous. We define the winding
of γ around p, denoted W(γ,p), to be θ(1) − θ(0). We extend this definition to p = γ (0) or
p = γ (1) by the following formulas when they make sense (i.e., the limits exist):

W
(
γ, γ (1)

) = lim
t→1

W
(
γ [0, t], γ (1)

); W
(
γ, γ (0)

) = lim
s→0

W
(
γ [s,1], γ (0)

)
.

Intrinsic winding. The intrinsic winding of a (smooth) curve is defined as follows. Sup-
pose that γ is continuously differentiable and ∀t, γ ′(t) �= 0, and write

(2.2) γ ′(t) = rint(t)e
iθint(t),

where again θint(t) : [0,∞) 
→ [0,∞) is taken to be continuous. We define the intrinsic wind-
ing of γ to be

(2.3) Wint(γ ) := θint(1) − θint(0).

The definition can be extended to piecewise smooth paths by summing the intrinsic wind-
ing of each smooth piece together with the jumps in between these pieces. In general, these
two definitions are very different; think, e.g., of an “8” curve whose intrinsic winding is 0
while its topological winding is either −1, 0, or 1 depending on the point. For simple curves
however they are related by the following topological lemma which in a sense says that the
only amount of nontrivial winding that a simple curve can accumulate is near its endpoints –
anything else has to be unwinded (cancelled out). Its proof can be found in the Supplementary
Material [4] (Lemma B.1).
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LEMMA 2.1. Let γ : [0,1] 
→ C be a smooth simple curve with γ ′(s) �= 0 for all s. We
have

(2.4) Wint(γ ) = W
(
γ, γ (1)

) + W
(
γ, γ (0)

)
.

A further important fact is that the topological winding of any path around a boundary
point can only arise due to winding of the domain itself. To state this precisely, we recall the
following notion of argument argD;x in D with respect to a boundary point x. This is defined
so that

argD;x(b) − argD;x(a) = 

(∫

p

dz

z − x

)

over any smooth path p ⊂ D going from a to b. In other words, x is taken to be the origin and
the argument is determined in a continuous way in the simply connected domain D. A priori
this is defined only up to a global additive constant, whose choice for now can be made
in an arbitrary way. Note that if the boundary is locally smooth at x, and if γ is a smooth
path in D̄ such that γ (0) = x and γ (0,1] ⊂ D then we can define with an abuse of notation
argD;x(γ ′(0)) as limε→0 argD;x(γ (ε)), up to the same global additive constant. With these
definitions, we have the following obvious lemma.

LEMMA 2.2. Let D be a simply connected domain and let x be a fixed boundary point.
Let γ be a smooth curve with γ (0) = x and γ (0,1] ∈ D. We have

W(γ,x) = argD;x
(
γ (1)

) − argD;x
(
γ ′(0)

)
.

In particular, if γ is in addition simple:

Wint(γ ) = W
(
γ, γ (1)

) + argD;x
(
γ (1)

) − argD;x
(
γ ′(0)

)
.

REMARK 2.3. We will be interested in branches of the uniform spanning trees which
are rough self avoiding curves between the boundary of a fixed domain and an inside point.
Furthermore in the discrete, the natural relation is between the intrinsic winding of branches
(it is easily extended to piecewise smooth curves) and the height function so we want to make
sense of the intrinsic winding of an SLE curve. Lemma 2.1 will be crucial because it motivates
the definition of intrinsic winding for a simple curve using only regularity at the endpoint.
Actually as long as we work in a fixed domain the second formula in Lemma 2.2 will allow us
to think that Wint(γ ) = W(γ,γ (1)) losing only unimportant deterministic correction terms.

We now state a lemma showing how the intrinsic winding behaves under conformal maps.
This is one of the key deterministic statements used in this paper: it states that the change in
winding under an application of conformal map ψ is roughly argψ ′. See Remark 2.5 below
for a clean corresponding statement, which however is only valid for smooth curves.

LEMMA 2.4. Let D, D′ be bounded domains with locally connected boundary and let
ψ be conformal map sending D to D′. Let γ : [0,1] 
→ D̄ be a curve in D̄. Assume further
that arg(ψ ′) extends continuously to γ (0) and γ (1). Let z be a point in D \ γ [0,1] and
let R = R(z,D) be its conformal radius and assume that |z − γ (1)| ≤ R/8. Then, letting
x = γ (0) and x′ = ψ(x),

W
(
ψ(γ ),ψ(z)

) − W(γ, z)

= argψ ′(D)

(
ψ ′(z)

) + argD;x(z) − argD′;x′
(
ψ(z)

) + O
(∣∣z − γ (1)

∣∣/R)
,(2.5)
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where the implicit constant in the O(|z − γ (1)|/R) is universal and we choose the global
constants defining the arguments so that the chain rule holds at x = γ (0), that is,

(2.6) argD′;x′
(
(ψ ◦ γ )′(0)

) = argD,x

(
γ ′(0)

) + argψ ′(D)

(
ψ ′(x)

)
.

Furthermore if arg(ψ ′) does not extend to x, the formula still holds up to a global constant
in R depending on the choice of the constants for the arguments and not on γ .

The proof of this lemma can be found in the Supplementary Material [4] (Corollary B.7).
See also Lemma B.8 in the Supplementary Material [4] for a simple geometric condition
guaranteeing that argψ ′ extends continuously near some fixed boundary point x: essentially
all that is required, beyond local connectedness, is a bit of smoothness for ∂D locally around
x. It is this condition which explains why without smoothness, the height function is only
defined up to a global additive constant (see (3.2)).

REMARK 2.5. By letting z → γ (1), for a smooth curve γ in D, we deduce the following
somewhat cleaner statement:

Wint
(
ψ(γ )

) = Wint(γ ) + argψ ′(D)

(
ψ ′(γ (1)

)) − argψ ′(D)

(
ψ ′(γ (0)

))
,

where argψ ′(D) here is any determination of the argument on the image of ψ ′. This is signifi-
cant for the following reasons. The SLE/GFF coupling results developed by Dubédat, Miller
and Sheffield [10, 34] (referred to as imaginary geometry) was defined using a change in
coordinate formula under conformal map using argψ ′. Lemma 2.4 shows that this definition
is consistent with the idea that along a branch, the field takes values equal to the intrinsic
winding of the branch. In that setting, a key insight is that while the intrinsic winding itself
does not make sense, its harmonic extension does and this is the only information needed for
the GFF.

2.2. Continuum uniform spanning tree and coupling with GFF. The breakthrough papers
of Schramm [39] followed by the paper of Lawler, Schramm and Werner [30] established,
among other things, the existence and a precise description of the scaling limit of a uniform
spanning tree of a domain on a square lattice. We call this limit the continuum uniform span-
ning tree. The following lemma is a consequence of their work which relies on the major
result in [30] that loop erased random walk when rescaled converges to a SLE2 curve and
Wilson’s algorithm (see the Supplementary Material [4], Section A.3 for background on Wil-
son’s algorithm). For now, we state the following proposition which is a simple consequence
of their work.

PROPOSITION 2.6 (Wilson’s algorithm in the continuum). Let D be a simply connected
domain and z1, . . . , zk ∈ D. We can sample the (a.s. unique) branches of the continuum wired
UST in a domain D from z1, . . . , zk as follows. Given the branches γi from zi for 1 ≤ i < j ,
we inductively sample the branch from zj as follows. We pick a point p from the boundary of
D′ := D \ ⋃

1≤i<j γi according to harmonic measure from zj and draw a radial SLE2 curve
in D′ from p to zj . The joint law of the branches does not depend on the order in which we
sample the branches.

Readers interested in a more precise exposition are referred to Section A.4 of the Supple-
mentary Material [4].
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Coupling with a GFF. Let D be a simply connected domain whose boundary β is a
smooth closed curve and let x be a marked point in the boundary of the domain. Let us
parametrise the boundary β of D in an anticlockwise direction (meaning that D lies to left of
the curve) and such that β(0) = x. We define intrinsic winding boundary condition on (D,x)

to be a function u defined on the boundary by u(D,x)(β(t)) := Wint(β[0, t]). We call u(D,x)

the intrinsic winding boundary function and extend it harmonically to D.
We extend this definition to any simply connected domain D smooth in a neighbourhood

of a marked point x (but not necessarily smooth elsewhere on the boundary and possibly
unbounded) as follows. Let ϕ : D→ D be a conformal map which maps x to 1. Let u(D,1) be
the intrinsic winding boundary function on (D,1). Define u(D,x) on D by

(2.7) u(D,1) = u(D,x) ◦ ϕ − argϕ′(D) ϕ
′,

where we define argϕ′(D) as the argument defined continuously in ϕ′(D) (note ϕ′(D) do not
contain 0 since ϕ is conformal) with the global constant chosen such that u(D,x) jumps from
2π to 0 at x. One can check that this choice is such that argϕ′(D) ϕ

′ verifies the chain rule
at x as in (2.6). It is elementary but tedious to check that this definition is unambiguous in
the sense that it does not in fact depend on the choice of the conformal map ϕ: indeed, if
one applies a Möbius transform of the disc, winding boundary conditions are changed into
winding boundary conditions.

REMARK 2.7. We can still define u(D,x) up to a global constant for domains with general
boundary.

THEOREM 2.8 (Imaginary geometry coupling). Let D be a simply connected domain
with a marked point x on the boundary and let χ = 1√

2
. Let h = χu(D,x) + h0

D where h0
D

is a GFF with Dirichlet boundary conditions in D and u(D,x) is defined as in (2.7) and
Remark 2.7. There exists a coupling between the continuum wired UST on D and h such that
the following is true. Let {γi}1≤i≤k be the branches of the continuum wired UST from points
{zi}1≤i≤k in D and let D′ = D \ ⋃

1≤i≤k γi . Then the conditional law of h given {γi}1≤i≤k

is the same as χu(D′,x) + h0
D′ where h0

D′ is a GFF with Dirichlet boundary condition in D′.
Furthermore, h is completely determined by the UST and vice-versa.

The proof of Theorem 2.8 is implicit in [10, 30, 33, 34]. We provide a detailed proof in
Section C (Theorem C.2) of the Supplementary Material [4].

2.3. SLE2 estimates. In this section, we gather some estimates purely about SLE which
are needed for Section 3. We note that these estimates are the only place in Section 3 where
we need to restrict ourself to κ = 2. These lemmas are no doubt true for SLEκ curves with
κ ∈ (0,8) and seem fairly well known in the folklore; however we could not find precise ref-
erences. Since in any case we will need the corresponding discrete statement for loop-erased
random walk, we prefer to provide discrete proofs and deduce the continuum statements be-
low from the known convergence of loop-erased random walk to SLE2 [30]. Since these
are the only estimates specific to the case κ = 2, Theorem 3.1 extends immediately to other
values of κ if the statements below are generalised to the corresponding flow lines. (Note
however that when κ �= 2 flow lines are not simply SLEκ curves but rather specific types of
SLEκ(ρ) with marked points.)

The first estimate controls the probability that an SLE targeted to a point w comes close to
another point z in a uniform way and follows from Proposition 4.11, Lemma 4.17 and [30].
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LEMMA 2.9. Let D be a domain in C. There exists a universal constant c0 > 0 such
that the following holds. Let z,w ∈ D and let γw be a radial SLE2 started from a point on
the boundary picked according to harmonic measure from w and targeted at w. Let r =
|z − w| ∧ dist(z, ∂D) ∧ dist(w, ∂D). Then for all 0 < ε < 1/4,

P
(|γw − z| < εr

)
< εc0 .

There also exists absolute constants c, c′ such that if r ′ := dist(w, ∂D) < Diam(D)/10, then
for all R > r ′

P
(
γw ⊂ B(w,R)

) ≥ 1 − c

(
r ′

R

)c′
.

When we work in general domains with possibly rough boundaries, we also need a priori
bounds on moments of the winding, which follow directly from Proposition 4.12 and [30].

LEMMA 2.10. Let D be a simply connected domain, and let z ∈ D. Let γz be radial
SLE2 towards z, started from a point chosen according to harmonic measure on ∂D viewed
from z. There exist constants C,c > 0 such that the following holds. For all t ≥ 0 and n ≥ 1,

P

(
sup

t≤t1,t2≤t+1

∣∣W (
γz[0, t1], z) − W

(
γz[0, t2], z)∣∣ > n

)
< Ce−cn.

In a reference domain such as the unit disc, the winding of a single SLE branch has been
studied extensively starting with the original paper of Schramm [39] itself. In particular,
Schramm obtained the following result, which will be used to say that arbitrary moments of
the winding at a fixed point blow up at most logarithmically.

THEOREM 2.11 ([39], Theorem 7.2). Suppose D is the unit disc and let γ0 be a radial
SLE2 to 0 started from a point chosen according to the harmonic measure (which is just the
uniform measure in this case). We have the following equalities in law

W
(
γ0[0, t],0

) = B(2t) + yt , γ0(0) = ei�,

where B(·) is a standard Brownian motion started from 0, yt is a random variable having
uniform exponential tail and � ∼ Unif[0,2π). In fact, ei(B(2t)+�) is the driving function of
γ0. Also there exists constants C, c such that for all s > 0,

(2.8) P
(∣∣γ0(t)

∣∣ > e−t+s) ≤ Ce−cs .

As a side note, we remark that it is precisely this observation which led Schramm to con-
jecture that loop-erased random walk converges to SLE2, by combining this result together
with Kenyon’s work on the dimer model and his computation of the asymptotic pointwise
variance of the height function.

3. Continuum windings and GFF. The goal of this section is to show that the winding
of the branches in a continuum UST gives a Gaussian free field. By analogy with the discrete,
we wish to show that the intrinsic winding (in the sense of earlier definitions) of the branches
of the continuum UST up to the end points is the Gaussian free field. However, there are
two obstacles if we want to deal with this. First, the branches are rough and hence intrinsic
winding does not make sense. Second, the winding up to the end point blows up because the
branches wind infinitely often in every neighbourhood of their endpoints (indeed this should
be the case since the GFF is not defined pointwise).
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To tackle the first problem, we note that the topological winding is well defined even for
rough curves. We will therefore study the topological winding and add the correction term
from Lemma 2.2 by hand (see Remarks 2.3 and 2.5 for additional details).

We address the second problem by regularising the winding to obtain a well defined func-
tion. The regularisation we use is simply to truncate the UST branches at some point. We
will therefore have to show that this regularised winding field converges to a GFF as the
regularisation is removed.

3.1. Winding in the continuum and statement of the result. Let D be a bounded simply
connected domain with a locally connected boundary and a marked point x on its boundary.
Let T be a continuum wired uniform spanning tree in D. Recall that viewed as a random
variable in Schramm’s space, a.s. for Lebesgue-almost every z ∈ D there is a unique branch
connecting z to ∂D and for a fixed z this has the law of a radial SLE2. For z ∈ D, let γz

be the UST branch starting from z to the boundary (let z∗ be the point where it hits ∂D),
continued by going clockwise along ∂D from z∗ to x. Note that since ∂U is locally connected,
we can think of ∂U as a curve with some parametrisation [37] and hence this description
indeed makes sense. Recall that for any point z, z∗ has the distribution of a sample from the
harmonic measure on the boundary seen from z, which we denote by HarmD(z, ·). Also given
z∗, the part of the curve from z∗ to z is a radial SLE2 curve in D from z∗ to z in law. We
parametrise the part of γz which lies in ∂D by [−1,0] so that γz(−1) = x and γz(0) = z∗. We
parametrise the rest of the curve by capacity, that is, for all t ≥ 0, − log(R(z,D \γz[−1, t]) =
t − log(R(z,D)), where note that the term − log(R(z,D)) is necessary for continuity.

If the boundary of D is smooth in a neighbourhood of x, then γ is smooth near −1 and
we can define

(3.1) hD
t (z) = W

(
γz[−1, t], z) + argD;x(z) − argD;x

(
γ ′(−1)

)
,

where argD;x is defined as in Lemma 2.2. The intuition behind adding these extra terms is
to work with (an emulation of) the intrinsic winding rather than the topological one; see
Lemma 2.2. Note that hD

t is defined almost surely as an almost everywhere function and
hence in particular can be viewed (a.s.) as a random distribution.

For a domain D with general (not necessarily smooth) boundary, the additive constant
argD;x(γ ′(−1)) might becomes ambiguous. We can nevertheless define hD

t (and write simply
ht when there is no chance of confusion) as follows:

(3.2) hD
t (z) = W

(
γz[−1, t], z) + argD;x(z) up to a global constant in R.

For a.e. z, we get a branch γz which is an SLE2 and to which Theorem 2.11 naturally
applies. In particular, for a.e. z we get a driving Brownian motion Bz(2t), which forms a
Gaussian stochastic process when indexed by D. Informally, the next result, which is the
main result of this section, says that this Gaussian process converges to the Gaussian free
field as t → ∞. (In fact, the result below even deals with the error term yt .) Recall that u(D,x)

is the function which gives the intrinsic winding of the boundary curve ∂D, harmonically
extended to D [see (2.7)].

THEOREM 3.1. Let D be a bounded simply connected domain with locally connected
boundary and a marked point x ∈ ∂D. As t → ∞, we have the following convergence in
probability:

ht −−−→
t→∞ hGFF.

The convergence is in the Sobolev space H−1−η for all η > 0, and holds almost surely
along the set of integers, that is, if we only take a limit with t ∈ Z. Moreover, E(‖ht −
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hGFF‖k
H−1−η) → 0 for any k ≥ 1. The limit hGFF is a Gaussian free field with variance 2

and winding boundary conditions: that is, we have

hGFF = (1/χ)h0
GFF + π/2 + u(D,x),

where h0
GFF is a GFF with Dirichlet boundary conditions on D and u(D,x) is defined as in

equation (2.7) and Remark 2.7. When the boundary is rough everywhere, the above conver-
gence should be viewed up to a global constant in R.

REMARK 3.2. The coupling defined above between T and hGFF is in fact the imaginary
geometry coupling of Theorem 2.8. In particular, this result recovers the fact that hGFF is
measurable with respect to T , furthermore providing a fairly explicit construction. It was
already proved in [10] that actually both T and hGFF are measurable with respect to each
other and a little known fact is that Section 8.1 in that paper already sketches an explicit
construction of the field as a function of the tree which is however different from our own.
Note also that the construction in [10] was also conceived as an analogue to Temperley’s
bijection.

The rest of this section is dedicated to the proof of Theorem 3.1. The general strategy is
to first study the k-point functions E[∏ht (xi)] and to only integrate them at the last step
to obtain moments of the integral of ht against test functions. The advantage of working
with the k-point function is that it only depends on k branches of the tree, which we know
how to sample using Proposition 2.6. The existence of limt→∞E[∏ht (xi)] will follow from
relatively simple distortion arguments and is proved in Lemma 3.7. This essentially shows
that limht exists in the sense of moments (in particular, this does not rely on Imaginary
Geometry yet).

To identify the limit, we show that the conditional expectation of limht given some tree
branches agrees with the imaginary geometry definition (Sections 3.3 and 3.4). The unique-
ness in imaginary geometry concludes. Finally, Section 3.5 covers the extension from the disc
to general smooth domains and Section 3.6 upgrades the convergence from finite dimensional
marginals to H−1−η using the moment bounds derived earlier.

3.2. Convergence in the unit disc: One point function. We first prove Theorem 3.1 in the
case D = D of the unit disc, with the marked point 1. The extension of the results to general
domains is discussed in Section 3.5. Until that section, we henceforth assume D = D.

Recall from (3.1) that the definition of ht for this case is given by

(3.3) ht (z) = W
(
γz[−1, t], z) + argD;1(z) − π/2,

where, as in Lemma 2.2, argD;1 is chosen so that argD;1(0) = π .

LEMMA 3.3. Let a1, . . . , ak ∈D be distinct and let K = γa1[0, t1]∪ · · ·∪γak
[0, tk] where

0 ≤ ti ≤ ∞. Fix z ∈ D distinct from any of the ai , and T > 0. Let D′ = D \ K and assume
that 1 is a smooth point of ∂D′. Let g : D′ →D be a conformal map such that g(1) = 1 (note
such a map is not unique). If γz(T ) ∈ B(z, ε) with ε ≤ R(z,D′)/8. Then

W
(
g
(
γz[−1, T ]), g(z)

) + argD;1
(
g(z)

) − argg′(D′)
(
g′(z)

) + ε(T )

= W
(
γz[−1, T ], z) + argD;1(z),(3.4)

where |ε(T )| = O(ε/R(z,D′)) with the implied constant being universal, and as before
argg′(D′) is chosen so that argg′(D′)(g

′(1)) = 0.
Furthermore, assume that dist(z,K ∪ ∂D) > dist(z, γz[0, T ]). Then

(3.5)
e−T

4
≤ R(g(z),D \ g(γz[0, T ]))

R(g(z),D)
≤ e−T dist(z,K ∪ ∂D)−1.
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PROOF. (3.4) is just an application of Lemma 2.4. We only have to check the choice
of the constant in the arguments. First, note that D′ ⊂ D so we can choose argD′;1 to
be a restriction of argD;1. Thus, it remains to check that the chain rule (2.6) implies that
argg′(D′)(g

′(1)) = 0, which however is easy to check thanks to the fact that g′(1) > 0.
Moreover, (3.5) follows easily from conformal invariance and domain monotonicity of the

conformal radius as well as Koebe’s 1/4 theorem (see Theorem 3.17 in [29]). �

Theorem 2.11 deals with SLE curves towards 0. We now provide an extension of this result
for SLE curves towards an arbitrary point in the unit disc.

LEMMA 3.4. Let z ∈ D and let ψ : D 
→ D be the Möbius transformation mapping z to
0 and 1 to 1. If γz(t) ∈ B(z, ε) where ε ≤ R(z,D)/8, then we have:

(3.6) W
(
ψ

(
γz[−1, t]),0

) = W
(
γz[−1, t], z) + π − argD;1(z) + ε(t),

where the error term |ε(t)| ≤ Cε/R(z,D) for some universal constant C > 0 and argD;1 is
chosen so that argD;1(0) = π . Also for all s, t

(3.7) P
(∣∣γz(t) − z

∣∣ > e−t+sR(z,D)
) ≤ ce−c′s,

where c, c′ are independent of z.

The proof can be found in the Supplementary Material [4], Lemma B.9.
We now want to regularise ht a bit further by restricting it to an event where the tip is not

too far away from the endpoint. This is something we often need to do in the following, so
we will define for t ≥ 0 and z ∈ D,

(3.8) A(t, z) := {∣∣γz(t) − z
∣∣ < e−t/2R(z,D)

}; ĥt (z) := ht (z)1A(t,z).

The event A(t, z) and corresponding field ĥt will be used throughout our proof of Theo-
rem 3.1. By Lemma 3.4, A(t, z) is a very likely event:

(3.9) P
(
A(t, z)

)
> 1 − ce−c′t

for some universal constants c, c′ > 0.

LEMMA 3.5. We have for every z ∈ D,

(3.10) lim
t→∞E

(
ĥt (z)

) = 2 argD;1(z) − π

2
.

Also, we have the following bounds on the moments:

(3.11) E
(∣∣ĥt (z)

∣∣k) ≤ c(k)
(
1 + tk/2)

, E
(∣∣ht (z)

∣∣k) ≤ c(k)
(
1 + tk/2)

.

PROOF. We first check equation (3.10) and equation (3.11) for z = 0. Then γz(0) is
uniformly distributed on ∂D, contributing an expected topological winding of π (using the
fact that the Loewner equation is invariant under z 
→ z̄). Adding the term argD;1(0) − π/2
in the definition of ht in equation (3.3) shows that E(ht ) = 3π/2. Furthermore, by The-
orem 2.11, we have E(ht (0)2) ≤ 2t + o(t) and since P(A(t, z)) ≥ 1 − e−ct we deduce
from Cauchy–Schwarz that limt→∞E(ĥt (0)) = 3π/2. The moment bound for ht (0) (and
then for ĥt (0) using Cauchy–Schwarz) follows again from Theorem 2.11 and the inequality
|a + b|k ≤ 2k−1(|a|k + |b|k).

For any other z ∈ D, we start by proving the moment bound equation (3.11). We join
γz(t) and z by a hyperbolic geodesic in D, call the resulting union γ ′, and apply ψ to it.
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Then the image becomes a concatenation of an SLE2 curve targeted towards 0 and another
hyperbolic geodesic. Using equation (3.6) (which is deterministic) with ε = 0, W(ψ(γ ′),0)−
W(γ ′, z) = π − argD;1(z). Since the winding of the hyperbolic geodesics are bounded by at
most π , and the winding of ψ(γ ) possesses the required moment bounds, this proves equation
(3.11) in D.

Now using (3.6):

E
(
W

(
ψ

(
γz[−1, t]),0

)
1A(t,z)

)
= E

(
W

(
γz[−1, t], z)1A(t,z)

)
+ (

π − argD;1(z)
)
P

(
A(t, z)

) +E
(
ε(t)1A(t,z)

)
.(3.12)

Since ψ(γz[−1, t)) is an SLE2 curve towards 0 the left hand side of (3.12) converges to π .
Also from Lemma 3.4, the error term |ε(t)| < ce−c′t → 0 on A(t, z) and hence converges to
0 as t → ∞. Recall also the terms added in the definition of ht in (3.1). Combining all these
together with equation (3.11), we have our result. �

3.3. Conformal covariance of k-point function. In the next lemma, we prove the exis-
tence of the limit of the k-point function of the regularised winding field of the continuum
UST. However, we do not identify the limit at this point as this requires a separate argument.
For this separate argument, we will also need a convergence result of the k-point function
given several branches of T , the continuum UST.

PROPOSITION 3.6. Let {z1, . . . , zk,w1, . . . ,wk′ } be a set of points in D all of which are
distinct. Then the following are true.

• Both limt→∞E(
∏k

i=1 ĥt (zi)) and limt→∞E(
∏k

i=1 ht (zi)) exist and are equal.
• Let A = {γw1, . . . , γwk′ } be a set of branches of T . Let EA denote the conditional expec-

tation given A. Let gA : D \ A 
→ D be some conformal map which fixes 1. Let h̃t be an
independent copy of ht in D. Then

lim
t→∞E

A

(
k∏

i=1

ht (zi)

)
= lim

t→∞E
A

(
k∏

i=1

ĥt (zi)

)

= lim
t→∞E

[
k∏

i=1

(
h̃t

(
gA(zi)

) − argg′
A(D\A)

(
g′

A(zi)
))]

a.s.

We call the function defined by the first point of the proposition the k-point function and
we write it H :

(3.13) H(z1, . . . , zk) := lim
t→∞E

(
k∏

i=1

ht (zi)

)
.

The technical part of the proof of Proposition 3.6 is accomplished in the following lemma.

LEMMA 3.7. Let {z1, z2, . . . , zk} be a set of points in D all of which are distinct. Let
r = mini dist(zi, ∂D) ∧ mini �=j |zi − zj |. Let t1 ≥ t2 > · · · ≥ tk > t ≥ −10 log r + 1 such that
t1 < 10tk . Then there are constants c, c′ depending only on k such that∣∣∣∣∣E

(
k∏

i=1

ĥti (zi)

)
−E

(
k∏

i=1

ĥt (zi)

)∣∣∣∣∣ < ctke−c′t .

The same inequality holds with h instead of ĥ.
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Let us comment on why we need to go through the trouble of considering multiple times
in Lemma 3.7. A first issue is that when we apply a conformal map, the conformal radius
changes differently depending on the point. To get any control both before and after applying
the map we therefore need to allow for different ti ’s (this is, e.g., the case in equation (3.29)).

PROOF. We first claim that it is enough to prove that for ti’s as above,

(3.14)
∣∣∣∣E

(∏
i

ĥti (zi)

)
−E

(∏
i

ĥt (zi)

)∣∣∣∣ ≤ ct
k/2
1 e−c′t .

This clearly completes the proof since we can break up the interval [t, tk] into
⋃J

i=1[t2i−1,

t2i] where t2J−1 ≤ tk < t2J . Using the bound (3.14) for each such interval and using t1 <

10tk , ∣∣∣∣E
(∏

i

ĥti (zi)

)
−E

(∏
i

ĥt (zi)

)∣∣∣∣ ≤ c

∞∑
i=1

(
t2i)k/2

e−c′t2i−1 ≤ ctk/2e−c′t(3.15)

from which Lemma 3.7 follows. The bound for the term involving ht follows from that of
ĥt using equation (3.11), Hölder’s inequality (generalised for k terms) and the exponential
bound on the probability of events A(ti, zi).

To prove (3.14), the idea is to consider several cases depending on how close γzi
gets to

the other points. If it gets very close, the distortion of the conformal map becomes more
pronounced and the estimate in Lemma 3.3 carries large errors. But γzi

getting close to zj

for some j �= i is unlikely by Lemma 2.9 and comes at a price. So there is a tradeoff between
these two situations. Let di = infj �=i dist(zi, γzj

[0,∞)) ∧ r and dmin := mini (di).

Case 1: − log(dmin) > t/4. By Lemma 2.9 and a union bound, P(− logdmin > t/4) ≤
ck(e−t/4

r
)c0 for universal constants c, c0. Using the fact that t > −10 log r + 1, we see that

P(− logdmin > t/4) ≤ cke−c′t for some c′ > 0. Using the one-point moment bounds (3.11)
and Hölder’s (generalised) inequality,

(3.16)
∣∣∣∣E

(∏
i

ĥti (zi)

)
−E

(∏
i

ĥt (zi)

)
1− log(dmin)>t/4)

∣∣∣∣ < ct
k/2
1 e−c′t

for some positive universal constants c, c′ since t > 1.

Case 2: − log(dmin) ≤ t/4. Let Ai := {γzj
[0,∞) : j �= i}. First we observe that it is

enough to prove

(3.17)
∣∣E(

hti (zi) − ht (zi)|Ai

)
1− log(dmin)<t/4

∣∣ ≤ ctie
−c′t

since we can use the decomposition∣∣∣∣E
(∏

i

ĥti (zi)

)
−E

(∏
i

ĥt (zi)

)∣∣∣∣
≤

k∑
i=1

∣∣E(
E

(
ĥti (zi) − ĥt (zi)|Ai

)
ĥt (z1) · · ·

ĥt (zi−1)ĥti+1(zi+1) · · · ĥtn(zk)
)∣∣(3.18)

and then use Hölder’s inequality, (3.17) and the one-point moment bounds (3.11) to obtain
the required bound.
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We now concentrate on the proof of (3.17). We wish to use Lemma 3.3 and map out Ai by
a conformal map ϕ mapping zi to 0 and 1 to 1 and record the change in winding of γzi

. By
(3.5),

e−ti

4
≤ R

(
ϕ(zi),D \ ϕ

(
γzi

[0, ti])) ≤ e−(ti−t/4)

since − log(dmin) ≤ t/4. Therefore, using Lemma 3.3 for an independent copy h̃ of h (note
that the argϕ′(D\Ai)

term cancels), we have

E
((

ĥti (zi) − ĥt (zi)
)
1A(t,zi )|Azi

)
= E

((
h̃t ′i (zi) − h̃t ′(zi) + ε(ti) − ε(t)

)
1A(t,zi )

)
,(3.19)

where |t ′i − ti | < ti/2 and |t ′ − t | < t/2 and |ε(ti)|∨ |ε(t)| ≤ e−ct on A(t, zi). Now notice that
by symmetry, E((h̃t ′i (zi) − h̃t ′(zi))) = 0. We conclude using Cauchy–Schwarz, the moment
bound (3.11) and the bound on the probability on A(t, zi)

c. �

We also need the following estimate which says that the k-point function blows up at most
like a power of log(r) as the points come close.

LEMMA 3.8 (Logarithmic divergence). For any k ≥ 1 and any k distinct points
z1, z2, . . . , zk ∈ D and t > 0,∣∣∣∣∣E

(
k∏

i=1

ht (zi)

)∣∣∣∣∣ ≤ c
(
1 + logk(1/r)

);
∣∣∣∣∣E

(
k∏

i=1

ĥt (zi)

)∣∣∣∣∣ ≤ c
(
1 + logk(1/r)

)
,

where r = mini dist(zi, ∂D) ∧ mini �=j |zi − zj | and c = c(k) > 0 is a constant.

PROOF. We only check the first of these inequalities as the proof of the other is iden-
tical. Let t = −10 log r + 1. By Lemma 3.5, for t ′ ≤ t , we obtain E(

∏k
i=1 |ht ′(zi)|) ≤

C(1 + (t ′)k/2) ≤ C(1 + tk/2) which is what we wanted for t ′ ≤ t . On the other hand if t ′ ≥ t ,
by Lemma 3.7, |E(

∏k
i=1 ht ′(zi) − ∏k

i=1 ht (zi))| < ctke−ct . Combining with the result for
t ′ = t we obtained the desired bound also for t ′ ≥ t . �

PROOF OF PROPOSITION 3.6. Notice that Lemma 3.7 implies that the quantity
E(

∏k
i=1 ht (zi)) (resp. E(

∏k
i=1 ĥt (zi))) is a Cauchy sequence and hence converges. More-

over, ∣∣∣∣∣E
(

k∏
i=1

ht (zi) −
k∏

i=1

ĥt (zi)

)∣∣∣∣∣ ≤ E

(
k∏

i=1

∣∣ht (zi)
∣∣1⋃

i A(t,zi )
c

)

≤ c
(
1 + tk

)
e−c′t → 0.(3.20)

Hence the limits are the same, proving the first point.
To simplify notation, we write g in place of gA and arg in place of argg′

A(D\A). Let r =
mini dist(zi,A∪∂D) and take t > −11 log r +1. From Lemma 3.3, we see (using the obvious
domain Markov property and conformal invariance of the UST) that given A, we have the
equality in distribution

(3.21) ht (z) = h̃ti

(
g(z)

) − argg′(zi) + εi(t),

where

ti = − logR
(
g(zi),D \ g

(
γzi

[0, t])) + logR
(
g(zi),D

)
.
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Hence,

(3.22) E
A

(
k∏

i=1

ĥt (zi)

)
= E

(
k∏

i=1

(
h̃ti

(
g(zi)

) − arg
(
g′(zi)

) + εi(t)
)
1A(t,zi )

)
.

By equation (3.5), |ti − t | ≤ log 4 + log(1/r). Therefore almost surely, 9t/10 ≤ ti ≤ 11t/10
for all i from the choice of t . Thus ti → ∞ as t → ∞. Further |εi(t)| = O(e−t/2/r) =
O(e−t/2+t/10) → 0 for all i on the event A(t, zi) from Lemma 3.3. Using all this information,
Cauchy–Schwarz, Lemmas 3.7 and 3.8, we obtain∣∣∣∣∣E

(
k∏

i=1

(
h̃ti

(
g(zi)

) − arg
(
g′(zi)

) + εi(t)
)
1A(t,zi )

)

−E(

k∏
i=1

(
h̃9t/10

(
g(zi)

) − arg
(
g′(zi)

))∣∣∣∣∣ ≤ ctke−c′t

almost surely given A. The second item of the proposition now follows from the first item.
�

To prepare for the proof of convergence in the Sobolev space H−1−η for all η > 0 we need
the following convergence of ht integrated against test functions.

LEMMA 3.9. Let {fi}1≤i≤n be smooth compactly supported functions in D. Then for any
sequence of integers k1, . . . , kn,

lim
t→∞E

n∏
i=1

(∫
D

ht (z)fi(z) dz

)ki =
∫
D

∑n
i=1 ki

H(z11, . . . , znkn)

n∏
i=1

ki∏
j=1

fi(zij ) dzij ,

where H is as in Proposition 3.6.

PROOF. Straightforward expansion and Fubini’s theorem yield

E

n∏
i=1

(∫
D

ht (z)fi(z) dz

)ki

=
∫
D

∑n
i=1 ki

E

(
n∏

i=1

ki∏
j=1

ht (zij )

)
n∏

i=1

ki∏
j=1

fi(zij ) dzij .(3.23)

We can apply Fubini because the term inside the integral is integrable from the moment
bounds in Lemma 3.5. We want to take the limit as t → ∞ on both sides of (3.23)
and apply dominated convergence theorem and Proposition 3.6 to complete the proof.
To justify the application of dominated convergence theorem note that by Lemma 3.8,
E|∏n

i=1
∏ki

j=1 ht (zij ))| ≤ log
∑n

i=1 ki/2(r) where r = min(i,j),(i′,j ′) |zij − zi′j ′ | ∧ minij |zij −
∂D|, which is integrable. Further the functions fi ’s are uniformly bounded. �

3.4. Identifying winding as the GFF: Imaginary geometry. At this stage, we have proven
that ht converges as t goes to infinity, even if we are yet to state a precise meaning for this
convergence. However, we do not have any information about the limit law and in particular
the k-point function H is unknown. In this section, we will identify the limit with the GFF,
using the imaginary geometry coupling.

Recall from Section 2.2 that imaginary geometry provides a coupling between a UST and
hGFF, such that conditionally on some branches γi of the UST, hGFF is a GFF in D \ ⋃

γi ,
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plus an argument term. Note that this argument term is exactly the same as the one for the
conditional law of the regularised winding ht (see Proposition 3.6). The key idea will be to
say that if we take a large but finite number of branches, then in D \ ⋃

γi all points are close
to the boundary and therefore both hGFF and ht have a small conditional variance. The means
are essentially the argument terms so they match up to small errors. This will show that hGFF
and ht are close in L2, hence identifying the limit.

Note that the only nontrivial fact about imaginary geometry that we need to use is the
existence of a field hGFF with such a conditional law.

We first need the fact that the centred two-point function G(x,y) (defined below) is small
when one of the points, say x, is near the boundary. For this, we start by a deterministic
lemma about the argument of conformal maps that remove a small set.

LEMMA 3.10 (Distortion of argument). Let K be a closed subset of D̄ such that H =
D\K is simply connected (i.e., K is a hull). Further assume that the diameter of K is smaller
than some δ < 1/2 and 1 /∈ ⋃

x∈K B(x, δ1/2). Let g̃ denote the conformal map sending H to
D with g̃(0) = 0 and g̃(1) = 1. Then∣∣argg̃′(H)

(
g̃′(0)

) − argg̃′(H)

(
g̃′(1)

)∣∣ < Cδ1/2,

where C is a universal constant. Here, argg̃′(H)(·) is the argument in g̃′(H) (which does not
contain 0), defined up to a global unimportant additive constant.

The proof is given in the Supplementary Material ([4], Lemma B.3).
We define

(3.24) G(z1, z2, . . . , zk) = lim
t→∞E

(
k∏

i=1

(
ht (zi) −E

(
ht (zi)

)))

to be the k-point covariance function which exists by Proposition 3.6. Using Lemma 3.10,
we can show that the two-point function is small close to the boundary (i.e., the field has
Dirichlet boundary conditions):

LEMMA 3.11. For all |z| ≥ 3/4 and t2 ≥ t1 > −10 log dist(z, ∂D) + 1 such that t2 <

10t1, ∣∣E(
ht1(z)ht2(0) −E

(
ht1(z)

)
E

(
ht2(0)

))∣∣ ≤ c dist(z, ∂D)c
′
.

In particular, as z → ∂D, G(0, z) → 0.

PROOF. Let r = dist(z, ∂D) = 1 − |z|. Set t = −10 log r + 1. By Lemma 3.7,∣∣E(
ht1(z)ht2(0) − ht (z)ht (0)

)∣∣ ≤ cte−c′t ,∣∣Eht1(z)Eht2(0) −Eht (z)Eht (0)
∣∣ ≤ cte−c′t ,

and observe that cte−c′t ≤ crc′
. Let us define the event G := A(t, z)∩{γz ⊂ B(z,

√
r)} where

here and in the rest of the proof by γz we mean γz[0,∞). From the exponential bound on the
probability of A(t, z), A(t,0) and Lemma 2.9, we have

(3.25) P
(
G ∩A(t,0)

) ≥ 1 − ce−c′t .

By Lemma 3.5 and Cauchy–Schwarz, we see that

(3.26)
∣∣E(

ht (z)ht (0)
) −E

(
ht (z)ht (0)1G,A(t,0)

)∣∣ ≤ cte−c′t .
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Let g : D \ γz 
→ D be a conformal map fixing 0 and 1. Then from Lemma 3.3, we have for
some independent copy h̃t (0) of ht (0),

E
(
ht (0)1A(t,0)|γz

)
1G

= E
((

h̃s(0) − argg′(D\γz)

(
g′(0)

) + ε(t)
)
1A(t,0)

)
1G,(3.27)

where |ε(t)| < ce−c′t on A(t,0) and t + log(|z| − √
r) ≤ s ≤ t + log 4 (as in equation (3.5)),

and where argg′(D\γz)
is chosen as in Lemma 3.3, that is, argg′(D\γz)

(g′(1)) = 0. Note also
that |z| − √

r ≥ 1 − 2
√

r > 0. Thus, we obtain using equation (3.26),

E
(
ht (z)ht (0)

) = O
(
e−ct )

+E
(
ht (z)E

((
h̃s(0) − argg′(D\γz)

(
g′(0)

) + ε(t)
)
1A(t,0)|γz

)
1G

)
.(3.28)

We now expand the terms in the right-hand side and treat each of them separately. Observe
that while h̃ is independent of h, s is still measurable with respect to γz. Hence by symmetry,
E(h̃s(0)|γz) = H(0) a.s. and hence

E
(
ht (z)E

(
h̃s(0)|γz

)) = H(0)E
(
ht (z)

) → H(0)H(z)

as t → ∞. (In fact a symmetry argument holds here as well and there is no need to let
t → ∞.)

Regarding the second term, we claim that E(ht (z) argg′(D\γz)
(g′(0))1G) converges to 0.

Indeed, this follows from the distortion estimate on the argument we did in Lemma 3.10 and
the fact that on G, Diam(γz(t)) <

√
r . Hence by Cauchy–Schwarz, we conclude

E
∣∣ht (z) argg′(D\γz)

(
g′(0)

)
1G

∣∣ < cte−c′t .

Finally, for the third term, since |ε(t)| ≤ e−c′t on A(t,0), we deduce that E(ht (0)ε(t) ×
1A(t,0),G) ≤ te−ct by Cauchy–Schwarz and the moment bound. Consequently, we have
proved ∣∣E(

ht (z)ht (0)
) − H(z)H(0)

∣∣ ≤ ce−c′t .

Using Lemma 3.7, we deduce that |E(ht (z)ht (0)) −E(ht (z))E(ht (0))| ≤ ce−c′t . This proves
the lemma. �

LEMMA 3.12. Let {w1,w2, . . . ,wk} be a set of points in D all of which are distinct. Let
A = {γw1, . . . , γwk

} be the corresponding set of branches of T in D. Let g : D \ A → D be a
conformal map fixing 1. Let gz : D \ A → D be a conformal map which maps z to 0 and 1 to
1. Then for any test function f in C∞(D̄),

lim
t→∞E

[∫
D

ĥt (z)f (z)1dist(z,A)>e−t/10 dz
∣∣A]

=
∫
D

(
2 argD;1

(
g(z)

) − π

2
− argg′(D\A)

(
g′(z)

))
f (z) dz,

where argg′(D\A) is chosen so that argg′(D\A)(g
′(1)) = 0.

lim
t→∞ Var

[∫
D

ĥt (z)f (z)1dist(z,A)>e−t/10 dz
∣∣A]

=
∫
D×D

G
(
0, gz(w)

)
f (z)f (w)dz dw

almost surely, where G(·, ·) is the two-point covariance function defined in equation (3.24).
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PROOF. This proof is an application of dominated convergence theorem. For the first
item, note that for a fixed t we can take the expectation inside by Fubini and the moment
bounds of ĥt . Again observe that from (3.22), we have for an independent copy h̃t of ht in
D, and if we write D(z,A) = {dist(z,A) > e−t/10},∫

D

E
[
ĥt (z)f (z)1D(z,A) dz|A]
=

∫
D

1dist(z,A)>e−t/10E
(
1A(t,z)

(
h̃t ′

(
g(z)

) − argg′(D\A) g
′(z)

)|A)
f (z) dz

+ O
(
e−ct ),

where 9t/10 < t ′ = t ′(z) < 11t/10 almost surely by Lemma 3.3. Therefore, the first item
follows by taking limit on both sides and using dominated convergence theorem (whose ap-
plication is justified by, say, Lemma 3.8).

For the variance computation, recall that we write EA for the conditional expectation given
A. Then, applying the conformal map gz and using (3.21),

E
A[(

ĥt (z) −E
Aĥt (z)

)
1D(z,A)

(
ĥt (w) −E

Aĥt (w)
)
1D(w,A)

]
= E

A

[ ∏
y∈{z,w}

(
h̃ty

(
gz(y)

) + εy(t) −Eh̃tx

(
gz(y)

))
1A(t,y);D(y,A)

]
(3.29)

because once we condition on A, the term argg′
z(D\A)(g

′
z(y)) is nonrandom and hence cancels

out in ĥt (y)−E
Aĥt (y). Note that since z, w are at least at a distance e−t/10 away from A, we

have 9t/10 ≤ ty ≤ 11t/10 for y ∈ {z,w}, and that |εy(t)| ≤ ce−c′t on A(t, y). By Cauchy–
Schwarz and Lemmas 3.5 and 3.7, note that in the right-hand side we can replace tz, tw by t

provided that we add an error term bounded by ce−c′t , uniformly in z and w.
Hence, by Fubini and equation (3.29),

Var
[∫

D

ĥt (z)f (z)1D(z,A) dz)|A
]

=
∫
D2

E

[ ∏
y∈{z,w}

(
h̃t

(
gz(y)

) + εy(t) −Eh̃t

(
gz(y)

))
1A(t,y);D(y,A)

]

× f (z)f (w)dz dw

+ error(t)

=
∫
D2

Cov
(
h̃t (0), h̃t

(
gz(w)

))
f (z)f (w)dz dw + error(t)

=
∫
z∈D

f (z)

∫
y∈D

Cov
(
h̃t (0)h̃t (y)

)∣∣(g−1
z

)′
(y)

∣∣2f (
g−1

z (y)
)
dy dz + error(t),

where the error term satisfies |error(t)| ≤ cte−c′t .
Pointwise convergence of the integrand comes from the definition of the two-point cor-

relation function G. To conclude, we check that we can apply the dominated convergence
theorem. By Lemma 3.11, one can find a δ such that for all y ∈ D with |y| > 1 − δ and all t >

−12 log δ + 1, |Cov(h̃t (0)h̃t (y))| < 1 almost surely. Therefore, on the set {|y| ≥ 1 − δ}, the
integrand in the last equality is bounded by a(y, z) := |(g−1

z )′(y)|2‖f ‖2∞. On the other hand,
by Lemma 3.8 the integrand is bounded by b(y, z) := log(|y| ∧ (1 − |y|))|(g−1

z )′(y)|2‖f ‖2∞
when |y| ≤ 1 − δ.

Note that ∫
{|y|>1−δ}

∣∣(g−1
z

)′
(y)

∣∣2 dy = Leb
({

w : ∣∣gz(w) > 1 − δ
∣∣}) ≤ π,
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therefore a(y, z) is integrable on {|y| > 1 − δ}. Note also that if |y| ≤ 1 − δ, |(g−1
z )′(y)| =

R(g−1
z (y), g−1

z (D))/R(y,D) < cδ−1, so b too is integrable on {|y| ≤ 1 − δ}. Thus, we can
take limit inside the integral. Finally, one can use Proposition 3.6, item 1 to conclude. �

We are now going to use the imaginary geometry coupling of Theorem 2.8 to prove the
following consequence.

THEOREM 3.13. Let f be any test function in C∞(D̄). Let h = h0
GFF + χuD,1 be the

Gaussian free field coupled with the UST according to Theorem 2.8, and let hGFF = (1/χ)h+
π/2. Then we have

lim
t→∞E

(
(ht , f ) − (hGFF, f )

)2 = 0.

In particular, (ht , f ) converges to (hGFF, f ) in L2(P) and in probability as t → ∞.

PROOF. Fix ε > 0. Using Lemma 3.11, pick δ such that we have G(0, y)+2 log(1/|y|) <

ε if |y| ∈ (1 − δ,1). Fix η to be chosen suitably later (in a way which is allowed to depend
on ε and δ). Let A be the set of branches of T from a “dense” set of points, η

4Z
2 ∩ D, to 1.

Note that that R(z,D \A) < η for any z ∈ D by Koebe’s 1/4 theorem. Let D′ = D \A. Define
h̄t (z) = ĥt1dist(z,A)>e−t/10 . First of all notice that

E
(
(ht , f ) − (hGFF, f )

)2

≤ 2E
(
(h̄t , f ) − (hGFF, f )

)2 + 2E
(
(h̄t , f ) − (ht , f )

)2
.(3.30)

By adding and removing ĥt the last expression on the right hand side of (3.30) converges to
0 by (3.20) and the following fact: using Cauchy–Schwarz and the moment bounds on ĥt (z),

E
(
(h̄t , f ) − (ĥt , f )

)2

= E

(∫
D

ĥt (z)f (z)1dist(z,A)≤e−t/10

)2

≤
∫
D2

E
∣∣ĥt (z)ĥt (w)

∣∣‖f ‖2∞1dist(z,A)∨dist(w,A)≤e−t/10 dzdw

≤ c‖f ‖2∞(1 + t)

∫
D2

P
(
dist(z,A) ∨ dist(w,A) ≤ e−t/10)1/2

dzdw

≤ c‖f ‖2∞(1 + t)P
(
dist(U1,A) ∨ dist(U2,A) ≤ e−t/10)1/2

,

where Ui ∼ Unif(D) and are independent of everything else and each other. Now if z is a
point in η

4Z
2 ∩D, then

P
(
dist(U, γz) ≤ e−t/10) ≤ cηe

−c′t

by Lemma 2.9. Hence summing up over O(1/η2) points and using a union bound, we see
that (for every fixed η), P(dist(U1,A) ∨ dist(U2,A) ≤ e−t/10)1/2 → 0 exponentially fast and
thus the second term on the right-hand side of equation (3.30) tends to 0.

Let EA and VarA denote the conditional expectation and variance given A. It is easy to see

E
A(

(h̄t , f ) − (hGFF, f )
)2

≤ 3 VarA(h̄t , f ) + 3 VarA(hGFF, f ) + 3
(
E

A(h̄t , f ) −E
A(hGFF, f )

)2
.(3.31)

Note that it is enough to show that as t → ∞ the left-hand side of (3.31) can be made smaller
than ε (in expectation) by choosing η suitably since this implies that the first term in the
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right-hand side of (3.30) is smaller than ε plus a term converging to zero, which completes
the proof.

The last term of (3.31) converges to 0 for every η from the convergence of expectations in
Lemma 3.12 and the fact that hGFF satisfies the correct boundary conditions given A (which
is a consequence of the imaginary geometry coupling).

For the other terms, recall that conditionally on A, hGFF is just a free field in D′ with
variance 1/χ2 and with Dirichlet boundary condition plus a harmonic function. Recall that
the variance of a GFF integrated against a test function is given by an integral of the Green’s
function in the domain. Also recall that the Green’s function is conformally invariant. In
particular if gz is the conformal map from D′ to D sending z to 0 and 1 to 1, using the
explicit formula for the Green’s function in the unit disc, we have

VarA(hGFF) = −
∫
D×D

1

χ2 log
∣∣gz(w)

∣∣f (z)f (w)dz dw.

Plugging in the variance formula derived in Lemma 3.12 and since χ = 1/
√

2,

E
(
VarA

(
(hGFF, f )

)) +E

(
lim

t→∞ VarA(h̄t , f )
)
)

= E

(∫
D×D

(
G

(
0, gz(w)

) − 2 log
∣∣gz(w)

∣∣)f (z)f (w)dz dw

)
.(3.32)

By a change of variable y = gz(w),∫
D

(
G

(
0, gz(w)

) − 2 log
∣∣gz(w)

∣∣)f (w)dw

≤ ‖f ‖∞
∫
D

∣∣(G(0, y) − 2 log |y|)∣∣∣∣(g−1
z

)′
(y)

∣∣2 dy.(3.33)

As in Lemma 3.12, we are going to estimate the integral on two domains, Bδ = {|y| < 1 − δ}
and B ′

δ := D \ Bδ . Recall that by the choice of δ, G(0, y) + 2 log 1/|y| < ε if y ∈ B ′
δ . Hence,∫

B ′
δ

∣∣(G(0, y) − 2 log |y|)∣∣∣∣(g−1
z

)′
(y)

∣∣2 dy < ε Leb
(
g−1

z

(
B ′

δ

))
< πε.

To estimate the integral in Bδ , notice that |(g−1
z )′(y)| = R(g−1

z (y),D′)/R(y,D) < η/δ if
y ∈ Bδ , by Koebe’s 1/4 theorem. Hence,∫

Bδ

∣∣(G(0, y) − 2 log |y|)∣∣∣∣(g−1
z

)′
(y)

∣∣2 dy

<
η2

δ2

∫
Bδ

∣∣G(0, y) − 2 log |y|∣∣dy.(3.34)

The integral on the right-hand side is finite via the bound Lemma 3.8. After bounding the
integral over w, it remains to bound the integral over z in (3.32) by ‖f ‖∞ times the area.
This completes the proof since we can choose η such that η/δ < ε where ε is arbitrary. �

COROLLARY 3.14. In the same setup as Theorem 3.13, for any p > 0, and any sequence
of test functions (f1, . . . , fn) ∈ C∞(D̄) and integers k1, . . . , kn, as t → ∞,

(3.35) E

[∣∣∣∣∣
n∏

i=1

(ht , fi)
ki −

n∏
i=1

(hGFF, fi)
ki

∣∣∣∣∣
p]

→ 0.
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PROOF. It is enough to prove this fact when p is an even integer. For n = 1, this follows
from the fact that (ht , f ) converges in L2(P) towards (hGFF, f ), and (ht , f ) is bounded in
Lp for any p > 1 by Lemma 3.8.

For general n ≥ 1, we proceed by induction, and note that by the triangle inequality in Lp

(i.e., Minkowski’s inequality), if Xn → X and Yn → Y in Lp for every p > 1 then XnYn →
XY in Lp for every p > 1. �

3.5. General domains. In this section, we state our result when D is a bounded domain
with a locally connected boundary and we defer the proof to Theorem F.1 of the Supple-
mentary Material [4]. Recall that our definition of u(D,x) in (2.7) only makes sense when the
boundary is smooth in a neighbourhood of a marked point x ∈ ∂D (while otherwise it is only
defined up to a global additive constant; see Remark 2.7). The general idea is to show that in
the limit one has

hD ◦ ϕ(z) = hD(z) + argϕ′(D)

(
ϕ′(z)

)
, z ∈ D

which is the imaginary geometry change of coordinates (see [33, 34]).

THEOREM 3.15. Let D be as above. Let f be any bounded Borel test function defined on
D̄. Let h = h0

GFF +χu(D,x) be the GFF coupled to the UST according to the imaginary geom-
etry coupling of Theorem 2.8 and u(D,x) is as in (2.7). Then (hD

t , f ) converges to (hD
GFF, f )

in L2(P) and in probability as t → ∞, where hD
GFF = χ−1h + π/2.

3.6. Convergence in H−1−η(D). Let D be a domain with locally connected boundary
and now assume also that D is bounded. Let (ej )j≥1 denote the orthonormal basis of L2(D)

given by the eigenfunctions of −� in D. Let hGFF denote the process defined in Theo-
rem 3.13, which is (1/χ) times a GFF with winding boundary conditions multiplied by χ .
We now strengthen the convergence from a convergence in probability or L2(P) for finite-
dimensional marginals to a convergence in the Sobolev space H−1−η.

PROPOSITION 3.16. For every η > 0, the field ht converges to hGFF in H−1−η in proba-
bility as t → ∞. Further, {hn}n∈N converges almost surely to hGFF as n → ∞ along positive
integers. Also for all 1 ≤ k < ∞, E[‖hu − h∞‖k

H−1−η ] → 0.

PROOF. The basic idea is to show that ht is a Cauchy sequence in H−1−η. Let u ≥ t . We
start by getting bounds on E[(hu − ht , ej )

2]. By Fubini’s theorem and Cauchy–Schwarz,(
E

[
(hu − ht , ej )

2])2

=
(∫

D2
E

[(
hu(z) − ht (z)

)(
hu(w) − ht (w)

)]
ej (z)ej (w)dz dw

)2

≤
∫
D2

(
E

[(
hu(z) − ht (z)

)(
hu(w) − ht (w)

)])2
dzdw

×
∫
D2

e2
j (z)e

2
j (w)dz dw

=
∫
D2

(
E

[(
hu(z) − ht (z)

)(
hu(w) − ht (w)

)])2
dzdw(3.36)

since ej forms an orthonormal basis of L2(D). Let r(z,w) = |z − w| ∧ dist(z, ∂D) ∧
dist(w, ∂D). We are going to break up the integral in (3.36) into two cases, either t ≤
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−10 log(r(z,w)) + 1 (i.e., r10 ≤ e1−t ) or otherwise. In the first case Cauchy–Schwarz and
the bound on moment of order two yield∫

D2

(
E

[(
hu(z) − ht (z)

)(
hu(w) − ht (w)

)])21t≤−10 log(r(z,w))+1 dzdw

≤ c
(
1 + u2) ∫

D2
1r(z,w)10≤e1−t dz dw ≤ c

(
1 + u2)

e−c′t .(3.37)

On the other hand,∫
D2

(
E

[(
hu(z) − ht (z)

)(
hu(w) − ht (w)

)])21t>−10 log(r(z,w))+1 dzdw

≤ cu2e−ct
∫
D2

1t>−10 log(r(z,w))+1 dzdw ≤ c
(
1 + u2)

e−c′t ,(3.38)

where the second inequality above follows from (F.1) of the Supplementary Material [4] to
formulate the correlation in the unit disc, and Lemma 3.7 to control this correlation by r(z,w)

(note that the bound of Lemma 3.7 holds also if ĥ is replaced by h, because of the control
on moments of ht in Lemma 3.5 and the exponential bound on the probability of A(t, z)c).
Combining (3.37) and (3.38), we obtain

(3.39) E
[
(hu − ht , ej )

2] ≤ c
(
1 + u2)

e−ct .

Now let t = n and n ≤ u ≤ n + 1. Then, by Jensen’s inequality,[
E‖hu − hn‖H−1−η

]2 ≤ E
[‖hu − hn‖2

H−1−η

]
= ∑

j≥1

E
[
(hu − hn, ej )

2]
λ

−1−η
j

≤ c
(
1 + n2)

e−c′n
∞∑

j=1

λ
−1−η
j(3.40)

and since
∑∞

j=1 λ
−1−η
j < ∞ by Weyl’s law we deduce (by applying Markov’s inequality

and the Borel–Cantelli lemma) that hn is almost surely a Cauchy sequence in H−1−η along
the integers, and hence converge to a limit h∞ almost surely in H−1−η. Furthermore by the
triangle inequality and (3.40) we get E(‖h∞ −hn‖H−1−η) ≤ Ce−c′n. Then using (3.40) again,
we deduce

E
[‖hu − h∞‖H−1−η

] ≤ C
(
1 + u2)

e−c′u

and hence hu converges in probability in H−1−η to h∞. To get convergence of E[‖hu −
h∞‖k

H−1−η for any k ≥ 1 a similar argument would work: one needs to consider E(ht −
hu, ej )

2k and hence there would be k terms inside the integrals around (3.36). We skip this
here because an exact similar argument with minor modifications is done in the proof of
Theorem 5.1 later. Furthermore we have that h∞ = hGFF by considering the action on test
functions and Theorem 3.13. This finishes the proof of Proposition 3.16 and hence also of
Theorem 3.1. �

4. Discrete estimates on uniform spanning trees. The goal of this section is to gather
the lemmas needed in Section 5 for the proof of the main result, Theorem 1.2. To make the
purpose of the results in this section more clear, it will be useful for the reader to recall the
general overview of the proof in Section 1.4. Recall that one additional difficulty comes from
the fact that we need to deal with convergence of moments and not just convergence in law.
Therefore we also need a priori estimates on the tails of our variables to use Cauchy–Schwarz
bounds and dominated convergence theorems. In particular a bound on the tail of the winding
of loop-erased random walk is derived in Section 4.3.
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4.1. Assumptions on the graph. Let {G#δ}δ>0 be a sequence of planar infinite (directed,
weighted) graphs embedded properly in the plane. This means that for any δ > 0 the em-
bedding is such that no two edges cross each other. (The reader may think of δ usefully as
a “mesh size” or microscopic scale). Vertices of the graph are identified with some points in
C given by the embedding. We allow G#δ to have oriented edges with weights. A continu-
ous time simple random walk {Xt }t≥0 on such a graph G#δ is defined in the usual way: the
walker jumps from u to v at rate w(u, v) where w(u, v) denotes the weight of the oriented
edge (u, v). Given a vertex u in G#δ , let Pu denote the law of continuous time simple random
walk on G#δ started from u. For A ⊂ C, we denote by A#δ the set of vertices of G#δ in A.

In this section, B(a, r) will denote the set {z : |z− a| < r}. For A ⊂C, denote by A+ z :=
{z+ x : x ∈ A} to be the translation of A by z. We assume G#δ has the following properties.

(i) (Bounded density) There exists C such that for any x ∈ C, the number of vertices of
G#δ in the square x + [0, δ]2 is smaller than C.

(ii) (Good embedding) The edges of the graph are embedded in such a way that they are
piecewise smooth, do not cross each other and have uniformly bounded winding. Also, 0 is a
vertex.

(iii) (Irreducible) The continuous time random walk on G#δ is irreducible in the sense
that for any two vertices u and v in G#δ , Pu(X1 = v) > 0.

(iv) (Invariance principle) The continuous time random walk {Xt }t≥0 on G#δ started from
0 satisfies

(Xt/δ2)t≥0
(d)−−→

δ→0
(Bφ(t))t≥0,

where (Bt , t ≥ 0) is a two dimensional standard Brownian motion in C started from 0, and φ

is a nondecreasing, continuous, possibly random function satisfying φ(0) = 0 and φ(∞) =
∞. The above convergence holds in law in Skorokhod topology.

(v) (Uniform crossing estimate) Let R be the horizontal rectangle [0,3] × [0,1] and R′
be the vertical rectangle with same dimensions, and let B1 := B((1/2,1/2),1/4) be the start-
ing ball and B2 := B((5/2,1/2),1/4) be the target ball (see Figure 3). There exist constants
δ0 > 0 and α0 > 0 such that for all z ∈ C, δ > 0, � ≥ 1/δ0, v ∈ �δB1 such that v + z ∈ G#δ ,

(4.1) Pv+z

(
X hits (�δB2 + z) before exiting (�δR+ z)

)
> α0.

The same statement as above holds for crossing from right to left, that is, for any v ∈ �δB2,
(4.1) holds if we replace B2 by B1. Also, the corresponding statements hold for the vertical
rectangle R′.

We point out that the invariance principle starting from zero, together with the crossing
estimate, imply an invariance principle starting from arbitrary vertices v#δ in Gδ converging
to a point z ∈ C as δ → 0. Briefly, by the invariance principle a walk starting from zero has a
positive probability of making a small circuit around z; so that a walk starting from z can be
coupled to the walk starting from zero the first time it hits this circuit (note that this time is
a.s. finite by the crossing assumption).

FIG. 3. An illustration of the crossing condition.
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However, we also point out that that the crossing estimate would not follow from the in-
variance principle even if we assume it for all starting points; this would require a uniformity
in the rate of convergence which does not necessarily hold in interesting examples for appli-
cations (in particular in the case of T-graphs which motivates our work).

REMARK 4.1. In this paper, we make crucial use of a result of Yadin and Yehudayoff
[43] showing convergence of loop-erased random walk to SLE2. This holds under an assump-
tion of invariance principle for simple random walk. However, we need to spare a few words
on their paper since they do not state their main theorems with quite the level of generality
that we need here. Here are the points to note in order to check that their proofs extend to our
setting.

1. They considered backward loop erased random walk, whereas we consider forward
LERW (where loops are erased in chronological order). However, these have the same law,
even when the graph is directed as is the case here (see [29]).

2. They consider scaled versions of a single infinite graphs instead of an arbitrary family
of graphs with a scale parameter δ. However this is just for ease of notation as the proofs never
use the relation between the graphs at different scales and all estimates are uniform over the
underlying graphs.

3. The result of [43] is stated with D = D and z = 0, but this does not play a role in
the proof. Notice in particular that the key estimate on the Poisson kernel ([43], Lemma 1.2)
is stated with the generality we require, namely on an arbitrary domain and an arbitrary
target point. More precisely, the target point is 0 but the domain is an arbitrary domain which
contains 0: this, of course, amounts to the same thing as fixing and choosing an arbitrary
fixed point inside a given domain. They also require that the inner radius of the domain
(with respect to the target point 0) is greater than 1/2. Up to a change of scale, this amounts
to requiring that the point z is at positive distance from the boundary. The convergence in
Lemma 1.2 of [43] is hence uniform in the domain if we assume that the distance from
the boundary is bounded below. In our case, we will only use the result of [43] at a finite
number of points which sit in the support of a compactly supported function f on D, so this
assumption is certainly verified.

See in particular [43], Proposition 6.4 for a statement about the convergence of the driv-
ing function to Brownian motion in the general setup we require. Note that planarity of the
graph plays a crucial role to prove this estimate. Also, the proof of tightness in the sense of
Lemma 6.17 in [43] follows through in our situation with no significant modification.

REMARK 4.2. Let us briefly discuss the role of these assumptions. The invariance prin-
ciple should be essentially a minimal assumption for the convergence. Indeed the Gaussian
free field depends on the Euclidean structure of the plane and it is difficult to imagine any
graph converging in a sense to the Euclidean plane without satisfying an invariance principle.
In practice the invariance principle and irreducibility, together with the fact that there is no ac-
cumulation point, are exactly the assumptions needed for the convergence of the loop-erased
random walk to SLE2 from [43].

Our main additional assumption is the uniform crossing estimate. It is used extensively to
derive various a priori estimates on the behaviour of the random walk, the uniformity over
starting points and scale being a key factor for different multi-scale arguments. We believe
however that there should be some room in our proofs to weaken this assumption.

The bounded density assumption is actually only needed for a union bound in the proof of
Lemma 4.18. It is clear from that proof that it would not be needed if the uniform crossing
assumption was allowed to “scale” with the local density of the graph.



DIMERS AND IMAGINARY GEOMETRY 29

For future reference, we note that the uniform crossing assumption can be rephrased equiv-
alently by saying that there exist δ0, α0 such that for any r > 0, for any δ ≤ rδ0, the probability
to cross rR from rB1 to rB2 (left to right) and from rB2 to rB1 (right to left) is at least α0,
and likewise for the vertical rectangle.

4.2. Russo–Seymour–Welsh type estimates. Let D be a domain with locally connected
boundary. To define the wired UST in the discrete domain, we perform the following surgery.
For every oriented edge (xy) which intersect ∂D, we add an extra auxiliary vertex at the first
intersection point (when following the embedded edge (xy)). We then replace (xy) by an
oriented edge from x to this auxiliary vertex, keeping the same weight. The wired graph is
the graph induced by all the vertices in D#δ along with all the auxiliary vertices and then
wiring (or gluing) together all the auxiliary vertices. We denote by ∂D#δ all the edges with
one endpoint being an auxiliary vertex and another endpoint inside D. The wired UST T #δ

is defined to be a uniform spanning tree on the wired graph. It is useful to think of the wired
tree being sampled by Wilson’s algorithm with the wired vertex being the initial root vertex.
All the results in this section hold without the assumption of CLT (just assumptions (i) and
(v) from Section 4.1 are needed).

We denote by A(x, r,R) the annulus {z ∈ C : r < |z − x| < R}. Let v ∈ A(x, r,R)#δ .
The random walk trajectory from a vertex v is the union of the edges it crosses (viewed as
embedded in C). We say random walk from v does a full turn in A(x, r,R) if the random
walk trajectory intersects every curve in the plane starting from {|z| = r} and ending in {|z| =
R}. We will write X[a, b] for the random walk trajectory between times a and b. We will
allow ourselves to see X[a, b] and the loop-erased walk Y either as sequences of vertices,
continuous paths in C, or as sets depending on the place but this should not lead to any
confusion. For any continuous curve λ ∈ C, with a slight abuse of terminology we will freely
say that “(Xt , t ≥ 0) crosses (or hits) λ at time t > 0” to mean that Xt �= Xt− and the half-
open edge (Xt−,Xt ] intersects the range of λ.

In this section and the next, we will always assume that the loop-erased walk is generated
by erasing loops chronologically from a simple random walk. We will allow ourselves to
refer to the simple random walk associated to a loop-erased walk without further mention of
this.

LEMMA 4.3. Fix 0 < r < R, � = R − r . There exists constants c > 0 and α > 0 depend-
ing only on R/r such that the following holds. For all δ ≤ crδ0 where δ0 is as in item (v), for
all x ∈ C and v ∈ A(x, r + �/3,R − �/3)#δ , the probability that the random walk starting
at v does a full turn before exiting A(x, r,R) is at least α.

PROOF. We use the uniform crossing assumption here and use the notation and termi-
nology as described in Section 4.1. It is easy to see that we can find a sequence of rectangles
R1,R2, . . . ,Rk ⊂ A(x, r +�/4,R −�/4)#δ where each such rectangle is a rectangle of the
form εR+ z or εR′ + z (i.e., a scaling and translation of R or R′) such that the starting ball
of Ri coincides with the target ball of Ri−1, v is in the starting ball of R1 and the following
holds. If the simple random walk iteratively moves from the starting ball to the target ball of
Ri for each i = 1, . . . , k such that the starting vertex of Ri+1 is the vertex where the walk
enters the target ball of Ri , then the walker accomplishes a full turn in A(x, r,R). Here we
can choose the scaling ε as a function of the ratio r , R and the number k to be bounded above
by a constant k0(R/r). Applying the uniform crossing estimate and the Markov property of
the walk, we see that this probability is bounded below by α

k0
0 , thus completing the proof.

�
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Actually, we will need estimates such as Lemma 4.3 to hold even when we condition on
the exit point of the annulus which we will prove now. The first step is to prove a conditional
version of the uniform crossing estimate.

LEMMA 4.4. Fix 0 < r < R and ε < (R− r)/3. There exist constants c = c(R/r, ε/r) >

0, α = α(R/r, ε/r) > 0 such that if δ ≤ crδ0 and x, y ∈ C, the following holds. Let τ be
the stopping time when the random walk exits A(x, r,R)#δ . Let R be a rectangle of the form
y+[0,3η]×[0, η] such that R ⊂ A(x, r +ε,R−ε) and η ≥ ε. Let B1 and B2 be balls defined
as in the uniform crossing estimate, i.e B1 = y + B((

η
2 ,

η
2 ),

η
4 ) and B2 = y + B((

5η
2 ,

η
2 ),

η
4 ).

For all v ∈ B#δ
1 and u ∈ ∂A(x, r,R)#δ such that Pv[Xτ = u] > 0,

Pv[X hits B2 before exiting R|Xτ = u] > α.

PROOF. The following argument is inspired by [43]. Let h(v) = Pv[Xτ = u]. We start
by giving a rough bound on h restricted to A(x, r + ε,R − ε)#δ . Let us fix v, v′ ∈ A(x, r +
ε,R − ε)#δ . Since h is harmonic, there exists a path γ = {v, v1, . . .} from v to ∂(A(x, r,R)#δ)

along which h is nondecreasing. Also since h is harmonic and bounded, if τγ denotes the
hitting time of γ ∪ ∂A(x, r,R) by a simple random walk, we have

h
(
v′) = Ev′

[
h(Xτγ )

] ≥ h(v)Pv′ [Xτγ ∈ γ ].
Using the crossing estimate a bounded number of times as in the proof of Lemma 4.3, it is
clear that there exists a constant β = β(R/r, ε/r) independent of δ and v′ such that

Pv′
[
X does a full turn in A(x, r, r + ε) and

in A(x,R − ε,R) before exiting A(x, r,R)
] ≥ β.

We see that on the above event we have Xτγ ∈ γ so we have proved the Harnack inequality

∀v, v′ ∈ A(x, r + ε,R − ε)#δ, βh(v) ≤ h
(
v′) ≤ (1/β)h(v).

Now, together with the Markov property and the uniform crossing estimate, this gives

Pv[X hits B2 before exiting R and Xτ = u]
≥ Pv(X hits B2 before exiting R) inf

v′∈B#δ
2

h
(
v′) ≥ αβh(v).(4.2)

Dividing by h(v), the proof is complete. �

Using a bounded number of rectangles to surround the center x in A(x, r,R) as in
Lemma 4.3, we get the following corollaries.

COROLLARY 4.5. Suppose we are in the setup of Lemma 4.4. Let τ be the stopping time
when the random walk exits A(x, r,R)#δ . Let v ∈ A(x, r + ε,R − ε) and u ∈ ∂A(x, r,R)#δ

such that Pv(Xτ = u) > 0. Then if δ < crδ0,

Pv

(
X does a full turn in A(x, r,R)|Xτ = u

) ≥ α = α(R/r) > 0.

COROLLARY 4.6. Fix 0 < r < R. There exists a constant c = c(R/r) > 0 and α(R/r) >

0 such that if δ ≤ crδ0 and x ∈ C, v ∈ A(x, r + R−r
3 ,R − R−r

3 )#δ and if u is such that
Pv(Xτ = u) > 0, where τ is the exit time of B(x,R),

Pv

[
X enters B(x, r) before exiting B(x,R)|Xτ = u

] ≥ α.
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The next lemma establishes an exponential tail for the winding of the simple random walk
in an annulus conditioned to exit at a vertex, a key estimate to get an exponential tail on the
winding of loop-erased random walk (Proposition 4.12). Recall that we write X[t, t ′] for the
random walk path between times t and t ′ and W(γ,x) for the topological winding of a path
γ around x.

LEMMA 4.7. Fix 0 < r < R. There exists α = α(R/r) ∈ (0,1) and c such that for all
x ∈ C, δ ∈ (0, crδ0), v ∈ A(x, r + R−r

3 ,R − R−r
3 )#δ , and for all u such that Pv(Xτ = u) > 0

where τ is the exit time of A(x, r,R),

∀n ≥ 1, Pv

(
sup

Y⊂X[0,τ ]
∣∣W(Y, x)

∣∣ ≥ n|Xτ = u
)

≤ C(1 − α)n,

where the supremum is over all continuous paths Y obtained by erasing portions from
X[0, τ ].

PROOF. The proof is technical and can be found in Lemma D.1 of the Supplementary
Material [4]. The main idea is similar to the Harnack inequality in Lemma 4.4: we show that
there is a curve cutting the annulus such that every time we wind around x in the annulus we
hit this curve and there is then a positive probability to escape the annulus without increasing
the winding number. �

Lemma 4.7 will allow us to control the random walk at all scales except the biggest one
(the annulus around the center which intersects the complement of D) since in reality we stop
the walk when it exits D; the following lemma allows us to control this largest scale.

LEMMA 4.8. Fix 0 < r < R. There exists α = α(R/r) > 0 and c such that for all x ∈ C,
δ ∈ (0, crδ0), v ∈ A(x, r + R−r

3 ,R − R−r
3 )#δ , writing τ for the exit time of D \ B(x, r),

∀n ≥ 1, Pv

(
sup

Y⊂X[0,τ ]
∣∣W(Y, x)

∣∣ ≥ n|Xτ ∈ ∂D#δ
)

≤ C(1 − α)n,

and for all u ∈ B(x, r) such that P(Xτ = u) > 0,

∀n ≥ 1, Pv

(
sup

Y⊂X[0,τ ]
∣∣W(Y, x)

∣∣ ≥ n|Xτ = u
)

≤ C(1 − α)n.

In both cases, the supremum is over all continuous paths Y obtained by erasing portions from
X[0, τ ].

Note that when we condition on exiting the domain, it is essential that we do not condition
on the precise exit point. Indeed the stronger statement where we condition on this exit point
does not necessarily hold if the domain itself winds many times around x.

PROOF. Details are similar to Lemma 4.7 and can be found in Lemma D.2 in the Sup-
plementary Material [4]. �

Finally, recalling the definition of γz from (3.1), we need to bound the winding along the
boundary of a domain D#δ from an arbitrary marked point to Xτ where τ is the hitting time
of ∂D#δ . Once again, as in Lemma 4.8, it is important here to note that we can only hope for a
statement that is not conditional on Xτ since a priori the boundary winding can be arbitrarily
large in some places—but these will have small harmonic measure.
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LEMMA 4.9. Let γ #δ
v denote the branch of the tree between v and the marked boundary

vertex x#δ . There exists α > 0 and c,C > 0 depending only on the constants in the uniform
crossing conditions item (v) such that the following holds. For all δ < cδ0R,

∀n ≥ 1, Pv

(∣∣W (
γ #δ
v [−1,0], v) −EW

(
γ #δ
v [−1,0], v)∣∣ ≥ n

) ≤ C(1 − α)n.

PROOF. The idea is to use the replica method, that is, to consider two independent sam-
ples of γ #δ

v and compare their boundary winding. Roughly, we can form a simple loop by
considering the two paths after their last intersection and the portion of the boundary joining
them. Since any simple loop has winding bounded by 2π , the winding of the portion of the
boundary between the two paths is controlled by the winding of these two paths after their
last intersection, whose tails are given by Lemma 4.8. The details are in Lemma D.3 of the
Supplementary Material [4]. �

REMARK 4.10. We emphasise that in general the result of Lemma 4.9 does not hold if
we remove the centering, in the same way that the result cannot hold conditionally on γv(0).

Recall that we aim to decompose the winding into h#δ = h#δ
t + ε#δ (see equation (1.1)).

We have already dealt with the limit of h#δ
t as δ → 0 in the continuum part. It now remains

to say that ε#δ does not contribute because when x �= x′ and t is large, ε#δ(x) and ε#δ(x′) are
nearly independent. This is proved in Section 4.4 by constructing a coupling of the sub tree
around x and x′ with independent variables. This coupling is built by sampling tree branches
in the right order using Wilson algorithm and analysing carefully which part of the graph the
random walks visits while performing the algorithm. In particular, a crucial step is to control
the probability that the loop-erased walk from x comes close to x′ which we now prove.

PROPOSITION 4.11. There exists constants c > 0 and α > 0 depending only on the con-
stants α0, δ0 in the uniform crossing assumption item (v) such that the following holds. Let
D ⊂ C be a domain and let u, v ∈ D. Let r = |u − v| ∧ dist(v, ∂D) ∧ dist(u, ∂D). Let v#δ be
the closest vertex to v in G#δ . Let γ be a loop erased walk starting from v#δ until it exits D#δ .
For all δ ∈ (0, cδ0], for all n ≤ log4(crδ0/δ) − 1 in N,

P
(
dist(u, γ ) < 4−nr

)
< (1 − α)n.

PROOF. We assume |u − v| = r for otherwise we can wait until the simple random walk
comes closer to u. The idea for the proof is the following. If the loop erased walk comes
within distance 4−kr to u, then after the last time the random walk was within distance
4−kr to u, it crossed k annuli without performing a full turn. The probability of this event
is exponentially small in k via Corollary 4.5. Some care is needed since the above time is
obviously not a stopping time.

Now we write the details. Let imax(δ) = �log4(cδ0r/δ)�. Let {Ci}0≤i≤imax denote the circle
of radius 4−ir around u and define C−1 = ∂D. We inductively define a sequence of times
{τk}k≥0 as follows. We have τ0 = 0. Having defined τk to be a time when the random walk
crosses (or hits) some circle Ci(k), we define τk+1 to be the smallest time when leaving the
annulus defined by Ci(k)−1 and Ci(k)+1, and define i(k + 1) to be the index of the circle by
which the random walk leaves the annulus. If i(k) = imax, we define τk+1 to be smallest time
after τk when the walk leaves the ball defined by Cimax−1. We stop if we leave D and let N

be the largest index of τ after which we stop.
Let S := (Xτk

)0≤k≤N denote the sequence of crossing positions of the Ci . Notice that
conditioned on any realisation of S , if k < N , the simple random walk between Xτk

and
Xτk+1 is a simple random walk in the annulus A(u,Ci(k)−1,Ci(k)+1) conditioned to exit at
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Xτk+1 . Furthermore by the Markov property of the walk, conditioned on S , the portions of
random walk (X[τk, τk+1])0≤k≤N−1 are independent.

On the event dist(u, γ ) < 4−nr , the sequence of positions S := {Xτk
}0≤k≤N contains an

index when the random walk crosses Cn since the loop-erased walk is obviously a subset
of the walk. Let κ be the index of the last crossing of Cn by the walk and let γ ′ be the path
obtained by erasing loops from X[0, τκ ], that is, the “current loop-erased path” at time τκ . On
the event dist(u, γ ) < 4−nr , necessarily the random walk did not hit γ ′ after τκ , otherwise
the part of the path closer to u would have been erased. In particular, the random walk did
not do any full turn after time τκ . Also by construction we have N − κ ≥ n.

Therefore, we see that conditioned on the sequence of positions S , the event dist(u, γ ) <

4−nr is included in the event that there was no full turn in the last n intervals [τk, τk+1].
Choosing the constant c to be the constant from Corollary 4.5 associated with annuli of aspect
ratio R/r = 16, we can apply that result for each annulus, since we condition on S and for
each i ≤ imax, if ri is the radius of Ci , we have δ ≤ criδ0 by our choice of imax(δ). Hence
using the independence noted above, the conditional probability of this is at most (1 − α)n

for some α > 0, which concludes the proof. �

4.3. Tail estimate for winding of loop-erased random walk. Let γ #δ
v [0,∞) denote the

branch of the wired UST in D#δ from v to the wired vertex. As in the continuum we
parametrise it by its capacity plus logR(v,D), so that time 0 corresponds to being on ∂D,
and time ∞ to hitting v. We prove that W(γv[t, t + 1]#δ, v) has exponential tail uniformly in
δ and t . (Note that here we do not consider the contribution coming from the winding of the
boundary between the marked boundary vertex x#δ and γ #δ

v (0).)

PROPOSITION 4.12. There exist constants C,c > 0 depending only on the constant in
the uniform crossing assumption item (v) such that the following holds. For all v ∈ D#δ , for
all t ≥ 0, for all δ < ce−t d(v, ∂D#δ)δ0 and n ≥ 1,

P

(
sup

t≤t1,t2≤t+1

∣∣W (
γv[0, t1]#δ, v

) − W
(
γv[0, t2]#δ, v

)∣∣ > n
)

< Ce−cn.

We first set up some notation; these are analogous to the ones in the proof of Proposi-
tion 4.11 except that here we are considering circles of growing size.

Let ri = (4e)i−1e−tR(v,D) for i ≥ −1 and r−2 = 0. Let Ci be the circle of radius ri
centered at v as long as Ci ⊂ D. As soon as Ci is not a subset of D, define Ci = ∂D (call
the maximum index imax and allow us to make small abuse of notation such as calling Cimax

a circle or writing D \ B(v, rimax−1) = A(rimax−1, rimax)). Let X be a random walk from v run
until it leaves the domain D. Let Y(t) be the loop-erasure of X, reparametrised by capacity
seen from v plus logR(v,D) (so in particular Y(∞) = v). We emphasise that we are indexing
circles starting from i = −2.

We inductively define a sequence of times {τk}k≥0 as follows. We have τ0 = 0 and i(0) =
−2, τ1 is the time the random walk crosses C−1 and i(1) = −1. Having defined τk to be the
smallest time when the random walk crosses (or hits) some circle Ci(k), we define τk+1 to be
the smallest time when it hits Ci(k)−1 or Ci(k)+1 and define i(k + 1) to be the index of the
circle it crosses. When i(k) = −1 we define τk+1 only as the next crossing of C0.

Let kexit be the first index such that i(k) = imax, that is, the index corresponding to the
exit from D#δ and we let S = (Xτk

)0≤k<kexit the sequence of crossing positions, not including
the exit position. For any j , we also define Vj to be the sequence of crossings of the circle
Cj , that is, Vj = {k|i(k) = j}. We will call sets of the form X[τk, τk+1] elementary piece of
random walk and we note that conditionally on S they are all independent. In this proof, we
call crossing a time of the form τk .
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Actually we prove something stronger than the statement in the theorem. Let B0 be the
disc with boundary C0. We look at the portion of Y outside B0 counted from the first time it
enters C1 until the last time it enters C0 and bound the maximal winding of any sub-portion
of this part of the path. Note that from Koebe’s 1/4 theorem for any t ≥ 0, the circle C0 does
not intersect ∂D and the times t and t + 1 happen in the interval above.

LEMMA 4.13. There exist constants C,c > 0 depending only on the constant in the
uniform crossing assumption item (v) such that the following holds. For all v ∈ D#δ , for all
t ≥ 0, for all δ < Ce−t d(v, ∂D#δ)δ0, let Y denote the portion of Y from the first time it enters
C1 until the last time it enters C0, then

∀n ≥ 1, P

(
sup

Ỹ⊂Y∩Bc
0

∣∣W(Ỹ, v)
∣∣ > n

)
< Ce−cn.

We now prove Lemma 4.13 which immediately implies Proposition 4.12. The main idea
of the proof of Lemma 4.13 will be to show that this portion of the loop erased walk can be
generated by erasing loops from a small number of elementary pieces of random walk. Then
Lemma 4.7 will show that each piece does not contribute too much to the winding.

To control the number of pieces, we will use two elements. First, conditionally on S we
will argue that we only need to look at the last few visits of the simple random walk to any
circle because everything else was erased by a loop. Second, we will show that the sequence
S is not too badly behaved even when we are looking close to the last visit to C0. Note that
this is non trivial because the last visit to C0 is very far from being a stopping time. We now
proceed to the actual proof, writing each of these steps as lemmas.

We first note some deterministic facts about the loop erasure (Lemma 4.14), therefore until
further notice we work on a given realisation of the random walk. Let kmax − 1 be the index
of the last crossing of C1 by the walk (or kexit if C1 = ∂D). Only indices less than kmax
will be of interest to us, as only those can contribute to the loop-erasure in the range we are
considering.

Let κ−1 be the last k such that i(k) = −1 and in the interval [τk, τk+1] the random walk
did a full turn in A(v, r−1, r0). If there was no such full turn, set κ−1 = 0. Now we define κi

inductively as follows.

• The time κi is the last time after κi−1 (but still before kmax) where a full turn occurs in the
annulus A(v, ri, ri+1).

• In case no such full turn occurs, κi is the index of the first crossing of Ci after κi−1 (but
before kmax).

• Finally, if there is no crossing of Ci between κi−1 and kmax define κi = +∞.

Finally, we define I = max{i : κi < ∞}. The idea is that a full turn erases a lot of the past.
After a full turn, we may still visit larger scales without doing a full turn in those scales and
these might not get erased, so we will need to consider them. This is the role of the random
variable I which gives a bound on the largest such scale.

For every i ≤ I , we let Gi be the set of visits to Ci after κi−1 but before kmax, i.e., Gi = {k ∈
Vi |κi−1 ≤ k ≤ kmax}. Observe that Gi are “good” indices which matter for the loop-erasure.

LEMMA 4.14. Recall Y , B0 from Lemma 4.13. Then

Y ∩ Bc
0 ⊂ ⋃

0≤i≤I

⋃
k∈Gi

X[τk, τk+1].

Furthermore, one can write Y∩Bc
0 = ⋃

i≤I

⋃
k∈∪Gi

Yk where Yk are disjoint intervals of the
loop erased random walk of the form Yk = (Yjk

, Yjk+1, . . . , Yjk+ik ) and Yk ⊂ X[τk, τk+1].
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PROOF. The proof is by inspection; see Lemma D.4 of the Supplementary Material [4].
�

The next step is to control the law of the size of the sets Gj , therefore we go back to
considering X as random.

LEMMA 4.15. There exist constants C,c, c′ > 0, such that for all δ ≤ ce−t dist(v,

∂D#δ)δ0, for all n > 0,

P

( ∑
0≤i≤I

|Gi | ≥ n

)
≤ C exp

(−c′n
)
.

PROOF. This is the most delicate part of the proof of Proposition 4.12 and is included in
Lemma D.5 of the Supplementary Material [4]. To explain briefly:

– It is easy to check that I itself has geometric tail (conditionally on S , each i such that
κi < ∞ requires not making a full turn immediately after the last visit to Ci ).

– It is also immediate to see with a similar argument that the number of crossings of Ci

after τκi
has geometric tail.

– Therefore, to get an exponential tail on |Gi | it remains to exclude the possibility that the
walk oscillates many times between Ci and Ci+1 before the next visit to Ci−1. Of course,
the idea is to exploit the fact that every time the walk visits Ci there is a positive chance to
hit Ci−1 first rather than Ci+1. However this is technically tedious to implement since these
visits are not stopping times and we can not directly condition on S this time. Instead we
choose to discover S step by step by revealing only the portion of S that is outside of Ci and
using Corollary 4.6. �

Now it is easy to complete the proof of Lemma 4.13 using Lemma 4.7. By Lemma 4.14,
we can write Y∩Bc

0 = ⋃
k Yk with for all k, Yk ⊂ X[τk, τk+1]. Therefore, the winding around

v of any Yk is bounded by the maximal winding difference between two times in [τk, τk+1]
which has uniform exponential tail by Lemma 4.7 or Lemma 4.8 for the pieces in Gimax and are
independent since the walks are independent conditionally on S . Note that crucially this in-
dependence holds even when we do not condition on γ #δ

v (0) = X(τkexit), making Lemma 4.8
applicable. By Lemma 4.15 the number of terms in the union has exponential tail, so the
proposition follows.

We now put together a consequence of the above estimates in a single lemma for ease of
reference later on. Pick v ∈ D#δ and t ≥ 0. Recall the definition of γ #δ

v [0, t] from Proposi-
tion 4.12. Now add to it a portion of the boundary ∂D#δ from the marked boundary point on
∂D#δ to γ #δ

v (0) (i.e., the point where the branch hits the wired boundary). Parametrise the
resulting curve as γ #δ

v [−1, t].

LEMMA 4.16. For any k ≥ 1, there exists a constant A = Ak > 0 depending only
on the constants in the crossing assumptions (item (v)) and k such that for all δ <

ce−t dist(v, ∂D#δ)δ0, we have

E
(∣∣W (

γ #δ
v [−1, t), v

) −E
[
W

(
γ #δ
v [−1, t), v

)]∣∣k) ≤ A(t + 1)k.

PROOF. Recall the definition of the circles Ci used in the proof of Lemma 4.13. Note
that Lemma 4.13 provides exponential tail for the winding of γ #δ

v from the first entry into
Ci+1 until the first entry into Ci for i ≥ imax − 2 (note that this is a continuous subportion of
the loop erasure seen until last entry into Ci and this portion is completely outside Ci ), which
immediately implies the same bound for the same centered random variable. Likewise, the
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first item of Lemma 4.8 provides exponential tail on the (centered) winding from γ #δ
v until the

first entry into Cimax−1. Finally, Lemma 4.9 provides exponential tail of the centered winding
of γ #δ

v [−1,0]. Putting all of this together, we see that we need to bound the kth moment of a
sum of O(t + 1) random variables with uniform exponential tails, which is elementary. �

4.4. Local coupling of spanning trees. Let z1, . . . , zk ∈ D#δ . The goal of this section is
to establish a coupling between a wired uniform spanning tree T #δ in D#δ and k independent
copies of full plane spanning tree measure Ti such that for all i, there is a neighbourhood
Ni around zi on which T #δ matches with T #δ

i . The diameter of the neighbourhoods Ni are
going to be random but nevertheless we will have a good bound on the probability of the
diameter being very small; typically the neighbourhoods will be of the optimal scale (i.e., not
much smaller than the distance to the nearest vertex vj with j �= i or to the boundary). Note
that a priori it is not even clear that the full plane local weak limit of a wired spanning tree
exists. For undirected graphs, the existence of this limit follows from the theory of electrical
networks [35]. However our setting includes directed graphs where the electrical network
theory no longer applies. The existence of this limit will actually come out of our coupling
procedure.

The overall strategy will be to sample the spanning tree T #δ in D#δ and (T #δ
i )1≤i≤k using

Wilson’s algorithm. The coupling will mostly be achieved by using the same random walks
for T #δ and (T #δ

i )1≤i≤k . To achieve independence and obtain the tail estimate for the diam-
eters of the neighbourhoods Ni , we will choose carefully the points from which we sample
loop-erased walks and keep track of the distances from {zi} to the sub-tree discovered at any
step.

We start with a simple lemma regarding the hitting probability of random walk. This is a
reformulation of Lemma 2.1 from Schramm [39] in our setting.

LEMMA 4.17. There exist constants C,c, c′ > 0 such that for all connected set K ⊂ C

such that the diameter (in the metric inherited from the Euclidean plane) of K is at least R,
for all δ ∈ (0,C dist(v,K)δ0),

Pv

(
X exits B(v,R)#δ before hitting K#δ) ≤ c

(
dist(v,K)

R

)c′
.

PROOF. Let Ci denote the circle of radius 2−i around v for i ∈ Z. Consider a sequence
of stopping times {Tk}k≥0 defined as in Proposition 4.11: if Tk is the time when the walk
crosses Ci then Tk+1 is the smallest time after Tk when the simple random walk crosses Ci+1
or Ci−1. The number of circles which intersect K is at least c log2(

R
dist(v,K)

) for some c > 0.
The choice of δ is small enough for Lemma 4.3 to apply for the annuli bounded by these
circles. Whenever the walk at Tk is in a circle Ci such that both Ci−1 and Ci+1 are subsets
of D and intersect K , then the walk has probability at least α > 0 of performing a full turn
in A(v,2−i−1,2−i+1) via Lemma 4.3. But doing such a full turn implies the walk must hit
K . Hence, the probability of the walk exiting D#δ without hitting K has probability at most

(1 − α)
c′ log2(

R
dist(v,K)

) for some c′ > 0 which concludes the proof. �

Let D be a fixed bounded domain, let v ∈ D#δ , and let r be such that B(v, r) ⊂ D. Using
Wilson’s algorithm, we now prescribe a way to sample the portion of the wired uniform span-
ning tree T #δ of D#δ which contains all the branches emanating from vertices in B(v, r/2)#δ .
Consider { r

26−j
Z

2}j≥0, a sequence of scalings of the square lattice Z
2 which divides the

plane into square cells. At step j , pick a vertex from each cell f of r
26−j

Z
2 which is farthest

from v in B(v, r
2(1 + 2−j ))#δ ∩ f (break ties arbitrarily) and is not chosen in any previous
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step. Call Qj the set of vertices picked in step j . Now sample branches of T #δ from each
of these vertices in any prescribed order via Wilson’s algorithm, resulting in a partial tree
T #δ

j . We continue until we exhaust all the vertices in B(v, r/2)#δ . We call this algorithm the

good algorithm GA#δ
D (r, v) to sample the portion of T #δ containing all branches emanating

from vertices in B(v, r/2)#δ (and in particular, the restriction of T #δ to B(v, r/2)#δ). Note in
particular that GA#δ

D (r, v) is sure to terminate after step j = log6(Cr/δ), where C depends
only on the constant appearing in the bounded density assumption (assumption (i)).

The next lemma is similar to Schramm’s finiteness theorem from [39]. Roughly, this
says that for all ε > 0, if we fix a ρ sufficiently small depending only on ε, and reveal
the branches of the spanning tree at a finite number of points with density approximately
1/ρ, then with high probability none of the remaining branches would have diameter greater
than ε. Schramm’s finiteness theorem is originally stated for the diameter of the remaining
branches of the spanning tree (which are loop-erased paths) but in fact the result holds for the
underlying random walks themselves. Also the original theorem is interested in sampling the
whole tree while we only want to sample T #δ ∩ B(v, r) for some r . Since we will need these
properties later on, we write it for completeness, but the proof is exactly the same as in [39].

LEMMA 4.18 (Schramm’s finiteness theorem). Fix ε > 0 and let D, v, r be as above.
Then there exists a j0 = j0(ε) depending solely on ε such that for all j ≥ j0 and all δ ≤
6−j0δ0r , where δ0 is as in item (v), the following holds with probability at least 1 − ε:

• The random walks emanating from all vertices in Qj for j > j0 stay in B(v, r).
• All the branches of T #δ sampled from vertices in Qj ∩ B(v, r/2) for j > j0 until they hit

T #δ
j0

∪ ∂D#δ have Euclidean diameter at most εr . More precisely, the connected compo-

nents of T #δ \ T #δ
j0

within B(v, r/2) have Euclidean diameter at most εr .

PROOF. For j ≥ 1, the number of vertices in Qj is at most c6j where c is a universal
constant. Let jmax := �log6(

Cδ0r
δ

)�. The choice of jmax is such that for j ≤ jmax our uniform
crossing assumption holds and in particular we can apply Lemma 4.17. Notice each vertex
in D#δ is within Euclidean distance 4 · 6−j r from a vertex in Qj−1. By Lemma 4.17 and the
choice of δ, for j ≤ jmax, there exists a C0 such that the probability that the simple random
walk from a vertex in Qj reaches Euclidean distance C06−j r from its starting point without
hitting T #δ

j−1 is at most 1/2. Notice that j26−j < 2−j for all j ∈ N and hence using the

Markov property, we can iteratively apply the same bound for the walk j2/C0 times (this is
the reason why in the good algorithm we sample from balls of decreasing size at each step).
This shows that the probability that the random walk emanating from a vertex w in Qj has

diameter greater than j26−j r (call this event D(w, j)) is at most (1/2)j
2/C0 .

Recall that the bounds above hold for j ≤ jmax. When j > jmax and w ∈ Qj we de-
fine D(w, j) to be the event that the random walk emanating from w reaches distance
j2

max6−jmaxr without hitting T #δ
j (and in particular T #δ

jmax
). Then observe that we still have

P(D(w, j)) ≤ (1/2)j
2
max/C0 in this case. Notice that the number of lattice points in

⋃
j>jmax

Qj

is at most B6jmax for some constant B depending only on δ0 in the uniform crossing estimate
assumption and bounded density assumptions (items (i) and (v)).

Notice that on the complement of

D := ⋃
j0≤j

⋃
w∈Qj

D(w, j)
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no random walk emanating from a vertex w ∈Qj can reach distance j26−j r from its starting
point and hence stays in B(v, r). Furthermore, by a union bound,

(4.3) P(D) ≤ ∑
j≥j0

c6j (1/2)j
2/C0 < ε

for large enough choice of j0 = j0(ε) which shows the first property of the lemma.
Also, let E(w, j) be the event that a connection from w to T #δ

j−1 has diameter at least

j26−j r . Observe that conditionally on T #δ
j−1, the probability of the event E(w, j) does not

depend on the order of the points in Qj and hence we may assume that w is the first point in
Qj when we compute this probability. In that case, the probability in question is at most the

one we computed above, and we deduce that P(E(w, j)|T #δ
j−1) ≤ (1/2)(j∧jmax)

2/C0 . On the
complement of

(4.4) E := ⋃
j0≤j

⋃
w∈Qj

E(w, j)

each point w ∈ Qj is connected to a point in T #δ
j0

by a path of diameter at most∑
j>j0

j26−j r ≤ εr provided that j0 is large enough. As P(E) ≤ ε if j0 is large enough,
the proof is complete. �

Now we shall describe the coupling between a wired spanning tree in D#δ and a full plane
spanning tree around a single point, which we call base coupling. (The final coupling will be
nothing more but an iteration of this procedure with an extra step initially which we call cutset
exploration.) Recall that a priori it is not even clear that the full plane local weak limit of a
wired spanning tree exists (the existence of this limit will actually come out of our coupling
procedure).

Basically, the idea is the following. We wish to couple a uniform spanning in tree in D#δ

to a uniform spanning tree in D̃#δ within a neighbourhood of some fixed vertex v. To do this,
we first make sure that the branches from a finite number of vertices coincide for UST’s in
D#δ and D̃#δ in some neighbourhood, and then we apply Schramm’s finiteness theorem. We
now explain this in detail.

Base coupling. The base coupling we describe now takes the following parameters as
input: two domains D#δ , D̃#δ and a neighbourhood B(v,10r) of a vertex v such that
B(v,10r)#δ ⊂ D#δ ∩ D̃#δ . Let T and T̃ denote a sample of uniform spanning tree in D#δ

and D̃#δ , respectively. For any vertex u in D#δ (resp. D̃#δ), let γ (u) (resp. γ̃ (u)) denote the
branch of T (resp. T̃ ) from u to the boundary of D#δ (resp. D̃#δ).

(i) Pick a point u1 in A#δ(v,8r,9r) and sample γ (u1), γ̃ (u1) independently (any joint
law could work but we take them independent for concreteness). Let E1 be the event that both
γ (u1) and γ̃ (u1) stay outside B(v,7r) and suppose E1 holds.

(ii) Let u2 ∈ A#δ(v,2r,3r). We will use the same underlying random walk to couple
γ (u2) and γ̃ (u2). More precisely, start a simple random walk from u2 until it is in one of
γ (u1) ∪ ∂D#δ or γ̃ (u1) ∪ ∂D̃#δ at time t1. Suppose without loss of generality that the walk
hits γ (u1) ∪ ∂D#δ at t1. Then we continue the walk from that point until it hits the other path
or the boundary at time t2. We then define γ (u2) to be the loop erased path up to time t1 and
γ̃ (u2) to be the loop erased path from time 0 to t2. Let E2 be the event that γ (u2) and γ̃ (u2)

agree in B(v,6r), and suppose E2 holds.
(iii) Fix a j0 = j0(1/2) as defined in Lemma 4.18. Let Qj be a set of points in

B(v, (r/2)(1 + 2−j )#δ , one in each cell of 6−j (r/2)Z2 chosen that it is furthest away from
v within that cell, as described in the good algorithm above. Let E3 be the event that the
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branches from all the vertices in
⋃

j≤j0
Qj of T , T̃ agree in B(v,5r), and suppose that E3

holds.
(iv) Finally, let E4 be the event that all the branches from vertices in

⋃
i Qi of T , T̃ agree

in B(v, r/2).

In the steps above if
⋂

i Ei does not occur, we say that the base coupling has failed. We
think of the above process as sampling branches one by one from the prescribed vertices.
We stop this process of sampling branches at the first time a sampled branch causes the base
coupling to fail.

LEMMA 4.19. There exist constants 0 < p0 < p′
0 < 1 and c > 0 such that for all δ ≤

cδ0r ,

p0 < P
(
base coupling succeeds in D#δ) < p′

0.

PROOF. The proof essentially follows from Proposition 4.11, which says that loop erased
random walk does not come too close to a particular vertex, and Lemma 4.3 which says
that random walk makes a full turn in a given annulus with positive probability. To start
with, it follows from Proposition 4.11 (possibly replacing 4 there by some other number)
that E1 has a positive probability p1. Also using the crossing estimate it is easy to see that
P(E1) < p′

0 < 1 which completes the proof of the upper bound. Moreover, independently of
E1, the walk started from u2 after exiting B(v,7r) has probability at least p2 to make a full
turn in A(v,9r,10r) without first hitting B(v,6r) by Lemma 4.3. In particular, this implies
E2 has probability at least p2, conditionally on E1.

Now assume E1 ∩ E2 holds. Let w ∈ Qj for j ≤ j0, and assume that revealing previous
branches did not make the coupling fail. Then the walk started from w has a positive prob-
ability p3 to do a full turn in A(v,3r,5r) before leaving B(v,5r). If this occurs then the
corresponding branches γ (w) and γ̃ (w) will agree in B(v,5r) (since the walk is then certain
to hit at least both γ (u2) and γ̃ (u2) in that ball). Iterating this bound over a bounded number
of points (of order 6j0 ) shows that, conditionally on E1 ∩E2, the probability of E3 is uniformly
bounded below.

Finally, conditionally on
⋂

1≤i≤3 Ei , E4 has probability at least 1/2 by Schramm’s finite-
ness theorem (Lemma 4.18), which finishes the proof. �

The general idea for the full coupling around one point v will be that when the base cou-
pling fails there is a not too small neighbourhood around v which was not intersected by any
of the paths we sampled so far. Therefore, we will be able to retry the coupling in a new
smaller neighbourhood. To implement this strategy, we first show that if the base coupling
fails, v remains reasonably isolated at the point when we stop the process with high prob-
ability. We say a vertex u (possibly different from the vertex v around which we make the
coupling) has isolation radius 6−k at scale r at any step in the above base coupling (centered
around v) if

B
(
u,6−kr

)
does not contain any vertex from a sampled branch.

We then set Iu to be the minimal such k ≥ 1 at the time when the base coupling fails.

LEMMA 4.20. Let Iu be as above and suppose that either u = v or |u − v| ≥ 10r . Then
there exist constants δ′, c, c′ > 0 such that for all δ ∈ (0, δ′r) and for all i ∈ (0, log6(δ

′r/δ)−
1),

P(Iu ≥ i| coupling fails ) ≤ ce−c′i .
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PROOF. From Proposition 4.11, if one of Ek fails for k = 1,2,3, the probability that the
isolation radius is at least i is at most C(1 − α)i for some C > 0 and α > 0 (since it is the
maximum of a finite number of variables each with exponential tail). It remains to consider
is the branches drawn while doing the good algorithm in item (iv) of the base coupling.

Notice that the number of vertices in Qj for j ≥ j0 is at most C06j and each of them is
at a distance at least r6−j−1 from u (note that this holds both when u = v or |u − v| ≥ 10r).
Let A(i, j) be the event that coupling fails in step j ≥ j0 and Iu after this step is at least i.
For i ∈ (j2, log6(δ0r/δ)), the probability of A(i, j) is at most the probability that the branch
γ (w) from one of the vertices w ∈Qj comes within distance 6−ir of u. By Proposition 4.11

and a union bound, this is bounded by C06j (1 − α)i−j ≤ C06
√

i (1 − α)i−
√

i , which decays
exponentially even when we sum over j such that j ≤ √

i.
Finally, if i < j2, we bound the probability of A(i, j) by using the explicit error bound

equation (4.3) which we obtained in the proof of Schramm’s finiteness theorem: indeed, we
showed that the probability one of the branches emanating from a vertex w ∈ Qj leaves the

ball of radius j26−j r around w is less than (1/2)j
2/C0 = (1 − α)j

2
. In particular, this is also

a bound on the probability that one of these branches leaves B(v, r). Hence, we conclude that
P(A(i, j)) ≤ C06j (1 − α)j

2 ≤ C(1 − α)′j2
for some α′ > 0. Summing over j ≥ √

i, we get
P(Iu ≥ i) ≤ C(1 − α′)i .

It remains to condition on the event that the coupling fails. But since the coupling fails
with probability bounded below by Lemma 4.19, the result follows. �

Iteration of base coupling around a single point. We now describe how to iterate the base
coupling at different scales which is the key step to construct the full coupling. We start with
a domain D ⊂ C and suppose v ∈ D#δ . Suppose r < 1 is small enough such that B(v,10r) is
disjoint and contained in D ∩ D̃. Fix a small constant c so that Lemma 4.19 holds and assume
that δ ≤ cδ0r .

(i) Perform a base coupling with D#δ , D̃#δ and B(v, r). If the coupling succeeds, we are
done.

(ii) If the coupling fails, let 6−Iv,1r be the isolation radius of v at scale r at the step the
coupling has failed. If Iv,1 ≥ log6(cδ0r/δ), we abort the whole process and we say that the
full coupling failed.

(iii) If the base coupling has failed but we haven’t aborted, we move to a smaller scale.
Let T1 (resp. T̃1) be the portion of the uniform spanning tree in D#δ (resp. D̃#δ) sampled up
to this point. We perform the base coupling in the domains D#δ \ T1, D̃#δ \ T̃ #δ

1 in the ball
B(v,6−Iv,1r) around v.

(iv) If the coupling fails, let 6−Iv,1−Iv,2r be the isolation radius at scale r around v at
the step the coupling has failed. Let T2 ⊃ T1 (resp. T̃2 ⊃ T̃1) be the uniform spanning
tree of D#δ (resp. D̃#δ) sampled up to this point. If (Iv,1 + Iv,2) ≥ log6(cδ0r/δ), we abort
the whole process. Otherwise we perform the base coupling with D#δ \ T2, D̃#δ \ T̃2 and
B(v1,6−(Iv,1+Iv,2)r).

(v) We continue in this way until we either abort or the base coupling succeeds at the
N th iteration. If we haven’t aborted the process along the way, we have obtained a partial
tree TN which is coupled with a uniform spanning tree T̃N in D̃#δ so that they are the same
in B(v,6−(Iv,1+Iv,2+···+Iv,N−1)r).

(vi) If we abort the process at step m, define N = m by convention.

We call I = ∑N−1
�=1 Iv,�, so that 6−I r is the isolation radius at scale r when we have suc-

ceeded in coupling the trees around v.
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Full coupling. We now describe how to perform the full coupling around a fixed number
of given points. For this, we introduce a new idea. We first sample all the branches from a
cutset separating each of the vertices from the rest. Conditioned on these sampled branches,
the neighbourhood of the vertices are now independent. We then show that the “unexplored”
neighbourhoods around the points are still big with high probability and apply our one-point
iterated base coupling for each such neighbourhood.

Let us start with some notation. Let v1, v2, . . . , vk be k distinct points and let r be chosen
so that so that B(vi,10r) are disjoint and are all contained in D ∩ D̃. Let Hi be a set of
vertices in A(vi,9r/2,5r) which disconnect vi from ∂D and ∂D̃, and let H = ⋃

i Hi . We
simply reveal the branches emanating from Hi,1 ≤ i ≤ k in some arbitrary order by Wilson’s
algorithm, resulting in a subgraph T #δ

H . We call this step a cutset exploration. Let Jvi
be the

minimum k such that B(vi,6−kr)∩T #δ
H = ∅. Let J = maxi Jvi

, and let D#δ
i be the remaining

unexplored domain around vi , that is, the connected component containing vi in D#δ \ T #δ
H .

Say that we abort if c6−J rδ0 ≤ δ, where c is as in Lemma 4.19.
Conditionally on T #δ

H , on the event that we haven’t aborted, the component of T contain-
ing vi is distributed as a wired uniform spanning tree in D#δ

i . We perform the iterated base
coupling of this wired spanning tree with a uniform spanning tree T #δ(i) of D̃#δ with a base
neighbourhood B(vi,6−J r). We also do this coupling around each point to obtain condition-
ally independent subtrees (T #δ(i))1≤i≤k given the cutset exploration T #δ

H . We say that we
abort the full coupling either if we aborted at the cutset exploration step or if we abort in
any of the iterated base couplings. Let Ii be the isolation radius at scale r around vi after
performing the iterated base coupling around vi .

THEOREM 4.21. On the event A that we do not abort the full coupling, we obtain a
coupling between T #δ and independent copies of uniform spanning trees T̃ #δ(i) in D̃#δ for
1 ≤ j ≤ k such that

T #δ ∩ B
(
vi,6−Ii r

) = T̃ #δ(i) ∩ B
(
vi,6−Ii r

)
.

Furthermore, there exists a universal constant c > 0 and C > 0 such that for all δ ≤ cδ0r and
1 ≤ i ≤ k,

(4.5) P(Ii ≥ n;A) ≤ Ce−cn.

PROOF. Observe that Ii is a sum of the form
∑Ni−1

�=1 Ivi ,� + Jvi
. By exactly the same

proof as Lemma 4.20, Jvi
has an exponential tail so we concentrate on the sum. Observe that

by Lemma 4.19, Ni has geometric tail (since the base coupling has probability uniformly
bounded below to succeed at every step, independently of the past). Moreover, each Ivj ,�

has uniform exponential tail conditionally on all previous steps by Lemma 4.20. Hence, the
situation is similar to Lemma D.5 in the Supplementary Material [4]: by Markov’s inequality

P

(
Ni−1∑
�=1

Ivi ,� ≥ n

)
≤ P(Ni ≥ εn) + P

(
εn∑

�=1

Ivi ,� ≥ n

)

≤ e−cεn +E
(
ec′ ∑εn

�=1 Ivi ,�
)
e−c′n,

where c′ is as in Lemma 4.20. Now from that lemma we see that, even when we condition
on Ivi ,1, . . . , Ivi ,�1 , E(ec′Ivi ,� |Ivi ,1, . . . , Ivi ,�−1) ≤ C1 for some C1. Hence the right-hand side
above is less than

e−cεn + (C1)
εne−c′n

so by choosing ε sufficiently small this decays exponentially, as desired. �

The following two consequences are immediate.
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COROLLARY 4.22. There exist constants C,c > 0 such that the probability of aborting
the above process is at most C(δ/rδ0)

c.

PROOF. The event Ac occurs precisely when one of the variables I in step (vii) exceeds
log6(crδ0/δ). As above, this has exponential tail. �

COROLLARY 4.23. The wired uniform spanning tree measures in D#δ has a local limit
when D̃ → C and this limit is independent of the exhaustion taken. We call this measure the
whole plane spanning tree. In Theorem 4.21 and all the above statements, the spanning tree
measure on D̃#δ can be replaced by a whole plane spanning tree.

PROOF. For the first sentence, consider an exhaustion Dn that is, an increasing sequence
such that

⋃
n Dn = C. Using Theorem 4.21 along with the control of the abortion probability

from Corollary 4.22, we conclude that the spanning tree measures form a Cauchy sequence in
total variation, therefore it converges. For the second one, it then follows immediately from
the fact that all the statements are uniform on domains D̃. �

REMARK 4.24. Suppose that (γ, γ̃ ) are branches emanating from z0 in T and T̃ coupled
by a global coupling as above. For i ∈ Z, let Ti be the smallest time t such that γ (t) ∈
B(z0, r6−i), and let T = TI (here we view γ as parametrised towards z0). Then given I =
i the law of (γt , t ≥ T ) is absolutely continuous with respect to the unconditional law of
(γt , t ≥ Ti) with Radon–Nikodym derivative bounded above by C for some universal constant
C > 0 as we vary δ (indeed, it is just the law of a loop-erased random walk conditioned on
some event of uniformly positive probability, where these events are described in the base
coupling).

Cutting coupled paths. At this point, we have proved that each branch γ of the UST
has a portion where it can be coupled with a path γ̃ in the whole plane independent UST.
Also the part far away from the starting point can be approximated by an SLE because of
the convergence of loop erased random walk to SLE. It will therefore be natural to cut the
branches into two parts and to use a different approximation for each piece.

A subtle issue arises here because of the choice of approximation. Indeed for the portion
approximated by SLE we want to cut the path at a fixed capacity to be in the setup of Sec-
tion 3, while for the discrete part we want to cut γ and γ̃ exactly at the same point so that
their (diverging) windings cancel exactly. This is a problem because the capacity of a curve
depends on the whole curve and therefore will never agree exactly between γ and γ̃ . Our
solution to this issue is to parametrise by capacity but cut at a randomised time in both γ and
γ̃ in such a way that the corresponding positions match exactly. The key to doing this will be
to observe that not only are the capacities of the two paths close to one another, but also their
derivatives.

Recall the full coupling (γ, γ̃ ) in Theorem 4.21, where γ is a loop-erased random walk in
D#δ and γ̃ is a loop-erased random walk in D̃#δ starting from a vertex v where D̃ is arbitrary
(we can think of D̃ as the full plane). Suppose they are parametrised by capacity plus log of
the conformal radius seen from v in their respective domains.

LEMMA 4.25. There exist constants C,c > 0 such that the following holds. For any t > 0
there exists δ = δ(t) such that for any δ ∈ (0, δ(t)), we can find a pair of random variables
(X, X̃) such that individually, X and X̃ are each independent of (γ, γ̃ ) and

P
[
γ (t + X) = γ̃ (t + X̃)

] ≥ 1 − Ce−ct .

Furthermore, both X and X̃ are random variables which are bounded (by 1/20).
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The proof of this lemma is quite technical so we only give a short description of the ideas;
see the Supplementary Material [4] for details.

The idea behind the coupling is to see γ (t + X) where X is an exponential variable as the
first point in a Poisson point process on γ with an intensity given by a multiple of the deriva-
tive of the capacity over [t, t + 1/20] (or more formally a multiple of the push forward of the
Lebesgue measure by s 
→ γ (s) over that interval), where the multiple is itself exponentially
large in t . This derivative measure will be almost the same in γ and γ̃ with exponentially
small error in t − I (this is the technical part of the proof). Therefore the point processes can
be coupled so that their first points are the same with high probability and this preserves some
independence because of the independence inherent to a Poisson process.

5. Convergence of the winding of uniform spanning tree to GFF.

5.1. Discrete winding, definitions and notation. We define the discrete winding fields in
a finite domain properly here. This is completely analogous to the definition in the continuum
from Section 3. Let us fix a bounded domain D ⊂ C with a locally connected boundary and
a marked point x ∈ ∂D. Using [37] Theorem 2.1, ∂D is a curve. Let δ > 0 and let T #δ be
a wired spanning tree of D#δ . Let γ #δ

v be the branch connecting v to the wired boundary in
T #δ . As in the continuum definition, we add to each γ #δ

v a path following ∂D clockwise to
x. More precisely, one endpoint of γ #δ

v is some auxiliary vertex (a point on the continuum
boundary ∂D; see Section 4.2). We add to γ #δ

v the continuum curve joining this vertex and
the marked boundary point x in the clockwise direction. For simplicity of notation, we still
call this path γ #δ

v .
We parametrise the part of the curve in ∂D by [−1,0] and the rest by capacity in D

plus logR(z,D). Observe that this definition is analogous to the continuum definition in
Section 3, so that t = 0 will always correspond to hitting the boundary. Motivated by the
formula connecting intrinsic and topological winding (cf. Lemma 2.2), we define, in the
smooth case first

(5.1) h#δ(v) := Wint
(
γ #δ
v [−1,∞)

)
and

(5.2) h#δ
t (v) := W

(
γ #δ
v [−1, t], z) − Arg

(−(
γ #δ
v

)′
(−1)

) + argD;x(v).

If D is not smooth near x, then we can still define h#δ(v) via (5.1) up to a global constant,

(5.3) h#δ
t (v) := W

(
γ #δ
v [−1, t], z) + argD;x(v),

where argD;x(v) is defined up to a global constant.

Consider a full plane discrete UST on G#δ , T̃ = (γ̃v)v∈G#δ . (We write γ̃v instead of γ̃ #δ
v for

simplicity.) We parametrise the paths γ̃v by full plane capacity plus logR(v,D), going from
−∞ far away to +∞ at v (we need to add logR(v,D) to match its parametrisation with
the parametrisation of γv as much as possible). We extend the definition of the regularised
winding to that setting by defining h̃T (v) − h̃S(v) := W(γ̃v(S, T ), v) and h̃(v) − h̃T (v) :=
W(γ̃v(T ,∞), v). Note that the definition of the increments (in T ) of h̃ make sense even
though we cannot define h̃ pointwise, so this definition is a slight abuse of notation. Finally,

(5.4) m#δ(v) := E
[
h̃#δ(v) − h̃#δ

logR(v,D)(v)
]

and note that random variable

h̃#δ(v) − h̃#δ
logR(v,D)(v) = W

(
γ̃v

(
log

(
R(v,D)

)
,∞);v)
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is well defined (and its expectation is well defined too) and that it does not depend on D

since γ̃ (logR(v,D)) is just the point of full plane capacity 0. We point out that as δ → 0,
the path γ̃v converges (uniformly on compacts) towards a full plane SLE2; this follows by a
combination of results from Lawler, Schramm and Werner; Yadin and Yehudayoff [30, 43]
as well as Field and Lawler [11]. As a consequence, the arbitrary choice of truncating at
capacity 0 is irrelevant: this is because the asymptotics of m#δ(v) as δ → 0 is independent
of the choice of truncation (indeed, for a full plane SLE path, the expected winding between
capacity 0 and 1 is zero by symmetry). Readers who are uncomfortable with the notion of full
plane SLE can replace the full plane by a disc of some large radius in the definition of m#δ ;
in which case the above remark relies just on the convergence result of Lawler, Schramm and
Werner [30] and Yadin and Yehudayoff [43].

To help with the intuition, recall from the Introduction that we need to remove by hand
microscopic contributions to the expected winding. This is the purpose of m#δ . Subtracting
m#δ also allows us to take into account the possible contribution to winding coming from
intermediate (mesoscopic) scales.

5.2. Statement of the main result. We now state the main theorem in this section, which
is a stronger version of Theorem 1.2 in the Introduction. Since we are going to integrate the
discrete winding field against test functions, we need to make precise what we mean by this.
There are two natural choices to do this integral: one which takes into account the geometry
of the underlying graph and another one which accounts only for the ambient Euclidean space
in which the graph is embedded. The latter turns out to be slightly more natural since the limit
in that case is a (conformally invariant) Gaussian free field, that is, does not depend on the
limiting density of vertices.

We proceed as follows. Given h#δ defined on the vertices of the graph, we can extend h#δ

to a function on the whole domain D using various forms of interpolation. One way to do
this is to linearly extend the value of h#δ to the edges and then take a harmonic extension
on the faces (this includes the outer face, and then we restrict this extension to D). However
for concreteness, we will look at the following extension: consider the Voronoi tesselation of
D defined by the vertices of the graph. We then define the extension h#δ

ext to be constant on
each Voronoi cell, equal to h#δ(v) where v is the centre of the cell. This allows us to use the
regular L2 product to integrate h#δ against test functions.

(
h#δ, f

) :=
∫
D

h#δ
ext(z)f (z) dz.

This extension procedure can also be applied to m#δ , leading to a function defined on all of
D. We then have the following theorem.

THEOREM 5.1. Let G be a graph satisfying the assumptions of Section 4.1, let D ⊂ C be
a simply connected domain with a locally connected boundary and a marked point x ∈ ∂D.
Let T be a uniform spanning tree of D#δ and let h#δ(v) denote the intrinsic winding as above,
and let m#δ be defined as above. Then

h#δ − m#δ −−→
δ→0

hGFF.

The convergence is in law in the Sobolev space H−1−η(D) for any η > 0. The limit hGFF is
a free field with intrinsic winding boundary conditions, that is, hGFF = (1/χ)h + π/2 where
h = h0

GFF + χu(D,x). Here h0
GFF is a standard GFF with Dirichlet boundary conditions and

u(D,x) is defined as in equation (2.7) and Remark 2.7.



DIMERS AND IMAGINARY GEOMETRY 45

Moreover, for all n ≥ 1, for all f1, . . . , fn ∈ H 1+η, and for all positive reals k1, . . . , kn we
have

E
∏
i

(
h#δ − m#δ, fi

)ki −−→
δ→0

E
∏
i

(hGFF, fi)
ki

and for all k ≥ 1

E
(∥∥h#δ − m#δ

∥∥k
H−1−η

) −−→
δ→0

E
(‖hGFF‖k

H−1−η

)
.

REMARK 5.2. We emphasise that the function m#δ is a deterministic function which
depends only on the point in the graph, and in particular does not depend on the domain D.
Note also that it follows from this result that E(h#δ − m#δ) → E(hGFF) and hence we deduce

h#δ −Eh#δ → 1

χ
h0

GFF

in the same sense as above, where h0
GFF is a Gaussian free field with Dirichlet boundary

conditions.

5.3. Other notions of integration. We now comment briefly on other possible definitions
of integration against test functions. Another definition which is a priori natural is to consider(

h#δ − m#δ, f
)
#δ := 1

μ#δ(D)

∑
v

(
h#δ(v) − m#δ)f (v).

In that case, h#δ − m#δ is viewed as a random measure which is a sum of weighted Dirac
masses. We can first ask about convergence of this object as a stochastic process indexed by
test functions (see, e.g., [2], Definition 1.10). It can be checked that if the uniform distribution
on the vertices of the graph converges to a measure μ in C, we have that(

h#δ − m#δ, f
)
#δ −−→

δ→0
h

μ
GFF,

where now h
μ
GFF is a Gaussian stochastic process indexed by test functions such that

(h
μ
GFF, φ) = (hGFF, φ

dμ
d Leb) where Leb denotes the Lebesgue measure.

Note that in most cases, for example, in any periodic lattice or isoradial graphs or T-graphs
where our results apply, μ is just the Lebesgue measure. In that case, note that h#δ lies a priori
within H−1−ε for any ε > 0 (this is the Sobolev regularity of any Dirac mass) and it is easy
to check that our proof implies convergence of h#δ − m#δ towards hGFF in the stronger sense
of Sobolev spaces H−1−η(D) for any η, as in Theorem 5.1.

However there are also interesting examples of graphs where the convergence of random
walk to a (time-changed) Brownian motion holds but μ is different from Lebesgue measure.
An exotic example of such a situation is a conformally embedded random planar map where
such a convergence is expected to hold and the measure μ is a variant of Gaussian multiplica-
tive chaos (see [12] and [1, 13] for an introduction to this topic).

5.4. Proof of the main result. Now we collect the results of the two previous sections to
prove Theorem 5.1.

LEMMA 5.3. Fix a domain D ⊂ C with locally connected boundary and let x1, . . . , xk ∈
D. For all vδ

1, . . . , v
δ
k ∈ D#δ converging to x1, . . . , xk , for all T1, . . . , Tk ,

E

[∏
i

h#δ
Ti

(vi)

]
−−→
δ→0

E

(∏
i

hTi
(xi)

)
,

where hT is the regularised winding field of a continuum UST in D as defined in equation
(2.7) and Remark 2.7.
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PROOF. By our assumptions (see Remark 4.1) and by Wilson’s algorithm, the paths
(γ #δ

vi
)ki=1 converge to (γxi

)ki=1 where the γxi
are the paths connecting xi to ∂D in a con-

tinuous UST. Furthermore, observe that the function hT (v) is a continuous function of γ #δ
v

(this is because the topological winding up to capacity t + log(R(v,D)) is continuous in the
curve). Hence,

∏
h#δ

T (vi) converges in distribution to
∏

hT (xi). Using Lemma 4.16, we see
that it is also uniformly integrable and hence the expectation converges. �

Combining the above lemma with Theorem 3.1 and Lemma 3.7, we can find a sequence
T (δ) (depending on the vi ’s) going to infinity slowly enough such that whenever T (δ) ≤
Ti(δ) ≤ T (δ) + 1/20,

E

[∏
h#δ

Ti(δ)
(vi)

]
−−→
δ→0

E

(∏
hGFF(xi)

)
.

Using the previous lemma with the full coupling of Theorem 4.21, we can control the k-point
function for the winding up to the endpoint, which is the key step in the proof of Theorem 5.1.

PROPOSITION 5.4. For all k, for all bounded domains D with locally connected bound-
ary, for all vδ

1, . . . , v
δ
k ∈ D converging to x1, . . . , xk ,

E

[∏
i

(
h#δ(vδ

i

) − m#δ(vδ
i

))] −−→
δ→0

E

(∏
i

hGFF(xi)

)
.

Recall that the right hand side is a notation for the k-point function of a GFF with winding
boundary condition, as in Theorem 5.1.

PROOF. By definition of our extension of h#δ to D, we may assume without loss of gen-
erality that vδ

i ∈ D#δ (this is one of the advantages of working with the Voronoi extension of
h#δ to D). We write γi for γ #δ

vi
. If δ is small enough, one can apply the coupling of Theo-

rem 4.21. Focusing only on the paths from the vi , we obtain random variables I1, . . . , Ik , all
with exponential tails, and independent full plane loop-erased paths γ̃1, . . . , γ̃k such that

∀j, γj ∩ B
(
vj ,6−Ij r

) = γ̃j ∩ B
(
vj ,6−Ij r

)
on the event that the coupling succeeds, where r = (1/10)(mini �=j |vi − vj | ∧ mini d(vi,

∂D) ∧ 1). Here r is a constant and δ → 0 so we will not worry about r or the offset in the
parametrisation (which recall is capacity plus logR(vi,D)). Let h̃#δ be the associated field
defined as in equation (5.4) (recall that only its increments in T are defined). Let T (δ) be
some sequence such that for any Tj such that T (δ) ≤ Tj ≤ T (δ) + 1/20 we have

E

[∏
h#δ

Tj
(vj )

]
−−→
δ→0

E
∏

hGFF(xj ),(5.5)

E
[
h̃#δ

T (δ)(vj ) − h̃#δ
log(R(v,D))(vj )

] −−→
δ→0

0.(5.6)

Recall that Lemma 4.25 holds for t = T (δ). We can further modify our choice of T (δ) if
needed so that

P
(
γi

(
T (δ),∞) �⊂ B

(
vi, e

−T (δ)/2)) ≤ ce−cT (δ)

and the same statement holds with γ̃i instead of γi . This is possible because T (δ) can be cho-
sen to grow to infinity arbitrarily slowly and these estimates hold in the continuum. Indeed,
γj converges to radial SLE2 for which we can apply (2.8) and γ̃j converges to whole plane
SLE2 which is symmetric with respect to conjugation hence has zero expected winding.

For each 1 ≤ j ≤ k we use Lemma 4.25 and we write Tj = T (δ) + Xj and T̃j = T (δ) +
X̃j the resulting times. Let C denote the σ -algebra generated by the cutset exploration in
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Theorem 4.21 as well as T̃j , 1 ≤ j ≤ k. Let G be the good event that γ̃i(T̃i ,∞) = γi(Ti,∞) ⊂
B(vi, re

−Ii ) for all 1 ≤ i ≤ k. In other words, G is the event that γi(Ti) = γ̃i(T̃i) and Ti ≥ �i

where �i is the last time at which γi enters B(vi, re
−Ii ). Unfortunately G is not measurable

with respect to C, but fortunately we will see that its complement has exponential small
probability in T (δ).

For clarity, we remove the superscripts ·#δ from notation, hence, for instance, h(vi) means
h#δ(vi). Note that on the good event G, since Ti ≥ �i and T̃i ≥ �̃i (where �̃i is defined in
the obvious analogue way to �i), and since γ and γ̃ also agree on B(vi, re

−Ii ), we can write

(5.7) h(vi) = hTi
(vi) + �h̃(vi),

where �h̃(vi) = h̃(vi) − h̃
T̃i

(vi). The first term is the “main” term (well described by SLE);
see (5.5). The second term is a mesoscopic term: when we subtract m(vi) we will get inde-
pendent terms with mean approximately zero.

We wish to take the conditional expectation given C, but since G is not measurable with
respect to C, some care is needed. We introduce the following notation: if s ≤ t we write
h(s, t) for the winding around vi of γi during [s, t]; that is, h(s, t) = W(γi([s, t]), vi). By an
abuse of notation, we write h(vi) = h(−1,∞). When s ≥ t we put h(s, t) = −h(t, s). We
then write

h(−1,∞) = h(−1, Ti) + h(Ti,�i) + h(�i,∞).

As before, the main term is h(−1, Ti) = hTi
(vi) which is thus governed by (5.5). Note that

we also have h(�i,∞) = h̃(�̃i,∞) (this is also trivially true even when the coupling fails).
Moreover, the middle term h(Ti,�i) may be rewritten by adding and taking away

h̃(T̃i , �̃i) as

h(Ti,�i) = h̃(T̃i , �̃i) + ξi,

where

ξi = h(Ti,�i) − h̃(T̃i , �̃i)

is an error that is typically zero except on an event of very small probability.
Consequently, we obtain the decomposition

h(vi) − mi = hTi
(vi)︸ ︷︷ ︸

type 1

+ [
h̃(T̃i ,∞) − mi

]︸ ︷︷ ︸
type 2

+ ξi︸︷︷︸
type 3

.

We now explain how we will finish the proof. We need to compute the expected value of the
product over i of the expression in the left hand side above. We expand the product in the
right hand side above to get a finite sum of products of terms involving one of the three types
of terms above for each 1 ≤ i ≤ k. We take the conditional expectation given C and then the
total expectation. If only the first type of terms occur in the sum, we can simply use (5.5) as
already mentioned. To finish the proof, we simply make the following observations:

• Terms of type two, Bi = [h̃(T̃i ,∞) − mi], satisfy E(Bi) = o(1) and Bi is independent of
C and of any of the terms in the product given C.

• Since ξi = 0 except if G does not hold, we have P(ξi �= 0) ≤ Ce−cT . Indeed,

P
(
Gc) ≤ P

(
γ (Ti) �= γ̃i(T̃i)

) + P
(
Ii ≥ T (δ)/2 − log r + logR(vi,D)

)
+ P

(
Ii ≤ T (δ)/2 − log r + logR(vi,D) and

γi

(
T (δ),∞) �⊂ B

(
vi, e

−T (δ)/2))
≤ Ce−cT (δ),
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where we have used Lemma 4.25 for the first term, Theorem 4.21 for the second (and
the fact that r is fixed), and (2.8) and the choice of T (δ) for the third. Hence, using
Lemma 4.16,

E
(
ξk
i

) ≤ ce−cT
E

(
T k

i + T̃ k
i

) ≤ Ce−cT .

• Moreover, E(hk
Ti

) ≤ C(1 + T k) by Lemma 4.16.

When we take the conditional expectation, all the terms of the type 2 contribute E(Bi |C) =
E(Bi) = o(1) to the product since they are independent of any other term in the prod-
uct. Hence if the product contains only terms of types 1 and 2, then this contributes
o(1)E(

∏
hTi

(vi)) = o(1) by (5.5).
Otherwise, if the product contains any term involving ξi (i.e., type 3), using Hölder’s in-

equality and (5.5), this contributes at most O(e−cT ) = o(1). Hence the result is proved. �

The above proposition gives a pointwise convergence of the k-point function. We now
need some a priori bounds to allow us to integrate these moments against test functions via
the dominated convergence theorem.

LEMMA 5.5. For all k ≥ 2, for all bounded domains D with locally connected boundary,
there exist constants C = Ck , c > 0 such that for all δ < cδ0, for all v#δ

1 , . . . , v#δ
k ∈ D#δ ,∣∣∣E[∏(

h#δ(v#δ
i

) − m#δ(v#δ
i

))]∣∣∣ ≤ C
(
1 + log2k r

)
,

where r = (1/10)(mini �=j |v#δ
i − v#δ

j | ∧ minj d(v#δ
j , ∂D) ∧ 1). The same holds even if we

replace v#δ
i by any point in its Voronoi cell as in our extended definition of h#δ

ext(z).

PROOF. Let us assume r ≥ δ for now and consider the full coupling of Theorem 4.21.
We use the notation from the proof of Proposition 5.4. We exploit the following decomposi-
tion which is analogous to the decomposition in Proposition 5.4 except we do away with Ti

(indeed, if the points vi are really close to each other, e−Ti might be much greater that this
distance):

h(vi) − mi = h(−1,�i) + h̃
(
�̃i, logR(v,D)

)
+ [

h̃
(
logR(v,D),∞) − mi

]
.(5.8)

Let C be the sigma algebra generated by the cutset exploration. Note that conditionally on
C, the third term is independent of any of the above terms involving j �= i and has 0 mean.
Thus, we can ignore the terms in the expansion of the product which has at least one term of
the third type.

We now provide an argument on how to bound the first term and the same argument can
be used to bound the second term by the same quantity. Let �i be the time of first entry of γi

into B(vi, re
−Ii ) (in contrast with �i which is the last entry into B(vi, re

−Ii )). Note that

h(−1,�i) = h(−1,�i) + h(�i,�i)

and the second term is deterministically bounded above in absolute value by 2π for elemen-
tary topological reasons (essentially, the winding number of a Jordan curve is either 0 or
±2π ). Furthermore, note that

∣∣h(−1,�i)
∣∣ ≤

��i�−1∑
j=−1

∣∣h(j, j + 1)
∣∣ + ∣∣h(��i�,�i

)∣∣.



DIMERS AND IMAGINARY GEOMETRY 49

Now each of these terms have exponential tail by Proposition 4.12. Moreover, �i −
logR(v,D) ≤ − log r + Ii by monotonicity of conformal radius, and Ii has exponential tails
by equation (4.5) in Theorem 4.21, hence by convexity of the function x 
→ xk ,

E
(∣∣h(−1,�i)

∣∣k) ≤ E

((− log r + Ii + logR(vi,D)
)k−1

×
− log r+Ii+logR(vi ,D)∑

j=−1

∣∣h(j, j + 1)
∣∣k) + C

≤ C(− log r + 1)2k + C

by Cauchy–Schwarz, as desired (the above bound is not optimal, but this is unimportant).
Finally, if r < δ, we can use Hölder to bound the moment of h#δ − m#δ by C(1 + log2k δ)

as above which is at most the required bound. �

We can now prove our main theorem.

PROOF OF THEOREM 5.1. Fix f1, . . . , fn to be smooth functions in D̄ and k1, . . . , kn ≥
1. Combining Proposition 5.4 and Lemma 5.5, we see that we can apply the dominated con-
vergence theorem to E[∏n

i=1(h
#δ − m#δ, fi)

ki ] and therefore

E

[
n∏

i=1

(
h#δ − m#δ, fi

)ki

]
→ E

[
n∏

i=1

(hGFF, fi)
ki

]
.

Since the right-hand side is Gaussian (and therefore moments characterise the distribution),
(h#δ −m#δ, fi)

n
i=1 converges in distribution to (hGFF, fi)

n
i=1. In other words, at this point we

already know h#δ −m#δ converges to hGFF in the sense of finite dimensional marginals (when
viewed as a stochastic process indexed by smooth functions with compact support, say). We
now check tightness in the Sobolev space H−1−η, from which convergence in H−1−η will
follow.

Note that by the Rellich–Kondrachov embedding theorem, to get tightness in H−1−η it
suffices to prove that E(‖h#δ − m#δ‖2

H−1−η′ ) < C for some constant C, for any η′ < η. More

generally we will check that E(‖h#δ − m#δ‖2k
H−1−η) < Ck for any k ≥ 1 and any η > 0.

Let (ej ) be an orthonormal basis of eigenfunctions of −� in L2(D), corresponding to
eigenvalues λj > 0. Then writing h = h#δ − m#δ for convenience,

E
(‖h‖2k

H−1−η

) = E

( ∞∑
j=1

(h, ej )
2
L2λ

−1−η
j

)k

≤ C

∞∑
j=1

E
(
(h, ej )

2k
L2

)
λ

−1−η
j

by Fubini’s theorem and Jensen’s inequality (since by Weyl’s law,
∑

j λ
−1−η
j < ∞ is

summable).
Furthermore,

E
(
(h, ej )

2k
L2

) =
∫
D2k

E
(
h(z1) · · ·h(z2k)

)
ej (z1) · · · ej (z2k) dz1 · · ·dz2k

and note that by Lemma 5.5, E(h(z1) · · ·h(z2k)) ≤ C(1+ log4k r) where r = r(z1, . . . , z2k) is
as in that lemma. Note also that (log r)a is integrable for any a > 0 and D is bounded hence
using Cauchy–Schwarz, we deduce that E((h, ej )

2k
L2) ≤ C(

∫
D2k ej (z1)

2 · · · ej (z2k)
2 dz1 · · ·

dz2k)
1/2 = C since ej is orthonormal in L2. Consequently,

E
(‖h‖2k

H−1−η

) ≤
∞∑

j=1

Cλ
−1−η
j < ∞
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by Weyl’s law. This finishes the proof of Theorem 5.1 and hence Theorem 1.2. Let us remind
the reader here that the proofs of moment bounds in H−1−η follows through in exactly the
same way in the continuum proof in Proposition 3.16. �

6. Joint convergence. In this section, we prove the joint convergence of (dimer height
function, wired UST) to (GFF, continuum wired UST) where the latter is coupled together
through the imaginary geometry coupling in Theorem 2.8.

Let us first introduce the setup. The topology on the height function is the Sobolev space
H−1−η (recall this is a complete, separable Hilbert space). The topology on the tree is the
Schramm topology �1 introduced in [39] (and described in the Supplementary Material [4]).
As usual we have a bounded domain (D,x) with a marked point x ∈ ∂D and locally con-
nected boundary. We work with the space � := �1 × H−1−η(D) equipped with the product
topology. We also view � also as a metric space with metric defined by d1 + d2 where d1
and d2 are the metrics in each coordinate. Let T d , h#δ be as in Section 5.2. Let (T , hGFF(T ))

denote the continuum wired UST in D with hGFF(T ) denoting the GFF which is coupled
with T using the imaginary geometry coupling (cf. Theorem 2.8). The point here is again
that the height function is not continuous as a function of the discrete tree, hence we have to
use the results about the truncated winding we proved in this paper.

THEOREM 6.1. In the above setup, we have the following joint convergence in law in the
product topology described above:(

T #δ, h#δ − m#δ) (d)−−→
δ→0

(
T , hGFF(T )

)
.

PROOF. To simplify notation, we write h#δ for h#δ − m#δ admitting a slight abuse of no-
tation. Let ht denote the continuum winding truncated at capacity t plus log conformal radius

seen from the point as before. Notice that from Theorem 3.13, (T , ht )
P−−−→

t→∞ (T , hGFF(T )),

where the convergence is in probability in the metric space defined above. Note that for any
fixed t , h#δ

t and ht are obtained by applying the same continuous function to respectively T #δ

and T . Hence, we have (
T #δ, h#δ

t

) (d)−−→
δ→0

(T , ht ).

Thus there exists a sequence t (δ) growing slow enough such that(
T #δ, h#δ

t (δ)

) (d)−−→
δ→0

(
T , hGFF(T )

)
.

Now recall that we proved in Proposition 5.4 and Lemma 5.5 that E(‖h#δ
t (δ) −h#δ‖H−1−η) → 0

which implies that h#δ
t (δ) − h#δ converges to 0 in probability. Hence, the result follows from

Slutsky’s lemma (e.g., Theorem 3.1 in [5]). �
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