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SELF-AVOIDING WALK ON NONUNIMODULAR
TRANSITIVE GRAPHS
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We study self-avoiding walk on graphs whose automorphism group has
a transitive nonunimodular subgroup. We prove that self-avoiding walk is
ballistic, that the bubble diagram converges at criticality, and that the critical
two-point function decays exponentially in the distance from the origin. This
implies that the critical exponent governing the susceptibility takes its mean-
field value, and hence that the number of self-avoiding walks of length n
is comparable to the nth power of the connective constant. We also prove
that the same results hold for a large class of repulsive walk models with a
self-intersection based interaction, including the weakly self-avoiding walk.
All of these results apply in particular to the product 7 x 74 of a k-regular
tree (k > 3) with Z4, for which these results were previously only known for
large k.

1. Introduction. A self-avoiding walk (SAW) on a graph G is a path in G
that visits each vertex at most once. In the probabilistic study of self-avoiding
walk, one fixes a graph (often the hypercubic lattice Z?), and is interested in both
enumerating the number of n-step SAWs and studying the asymptotic behaviour
of a uniformly random SAW of length »n. This leads to two particularly important
questions.

QUESTION 1.1.  What is the asymptotic rate of growth of the number of SAWs
of length n?

QUESTION 1.2. How far from the origin is the endpoint of a typical SAW of
length n?

These questions are simple to state but are often very difficult to answer. Sub-
stantial progress has been and continues to be made for SAW on Euclidean lattices.
In particular, a very thorough understanding of SAW on Z¢ for d > 5 has been es-
tablished in the seminal work of Hara and Slade [23, 24]. The low-dimensional
cases d = 2,3, 4 continue to present serious challenges. For a comprehensive in-
troduction to and overview of this literature, we refer the reader to [2, 31].
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Recently, the study of SAW on more general graphs has gathered momentum.
In particular, a systematic study of SAW on transitive graphs has been initiated in a
series of papers by Grimmett and Li [11, 13-17, 19], which is primarily concerned
with properties of the connective constant. Other works on SAW on non-Euclidean
transitive graphs include [3, 10, 12, 29, 32, 33]; see [18] for a survey of these
results.

In this paper, we given complete answers to Question 1.1 and Question 1.2 for
self-avoiding walk on graphs whose automorphism group admits a nonunimodular
transitive subgroup (defined in the next subsection). Although graphs whose entire
automorphism group is nonunimodular are generally considered to be rather con-
trived and unnatural, the class of graphs with a nonunimodular transitive subgroup
of automorphisms is much larger. Indeed, it includes natural examples such as the
product Ty x Z¢ of a k-regular tree with Z? for every k > 3 (or indeed Ty x H
where H is an arbitrary transitive graph), for which the results of this paper were
only previously known for sufficiently large values of k (see the discussion at the
end of this subsection).

Our proofs are inspired by the analysis we carried out for percolation on the
same class of graphs in our paper [26], which relies on similar methodology. It
should be remarked that although every graph possessing a transitive nonunimod-
ular subgroup of automorphisms is necessarily nonamenable [36], we never use
this fact in our analysis.

Our first theorem answers Question 1.1 in the nonunimodular context. Let G
be a transitive graph, let O be a fixed root vertex of G and let Z(n) be the number
of length n SAWs in G starting at 0. Hammersley and Morton [20] observed that
Z(n) satisfies the submultiplicative inequality Z (n +m) < Z(n)Z(m), from which
it follows by Fekete’s lemma that there exists a constant p. = u.(G), known as
the connective constant of G, such that

pe= lim Zm)"" = inf Z(n)"/",
n—o0 nz]
so that in particular
pt < Z(n) < pto®
for every n > 0. We also define the susceptibility x (z) to be the generating function
x@) =Y "Z®n).
n>0

which has radius of convergence z. := /L;l. The connective constant is not typ-
ically expected to have a nice or interesting value (a notable exception is the
hexagonal lattice [9, 34]), and it is usually much more interesting to estimate the
subexponential correction to Z(n) than it is to estimate u.. We stress that sub-
multiplicativity arguments alone do not yield any control of this subexponential
correction whatsoever.
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THEOREM 1.3 (Counting walks). Let G be a connected, locally finite graph,
and suppose that Aut(G) has a transitive nonunimodular subgroup. Then there
exists a constant C such that

— =x@) = and ;. <Zn)<Cu;

Zc Ze —

forevery 0 <z <z.andn > 0.

In fact, we are able to obtain explicit estimates on the constants that appear in
this theorem; see Remark 3.5. The lower bounds of the theorem are trivial conse-
quences of submultiplicativity. The upper bounds on x (z) and Z(n) in this theorem
are equivalent up to the choice of constant; see Lemma 3.4. Probabilistically, the
upper bound on Z(n) means that the concatenation of two uniformly chosen n-step
SAWSs has probability at least 1/C > 0 to be self-avoiding for every n > 0.

Our next theorem answers Question 1.2 in the nonunimodular context. We de-
fine [P, to be the uniform measure on self-avoiding walks of length # in G starting
at 0, and denote the random self-avoiding walk sampled from IP, by X = (X;)!_,,.
For each z > 0 and x € V, we define the two-point function:

G(zix)= Y. 71w : 0 — x self-avoiding) = > "ZM)Pu(Xy =x).

weR n>0

In the following theorem, d(0, x) denotes the graph distance between 0 and x.

THEOREM 1.4 (Speed and two-point function decay). Let G = (V, E) be a
connected, locally finite graph, and suppose that Aut(G) has a transitive nonuni-
modular subgroup. Then there exists a positive constant ¢ such that

G (z¢; x) < exp[—cd(0,x)]
forevery x € V and
P,(d(0, X,) > cn) > 1 —exp[—cn]

for everyn > 0.

Let us briefly survey related theorems in the literature. It is reasonable to con-
jecture that the conclusions of Theorems 1.3 and 1.4 hold for every transitive non-
amenable graph. Indeed, it is plausible that the conclusion of Theorem 1.3 holds
for every transitive graph with at least quintic volume growth. The conjectures are
trivial when the graph is a tree. Li [29] has shown that SAW is ballistic on a certain
class of infinitely ended transitive graphs, and Madras and Wu [32] and Benjamini
[3] have shown that SAW on certain specific hyperbolic lattices has linear mean
displacement; the latter paper also establishes that the conclusions of Theorem 1.3
hold for the lattices they consider. Gilch and Miiller [10] have proven that the con-
clusions of Theorem 1.3 hold for free products of quasi-transitive graphs (which
are always infinitely ended).
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Nachmias and Peres [33] proved that the conclusions of Theorems 1.3 and 1.4
hold for every transitive nonamenable graph satisfying

(n d—1p < e,

where d is the degree of the graph, p is its spectral radius and . is its connective
constant. In particular, this holds whenever p < 1/2 [35], as well as for nona-
menable transitive graphs of large girth (where what constitutes “large” depends
on the spectral radius and the degree). However, we do not expect this criterion to
apply to T x Z¢ for small k. [Deciding whether or not a graph satisfies (1) can be
difficult as to do so one must estimate the connective constant. It can be shown that
the criterion (1) does not hold for 7y x Z when k = 3 by upper bounding . by
the growth rate of the number of walks that avoid their last six locations: the latter
quantity is exactly computable with computer assistance. On the other hand, using
the methods of Lyons and Peres ([30], Theorem 7.37), one can show that (1) does
hold for 7; x Z when k > 6. Similarly, using the methods of Yamamoto [38] it
should be possible to give a perturbative proof of Theorems 1.3 and 1.4 for Ty x Z
for every k > 4.] Furthermore, our nonperturbative approach also lets us handle
anisotropic SAW on Ty x Z¢, in which the walk is weighted to prefer Z¢-edges to
Ty-edges, and this bias may be arbitrarily strong (see Section 1.2). It seems very
unlikely that such a result could be established using perturbative techniques.

For the hypercubic lattice, Hara and Slade [23, 24] proved that Z(n) grows like
ul as n — oo whenever d > 5. In the same setting, they also proved that the dis-
tance from the origin to the endpoint of an n-step SAW is typically of order n!/2,
Hara [22] later proved that the critical two-point function decays like ||x||~%¢*2.
(Both behaviours are the same as for simple random walk.) For d = 4, it is conjec-
tured that similar asymptotics hold up to logarithmic corrections. See [1] and ref-
erences therein for an account of substantial recent progress on four-dimensional
weakly self-avoiding walk. For d = 2, 3, the gap between what is known and what
is conjectured is very large; important results include those of [7, 8, 21, 28]; see
[2, 31] and references therein for more details.

1.1. Tilted walks and the modular function. We now define unimodularity and
nonunimodularity. Let G = (V, E) be a connected, locally finite graph, and let
Aut(G) be the group of automorphisms of G. Recall that a subgroup I' € Aut(G)
is said to be transitive if it acts transitively on G, that is, if for any two vertices
u,v €V there exists y € I' such that yu = v. The modular function A = Ar :
V2 - (0, 00) of a transitive subgroup I' € Aut(G) is defined to be

| Stab, x|
| Staby y|’

where Stab, y is the orbit of y under the stabilizer of x in I". The group I' is said
to be unimodular if A =1, and nonunimodular otherwise. The most important
properties of the modular function are the co-cycle identity, which states that

A(x, y)A(y,z) = Ax, 2)

A(x,y)
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for every x, y,z € V and the tilted mass-transport principle, which states that
if F: V2 [0,00] is invariant under the diagonal action of I', meaning that
F(yx,yy)=F(x,y) forevery y e " and x, y € V, then

Y F.» =) Fy,0Ax,y).

yev yev
See [30], Chapter 8, for proofs of these properties and further background, and [4],
Section 4, for a probabilistic interpretation of the modular function. Note that A is
itself invariant under the diagonal action of .

The prototypical example of a pair (G, I') of a graph together with a nonuni-
modular transitive subgroup I' € Aut(G) is given by the k-regular tree Ty with
k > 3 together with the group I'¢ of automorphisms fixing some specified end & of
Ty. (An end of a tree is an equivalence class of infinite simple paths, where paths
may start from any vertex and two simple paths are considered equivalent if the
sets of vertices they visit have finite symmetric difference.) Let us briefly give an
explicit description of the modular function in this example. Every vertex v of Ty
has exactly one neighbour that is closer to the end & than it is. We call this vertex
the parent of v. (In other words, the parent of v is the unique neighbour of v that
lies in the unique simple path that starts at v and is in the equivalence class &.)
All other neighbours of v are said to be children of v. This leads to a partition of
T into levels (L,),ez, unique up to choice of index, such that if v is in L, then
its parents are in L,y and its children are in L,,_;. The modular function in this
example is given explicitly by

Aw,v)=*k—-1" <<= wuel, and vE Ly, for some m € Z.

From this example, many further examples can be built. In particular, if G is an
arbitrary transitive graph and 7} x G is the product of T} with G, then Aut(7; x G)
has a nonunimodular transitive subgroup of automorphisms isomorphic I' to I's x
Aut(G) and with modular function Ar((u, x), (v, ¥)) = Ar, (4, V) AauG) (X, ¥);
see, for example, [5, 26, 37] for further examples.

As in [26], the key to our analysis is to define filted versions of classical quan-
tities such as the susceptibility. These quantities will be similar to their classical
analogues, but will have an additional parameter, A, and will be weighted in some
sense by the modular function to the power A. We will show that these tilted quan-
tities behave in similar ways to their classical analogues (corresponding to A = 0)
but, crucially, will have different critical values associated to them.

For each A € R and n > 0, we define

Z(;n)=)_ Y 1[w:0—> x alengthn SAW]A*(0, x),

xeV weQ

and define the tilted susceptibility to be

Xw(@ M) =Y "Zy(A;n).

n>0



2806 T. HUTCHCROFT

Since every self-avoiding walk w of length n 4+ m is the concatenation of two self-
avoiding walks w1 and w; of lengths n and m, respectively, the co-cycle identity
implies that

Z(An+m) <Z(A;n)Z(x;m)
for every n, m > 0. It follows by Fekete’s lemma, as before, that
(2) Hea = Hen(G.T) = lim Z(im)'/" = inf Z(x; )/
and that z. y = z.2(G,I') := M;i is the radius of convergence of x (z; A).

The tilted mass-transport principle leads to a symmetry between A and 1 — A.
Indeed, it implies that

Z(in)=)_ > 1[w:0— x alength n SAW]A*(0, x)

xeV we
=Y > 1w:x — 0alength n SAW]A*(x,0)A(0, x)
xeV wef
3) = Z Z 1[w:0— x alength n SAW]A'™*(0,x) = Z(1 — A; n)
xeV we

for every A € R and n > 0, and hence that

X(Z’}"):X(Zvl_)")

for every A € R, and z > 0. In particular, it follows that z. » = z.,1—» for every
A € R. Moreover, it is easy to see that Z (A, n) is a convex function of A for each
fixed n, and combined with (3) this implies that both Z(X,n) and x,(z,A) are
decreasing on (—oo, 1/2] and increasing on [1/2, 00), while z. ; (w) is increasing
on (—oo, 1/2] and decreasing on [1/2, 0o). This leads to a special role for A = 1/2,
which we call the critical tilt. We call z; = z..1/> the tiltability threshold and call
[0, z;) the tiltable phase.

The main technical result of this paper is the following. We will show in Sec-
tion 3 that it easily implies Theorems 1.3 and 1.4.

THEOREM 1.5. Let G be a connected, locally finite graph, and let " be a
transitive nonunimodular subgroup of Aut(G). Then the function
R — (0, z], A Ze
is continuous, and is strictly increasing on (—o0, 1/2].
Besides implying Theorems 1.3 and 1.4, Theorem 1.5 also immediately yields
tilted versions of those theorems, at least when A does not take its critical value of

1/2. We define a probability measure on the set of self-avoiding walks of length n
starting at 0 by

P; 2 ({w}) = Z(; n) "1 A0, ™),

where o™ denotes the endpoint of w.
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THEOREM 1.6. Let G be a connected, locally finite graph, let I" be a transitive
nonunimodular subgroup of Aut(G). Then the following hold:
1. For every A #£ 1/2, there exists a constant C;_ such that

Ze,h
—— =< x(z,A) =
Zc,)L —Z Zc,k —Z

Cize
P and pl < Zy(sn) < Gl

forevery) <z <z andn>0.
2. For every z € [0, z;), there exists a constant ¢, such that

G(z;x) < =10

foreveryx e V.
3. Forevery A # 1/2, there exist positive constants ) and c;_such that

4) Pya[sgn(dr —1/2)1og A0, X)) > cpn] > 1 — ="
for every n > 0, and hence
(5) P;.a[d(0, Xp) = ¢jn] = 1 — ™",

for every n > 0.

REMARK 1.7. The estimate (4) also yields additional information concern-
ing the untilted case A = 0. Indeed, it shows that for all A # 1/2 the height
log A(0, X,,) of the walk behaves ballistically. Moreover, it shows that the walk
is typically displaced in the downward direction when A < 1/2 and the upward
direction when A > 1/2.

Theorem 1.6 naturally leads to questions concerning the critically tilted case
A = 1/2. We present some such questions along with some partial results in Sec-
tion 4.

1.2. Other repulsive walk models. All our results apply more generally to a
large family of repulsive walk models, including the self-avoiding walk as a special
case. This generalization does not add substantial complications to the proof. In
this section, we define the family of models that we will consider and state the
generalized theorem.

Let G be a connected, locally finite graph, let I" be a transitive subgroup of
Aut(G) and let E™ be the set of oriented edges of G. An oriented edge e of G is
oriented from its tail e~ to its head et and has reversal e*". Let n > 0. A path of
length n in G is a pair of functions {0, ...,n} — V and w{(i, j) : 0 <i,j <n:
i —jl=1}— E~ suchthat w(i 4+ 1,i) = w(i,i + 1)< forevery 0 <i < n and
w(i,i+1)" =w(@)and w(@i,i + 1) =w( + 1) for every 0 <i < n. (Note that,
by a slight abuse of notation, we denote both the path and each of these functions
by the same letter, usually w.) In other words, a path of length n is a multi-graph
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homomorphism from the line graph with n edges into G. A path in G is a path
of some length n, and we write |w| for the length of the path w. Note that length
one paths are just oriented edges, while length zero (a.k.a. trivial) paths are just
vertices. We write @~ and w™ for the first and last vertices of w, and write <~ for
the reversal of w. We say that an ordered pair of paths (w1, w2) in G are contiguous
if a)]L = w, . We will usually write simply that w; and w; are contiguous, with the
ordering being implicit. Given a pair of contiguous paths (w1, w2), we define their
concatenation w; o w; in the natural way. By slight abuse of terminology, we say
that a contiguous pair of paths (w1, wy) are disjoint if w1(i) # wy(j) for every
i <|wi]and j > 0.

Let G be a graph, let I be a transitive group of automorphisms of G and let 2 be
the set of paths of finite length in G. Consider a weight function w : 2 — [0, c0),
which is always taken to give weight one to every trivial path. We say that w is I'-
invariant if w(yw) = w(w) forevery y € I' and w € 2. We say that w is reversible
if w(w) = w(w<) for every w € Q. We say that w is repulsive if

w(won) < w(@w(n)

for every contiguous pair (w, n) € 2. We say that a weight function w :  —
[0, 00) is nondegenerate if w(w) =1 for every w with |w| =0, and w(w) > 1 for
every o with |@| = 1. We say that the weight function w is zero-range if w(won) =
w(w)w(n) whenever w and 7 are contiguous and disjoint.

For brevity, we will call a weight function good if it is I'-invariant, reversible,
nondegenerate, zero-range and repulsive. Important examples of good weight
functions include

w(w) = 1[w is self-avoiding]

which is the weight function for self-avoiding walk, and
w(w) = exp[—g > 1) = w(j)ﬂ
O<i<j<|o|

for g > 0, which is the weight function for weakly self-avoiding walk (a.k.a. the
Domb-Joyce model [6]). Another very natural example is the anisotropic self-
avoiding walk on T x Z<:

w(w) = 1[w self-avoiding]
x exp[a#{Z? edges used by ) + b#{tree edges used by w}]

for a,b > 0. This walk prefers to use 7 edges if a < b and prefers to use Z¢
edges if a > b. Finally, to illustrate the flexibility of the definition, let us also give
examples of some more exotic good weight functions:

w(w) = 1[w does not visit any vertex more than twice],
w(w) = 1w (i) # w(j) if |i — j| is not prime],
w(w) = 1[the subgraph of G spanned by the edges traversed by w is a tree].
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(Tyler Helmuth has informed us that the first of these examples is related to ¢°
field theory.)
For each I'-invariant weight function w, we define

Zy() =) wi[w” =0, =n]
we2
to be the total weight of all walks of length n. For every n with Z,,(n) > 0, we
define a probability measure on the set of paths of length n starting at O by

Pya({0}) = Zy () ' w(w).

The two-point function G,,(z; x), the susceptibility x, (z), and the critical param-
eter z.(w) are defined analogously to the case of self-avoiding walk, as are the
tilted variants ., (z, 1), z¢,»(w) and Py, ; ,. Note that the tilted quantities all de-
pend implicitly on the choice of I'. Similar to the case of SAW, if w is I"-invariant
and reversible then the tilted mass-transport principle implies that

Zy(A;n) =Zy(1 — A n),

for every A € R and n > 0, and hence that x,,(A; 2) = xw(1 — A; 2) and z. x (w) =
Zc.1—x(w) for every A € R. The same statements concerning monotonicity of these
quantities on (—o00, 1/2] and [1/2, co) hold for arbitrary good weight functions as
they did for SAW, and for the same reasons.

If w is I'-invariant and repulsive, then Z,,(; n) is submultiplicative for every A
by the co-cycle identity, so that

fes (W) == zes w) " = lim Z, (0 m)Y" = inf Z,, (0 )" € [—00, 00)
n—o0 n>1

is well defined by Fekete’s lemma. If furthermore w is good then the nondegener-
acy and zero-range properties imply the lower bound p. ; > 1 for every A € R.

We will prove the following generalization of Theorem 1.5 to arbitrary good
weight functions. Again, we stress that this applies in particular to any graph of
the form 7" x G, where T is a regular tree of degree at least 3 and G is an arbitrary
transitive graph.

THEOREM 1.8. Let G be a connected, locally finite graph, let I" be a transitive
nonunimodular subgroup of Aut(G), and let w : Q — [0, 00) be a good weight
function. Then the function

R — (0, z/(w)], A= Zep(w)
is continuous, and is strictly increasing on (—o0, 1/2].
Theorem 1.8 has the following straightforward consequences, which generalize

Theorem 1.6. In particular, analogues of Theorems 1.3 and 1.4 for general good
weight functions w follow from the untilted case A = 0.
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THEOREM 1.9. Let G be a connected, locally finite graph, let I be a transitive
nonunimodular subgroup of Aut(G), and let w : Q — [0, 00) be a good weight
function. Then the following hold:

1. For every A # 1/2, there exists a positive constant C;, such that

Ze Cizen

S Xw(z, )") E

and  pp < Zy(hsn) < Capg;,
ZC,A —Z ZC,A —Z

forevery0 <z <zep=2zca(w) andn > 0.
2. Forevery z €10, z;), there exists a positive constant c; such that

Gu(z;x) < e /O

foreveryx eV.
3. Forevery A # 1/2, there exist positive constants c;,, ¢, such that

Py an[sgn(r —1/2)1og A0, X») = can] 2 1 — €=
for every n > 0, and hence
Pw,k,n[d(o, Xn) > c;»n] > 1 — e_C;»"’

for everyn > 0.

REMARK 1.10. The reader may find it an enlightening (and easy) exercise
to prove the third item of Theorem 1.9 for simple random walk (i.e., in the case
w(w) = 1) and observe what happens in the case A = 1/2.

1.3. About the proofs and organization. The proof of Theorem 1.5 and Theo-
rem 1.8 starts by using Fekete’s lemma to get bounds on bridges at z. ;. The fact
that Fekete’s lemma can be used to obtain surprisingly strong bounds for critical
models on graphs of exponential growth was first exploited in [25], and is also cen-
tral to our work on percolation in the nonunimodular setting [26]. We then convert
this control of bridges into a control of walks: this conversion centres around a
tilted version of a generating function inequality of Madras and Slade [31]. In Sec-
tion 3, we use Theorem 1.8 to prove Theorem 1.9. In Section 4, we examine the
critically tilted case A = 1/2, posing several open problems and giving some small
partial results.

2. Proof of Theorems 1.5 and 1.8. Let G be a connected, locally finite graph,
let I € Aut(G) be transitive and nonunimodular, let O be a fixed root vertex and let
w be a good weight function. We define the height of a vertex v to be log A(0, v),
and define

H = {log A(u,v) :u,v eV}

to be the set of height differences that appear in G. We say that v is higher than
u if A(u,v) > 1 and that v is lower than u if A(u,v) < 1. We also define H; =
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H N (0, oo) and Hx to be the sets of positive and nonnegative heights that appear
in G, respectively.
We define the level L; to be the set of vertices at height ¢, that is,
Ly={veV:logA,v)=r}.
We also define
fo = sup{log A(u, v) : u ~ v}
to be the maximum height difference between adjacent vertices, and define the
slab S; to be
Si={veV:r<logA(0,v) <t+1}.

We say that w € Q is an up-bridge if its endpoint w™ is not lower than any
of its other points, and its starting point w™ is not higher any of its other points.
Similarly, we say that € S is a down-bridge if its endpoint @™ is not higher than
any of its other points, and its starting point ™ is not lower any of its other points.
Thus, w is an up-bridge if and only if its reversal @™ is a down-bridge.

We will specify that a walk w is an up-bridge by writing a superscript of “u.b.”,
and a down-bridge by writing a superscript of “d.b.”. For each ¢ € R, we define

aw(z;t) = Z w(w)z ' 1(w: 0 b, L))

weR
and

dy(z =Y w@®iw: 0 L)),

we

both of which are equal to zero when ¢ ¢ H(. The I'-invariance of w and the tilted
mass-transport principle implies that

aw(z ) =Y 1(A0,v)=¢") Y w(w1(w:0 b

veV wel
— Z A0, v)1(A(v,0) =¢") Z w(@)z® 1w : v ub. 0.
veVv weN

and applying the reversibility of w and the identity A (0, v) = A(v, 0)~! we obtain
that

aw(Z; t) = Z A(O, l}):ﬂ_(A(O’ v) — e—t) Z w(([)(_)zlweljl(a)(_ . l]_b_) O)
veV 0eQ
- Z A0, v)1(A0, v) =e") Z w(w)z“11(w: 0 4ab V)
veV we

(6) =e 'dy(z;1)
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for every t € H>¢. Finally, define the sequence (A, (z; n))n>0 by

Az =Y w@d1w: 0% Syl= Y a0,

weR ntg<t<(n+1)rny

LEMMA 2.1. The sequence Ay (z;n) satisfies the generalized supermulti-
plicative estimate

Ap(zin+m+2) > 22 Ay (z; n) Ay (z; m)

foreveryn,m>0and 0 <z <1.
PROOF. It suffices to construct for each n, m > 0 an injective function
u.b. u.b.
w1 eQ:w1:0— Sy} X {w2€Q:wr:0— Sy}

.b.
S {weQ:w: 0> S+m+2)10)

such that

(7) w() = w(w)w(wy)
and

(®) lo| < |o1] + |wa| +2

for every pair of up-bridges wy : 0 u'—b'> Snty and w2 : 0 u’—b'> Sty -

For each v € V, we fix an automorphism y, € I' such that 3,0 = v. We let
n1 and 7y be paths of length one and two respectively that start at O and whose
endpoints have height 7y and 21, respectively. Let w1 : 0 — S,y and w; : 0 — Sy
be up-bridges. Then we have that

(n +m)tg <log A(0, ) +1log A(0, ) < (n +m + 2)to.
We define w as follows:

o If the sum of the heights of a)fL and w;r is greater than or equal to (n +m + 1)1y,
we let @ be the composition wj o Y1711 o yr2wy, where y| = Vot sends O to the
final vertex of wy, and y» = Yoan)* sends O to the final vertex of y;n;.

e If the sum of the heights of a)fr and a);r is strictly less than (n 4+ m 4 1)ty, we
let w be the composition w| o 1712 o yrw2, Where y| = Vo sends O to the final
vertex of w1, and y, = Youm)+ sends O to the final vertex of yn,.

The path w is clearly an up-bridge 0 — S¢,4m+2)1,, and clearly satisfies the length
bound (8), while the weight bound (7) follows from the assumption that w is non-
degenerate and zero-range. To see that the function (w1, @) — w is injective, ob-
serve that w is necessarily equal to the longest initial segment of w that has height
strictly less than (n 4+ 1)ty at its endpoint, while @, is necessarily equal to the
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longest final segment of w that has height difference strictly less than (m + 1)ty
between its starting point and endpoint. [

Next, we define H,' to be the upper half-space H," := -, L, and define
bu(zsn) =) w(@)z”"1[w:0— HS].
weR

The following lemma complements Lemma 2.2 and will be used to prove continu-
ity of A > zc(w).

LEMMA 2.2. The sequence by, (z; n) satisfies the generalized submultiplica-
tive estimate

by(z;n+m+ 1) <by(z;n)by(z; m)
foreveryn,m >0 and z > 0.
PROOF. Foreach v e V,let y, € I' be such that y,0 = v, and for each n > 0
let
Hf () =y,H ={ueV:logA,u)>nt}.

. +
Letw:0— Hn+m+1.

enters H, for the first time and w, is the remaining portion of w. Then @} € Sy,

by definition of #(, and it follows that Hn+ a1 S HF (a)fr). Thus, using repulsivity

Write w = w1 o wy, where wg is the portion of w up until it

of w to bound w(w) < w(wi)w(wz), we have that
bu@n+m+D< Y w3y w)™!
w1:0— H,f a)g:wf—> H,,T(wfr)

=by(z; n)by(z; m),

where transitivity of I and I"-invariance of w are used in the second line. [

We now recall Fekete’s lemma, one form of which states that if (c,),>0 is a
sequence taking values in [—o00, oo] that satisfies the generalized subadditive in-
equality

Cntm+ng = Cn + Cm + C

for some constants ng and C, then

1 c
lim ¢, = inf

€ [—OO, OO],
n—>oop n>0n 4+ ng

so that in particular the limit on the left-hand side exists.
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Applying Fekete’s lemma in light of Lemmas 2.1 and 2.2, we obtain that the
quantities

) 1
ay(z) = —nll)néo o logAy,(z;n) and
)] |
Pu(@) = = lim —logby (zin)

are well defined (as elements of [—o0, o0]) and that
100 Ap(zn) < ize—“wm("”) and by (z;n) = ¢ Pr@00HD
z

forevery 0 <z < 1andn > 0. Note that we trivially have that Ay, (z; n) < by /(z; n),
and hence that

(11) oy (2) = Bu(2)

forevery 0 <z <1.

LEMMA 2.3. Let G be a connected, locally finite graph, let I' C Aut(G) be
transitive and nonunimodular, and let w : Q — [0, 00) be a good weight func-
tion. Then x,(z,A) < oo if and only if By, (z) > max{\, 1 — A}. In particular,
Buw(zea(w)) <max{r, 1 —A}.

PROOF. By definition,
Xw@ =D Y w@i1@:0— v)A*0,v)
veV wel2

for every A € R and z > 0. Using the assumptions that I" is transitive and w is I'-
invariant and reversible, we apply the the tilted mass-transport principle to obtain
that

Y w(@)z!®'1(A©0,v) < 1,0:0 - v) A*(0, v)

veV weQ
=Y > w@z®1(A0,v) > 1,w:0— v) A0, v),
veV weQ2
and hence that
Xw(@A) = DY w@)z1(A©0,v) = 1,w:0— v)[A0,v) + AT7H0, v)]

veV weQ
=Y > w@z!®'1(A0,v) = 1, 0: 0 — v) AT (0, ).
veV wef

Indeed, x,(z, 1) is upper bounded by twice the right-hand side of the second line
and lower bounded by half the right-hand side of the second line. We deduce that

Xw(z, 2) < Y MM (2,

n>0
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and consequently that x,,(z,A) < oo if By (z) > max{A,1 — A}. Conversely, if
Xw(z, A) < oo then we have that

lim sup e™ W 1=Monp, (7 )
n—oo

< limsup Z Z w(@)7“'1(w : 0 > v) APXAI=M (0 ) =0,

n— 00
Ue[u+weﬁ

and hence by (10) that 8,,(z) > max{A, 1 — A} whenever x,,(z, A) < oc.
Finally, the bound By, (2,1 (w)) < max{X, 1 — A} follows since x, (z¢,, A) =00
by submultiplicativity of Z,, (A, n). O

Moreover, we have the following.

LEMMA 2.4. Let G be a connected, locally finite graph, let I' C Aut(G) be
transitive and nonunimodular, and let w : 2 — [0, 00) be a good weight func-
tion. Then oy (z) is left continuous on (0, 00) and By (z) is right continuous on
(0, z;(w)). Moreover, both o, (z) and By, (z) are strictly decreasing when they are
positive.

PROOF. Both oy,(z) and By (z) are clearly decreasing in z for z > 0. For each
n >0, Ay(z; n) and by, (z; n) are both defined as power series in z with nonnega-
tive coefficients. It follows that they are each left continuous in z for z > 0 and are
continuous in z within their respective radii of convergence, which are always at
least z;(w) by the trivial bound

Ay(z;n) <by(z;n) < xuw(z, A),
which holds for every z,n, A > 0. If z > 0 and we define

ay(z—) = Inf oy (z—¢) =limay(z — &),
O<e<z el0

then (10) implies that

—ay (z2—&)th(n+2) < 1
(z—e)? T (z—e)?
for every n > 0. It follows by left continuity of A, (z; n) that the bound

Ap(z—¢&;n) < e w0 (n+2)

e

1 o
. oy (z—)tp(n+2)
Ay(z;n) < Zze

also holds. This implies that o, (z—) < &y, (z) for every z > 0, which is equivalent
to left continuity since o, (z) is decreasing. The proof of the claim concerning
right continuity of 8,,(z) on (0, z;(w)) is similar.
The claim that a4, (z) and B, (z) are strictly decreasing when they are positive
follows from the trivial inequalities
/ /

Ay(Z'sn) > <Z—)nAw(z; n) and by(Z;n)> (Z—)nbw(z; n,
z 4

which hold foreveryn >0and 7/ >z >0. O
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Lemma 2.4 has the following very useful consequence.

LEMMA 2.5. Let G be a connected, locally finite graph, let I' C Aut(G) be
transitive and nonunimodular, and let w : 2 — [0, 00) be a good weight function.
Then oy (z¢)(w)) = max{A, 1 — A} for every A € R.

PROOF. We trivially have that o, (z) > By (z) for every z > 0, and hence by
Lemma 2.3 that o, (z) > max{A, 1 — A} forevery 0 < z < z.; (w). Thus, the claim
follows by left continuity of ay,(z). U

2.1. Relating walks and bridges. We now wish to relate the quantities oy, (z)
and B, (z). The following proposition, which is the central idea behind this proof,
is a tilted analogue of a well-known inequality relating generating functions for
walks and bridges in 74 due to Madras and Slade [31], Corollary 3.1.8, and related
to the work of Hammersley and Welsh [21]. Indeed, the idea of the proof here is
to combine that proof with a judicious use of the tilted mass-transport principle.

PROPOSITION 2.6.  Let G be a connected, locally finite graph, let ' C Aut(G)
be transitive and nonunimodular, and let w be a good weight function. Then the
estimate

1 1
Yooz, 1/2) < —eXp[Z 3 au(z: mﬂ < —exp[Z S A n>e<"+”’°/2]
Z Z

teH n>0

holds for every z > 0.

PROOF. We say that w is a upper half-space walk if A(w™,w(i)) > 1 for
every i > 0, that is, if w is strictly higher than its starting point at every positive
time. Similarly, we call @ a reverse descent if A(w™,w(i)) > 1 for every i > 0,
that is, if w is at least as high as its starting point at every positive time. A path @
is a descent if its reversal is a reverse descent. Define

hyw(z;t) = Z Z w(@)z“1(w:0— L, isan upper half-space walk),

veV weQ
rw(z;t) = Z Z w(a))zla’l]l(a) :0 — L, is a reverse descent)
veV weQ
and
Hu(z, W)= Y hw(zine.

IEHEO

Note that A, (z; 0) = 1, as the only upper half-space walk ending in Ly is the trivial
path at 0.

Let n be a path of length 1 ending in O whose starting point n~ = v has height
—to. Then for every + > 0 and every reverse descent w : 0 — L;, the composition



SELF-AVOIDING WALK ON NONUNIMODULAR TRANSITIVE GRAPHS 2817

n o w is an upper half-space walk n o w : v — L;. Using the fact that w is zero-
range, nondegenerate and I"-invariant, this yields the inequality

(12) hw(z;t + 1) > zry (25 1)

for every t € H>y.

Let w € Q. Let w; be the portion of w up until the last time that it visits a point
of minimal height, and let w, be the remaining portion of w, so that w = w; o w».
This decomposition is defined in such a way that w is a descent and w, is an upper
half-space walk. Thus, using repulsivity, I'-invariance, and reversibility of w, we
have that

XU)(Z’)\')
< 3 w105 L) Y wendli(wf 5 L))o
ZEHzo SGHZQ
= Y w105 Lope™ Y hu(zs)e®
IEHZQ SEHEO
= Y ru@ e 3T hy(zs)e,
teHq seHxq

where the superscripts d. and u.h.s. denote descents and upper half-space walks re-
spectively and where the tilted mass-transport principle is used in the final equality.
Applying (12) we obtain that

1
Xw(z, A) < ;’Hw(z, MHw(z, 1 =2)

for every z > 0 and A € R. Thus, to conclude the proof of the present proposition,
it suffices to prove that the inequality

(13) Mtz 1/ =exp| 3 au(zine”]

ZEHZQ

holds for every z > 0.

Let t e Hy and let w : 0 — L; be an upper half-space walk. We decompose
w=w) owyo---owy for some k > 1 recursively as follows: We first define w
to be the portion of w; up until the last time it attains its maximum height. Now
suppose that i > 2. If wj o --- 0 wj_1 = w, we stop. Otherwise, consider the piece
of w that remains after wj o---ow;_1. If i is odd, let w; be the portion of this piece
up to the last time it attains its maximum height. If i is even, let w; be the portion
of this piece up to the last time it attains its minimum height.

Let s(w;) be the absolute value of the height difference between w; and
a)l+ Observe that for each i < k, w; is an up-bridge if i is odd and a down-
bridge if i is even. Moreover, the sequence s(w;) is decreasing and satisfies
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Sk (=1)*ls(w;) = t. This leads to the bound

L(k—1)/2] [k/2]
hoz) <Y > I aw@sais) [] dwz s,
k>1seS;x  i=0 i=1
where we define S; x to be the set of decreasing sequences s1, ..., s¢ in H such

that Y°F_ (—1)*1s; = ¢. Now, observe that

aw(zt) = e Vay(z;D)dy(z; 1) and  dy(z;1) = €'/*Vay(z; H)dy(z; 1),

by (6), and hence that

k ,
ho@ ) <Y Y []e™V 2 Vaw (s si)dw(z: si)

k>1s€S; pi=1

k
=23 3 [T Vaw(zs sidu(z s

k>1s5eS;i=1

for every t € H;. Now, let Si be the set of all decreasing sequences s = sy, ..., Sk
of elements of H, and observe that for any nonnegative function f : H, —
[0, oo] we have that

H(1+f(t)):1+22ﬁf(si):1+ YN ﬁf(s,-).

teHy k>1seSgi=1 tell k>1s5seS$; ki=1
Applying this equality with f(¢) = /ay (z; t)dy(z; t), we obtain that
Hu(z. 1/2)=1+ Y hy(zne’?

IGH+

k
<1+ > > > [[Vaw:sidu(z si)

teH k>1s5seS8; ri=1

= 1—[ (1 + aw(Z;t)dw(z;t)) = l_[ (1 +et/2aw(z; t))

teH teH

Using the elementary inequality 1 + x < ¢* concludes the proof. [

The following is an immediate consequence of Lemma 2.5, Proposition 2.6 and
the estimate (10).

COROLLARY 2.7. Ifz>0is such that « = oy (2) > 1/2, then

2
ZZeotl‘o [e(o{—l/z)t() _ 1]

Yu(z 1/2) < éexp[ ]<oo.

In particular, z¢ 3 (w) < z¢,172(w) = z;(w) for every . # 1/2.
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We now apply Corollary 2.7 to prove Theorems 1.5 and 1.8.

PROOFS OF THEOREMS 1.5 AND 1.8. Foreach v € V, let y, € I" be an auto-
morphism with 3,0 = v, and foreacht e Rand v € V let

Ss)=wSi={ueV:it<A(,u)<t+1}.

Write z. ) = z¢.a(w). It follows from Corollary 2.7 and Lemma 2.5 that

3 w(@)zl) 1w : 0= So U Sy < xuw(ze, 1/2) < 00

we2
Now suppose that ¢ > 0 and that w : 0 — S; is a path. Then we can decompose
w = w1 0 W o w3, where wy : 0 — Sy, the path w, : a)i’r — Sty € S;_to(a)fr) U
Si—21, (a)1+) is an up-bridge, and w3 : a)gL — 5, C S (a);r YUS, (a);r ). Indeed, simply
take w; to be the portion of w; up to the last visit to Sp, take w; to be the portion
of w between the last visit to Sy and the first subsequent visit to S;_,, and take w3
to be the remaining final piece (it is possible that some of these paths have length
zero, but this is not a problem). By summing over possible choices of w;, w; and
w3, and using both transitivity of I' and I'-invariance and repulsivity of w, we
obtain that

3 w@)z)1w:0— S

we

2
< (Z w(w)zlﬂjl[a) 00— SpuU S,O]) [Aw(z; t—19)+ Ay(z;t — 2t0)].
we
When A # 1/2 the prefactor on the right-hand side is finite and does not depend
on ¢, and we deduce easily that B, (2. ) > o, (2¢,2), and hence that Sy, (z..1) =
ay(Zc,2) by (11). It then follows from Lemmas 2.3 and 2.5 that

(14) o (Ze,2) = Buw(Ze,n) =max{i, 1 — 24}

for every A # 1/2. Using left continuity of «y,(z) and right continuity of Sy (z)
from Lemma 2.4, this implies that o,,(z) is a continuous, strictly decreasing func-
tion (0, z;] — [1/2, oo) whose inverse is given by A > z. ;. This implies that the
latter function is continuous and strictly increasing on (—oo, 1/2] as claimed. [

3. Critical exponents, two-point function decay and ballisticity.

3.1. Counting walks. Let G be a connected, locally finite graph, let I' C
Aut(G) be transitive and nonunimodular, and let w : 2 — [0, 0o0) be a good weight
function. For each z > 0, the bubble diagram is defined to be the ¢%-norm of the
two-point function, that is,

By(@) =) Gux)*

xeV
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Convergence of the bubble diagram at z. is well known to be a signifier of mean-
field behaviour for the self-avoiding walk; see [31], Section 1.5.

The following lemma allows us to easily deduce the convergence of the bubble
diagram at z, from Theorems 1.5 and 1.8.

LEMMA 3.1. Let G be a connected, locally finite graph, let I" be a transitive
nonunimodular subgroup of Aut(G), and let w : Q — [0, 00) be a good weight
function. Then

Buw(2) < xw(z, A)?

for every A € R. In particular, if 0 < z < z;(w) then By (z) < 00.
Note that it is always best to take A = 1/2 when applying this bound.

PROOF OF LEMMA 3.1. 'We can express

Bu@=Y Y w@nd” Y w@n.

xeV w:0—x w:x—0

Since A*(0, 0) = 1, we have the trivial bound
By@ <Y > w7 we!®aro, y)

xeV w:0—x yeV wx—y

=Y > w@)AMN0.0) Y D wlnAMx, )
xeV w:0—x yeV wx—y

= xw(z, V)7,

where the co-cycle identity was used in the second equality and I'-invariance of w
was used in the third. [J

The following differential inequality, which is classical for self-avoiding walk
on Z4 [31], Lemma 1.5.2, allows us to deduce Theorem 1.3 and item (1) of both
Theorems 1.6 and 1.9 from Theorems 1.5 and 1.8.

LEMMA 3.2. Let G be a connected, locally finite graph, let I' C Aut(G) be
a transitive group of automorphisms and let w : Q2 — [0, 00) be a good weight
function. Then for every . € R and z € [0, z. ; (w)), we have that

Xu)(Z7 )\')2 <

0 2
8. = 97w D] = xS

The proof is closely adapted from the proof given in [31], Lemma 1.5.2. We
simply use the co-cycle identity and the tilted mass-transport principle to “take the
modular function along for the ride”.
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PROOF OF LEMMA 3.2. For every 0 < z < z..,(w), we have that

D] = Y (0] + Dw@):® %0, v).

9z veV w:0—v

Since |w| 4+ 1 is the number of ways to split @ into two (possibly length zero)
subpaths, we deduce that

8[zxw<z M= Y > wwiow)! AN, v).

u,veV w;:0—u w2:Uu—>v

For the upper bound, we use repulsivity and the co-cycle identity to write

i[sz(z,x)]gZ‘ > wlendAr0,w) Y Y wlw)d AN u, v)

9z ueV wi:0—-u ueV wr:u—>v

= Xw(Z, }\')2’

where the equality on the second line follows by transitivity of I" and I"-invariance
of w.

We now turn to the lower bound. We begin by applying the tilted mass-transport
principle to the sum over u to deduce that

0
5@ D] = Yo Y wwrow) AN u, 1) A0, u)
u,veV w1:0—u wy:0—v

Yo Y wlrowy)! A0, u) AN, v),

u,veV wi:u—0wy:0—v

where the co-cycle identity has been used in the second line. Since w is zero-range,
we can bound

w(w) o w2) > w(w))w(wy)L(wi, w; disjoint)
= w(w)w(w2)[1 — L(w1, w2 not disjoint)].
If w1 :u — 0 and wy : 0 — v are not disjoint, then there exists x € V and paths
wi1iu—=>x,012:Xx—>0,w21:0— xand wy2:x — v such that w; = w; 1 0
w12, W2 = w31 © w22, such that w; | and wy 7 are disjoint, and such that neither
1,2 or wy 1 1s trivial. Indeed, simply take w11 to be the portion of w; up until the

first time it intersects wy, and let w2 1 be the portion of w, up until the last time it
visits wfz. It follows that

Y Y > 1w, not disjointlw(wn)w(w)z T2 AR, w)

u,veV w:u—>0wr:0—>v

< Z Z Z 1[w1,1, w2,1 disjoint]w(wi 1 o w1, 1)w(w2,2 0 W2.2)

X,u,veV OL1U=X ¢y 1:0—>x
w1 2:x—>0wp iw—v

12|21 |wz,1|=1

Z|a)1,1 |+|w1,2|+|w2,1|+|w2,2|A1*k(0’ u)A)‘(O, v).
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Using repulsivity of w, the zero-range property, and the co-cycle identity, we can
bound

1[w1.1, w22 disjoint]w (w1 0 w1 2)w(wa, | 0wy 2) A (0, u) A*(0, v)
< w(wi,1 0w )w(w)w(w2, A0, x) A ™ (x, u) A*(x, v).
This leads to the bound
Y Y Y i, ws not disjointlw(w)w(wy)z TN A0, u)

u,veV wi:u—0wy:0—v

< Y [Gux) —1(x =0)]*A(0, x)

xeV
x Y wlwi,1 0wy )72l A0, 1) A* (0, )
u,veV
9
= 3o @ D] (6@ -1 =0]Aa0.x)

xeV

d
= (Bw(z) — 1) 5 [2xw(z, V)],

<
where the tilted mass-transport principle is used in the final equality. (The —1(x =
0) arises from the restriction that neither wj » or wa 1 is trivial.) On the other hand,
similar manipulations to those used in the upper bound, above, yield that

Y3 T wnwlw)Z el A0, u) A0, v)

u,veV w1:0—u wr:0—>v
= Xw (@ M xw(z; T —2) = xuw(z; A)2.

Combining these inequalities, we deduce that

9 ) 9
a[zxw(z, W] = xw(z, ) — (By(z) — l)a—z[zxw(z, M,

which rearranges to give the desired inequality. [J

Integrating this differential inequality yields the following estimates; see [31],
Theorem 1.5.3.

COROLLARY 3.3. Let G be a connected, locally finite graph, let ' C Aut(G)
be a transitive group of automorphisms, and let w : Q2 — [0, 00) be a good weight
function. Then

Ze,h e,
< xw(zA) < Bw(Zc,A)
Zea — 2 Zen

A
— + By (ZC,A)

forevery e Rand 0 <z < z.) =z (w).
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We now have everything we need to deduce the upper bound on the susceptibil-
ity for Theorems 1.3, 1.6 and 1.9. To use the susceptibility bounds to deduce the
bounds on Z,,(A; n), we use the following lemma. It replaces the Tauberian theory
that is typically used in the literature.

LEMMA 3.4. Let (cy)n>0 be a nonnegative submultiplicative sequence with
generating function ®(x) =3 _,-0x"cy. Then

v, <[ PO (XY
n—+1 y

foreverym > 1and x >y > 0.

When we apply this lemma, we will take y = nx/(n + 1) so that (x/y)*" ~ ¢?
is of constant order.

PROOF OF LEMMA 3.4. We clearly have that

n

Cp_i X" K 4 cpxk " x\"
2. =ch"s(;) O (),

k=0 k=0

and so there must exist 0 < k < n such that

ek x" K + gk - (X>” D(y)
2 y) n+1

For this k, we have that

n—k k42 2 2n
enx"™ < cpgx" Fepxk < [c"kx kX ] < [(b(y)} (f>
2 n+1 y

by submultiplicativity and the inequality of arithmetic and geometric means. [

PROOFS OF THEOREM 1.3 AND PART (1) OF THEOREMS 1.6 AND 1.9. The-
orem 1.8 implies that the tilted susceptibility x.,(z¢,1/2) is finite for every
A #1/2, and it follows from Lemma 3.1, and Corollary 3.3 that

Ze,h

(15) X (@A) < xw(zear; 1/2)° + xw(Zess 1/2)%.

Zc,)L —Z

for every 0 < z < z¢.1 = Z¢.a(w). Thus, applying Lemma 3.4 with ¢, = Z,,(4; n),
x =2z (w), and y =nzq 5 (w)/(n + 1) yields that

(16) Zy(hin) < [ xw(zen, 1/D* +o(D]ul,

asn— oo. [
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REMARK 3.5. In the untilted case A = 0, Corollary 2.7 together with (15) and
(16) yield that

17) (2) < 2 ke Lo

( x(2) < pgexp e3M0/2 _glo | 7. — 7 (1, 2/ Ze,
4 8“% n n

(18) Z(n)fucexp m"‘?. /"LC+O('u’C)’ n/'oo

In particular, these estimates hold with 79 > log(k — 1) for the product of the k-
regular tree 7; with an arbitrary transitive graph G. We have not attempted to
optimize these constants.

3.2. Ballisticity and two-point function decay.

PROOFS OF ITEMS 2 AND 3 OF THEOREMS 1.6 AND 1.9. Observe that the
trivial inequality

Z\d00
Guw(z:x) < (?) G, (7 x)
holds for every z > 0 and x € V. On the other hand, for z < z; we have that
Gu(z: %) < xw(z; 1/2)A72(0, %)
for every x € V, and it follows by symmetry that
G (z, %) < xw(z: 1/2)[min{ A0, x), Atx, 0}]'? < xu(z: 1/2)

for every 0 < z < z; and x € V. Thus, we have that

d(0,x)
Z
Gu(eo0) = (172 5)

for every x € V and 0 < z < 7’ < z;, which implies the claim of item 2.
We now prove item 3. We prove the claim in the case A > 1/2, the case A < 1/2
being similar. Let A > 1" > 1/2. Then we have that

Py.a.n(log A0, X,) < cn)
=Zpyin)™' D S w(@)AMN0,x)1[w: 0~ H,, || =n]
x€Hg, @€
< ZyOon) 12, (V; n)e(’\_}‘l)”’.
We deduce from item 1 of Theorem 1.9 that

n
Py (log A, X,) < cn) < Cy ( Ze ) QU en.
Ze )

The result follows by fixing A > 1" > 1/2 and letting ¢ = ¢,/ be sufficiently small
that z.; /ze 0 < e 0= 0O
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4. Remarks and open problems. Several interesting questions remain open
concerning the behaviour of the critically tilted SAW, that is, the case A = 1/2.

4.1. Exponents at .. = 1/2 are graph dependent. In this subsection, we briefly
outline an example that shows that the exponent governing the critically tilted sus-
ceptibility depends on the choice of G and I, and in particular that Theorem 1.6
cannot always be generalised to A = 1/2. This follows from a related analysis
for percolation on trees with respect to two different choices of nonunimodular
automorphism group that we performed in [26]. (Note that on trees the tilted sus-
ceptibilities for SAW and percolation are equal for0 <z=p <1.)

Let T be the k-regular tree. The most obvious choice of a nonunimodular tran-
sitive subgroup of 7' is the group I'¢ consisting of those automorphisms of 7" that
fix some given end & of T. For the pair (7, I'¢ ), we can easily compute

a(z) =—log,_((z) and z.; = (k— 1)~ max{(t1=4)
Moreover, for z < z., we can compute the tilted susceptibility to be
1-z2°
(1= (k= D)1 — (k= D*2)

Thus, we see that for A # 1/2, x(z..x» — &, 1) grows like el as e — 0, as stated
in Theorem 1.6, while at A = 1/2 the denominator has a double root and we have
instead that

x(z,2) =

k— 28_2‘

k—1

This shows that Theorem 1.6 cannot be extended in general to the case A = 1/2.
We now describe a different transitive nonunimodular group of automorphisms

on the four-regular tree. We define a (1, 1, 2)-orientation of T to be a (partial) ori-

entation of the edge set of 7' such that every vertex has one oriented edge emanat-

ing from it, two oriented edges pointing into it, and one unoriented edge incident

to it. Fix one such orientation of 7', and let I'” be the group of automorphisms of

T that preserve the orientation. In [26], we compute that

242l - A2 )2 - 12
6 )

Xze 10— 1/2 =

reR,

e =

and

1 —3z2
1 — Q4+ 21-* 4 1)z 4+ 372’

The denominator of this expression never has a double root, so that, in contrast to
the previous example,

XZes—er)=<e ', AeRel0

x(z,A) = reR,0<z<zcx.



2826 T. HUTCHCROFT

=

z A

FIG. 1. Comparison of a(z) and z. , for the 4-regular tree with respect to the automorphism group
fixing an end (blue) and the automorphism group fixing a (1, 1, 2)-orientation (red). The second
figure is formed by reflecting the first around the line a(z) = 1/2 and then rotating. The intersection
of the two curves on the left occurs at (zc, 1). This intersection must occur since z. () = Z¢,1 = Zc
does not depend on the choice of automorphism group.

for every A € R. Since z; for this example is smaller than z; for the previous ex-
ample, we have by Lemma 3.1 that the bubble diagram converges at z;, so that we
could also have deduced this behaviour from Corollary 3.3. Furthermore, it follows
from our analysis of percolation in [26] that @(z) has a jump discontinuity from
1/2 to —oo at z;. Indeed,

1 <3zz—z+1+«/9z4—6z3—z2—21+1)
)
a(z)= | %2 2z

—0 Z>2.
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A plot of this function is given in Figure 1. As a further point of contrast to the pre-
vious example, we note that in this example the function A — z.  is real-analytic,
whereas in the previous example it was not differentiable at A = 1/2.

4.2. Hammersley—Welsh-type bounds for critically tilted SAW. Consider SAW
on Z?. The Hammersley—Welsh inequality [21] states that

Z(n) < exp[O(n'/?)]et.

See [31], Section 3.1, for background and [27] for a small improvement.

We now briefly outline how an analogous inequality may be obtained for crit-
ically tilted (A = 1/2) self-avoiding walk in the nonunimodular context. It can be
deduced from Corollary 2.7 that

X(z —e,1/2) <exp[O(s7V)],

and applying Lemma 3.4 with ¢,, = Z(1/2;n), x = z;, and y = z,(1 — m~/?)
yields that

Z(1/2;n) < eXP[O("l/z)]MZ,l/zv

which is an exact analogue of the Hammersley—Welsh bound.
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4.3. Questions.

QUESTION 4.1. Let Ty be a k-regular tree, let d > 1 and consider the group
of automorphisms I'g x Aut(Z4) C Aut(Ty x Z4) of Ty x Z¢, where ¢ is the group
of automorphisms that fix some specified end & of T .

1. Is B(z;) <00?

2. What are the asymptotics of a(z;; n) and b(zs; n) as defined in Section 2?

3. What is the behaviour of x(z; — €, 1/2) as ¢ — 0? What about Z(n, 1/2) as
n— o00?

4. What is the typical displacement of a SAW sampled from P13, ?

5. For which of these questions does the answer depend on d ?

QUESTION 4.2. Let G be a connected locally finite graph and let " C Aut(G)
be transitive and nonunimodular. Does there exist C = C(G, ") < oo such that

Z(1/2;n) = O (nC P

for every n > 1?2 Is there a universal choice of this C? Does C = 1 always suffice?

The question concerning C = 1 arises from the guess that the pair (7%, I'¢) has
the largest subexponential correction to Z(1/2; n) among all pairs (G, I').

QUESTION 4.3. Let G be a connected locally finite graph and let I C Aut(G)
be transitive and nonunimodular. What asymptotics are possible for the typical
displacement of a sample from P 1,5 ? Is it always of order at least nl/%?
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