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Recent work has introduced sparse exchangeable graphs and the associ-
ated graphex framework, as a generalization of dense exchangeable graphs
and the associated graphon framework. The development of this subject in-
volves the interplay between the statistical modeling of network data, the
theory of large graph limits, exchangeability and network sampling. The pur-
pose of the present paper is to clarify the relationships between these subjects
by explaining each in terms of a certain natural sampling scheme associated
with the graphex model. The first main technical contribution is the introduc-
tion of sampling convergence, a new notion of graph limit that generalizes
left convergence so that it becomes meaningful for the sparse graph regime.
The second main technical contribution is the demonstration that the (some-
what cryptic) notion of exchangeability underpinning the graphex framework
is equivalent to a more natural probabilistic invariance expressed in terms of
the sampling scheme.

1. Introduction. The present paper is concerned with the theory of graph lim-
its, the statistical modeling of networks and the relationship between these topics
and exchangeability. In the setting of dense graphs, these topics meet in the theory
of graphons, which are fundamental in the study of graph limits [6, 10, 11, 30,
31] (see [29] for a review) and provide the foundation for many of the statistical
network models in current use [1, 20, 28, 32, 33] (see [34] for a review). Motivated
by the importance of graphons in the dense graph setting, a recent series of papers
[7, 12, 19, 23, 35–37] has developed a generalization of the graphon framework to
the regime of sparse graphs, both as a tool for statistical network modeling [7, 36]
and estimation [37], and as the central element of a limit theory for large graphs
[7] (see also [22]). This generalization is compelling in that it preserves many of
the desirable properties of the graphon framework, while simultaneously allowing
much greater flexibility. However, there are some significant interpretational issues
remaining. For example, it is unclear which real-world processes are appropriately
modeled by the statistical network models of the new framework, or how best to
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characterize the properties of large graphs that are well approximated by the new
limit theory. The root of these difficulties is that the new framework is derived us-
ing a cryptic construction that represents random graphs as point processes on R

2+,
and then formalizes the models of the generalized framework as those correspond-
ing to point processes that are exchangeable.

In the dense setting, graphons as stochastic network models can be arrived at
in at least two different ways. The first approach is simply to posit them directly.
Graphon models are the class of generative models for random graphs in which
each vertex i is assigned some independent latent features xi , and conditional on
these latent features, each pair of vertices i, j is connected by an edge indepen-
dently with probability W(xi, xj ) determined by the latent features of i and j .
This is a very natural class of models, and models of this type, such as stochastic
block models and latent feature models, have a long history in the statistical net-
works literature. The second approach proceeds by identifying a projective family
(Gn)n∈N of random graphs with the upper left n × n submatrices of an infinite
random adjacency matrix A, and then defining the class of models to be those
such that the distribution of A is invariant under joint permutations of its rows and
columns. This exchangeability of A is a natural formalization of the requirement
that the labels of the vertices of a random graph should be uninformative about the
structure of the graph. The fact that the graphon models are the models defined by
exchangeability of the infinite adjacency matrix is, essentially, the content of the
celebrated Aldous–Hoover theorem [2, 21].

Graphons as limit objects for dense graphs sequence also arise very naturally in
the dense setting: many natural notions of similarity, such as left convergence moti-
vated by extremal graph theory, right convergence motivated by studying statistical
physics (or, equivalently, graphical) models on graphs, as well as quotient conver-
gence motivated by combinatorial optimization, all lead to graphons over probabil-
ity spaces as the completion of the space of dense graphs [6, 10, 11]. These notions
of convergence turn out to all be equivalent, and can be metrized by the cut metric
(discussed below), making the theory of graph convergence a well rounded math-
ematical theory. Finally, exchangeable random graphs generated from a graphon
can be shown to converge to the generating graphon [30], creating a first connec-
tion between graphons as models for exchangeable random graphs and as limits of
sequences of sparse graphs. See [17] for a systematic overview of the relationship
between the theory of graph convergence and the theory of exchangeable random
graphs in the dense graph setting.

The key ingredient of the generalization from the dense graph setting to the
sparse graph setting is a novel notion of exchangeability for random graphs. In the
generalized theory, the vertices of the random graphs are labeled in R+, the edge
sets of these graphs are represented as point processes on R

2+ and invariance under
vertex relabeling is encoded as joint exchangeability of the point process. This
rather abstruse formalization was introduced as an ad hoc solution to the problem
that the more obvious notion of exchangeability implies that the corresponding
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random graphs are almost surely dense. Nevertheless, the resulting models retain
the essential character of the dense graphon models: each vertex i has latent feature
xi and, conditional on these latent features, each edge is included independently
with a probability determined by the latent features of its endpoints. The essential
difference is that the latent features are now generated as a Poisson process on
a σ -finite space, rather than independently. The appeal of these models is then
their close analogy to the dense graphon models, in combination with their greater
flexibility.

However, this picture is somewhat superficial, since it leaves many questions
unanswered. Why do we represent graphs as point processes? Why does the cor-
responding notion of exchangeability give a much broader class of models than
the adjacency matrix exchangeability? Why should the points in the latent feature
space be distributed according to a Poisson process? What motivates the partic-
ular way of embedding graphs into the space of graphons over R+ that [7] uses
to translate convergence in the cut metric for graphons into a notion of conver-
gence in metric for graphs? Why are graph limits and statistical network modeling
so closely tied together? The contribution of the present paper is to resolve these
conceptual difficulties by relating the core ideas—graph limits, statistical network
modeling and exchangeability—to a certain natural scheme for sampling random
subgraphs from larger graphs.

Our first main contribution is the introduction and development of sampling
convergence, a new notion of graph limit that generalizes left convergence [6, 10],
a core concept in the graphon theory of limits of dense graphs, to a notion that
is also meaningful for sparse graphs. We show that sampling convergence both
generalizes the metric convergence of [7] and allows us to formalize the notion
of sampling a data set from an infinite size population network; it thereby con-
nects graph limits and statistical network modeling. Our second main contribution
is that the ad hoc assumption of exchangeability may be replaced by a more nat-
ural equivalent invariance given in terms of the sampling scheme. This symmetry
makes no reference to the point process representation of random graphs or to the
associated notion of exchangeability; this allows us to understand these ideas as
mathematical artifices rather than conceptual cornerstones of the theory.

We begin by explaining our limit theory as a natural generalization of the dense
graph limit theory. In the setting of dense graphs, one of the core limit notions is
left convergence, the convergence of subgraph densities. In the course of explain-
ing the connection between exchangeability and graph limits in the dense graph
setting, Diaconis and Janson [17] present the following perspective on left con-
vergence. Given a graph Gj , for each k ∈ N we draw a random subgraph Hj,k of
Gj by selecting k vertices independently at random and returning the induced sub-
graph; a sequence G1,G2, . . . is left convergent when, for all k ∈ N, the random
graphs Hj,k converge in distribution as j → ∞. Intuitively speaking, this notion of
convergence encodes the idea that two large graphs are similar when it is difficult
to tell them apart by randomly sampling small subgraphs from each.
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It is straightforward to see why left convergence is informative only for dense
graph sequences: if the graph sequence G1,G2, . . . is sparse then the probability
that a random k vertex subgraph of Gj contains even a single edge goes to 0
as j becomes large. The resolution we propose here is, intuitively speaking, to
generalize this sampling scheme in a way that fixes the target number of edges in
the randomly sampled subgraph, instead of the number of vertices.

The first key idea in formalizing this is the following notion for sampling from a
graph, introduced in [37]. Here, a vertex in a subgraph of a given graph G is called
isolated if it is not contained in any edge (regardless of whether this edge is a loop
edge or a nonloop edge) of the subgraph.

DEFINITION 1.1. A p-sampling Smpl(G,p) of a graph2 G is a random sub-
graph of G given by including each vertex of G independently with probability
min(p,1), then discarding all isolated vertices in the resulting induced subgraph,
and finally returning the unlabeled graph corresponding to this subgraph.

The critical property that distinguishes p-sampling from independent vertex
sampling is that vertices that do not participate in any edges in the vertex in-
duced subgraph are thrown away. Note that by definition, Smpl(G,p) is always
unlabeled, whether G is labeled or not.

We may now define our notion of graph limit. Let e(G) denote the number of
nonloop edges of a graph G.

DEFINITION 1.2. A sequence of graphs G1,G2, . . . is sampling conver-

gent if, for all r ∈ R+, the random graphs Smpl(Gj , r/
√

2e(Gj )) induced by

r/
√

2e(Gj )-sampling of Gj converge in distribution as j → ∞.

For the remainder of the introduction, we will restrict our attention to sequences
of simple graphs; loops are treated in the body of the paper.

Sampling convergence can be understood as a modification of left convergence
as follows: we draw an increasing number of vertices as j → ∞ because if we
drew only a fixed number k then the induced graph would be empty in the limit.
Since the number of sampled vertices diverges, we instead fix the target number of
sampled edges. Because we are selecting vertices at random, the number of edges
in the vertex induced subgraph must be random, so a natural way to fix the size
of the sampled subgraph as j → ∞ is to require the expected number of edges

2Throughout this paper, a graph will be a graph without multiple edges, but it may not be simple;
that is, it may contain edges joining a vertex to itself. Unless explicitly mentioned, all graphs will be
finite.
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to be constant. This requirement dictates that each vertex is included with proba-
bility proportional to 1/

√
e(Gj ); the convention we choose for the proportionality

constant gives

E
[
e
(
Smpl

(
Gj, r/

√
2e(Gj )

))] = r2/2

for all j ∈ N. Because the number of sampled vertices goes to infinity as j →
∞, it is not possible to have convergence in distribution of the vertex sampled
subgraphs. This problem is solved by using p-sampling instead of independent
vertex sampling; that is, we simply throw away the vertices that are isolated in the
sampled subgraph.

Our first main result is that the natural limit object of a sampling convergent
sequence is a triple W = (I, S,W), where I ∈ R+, S : R+ → R+ is an integrable
function, and the graphon W : R2+ → [0,1] is a symmetric integrable function.
This object is the (integrable) graphex at the heart of the (sparse) exchangeable
graph models. Each graphex defines a graphex process (or Kallenberg Exchange-
able Graph in the language of [36, 37]), a family of growing random graphs
(�s)s∈R+ with vertices labeled in R+. Following [7], we refer to the label of a
vertex as its birth time, and to �s as the graphex process at time s. For a finite
labeled graph �s , we denote the associated unlabeled graph by G(�s). The sense
in which the graphex is the natural limit object is given by Theorem 3.11: for ev-
ery sampling convergent sequence G1,G2, . . . there is some integrable graphex

W such that, for all s ∈ R+, Smpl(Gj , s/
√

2e(Gj ))
d−→ G(�s) as j → ∞, where

(�s)s∈R+ is generated by W . That is, the limiting distribution of the sampled sub-
graph is characterized by the graphex that is the sampling convergent limit. In this
case, we say that Gj is sampling convergent to W .

We complete the limit theory by showing that every integrable graphex arises
as the sampling convergent limit of some graph sequence, at least up to certain
equivalencies (Theorem 4.3), and by metrizing the convergence and characterizing
the associated metric space (Theorems 6.7 and 6.8). In consequence of the former
result, the (integrable) graphex process models can be understood conceptually
as originating as the limit objects of sampling convergence, without any direct
appeal to exchangeability (although in fact our technical arguments lean heavily
on exchangeability and the associated machinery).

This last observation raises the question of whether the graphex processes can be
characterized directly in terms of p-sampling, without appeal to either exchange-
ability or graph limits. The motivation in [37] for the introduction of p-sampling
was the observation that a p-sampling of G(�s) is equal in distribution to G(�ps);
that is, this is the sampling scheme that describes the relationship between graphex
process graphs at different times. We prove in Theorem 7.2 that this is in fact a
defining property of the graphex process. That is, if (Gs)s∈R+ is a family of un-
labeled random graphs such that for all s ∈ R+ and all p ∈ (0,1) the p-sampling
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of Gs is equal in distribution to Gps , then there is some graphex W such that

Gs
d= G(�s) for all s ∈R+, where (�s)s∈R+ is generated by W . This gives a formal

sense in which this sampling invariance is equivalent to the notion of exchange-
ability originally used to define exchangeable random graphs.

We now turn to explaining the connection between our results and statistical
network modeling, and the relationship to other notions of graph limits.

1.1. Statistical network modeling. The major motivation in [36] for the in-
troduction of graphex process models was as a tool for the statistical analysis of
network-valued data sets. These models are attractive for this purpose because
they offer a sparse graph generalization of the graphon model and the exchange-
able array framework, which underlie many popular models. In this setting, the
conceptual challenge brought on by exchangeability is that because it is unclear
what the symmetry means in practical terms it is also unclear what the practical
applicability of the models is. In particular, we would like a clear articulation of
the circumstances under which it is appropriate to model a data set by a graphex
process.

Following [13], a statistical model can be understood as consisting of two parts:
a data generating process and a sampling scheme for collecting a data set from
a realization of this process. In the network setting, this is envisioned as some
real world process that generates a large population graph from which the data
set is then somehow sampled. In order to assess the applicability of a statistical
network model, we should articulate the associated data generation mechanism
and sampling scheme.

The most obvious sampling scheme to associate with the graphex process model
is p-sampling. Having assumed p-sampling, the question of what data generating
mechanism gives rise to the population is subtle. One obvious guiding principle
is that we ought to be able to make meaningful inferences about the population
on the basis of the sample. For example, if the data generating process is itself a
graphex process with graphex W then the sample will be distributed as finite graph
generated by W ; inferences about the population then take the form of inferences
about W . However, the graphex process has some properties that are highly unde-
sirable for a model of a data generating process. For example, a graphex process
can only grow and, moreover, can grow only by adding edges connecting to ver-
tices that have never been seen before. As a model for a social network this would
mean that two people who are friends may never stop being friends, and two people
who are not yet friends may never form a link in the future.

In classical statistics, data sets are often envisioned as being drawn indepen-
dently from some very large population, often idealized as infinite. In our setting,
the analogous thing is to envision a particular (fixed size) observation as a draw
from a very large population network where each vertex is included independently
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with small probability. To formalize the infinite-size population idealization, con-
sider the limit where the size of the population, created according to the data gen-
erating mechanism, becomes infinite while the vertex inclusion probability goes to
0 at a rate that keeps the size of the observed data set constant. That is, we imag-
ine e(Gj ) → ∞ and the inclusion probability pj = �(1/

√
e(Gj )). In this case, a

minimal requirement for the sampled data set to be informative about the limiting
population is that the distribution of the sample should converge. We have thus
been led to the following precept: the data generating mechanism should give rise
to a sequence of population graphs that is sampling convergent. This is as far as
we need go: by Theorem 3.11, the requirement of sampling convergence already
implies that the observation is distributed according to some integrable graphex W .

The preceding can be summarized as follows:

Finite size graphex processes approximate statistical network models that arise from
vertex sampling of a population that is generated according to some sampling conver-
gent data generating process. In the infinite population limit this approximation be-
comes exact.

It is worth emphasizing that this is much broader than it may appear at first
glance. For example, this perspective may even be appropriate in situations where
we observe the entire available network, as long as the physical mechanism gen-
erating the network is sampling convergent and the process that restricts to a finite
size observation can be modeled approximately as an independent sampling of the
vertices.

In lectures and as yet unpublished work, P. Orbanz has given a treatment of the
broad idea of defining schemes for statistical network modeling by way of defin-
ing a sampling scheme and studying the models compatible with the symmetries
thereby induced. One perspective on the present paper is that we work out the
realization of this program for p-sampling.

1.2. Graph limits. Sampling convergence gives a notion of graph limit for de-
terministic sequences of unlabeled graphs. We now explain the connection to sev-
eral other notions of large graph limit, namely:

1. the convergence of sequences of randomly labeled graphs,
2. the metric convergence of [7], and
3. the consistent estimation of [37].

1.2.1. Randomly labeled graphs. The first of these is fundamental to the de-
velopment of the theory in the present paper. Exchangeability is a concept of in-
finite size labeled random graphs, but the theory of graph limits deals with non-
random sequences of graphs. It is then somewhat mysterious why there should
be such a close connection between graph limits and exchangeable random
graphs.
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In the dense graph setting, this manifested as the development of the theory of
exchangeable arrays [2, 21, 27] on one hand and the independent development of
the theory of dense graph limits [6, 10, 11, 30, 31] on the other. The connection
between the two perspectives is explained by [4, 17], the development of which is
roughly as follows. In the dense graph setting, the popular notions of graph lim-
its are all equivalent to left convergence, which says that a growing sequence of
graphs Gj converges if, for each fixed graph F , the proportion of copies of F

in Gj converges. The first key insight is that this can be phrased in probabilistic
language by viewing left convergence as requiring convergence in distribution of
random subgraphs Hj,k drawn by selecting k vertices independently from Gj , for
all k ∈ N. The second key insight is that we may pass from nonrandom sequences
of graphs (Gj )j∈N to sequences of random adjacency matrices (A(Gj ))j∈N by
randomly labeling the vertices of each Gj by {1, . . . , v(Gj )}; this gives a con-
struction such that for each fixed j the random adjacency matrix is exchangeable.
We then observe that convergence in distribution of randomly sampled k vertex
subgraphs is equivalent to convergence in distribution of the random adjacency
matrices given by restricting A(Gj) to its upper left k × k submatrix. Now, using
standard probability theory machinery, distributional convergence of all size k pre-
fixes is enough for even distributional convergence of A(Gj) as j → ∞. As one
might expect, the limit of A(G1),A(G2), . . . is an infinite exchangeable array. By
the Aldous–Hoover theorem, there is then some graphon W that characterizes the
distribution of this array. This graphon is the same as the left convergent limit of
the graph sequence G1,G2, . . . .

In the present context, the relationship between nonrandom graph sequences and
sequences of randomly labeled objects is captured as a correspondence between
edge sets and point processes. The point processes will be given in terms of ad-
jacency measures, defined as locally finite measures of the form ξ = ∑

i,j δ(θi ,θj ),
where the sum goes over all ordered pairs i, j such that {i, j} is an edge of a
countable graph G (possibly containing some loops, that is, edges joining a vertex
to itself) and θi ∈ R+ with θi �= θj for i �= j .

DEFINITION 1.3. Let G be a labeled or unlabeled graph and let s > 0. A ran-
dom labeling of G into [0, s) is a random adjacency measure obtained by labeling
the vertices randomly with i.i.d. labels in [0, s).

For a graph sequence G1,G2, . . . it may not be immediately obvious what the
ranges [0, s1), [0, s2), . . . of the random labelings should be. Our choice here is
sj =

√
2e(Gj ), which has the virtue that for all bounded sets A,B ⊆ R+ such that

max(A∪B) ≤ sj , the expected number of edges between vertices with labels in A

and B is independent of the graph.

DEFINITION 1.4. We define the canonical labeling Lbl(G) of a graph G to be
the random labeling of G into [0,

√
2e(G)).
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The relationship between sampling convergence of a graph sequence and the
distributional convergence of the canonical labelings is closely analogous to the
relationship between left convergence of a graph sequence and the distributional
convergence of the associated random adjacency matrices. We show in Section 3
that the graph sequence G1,G2, . . . is sampling convergent to W if and only if
the canonical labelings Lbl(G1),Lbl(G2), . . . converge in distribution to an infinite
exchangeable point process characterized by W . Indeed, the machinery of distri-
butional convergence of point processes is core to many of our main results.

In [3], a broad program for studying the limits of complex structures of in-
creasing size is outlined. The basic idea is to define a notion of sampling on these
structures such that for each complex object Cj we may sample some substructure

D
(k)
j of size k; convergence is then defined as convergence in distribution of D

(k)
j

as j → ∞ for all sizes k. The natural limit is then the joint distribution of the lim-
iting object for all sizes k. This object will have some symmetries imposed by the
sampling scheme, and so might admit some more compact representation, which
would then be the natural limit object. One perspective on the present paper is that
we realize this program for p-samplings of families of growing graphs.

1.2.2. Metric convergence. One of the important tools in the theory of dense
graph limits is the cut distance between two graphs or graphons [6]. The cut met-
ric defines a notion of distance that, essentially, captures how similar two graphs
or graphons look at low resolutions; see Figure 1 below. We define cut distance
formally in Section 2. One of the contributions of [7] was to generalize the cut
distance to graphons supported on general σ -finite spaces, and in particular for
graphons W : R2+ → [0,1], and to use this notion to compare two graphs via an
embedding of the space of graphs into the space of graphons W : R2+ → [0,1],
mapping a graph G into what they called the stretched canonical graphon WG,s

of G. Using this embedding, [7] then introduced the “stretched cut distance” be-
tween two graphs as the cut distance between the stretched canonical graphons of
these graphs. That paper developed a theory of graph limits based on convergence
in this stretched cut distance, where the essential idea is to transform a sequence
of graphs into a sequence of stretched canonical graphons and ask for cut met-
ric convergence of this sequence; see Figure 1. This turns out to generalize the
dense graph cut metric convergence, and the generalized limit objects are the same
generalized graphons that arise as limits in sampling convergence.

In the dense graph setting, convergence in cut distance is equivalent to left con-
vergence. Given that sampling convergence is an analogue of left convergence, it
is natural to expect that there should be some connection with convergence un-
der the stretched cut distance. Indeed this is so, and in Theorem 5.5 we show that
the two notions of convergence coincide for any graph sequence that is subse-
quentially convergent with respect to the stretched cut metric. Thus, in particular,
convergence under the stretched cut distance implies sampling convergence.
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FIG. 1. Each column shows a graph (bottom row), a corresponding stretched empirical graphon
based on a random labeling of the vertices (middle row), and a corresponding stretched empirical
based on an alternative labeling (top row). The three graphs are a prefix of a sequence that con-
verges to (0,0,W), where W(x,y) = (x + 1)−2(y + 1)−2. Intuitively, the top row shows pixel-pic-
ture approximations to the limiting graphon. The cut metric formalizes this intuition: the graphons
are aligned according to some optimal measure preserving transformation, and the distance between
them is then supU,V ⊆R+|∫U×V W1(x, y) − W2(x, y)dx dy|, the largest difference in any patch be-
tween the total amounts of ink in that patch.
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Our main motivation for the introduction of sampling convergence is concep-
tual clarity. However, it is also worth noting that sampling convergence (and the
associated move from graphons to graphexes) has some pleasant mathematical
properties that stretched cut convergence does not. In particular, every graph se-
quence is subsequentially sampling convergent, but this is not true for stretched
cut metric convergence.

1.2.3. Consistent estimation. The paper [37] deals with the problem of esti-
mating W from a growing sequence of unlabeled graphs G1,G2, . . . generated
from W . Simplifying somewhat, the data set is modeled as Gj = G(�sj ) for
some sequence s1, s2, . . . of observation times with sj ↑ ∞ and (�s)s∈R+ gen-
erated by W . The basic goal of estimation is to produce a sequence of graphexes
WG1,WG2, . . . such that WGj

→ W as j → ∞, for some notion of convergence
that formalizes the idea that the distribution defined by the estimated graphex
should be asymptotically the same as the distribution defined by the true under-
lying graphex. In the graphex setting, there are two natural distinct notions of es-
timation depending on whether the observation times are included as part of the
observation; both of these are closely related to the sampling convergence of the
present paper.

Let GPD(W, s) = Pr(G(�s) ∈ · | W) denote the probability distribution over
unlabeled time s graphs generated by W , where GPD stands for graphex process
distribution. In the setting where the times are known, estimation is formalized by
defining Wj →GP W as j → ∞ to mean GPD(Wj , s) → GPD(W, s) weakly as
j → ∞, for all s ∈ R+. That is, W1,W2, . . . estimates W if the random graphs
generated by the estimators converge in distribution to the random graphs gener-
ated by W .

For a graph G, define Ŵ(G,s) : [0, v(G)/s]2 → {0,1}, the dilated empirical
graphon of G with dilation s, to be the function given by representing the ad-
jacency matrix3 of G as a step function where each pixel has size 1/s × 1/s;
see Figure 1. The estimator used by [37] in the setting where the times sj are
included as part of the observation are dilated empirical graphons of Gj with di-
lation sj . The basic structure of estimation—map a sequence of graphs to a se-
quence of graphons and define a notion of convergence on the graphons—looks
very similar to the development of (stretched) cut metric convergence, and as with
stretched cut convergence, there is a close connection to sampling convergence:

Ŵ(Gj ,sj ) →GP W is equivalent to Smpl(Gj ,
r
sj

)
d−→ G(�r) for all r ∈ R+. To ex-

plain this connection, we recall a pair of ideas from [37] (themselves adapted from

3Implicitly, this notion requires us to order the vertices of G, since otherwise it is not clear which
interval of length 1/s should be mapped to a given vertex; we will choose an arbitrary, fixed order-
ing for each unlabeled, finite graph G. All our subsequent notions do not depend on the particular
ordering, and hence are well-defined for unlabeled graphs, as well as graphs with vertices labeled by
labels in an unordered set.
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[25]). First, generating a sample from GPD(Ŵ(Gj ,sj ), r) is equivalent to sampling
a subgraph from Gj by selecting Poi( r

sj
v(Gj )) vertices with replacement, and

returning the vertex induced subgraph without its isolated vertices. Second, this
with-replacement sampling scheme is asymptotically equivalent to r/sj -sampling
(without replacement). The equivalence of the two notions of convergence follows
immediately.

If s1, s2, . . . are not included as part of the observation, then we require a
different approach to estimation. For graphexes of the form W = (0,0,W), [7]
proves that e(Gj )/s

2
j → 1

2‖W‖1 a.s. as j → ∞, and it is not hard to extend this

result to general integrable graphexes, showing that e(Gj )/s
2
j → 1

2‖W‖1 a.s. as

j → ∞, where we define the L1 norm of a graphex W = (I, S,W) as ‖W‖1 =
‖W‖1 + 1

2‖S‖1 + 1
2I . This suggests making a canonical choice of ‖W‖1 = 1 and

defining the stretched canonical graphon WG,s of a graph G as the dilated empiri-
cal graphon of G with dilation

√
2e(G). The salient fact, spelled out in Lemma 5.4,

is that G1,G2, . . . is sampling convergent to W if and only if WGj,s →GP W as
j → ∞. In conjunction with our result that graph sequences generated by W are
sampling convergent to W , this establishes that the stretched canonical graphon is
a consistent estimator for W if ‖W‖1 = 1.

Veitch and Roy (2016) follow a different approach. In the case where the sample
times are not included as part of the observation, the most general observation is
the sequence of all distinct (unlabeled) graph structures taken on by (G(�s))s∈R+ ;
call this collection G (�), the graph sequence of �. Intuitively, this is the structure
that remains when the labels are stripped from (�s)s∈R+ . The natural notion of
estimation for graph sequences is then to say that Wj →GS W as j → ∞ when-

ever G (�j )
d−→ G (�), where �j is generated by Wj ; that is, W1,W2, . . . estimates

W if the distribution over unlabeled structures generated by Wj is asymptotically
equal to the distribution over unlabeled structures generated by W . It turns out that
the empirical graphon (without any dilation) is a consistent estimator for W in the
graph sequence sense; so indeed estimation is possible without any knowledge of
s1, s2, . . . .

Because the empirical graphon relies only on the graph (and not the latent ob-
servation time), it can be used to define a notion of graph limit. Let G1,G2, . . . be
a sequence of graphs (not necessarily corresponding to a graphex process), and say
that the sequence is GS convergent to W , written Gj →GS W as j → ∞, when-
ever WGj →GS W as j → ∞. [37], Lemma 5.6, shows that as long as W �= 0,
Wj →GP W as j → ∞ implies also Wj →GS W as j → ∞, from which it fol-
lows that sampling convergence implies GS convergence. The converse is not true:
the consistent estimation results of [37] establish that graph sequences generated
by nonintegrable W are GS convergent to W , but sampling convergent limits are
always integrable. Thus GS convergence provides an even more general notion of
graph limit. However, it is unclear whether GS convergence has any interpretation
or motivation outside the graphex process theory.
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We note that [23] includes a discussion of the relationship between various no-
tions of convergence of graphexes, and is closely related to the development in this
section.

1.3. Organization. We give formal definitions and recall some important re-
sults in Section 2. The basic results for sampling convergence—most importantly,
the limits are graphexes—are given in Section 3. In Section 4, we prove that a
graph sequence generated by integrable graphex W is almost surely sampling con-
vergent to a canonical dilation of W ; this has the particular consequence that (a
canonical representative of) every integrable graphex arises as the sampling limit
of some graph sequence. In Section 5, we relate convergence in distribution of
graphex sequences generated by W1,W2, . . . to the metric convergence of [7]. In
Section 6, we metrize sampling convergence and show that the metric completion
of the space of finite unlabeled loopless graphs is compact (a less elegant statement
is required for loops). In Section 7, we prove that if a graph-valued stochastic pro-
cess (Gs)s∈R+ has the property that, for all p ∈ (0,1) and all s ∈R+, a p-sampling
of Gs is equal in distribution to Gps , then there is some graphex W such that
Gs = G(�s) for some (�s)s∈R+ generated by W .

2. Preliminaries. As usual, we denote the set of edges and vertices of a graph
G by E(G) and V (G), respectively. In general, E(G) will consist of both loop and
nonloop edges; we denote the number of nonloop edges by e(G) and the number
of loop edges by �(G).

Some of the basic objects of interest in this paper are locally finite point pro-
cesses on R

2+, interpreted as the edge sets of random graphs with vertices labeled
in R+. Here, as usual, a locally finite point process on R

2+ is a random element ξ

of the set N = N (R2+) of locally finite counting measure on R
2+ (i.e., the set of in-

teger valued measures ξ such that ξ(A) < ∞ for all bounded Borel sets A ⊂ R
2+),

equipped with the Borel σ -algebra inherited from the vague topology, defined as
the coarsest topology for which the maps μ �→ ∫

f dμ are continuous for all con-
tinuous functions with bounded support. As shown in, for example, [14], this topol-
ogy can be metrized in such a way that N becomes a complete, separable metric
space. Convergence in distribution for locally finite point processes is defined as

weak convergence with respect to this topology, so that ξn
d−→ ξ is defined by the

condition that E[F(ξn)] → E[F(ξ)] for all continuous, bounded functions F , with
continuity defined with respect to the vague topology on N .

DEFINITION 2.1. An adjacency measure is a purely atomic, symmetric lo-
cally finite counting measure on R

2+ for which all atoms have weight 1. A random
adjacency measure is a locally finite point process ξ on R

2+ such that ξ is almost
surely an adjacency measure.
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We associated a graph with labels in R+ to an adjacency measure ξ by writing
it as ξ = ∑

i,j δ(θi ,θj ), defining the set {(θi, θj )} with θi ≤ θj as its edge set, and
defining the set of points θi that participate in at least one edge as its vertex set.
Most of the time, we will not distinguish between the countable graph associated
with ξ and the adjacency measure ξ itself.

The defining property of graphex processes is that, intuitively speaking, the la-
bels of the vertices of the graphs are uninformative about their structure. This is
formalized by requiring the associated adjacency measure to be jointly exchange-
able.

DEFINITION 2.2. A random adjacency measure ξ is jointly exchangeable if

ξ ◦ (φ ⊗ φ)
d= ξ for every measure-preserving transformation φ : R+ → R+. It

is called an extremal exchangeable adjacency measure if its distribution cannot
be written as a nontrivial superposition of distributions over jointly exchangeable
adjacency measures, that is, if a representation of the distribution as αP1 + (1 −
α)P2 for some α ∈ (0,1) implies that P1 = P2 a.e.

A representation theorem for jointly exchangeable random measures on R
2+ was

given by Kallenberg [24, 27]. This result was translated to the setting of random
graphs in [7, 36]. Writing � for Lebesgue measure and μW(·) = ∫

R+ W(x, ·)dx,
the defining object of the representation theorem is as follows.

DEFINITION 2.3. A graphex is a triple (I, S,W), where I ≥ 0 is a nonnega-
tive real, S : R+ → R+ is a measurable function such that min(S,1) is integrable,
and the graphon W : R2+ → [0,1] is a symmetric, measurable function that satis-
fies:

1. �{μW = ∞} = 0 and �{μW > 1} < ∞,
2.

∫
R

2+ W(x,y)1[μW(x) ≤ 1]1[μW(y) ≤ 1]dx dy < ∞, and

3.
∫
R+ W(x,x)dx < ∞.

REMARK 2.4. Integrability of W (and its diagonal) is a sufficient but not nec-
essary condition for it to be a graphon. If the graphon, its diagonal WD(x) =
W(x,x), and the function S are integrable, then we say that W is an integrable
graphex. We set

‖W‖1 = ‖W‖1 + 2‖S‖1 + 2I.

Integrability plays a fundamental role in sampling convergence.

Each graphex gives rise to a random adjacency measure, which in turn leads to
a graph-valued stochastic process:
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DEFINITION 2.5. Given a graphex W = (I, S,W), let ξ be the random adja-
cency measure

ξ =∑
i,j

1
[
ζ{i,j} ≤ W(ϑi,ϑj )

]
δθi ,θj

+ ∑
j,k

1
[
χjk ≤ S(ϑj )

]
(δθj ,σjk

+ δσjk,θj
)

+ ∑
k

1[ηk ≤ I ](δρk,ρ
′
k
+ δρ′

k,ρk
),(2.1)

where (ζ{i,j}) is a collection of independent uniformly distributed random variables
in [0,1], {(θj ,ϑj )} and {(σij , χij )}j , for i ∈ N, are independent unit rate Poisson
processes on R

2+, and {(ρj , ρ
′
j , ηj )} are independent unit rate Poisson processes

on R
3+, all of them independent of each other.4

Let � be the (in general countably infinite) graph corresponding to the adjacency
measure ξ defined in (2.1), and let �s be the (a.s. finite) graph corresponding to
the adjacency measure ξs(·) = ξ(· ∩ [0, s]2). The graphex process associated with
graphex (I, S,W) is the family (�s)s∈R+ .

REMARK 2.6. One might be tempted to identify graphexes that are equal al-
most everywhere. While this is possible, one must pay attention to details here,
since changing a graphon on the diagonal is only a change on a set of measure
zero, but it changes the graphex process associated to the graphex. This problem
can be easily addressed by introducing the function WD(x) = W(x,x), identifying
a graphex (I, S,W) with the quadruple (I, S,W,WD) and considering the latter
as an element of R+ × L0(R+,�) × L0(R2+,�2) × L0(R+,�).

REMARK 2.7. In [7], a nominally more general definition of a graphon (and
the associated graphon process) is used. There the domain of W is allowed to be an
arbitrary σ -finite measure space modeling a space of latent features. The associ-
ated process is then defined by labeling vertices with a pair of labels, namely their
birth time and their feature. In the above definition of (�s)s∈R+ , the feature space
is assumed to be R+, and vertices are just labeled by their birth times, not a pair of
labels. By Theorem 2.8 below, or the explicit measure-preserving mappings con-
structed in [7], every such model is equivalent to one with latent feature space R+,
so there is no loss of generality in our definition. The motivation for the more gen-
eral notion is that in many situations there is a natural choice for the space of latent
features, and strong-arming the feature space to R+ may obfuscate the conceptual

4By the results of [24], the integrability conditions from Definition 2.3 imply that the above sums
are a.s. convergent in the vague topology, which in turn implies that ξ is a.s. locally finite. It is
furthermore not hard to show that a.s., ξ is simple, implying that ξ is an adjacency measure.
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underpinnings of the model or destroy certain nice theoretical properties (such as
continuity of the graphon). In the present paper, this is not a concern, so we prefer
the simpler definition with graphons defined over R+. We also label vertices in the
graphex process (�s)s∈R+ by just their birth time, since in this paper, the latent
feature of a vertex is usually not important. Indeed, as we will see below, we often
remove even the birth time label of our vertices, leading to processes of unlabeled
graphs.

Given Definitions 2.3 and 2.5, we can now state the Kallenberg representation
theorem.

THEOREM 2.8. Let ξ be a random adjacency measure. Then ξ is jointly ex-
changeable iff there exists a (possibly random) graphex W such that ξ is of the
form (2.1). The graphex W can be chosen to be nonrandom if and only if ξ is
extremal.

REMARK 2.9. By a random measurable function f : X →R, we mean a mea-
surable function f ′ : [0,1] × X → R and a randomization variable α ∼ Uni[0,1]
such that f (x) = f ′(α, x); see, for example, [18], Chapter 4. By a random graphex,
we mean a quadruple (I, S,W,WD) (see Remark 2.6 above) such that each com-
ponent is an appropriate random measurable function all sharing a common ran-
domization variable α, and such that the graphex integrability requirements are
almost surely satisfied; by conditioning on a graphex W we mean conditioning
on the randomization parameter α. We separate out the diagonal of the graphon so
that two graphexes that are equal a.e. generate the same distribution over adjacency
measures; this sidesteps some measurability technicalities.

We will often have occasion to refer to the unlabeled finite graph associated
with a finite adjacency measure.

DEFINITION 2.10. Let ξ be a finite adjacency measure. The unlabeled graph
associated with ξ is G(ξ).

Similarly, we will often want to move from unlabeled graphs to adjacency mea-
sures. To do so, we must invent labels for the vertices; a simple scheme is to pro-
duce labels independently and uniformly in some range:

DEFINITION 2.11. Let G be a graph with edge set E, and let s > 0. A ran-
dom labeling of G into [0, s), denoted Lbls(G, {Ui}), is a random adjacency mea-
sure Lbls(G, {Ui}) = ∑

(i,j)∈E δ(Ui,Uj ), where the sum contains both orientations of

each nonloop edge and Ui
iid∼ Uni[0, s) for each vertex i in G. Where there is no

risk of confusion, we will write Lbls(G) for Lbls(G, {Ui}) where Ui
iid∼ Uni[0, s)

for all vertices i, independently of everything else. The random labeling is called
a canonical labeling of G and denoted by Lbl(G) if s = √

2e(G).
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Note that for an unlabeled graph, we need to fix a labeling of the vertices of G

to define Lbls(G, {Ui}); since the distribution of Lbls(G, {Ui}) is independent of
what labeling we chosen for G, the choice of this labeling is irrelevant.

2.1. Graph limits. We now recall some important definitions and results on
the metric convergence of [7], specializing to the case of graphons defined over
R

2+ and sequences of simple graphs.
There are two main notions of distance between integrable graphons that we will

need. The first is a modification of the L1 distance that accounts for the fact that
graphons have a natural equivalence under measure preserving transformations.
For ψ : R+ →R+, we let Wψ(x, y) = W(ψ(x),ψ(y)).

DEFINITION 2.12. The invariant L1 distance between integrable graphons
W1,W2 is δ1(W1,W2) = infψ1,ψ2 ‖Wψ1

1 − W
ψ1
2 ‖1, where the infimum is over all

measure-preserving transformations ψj : R+ →R+ for j = 1,2.

Intuitively, the invariant L1 distance lines up the two graphons as closely as
possible and then takes the L1 distance between them.

The invariant L1 distance is too stringent of a notion for many cases of interest.
In particular, it is obviously impossible to approximate a general graphon by a
{0,1}-valued graphon under that notion of distance. The weakened distance we
use is as follows.

DEFINITION 2.13. The cut distance between two integrable graphons W1,W2
is

δ�(W1,W2) = inf
ψ1,ψ2

sup
U,V ⊆R+

∣∣∣∣
∫
U×V

W
ψ1
1 (x, y) − W

ψ2
2 (x, y)dx dy

∣∣∣∣,
where the infimum is over all measure-preserving transformations ψj : R+ →R+
for j = 1,2 and the supremum is over Borel sets U,V ⊆ R+.

Intuitively, the cut distance lines up two graphons as closely as possible, then
“smears them out” so that they are close in the cut sense if their mass on every
rectangular region is close. This allows a {0,1}-valued graphon to approximate
an arbitrary graphon as a pixel-picture approximation to a grayscale image; see
Figure 1.

The cut metric defines a form of convergence for sequences of integrable
graphons. To lift this to convergence of sequences of graphs, we need a canoni-
cal way to map graphs to graphons.

DEFINITION 2.14. The empirical graphon WG : [0,1]2 → {0,1} of a graph
G is the function produced by partitioning [0,1]2 into a v(G) × v(G) grid and
setting square (i, j) to take value 1 if edge (i, j) is included in G, and 0 otherwise.
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The empirical graphon is the “right” mapping in the dense graph setting, but it
needs a modification in the sparse graph setting.

DEFINITION 2.15. The stretched canonical graphon WG,s : R2+ → {0,1} of
a graph G is defined to be

WG,s(x, y) = WG(∥∥WG
∥∥1/2

1 x,
∥∥WG

∥∥1/2
1 y

)
if x, y ∈ [0,‖WG‖−1/2

1 ) and WG,s(x, y) = 0 otherwise.

See Figure 1. The basic intuition for this definition is that ‖WG,s‖1 = 1, so
that if Hr ∼ GPD(WG,s, r) then E[e(Hr)] = r2/2. That is, the canonical stretched
graphon is stretched such that the corresponding graphon process has a fixed
“growth rate” irrespective of the graph used as input.

We now have an obvious notion for convergence of graph sequences.

DEFINITION 2.16. A graph sequence G1,G2, . . . converges in stretched cut
distance to W if δ�(WGj ,s,W) → 0 as j → ∞.

A key property of stretched cut convergence is, by [7], Theorem 28, if (Gs)s∈R+
is a graphon process generated by W such that ‖W‖1 = 1 then, almost surely,
δ�(WGs,s,W) → 0 as s → ∞. In this paper, we will establish the analogous result
for sampling convergence.

The space of graphons equipped with the cut metric is not relatively compact,
so a further restriction is needed for subsequential convergence.

DEFINITION 2.17. A set of graphons {Wj }j∈N has uniformly regular tails if
for every ε > 0 there is some M > 0 such that for each j there is some Uj ⊆ R+
with |Uj | < M and ‖Wj − Wj 1Uj×Uj

‖1 < ε for all j . A set of graphs {Gj }j∈N is
said to have uniformly regular tails if {WGj,s}j∈N has uniformly regular tails.

The main results about sequences with uniformly regular tails are that any such
sequence has a further subsequence that converges in cut distance—that is, any
such sequence is relatively compact in cut distance—and that any sequence that is
convergent in cut distance also has uniformly regular tails (see [7], Corollary 17).
Intuitively speaking, the uniformly regular tail condition requires the graphs to
have “dense cores,” where a constant fraction of all edges of Gj occur between

only �(
√

e(Gj )) vertices.

2.2. Sampling. Sampling convergence requires subgraphs sampled from G1,

G2, . . . to converge in distribution to finite size random graphs given by dropping
the labels from finite size graphex processes. It is most convenient to express this
by introducing notation for the distributions of these graphs.
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DEFINITION 2.18. The canonical sampling distribution with parameters s

and G is SmplD(G, s)(·) = Pr(Smpl(G, s/
√

2e(G)) ∈ ·|G).

DEFINITION 2.19. Let (�s)s∈R+ be a graphex process generated by W , with
W possibly random. The unlabeled graphex process distribution with parameters
W and s is GPD(W, s)(·) = Pr(G(�s) ∈ · |W).

Instead of Smpl(Gj , s/
√

2e(Gj ))
d−→ G(�s) as j → ∞, we may now equiva-

lently write SmplD(Gj , s) → GPD(W, s) weakly as j → ∞. This has the advan-
tages that it makes the limit object W explicit, it does not introduce extraneous
randomness (nonrandom graphs are mapped to nonrandom probability measures),
and it allows us to deal easily with cases where the graph sequence or W is ran-
dom.

DEFINITION 2.20. Let W be a graphex and let G1,G2, . . . be a sequence of
graphs. We say that G1,G2, . . . is sampling convergent if SmplD(Gj , s) converges
weakly as j → ∞ for every s. We say that the sequence is sampling convergent to
W or sampling convergent with limit W if SmplD(Gj , s) → GPD(W, s) weakly
as j → ∞ for every s.

We will make use of another sampling scheme that is asymptotically equivalent
to p-sampling with p = r/

√
2e(Gj ). The alternative sampling scheme will again

be defined for labeled or unlabeled input graphs and, as in the case of p-sampling,
outputs an unlabeled graph, whether the input graph is labeled or not.

DEFINITION 2.21. A with-replacement p-sampling SmplWR(G,p) of a
graph G is an unlabeled graph obtained by sampling Poi(pv(G)) vertices from
G with replacement and returning the vertex-induced “subgraph” without its iso-
lated vertices. Explicitly, if x1, . . . , xk are the vertices of G chosen by sampling
with replacement, we first form a graph on [k] by joining i, j ∈ [k] by an edge
whenever (xi, xj ) is an edge in G (whether that edge was a loop or an edge be-
tween two different vertices), then deleting isolated vertices, and then returning
the resulting graph without its labels.

The motivation for this definition is the observation that generating a time-r
graph according to the canonical stretched empirical graphon of G is equivalent to
a with-replacement r/

√
2e(G)-sampling of G, in the sense that

GPD
(
WG,s, r

) = Pr
(

SmplWR
(
G,

r√
2e(G)

)
∈ ·|G

)
.

This observation (essentially) originates in [37], in the context of the study of
the empirical graphons of G1,G2, . . . generated by W at times s1, s2, . . . , and



SAMPLING PERSPECTIVES ON SPARSE EXCHANGEABLE GRAPHS 2773

stretched out by a factor of sj at each stage (instead of
√

2e(Gj )). In our setting,
there is a small additional complication arising from possible loops in G.

Recall that �(G) denotes the number of loops of a graph G. Asymptotic equiva-
lence of with and without replacement sampling translates to the following lemma.

LEMMA 2.22. Let G be a random graph with e edges and � loops, and let
p ≤ 1. Then Smpl(G,p) and SmplWR(G,p) can be coupled in such a way that
a.s.,

Pr
(
Smpl(G,p) �= SmplWR(G,p) | G) ≤ 4p3e + 2p2�.

PROOF. Note that E[v(Smpl(G,p)) | G] ≤ 2p2e + p�. [23], Lemma 5.2, es-
tablishes that there exists a coupling such that, almost surely,

Pr
(
Smpl(G,p) �= SmplWR(G,p) | Smpl(G,p),G

) ≤ 2pv
(
Smpl(G,p)

)
.

The result follows immediately.
We note that [23], Lemma 5.2, does not explicitly treat graphs with loops, but

the proof given there applies verbatim to this case. �

LEMMA 2.23. Let G1,G2, . . . be a sequence of (possibly random) graphs

such that a.s., Gj is finite, e(Gj ) → ∞, and �(Gj ) = O(
√

e(Gj )) as j → ∞.
Then a.s. with respect to the randomness of the sequence G1,G2, . . . , we have

that Smpl(Gj , r/
√

2e(Gj ))
d−→ H for some finite random graph H if and only if

SmplWR(Gj , r/
√

2e(Gj ))
d−→ H .

PROOF. The proof follows immediately from the previous lemma by setting
p = r/

√
2e(Gj ), e = e(Gj ), and � = �(Gj ). �

2.3. Coupling. Much of this paper involves convergence of probability mea-
sures. We will often make use of coupling techniques in order to establish these re-
sults; see [16] for an overview. A coupling of probability measures P and P ′, both
on the measurable space (E,E), is a probability measure P̂ on (E × E,σ(E × E))

with marginals P and P ′. Such a coupling P̂ bounds the total variation distance
‖P − P ′‖TV between P and P ′ by∥∥P − P ′∥∥

TV ≤ P̂
(
X �= X′),

where X and X′ are random variables on E with distributions P and P ′ (which
we then view as functions of the two coordinates on E × E). Moreover, if E is a
Polish space, then there exists some coupling that saturates this bound.

It is often convenient to describe a coupling as a scheme for jointly sampling
X and X′. In this case, we may refer to the coupling as a coupling of the random
variables. In this case, the basic proof technique is to describe an algorithm for
jointly sampling X and X′, and then bound Pr(X �= X′) under this algorithm.
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2.4. Distributional convergence of point processes. Our technical develop-
ment relies on techniques from point process theory, particularly the theory of
distributional convergence of point processes viewed as random measures. Good
references include [14, 15] for a friendly introduction and [26], Chapter 16, for a
very general treatment.

For our purposes, the main result needed to understand distributional conver-
gence of point processes is the following theorem.

THEOREM 2.24 ([14], Theorem 11.1.VII). Let ξ, ξ1, ξ2, . . . be locally finite

point processes on R
2+. Then ξj

d−→ ξ as j → ∞ if and only if

(
ξj (B1), . . . , ξj (Bn)

) d−→ (
ξ(B1), . . . , ξ(Bn)

)
as j → ∞, where Bi ⊆ R

2+ are bounded Borel sets such that Pr(ξ(∂Bi) = 0) = 1.

That is, convergence in distribution of point processes is just convergence in
distribution of the counts on arbitrary collections of test sets. There are generally
consistency requirements between the counts on different test sets, and in conse-
quence it actually suffices to check convergence on a smaller collection.

3. Sampling limits of graph sequences. In this section, we show that for
graph sequences with size going to infinity the limits of sampling convergence are
graphexes.

The main technical idea is to use the canonical labeling to introduce a map
from graphs to probability distributions over point processes, and then establish
the claimed results by way of tools from the theory of distributional convergence
of point processes. Recall that the canonical labeling of a graph G is a random ad-
jacency measure corresponding to independently randomly labeling each vertex of
G uniformly in [0,

√
2e(G)). We introduce notation for the probability distribution

of the random labeling.

DEFINITION 3.1. The embedding of a (possibly random) graph G is a proba-
bility distribution over point processes on [0,

√
2e(G))2 given by

embed(G)(·) = Pr
(
Lbl(G) ∈ · | G)

.

Our first lemma relates distributional convergence of the point processes given
by the canonical random labelings of G1,G2, . . . to sampling convergence of the
graph sequence. Intuitively, sampling convergence is equivalent to distributional
convergence of the point processes, and the limiting random graph of r/

√
2e(Gj )-

sampling is isomorphic to the graph given by restricting the limiting adjacency
measure to vertices with label less than r . To parse the lemma statement, note that
sampling convergence may be written as, for all r ∈R+, SmplD(Gj , r) converges
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weakly as j → ∞. It may also be helpful to note that part of our goal in this section
is to establish that the limit ηr below is equal to GPD(W, r) for some integrable
graphex W .

LEMMA 3.2. Let G1,G2, . . . be a graph sequence with e(Gj ) → ∞ as
j → ∞. The graph sequence is sampling convergent if and only if the sequence
embed(G1), embed(G2), . . . converges weakly, that is, if and only if the random
labelings converge in distribution. Further, denoting the limiting distributions of
SmplD(Gj , r) and embed(Gj ) by ηr and ζ , respectively, if Hr ∼ ηr and ξ ∼ ζ

then Lblr (Hr)
d= ξ([0, r)2 ∩ ·).

PROOF. Suppose first that the sequence is sampling convergent. Fix r and
notice that, for

√
2e(Gj ) > r , under the canonical labelings of Gj each vertex

has a label in [0, r) independently with probability r/
√

2e(Gj ). Moreover, re-
stricted to [0, r), each vertex has a U [0, r) i.i.d. label. Denote this restriction

by Lbl(Gj )|r . We have just shown that Lbl(Gj )|r d= Lblr (Smpl(Gj , r/
√

2e(Gj )).

[37], Lemma 4.13, shows that if G′,G′
1,G

′
2, . . . are unlabeled random graphs then

G′
j

d−→ G′ as j → ∞ if and only if Lblr (G′
j )

d−→ Lblr (G′) as j → ∞. Hence, by
the assumption of sampling convergence, Lbl(Gj )|r converges in distribution as
j → ∞.

Next, we lift this convergence on arbitrary prefixes Lbl(Gj )|r to convergence of
the entire point process. We first identify the limiting point process ξ . To do so,
we let B1, . . . ,Bn ⊆ R

2+ be bounded Borel sets, choose r such that B1, . . . ,Bn ⊆
[0, r)2, and demand that{

ξ(B1), . . . , ξ(Bn)
} d= lim

j→∞
{
Lbl(Gj )|r (B1), . . . ,Lbl(Gj )|r (Bn)

}
.

To see that the right-hand side is well-defined (i.e., independent of the choice of

r) notice that for r < r ′, (Lbl(Gj )|r ′)([0, r)2 ∩ ·) d= Lbl(Gj )|r . The right-hand side
converges in distribution because Lbl(Gj )|r converges in distribution. Moreover,
the consistency conditions necessary for the right-hand side to be counts with re-
spect to some point process are satisfied, because the limiting joint distributions
are counts with respect to limj→∞ Lbl(Gj )|r . By the Kolmogorov existence the-
orem for point processes (see [14], Theorem 9.2.X), this suffices to show that ξ

exists and has a well-defined distribution.
It is immediate that Lbl(Gj )

d−→ ξ as j → ∞ because, by construction,

{
Lbl(Gj )(B1), . . . ,Lbl(Gj )(Bn)

} d−→ {
ξ(B1), . . . , ξ(Bn)

}
as j → ∞,

for all bounded Borel sets B1, . . . ,Bn ⊆ R
2+.

The reverse direction follows similarly. �
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The next result establishes that graphexes are the natural limit objects of sam-
pling convergent sequences.

LEMMA 3.3. Let G1,G2, . . . be a sampling convergent graph sequence with
e(Gj ) → ∞ as j → ∞. Then the limit is a graphex, in the sense that there is
some (possibly random) W such that if SmplD(Gj , r) → Qr then Qr | W =
GPD(W, r).

PROOF. Notice that �(Gj ) = O(
√

e(Gj )) for any sampling convergent se-
quence, since otherwise the number of vertices in the random subgraph diverges.
By Lemma 3.2, the canonical random labelings of Gj are convergent to some point
process ξ on R

2+. Observe that for any r and any measure-preserving transforma-

tion φ on [0, r), ξ ◦ (φ ⊗ φ)
d= ξ . In particular then, for any dyadic partitioning of

R+ and any transposition τ of this dyadic partitioning, ξ ◦(τ ⊗τ)
d= ξ , and by [27],

Proposition 9.1, this implies that ξ is exchangeable. Then by the Kallenberg rep-
resentation theorem there is some (possibly random) graphex W that generates ξ .
That is, embed(Gj ) converges weakly to the distribution over point processes de-
fined by (marginalizing over) W . Lemma 3.2 then establishes the result. �

We now turn to establishing that the limiting graphex W in Lemma 3.3 is non-
random and integrable.

The next lemma gives a tractable criterion for determining when an exchange-
able point process is ergodic, that is, when W is nonrandom. Basically, an ad-
jacency measure is ergodic if for all r, r ′ ∈ R+ with r < r ′, the induced subgraph
with vertex labels less than r gives no information about the induced subgraph with
vertex labels between r and r ′. This lemma is an analogue of [27], Lemma 7.35,
attributed there to David Aldous.

LEMMA 3.4. Let � be an exchangeable adjacency measure on R
2+. Then �

is extremal if and only if for all r < r ′ ∈ R+, �([0, r)2 ∩ ·) and �([r, r ′)2 ∩ ·) are
independent.

PROOF. If the point process is extremal, the Kallenberg representation theo-
rem (Theorem 2.8) immediately implies the result.

To prove the converse direction, we use the following notation from [37]. Let �

be generated by W and let KEG(W) = Pr(� ∈ · |W), the (possibly random) prob-
ability measure over adjacency measures induced by (the possibly random) W .

Suppose that � is not extremal. By a consistent estimation result [37], Theo-
rem 4.8, for any sequence s1, s2, . . . such that sj ↑ ∞,

lim
j→∞ Pr

(
�

([0, r)2 ∩ ·) ∈ · | �([r, sj )2 ∩ ·)) = Pr
(
�

([0, r)2 ∩ ·) ∈ · | KEG(W)
)
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(i.e., W can be estimated from an infinite size sample). Since, by nonextremity,
Pr(�([0, r)2 ∩ ·) ∈ · | KEG(W)) �= Pr(�([0, r)2 ∩ ·) ∈ ·), this means that there is
some r ′ ∈ R+ such that

Pr
(
�

([0, r)2 ∩ ·) ∈ · | �([r, r ′)2 ∩ ·)) �= Pr
(
�

([0, r
)2 ∩ ·) ∈ ·),

as required. �

LEMMA 3.5. The limiting graphex W in Lemma 3.3 is nonrandom.

PROOF. As in the proof of Lemma 3.3, �(Gj ) = O(
√

e(Gj )) for any sampling
convergent sequence. We then make use of Lemma 2.23, the asymptotic equiva-
lence of Smpl(Gj , r/

√
2e(Gj )) and SmplWR(Gj , r/

√
2e(Gj )). Let r ′ ∈ R+ and

produce a sequence of adjacency measures ξj,r ′ by, for each j ∈ N, sampling a
subgraph from Gj according to the with replacement scheme (with probability

r ′/
√

2ej ) and then randomly labeling this subgraph in [0, r ′). By the asymptotic

equivalence of the sampling schemes and Lemma 3.2, ξj,r ′ d−→ ξ([0, r ′)2 ∩·), where
ξ is an adjacency measure generated by W .

As a consequence of the with replacement sampling scheme, for all j ∈ N,
ξj,r ′([0, r)2 ∩ ·) is independent of ξj,r ′([r, r ′)2 ∩ ·), for any r < r ′. To see this,
note first that each sampled vertex has a label in [0, r) independently with
probability r/r ′, so that, by a property of the Poisson distribution, the number
of vertices in [0, r) and in [r, r ′) have independent Poi(rv(Gj )/

√
2e(Gj )) and

Poi((r ′ − r)v(Gj )/
√

2e(Gj )) distributions. Second, because the vertex sampling
is with replacement, the structure of the graph with labels in [0, r) contains no
information about the structure of the graph with labels in [r, r ′).

The independence of ξj,r ′([0, r)2 ∩ ·) and ξj,r ′([r, r ′)2 ∩ ·) for all j ∈ N implies
that ξ([0, r)2 ∩ ·) is independent of ξ([r, r ′)2 ∩ ·). Because r, r ′ were arbitrary,
Lemma 3.4 implies that ξ is ergodic, or, equivalently, that W is nonrandom. �

Next, we show that the limiting W is integrable, we bound the integral and
we give a condition for when the bound is saturated. We will need the following
lemma.

LEMMA 3.6. Let (�s)s∈R+ be generated by W = (I, S,W). Then

E
[
e(�s)

] = s2

2
‖W‖1 and E

[
�(�s)

] = s

∫
W(x,x)dx.

PROOF. Let eI
s , eS

s and eW
s be the number of nonloop edges generated by the

I , S and W components of the graphex, noting that the edge sets generated by the
different components are disjoint.
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The equation E[eI
s ] = Is2 is immediate from Campbell’s theorem.

By [36], Theorem 5.3, E[eW
s ] = s2 1

2‖W‖1 and E[�(�s)] = s
∫

W(x,x)dx.
To treat the star component, let �s be the latent Poisson process, restricted to

[0, s)×R+, used to generate � and for each (ti , xi) ∈ �s let M(xi) be the number
of rays that (ti, xi) has due to the star component of the graphex. By viewing
M(xi) as a marking of �s , and recalling that M(xi) ∼ Poi(sS(xi)), we have from
Campbell’s theorem that E[eS

s ] = s2‖S‖1. �

By construction,

E
[
e
(
Smpl

(
Gj, r/

√
2e(Gj )

))] = r2/2

for any simple graph Gj . However, it is not necessarily true that the expected num-
ber of edges of the limiting graph is r2/2. For example, consider the case where
Gj is a star with j rays. In this case, the sampled subgraph is nonempty only if the
center of the star is selected by the vertex sampling. The probability that this hap-
pens goes to 0 as j → ∞, so the limiting graph is the empty graph. The following
property characterizes when the limiting graphex W satisfies E[e(Hr)] = r2/2 for
Hr ∼ GPD(W, r).

DEFINITION 3.7. A sequence of graphs G1,G2, . . . is uniformly sampling
regular if for all ε > 0 there is some k > 0 such that, uniformly for all j ,

1

e(Gj )

v(Gj )∑
i=1

dj,i1
[
dj,i > k

√
e(Gj )

]
< ε,

where dj,i is the degree of vertex i in Gj ignoring loops.

Intuitively, this property is the requirement that, asymptotically, only a vanish-
ing fraction of the edges of the graph are due to vertices with exceptionally high
degree. This is a weakening of the condition of uniform tail regularity: a sequence
that is not uniformly sampling regular is also not uniformly tail regular (see Re-
mark 3.8 below), but for example, graph sequences that consist of only isolated
edges are uniformly sampling regular but not uniformly tail regular.

REMARK 3.8. For a sequence of graphs, the sets Uj in Definition 2.17 can
without loss of generality be assumed to correspond to the high degree vertices
in Gj . Formulated differently, a sequence of graphs G1,G2, . . . has uniformly
regular tails iff for each ε > 0 we can find an M < ∞ such that when vertices are
ordered from highest to lowest degrees, then

1

2e(Gj )

∑
i>M

√
e(Gj )

di(Gj ) ≤ ε,
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for all j , where di(Gj ) denotes the degree of vertex i in Gj ; see [7], Remark 18.
While this is a statement about the negligible contribution of the low degree tail of
the degree distribution, it interestingly also implies that vertices of large degrees
only have a negligible contribution; that is, it implies that the sequence G1,G2, . . .

is uniformly sampling regular.

PROOF. For M < k, the degree of a vertex of degree at least k
√

e(G) clearly
does not change by more than a factor of (1−M/k) if we remove at most M

√
e(G)

of its neighbors from the graph. As a consequence,∑
i

di(G)1
[
di > k

√
e(G)

]

≤ ∑
i

1
[
di > k

√
e(G)

]( 1

1 − M/k

∑
�>M

√
e(G)

1
[
(i, �) ∈ E(G)

])

≤ 1

1 − M/k

∑
�>M

√
e(G)

d�.

With the help of this bound, the proof is straightforward. �

LEMMA 3.9. Let G1,G2, . . . be a graph sequence with ej = e(Gj ) → ∞.

Then e(Smpl(Gj , r/
√

2ej )) is uniformly integrable for every r if and only if
G1,G2, . . . is uniformly sampling regular.

PROOF. Let er
j

d= e(Smpl(Gj , r/
√

2ej )). Uniform integrability is the state-
ment that for each ε > 0 we can find an M < ∞ such that

lim sup
j→∞

E
[
er
j 1

[
er
j > M

]] ≤ ε.

Let dj,i denote the degree of vertex i in Gj (ignoring loops, as usual), and let Dr
j,i

be the degree in the sampled subgraph of vertex i in Gj , where Dr
j,i = 0 if vertex

i is not selected. Then er
j = 1

2
∑

i D
r
j,i . As we will see, the contributions to this

sum that determine whether er
j is uniformly integrable come from the high-degree

vertices in Gj , specifically from the vertices in a set of the form Hj = {i ∈ V (Gj) :
dj,i > k

√
ej } for a suitable k > 1.

To show that uniform sampling regularity is necessary for uniform integrability,
we observe that Dr

j,i is given by

Dr
j,i = Xr

j,iB
r
j,i ,

where Xr
j,i and Br

j,i are independent random variables with

Xr
j,i ∼ Bern

(
r√
2ej

)
and Br

j,i ∼ Bin
(
dj,i ,

r√
2ej

)
.
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(Specifically, Br
j,i is the number of neighbors of vertex i that are sampled, and

Xr
j,i is the indicator function for whether i is sampled itself.) In particular, we can

rewrite the sum from Definition 3.7 as

1

e(Gj )

v(Gj )∑
i=1

dj,i1
[
dj,i > k

√
e(Gj )

] = 2

r2

∑
i∈Hj

E
[
Dr

j,i

]
.

Assume for a moment that for k large and i ∈ Hj ,

(3.1) E
[
Dr

j,i

] ≤ 4E
[
Dr

j,i1
[
Dr

j,i > kr/4
]]

.

This would allow us to bound our sum by

2

r2

∑
i∈Hj

E
[
Dr

j,i

] ≤ 8

r2

∑
i∈Hj

E
[
Dr

j,i1
[
Dr

j,i > kr/4
]]

≤ 8

r2

∑
i∈V (Gj )

E
[
Dr

j,i1
[
er
j > kr/4

]]

= 8

r2E
[
er
j 1

[
er
j > kr/4

]]
.

If we assume uniform integrability, the right-hand side can be made arbitrarily
small by choosing k large enough, showing that uniform sampling regularity is
necessary for uniform integrability, once we establish the bound (3.1).

To prove (3.1), we observe that Pr(Br
j,i ≤ 1

2E[Br
j,i]) ≤ exp(−1

8E[Br
j,i]) by the

multiplicative Chernoff bound. For i ∈ Hj , we have that E[Br
j,i] = rdj,i√

2ej
≥ kr√

2
, so

for k ≥ 8
r
, we have that Pr(Br

j,i ≤ 1
2E[Br

j,i]) ≤ exp(−1/
√

2) ≤ 1
2 . Combined with

the fact that kr/4 < 1
2E[Br

j,i] if i ∈ Hj , this allows us to bound

E
[
Dr

j,i1
[
Dr

j,i > kr/4
]] ≥ E

[
Dr

j,i1
[
Dr

j,i >
1

2
E

[
Br

j,i

]]]

= r√
2ej

E

[
Dr

j,i1
[
Dr

j,i >
1

2
E

[
Br

j,i

]]|Xr
j,i = 1

]

= r√
2ej

E

[
Br

j,i1
[
Br

j,i >
1

2
E

[
Br

j,i

]]]

≥ r√
2ej

1

2
E

[
Br

j,i

]
Pr

(
Br

j,i >
1

2
E

[
Br

j,i

])

≥ r√
2ej

1

4
E

[
Br

j,i

] = 1

4
E

[
Dr

j,i

]
,

proving (3.1), and hence the necessity of uniform sampling regularity.
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To prove that uniform sampling regularity is sufficient to for uniform integrabil-
ity, we will need to control various other terms, but it turns out that the contribution
of the vertices in Hj is the only one that requires uniform sampling regularity. The
details are tedious, and are given in the rest of this proof.

Consider first the number of isolated edges, e
r,I
j , that is, the number of edges

{i, i′} ∈ E(Gj) such that Dr
j,i = Dr

j,i′ = 1. The probability that a given edge in

E(Gj) is an isolated edge is then bounded by r2/ej , and the probability that two
edges b, b′ ∈ E(Gj) are both isolated is at most r4/e2

j , that is, the probability
that all four termini are selected by the sampling, except for the case that b = b′, in
which case we only have the upper bound r2/ej . As a consequence, the expectation
of (e

r,I
j )2 is bounded by ej (ej − 1)r4/e2

j + ej r
2/ej ≤ r4 + r2. Thus e

r,I
j is square

integrable uniformly in j , and hence uniformly integrable.
Next, given k > 1, we partition the vertices of Gj into three sets:

Hj = {
i ∈ V (Gj ) : dj,i > k

√
ej

}
,

Mj = {
i ∈ V (Gj ) : dj,i ∈ [√ej /k, k

√
ej ]},

Lj = {
i ∈ V (Gj ) : dj,i <

√
ej/k

}
.

We then partition the set of edges contributing to er
j −e

r,I
j into several classes, start-

ing with the edges which have one endpoint of degree 1 in Lj and one endpoint of
degree at least 2 in Mj . Denote the number of these edges by e

L,r,1
j , and consider

the expectation of (e
L,r,1
j )2. We then bound e

L,r,1
j by

∑
i∈Mj

∑
u∈Lj

Xiu, where
Xiu = 1[{i, u} ∈ E(Gj)]1[Dr

j,i ≥ 2]1[Dr
j,u = 1]. Observe that E[XiuXi′u′ ] ≤

r4/4e2
j if i �= i′, because each of i, i ′, u,u′ must be selected by the sampling. As a

consequence,

E
[(

e
L,r,1
j

)2] ≤ ∑
i,i′∈Mj

i �=i′
u,u′∈Lj

{i,u},{i′,u′}∈E(Gj )

E[XiuXi′u′ ] + ∑
i∈Mj

u,u′∈Lj

E[XiuXiu′ ]

≤ ∑
{i,u},{i′,u′}∈E(Gj )

r4

4e2
j

+ ∑
i∈Mj

E

[( ∑
u∈Lj

Xiu

)2]

≤ r4

4
+ ∑

i∈Mj

E
[(

Dr
j,i

)2]

≤ r4

4
+ r√

2ej

∑
i∈Mj

E
[(

Br
j,i

)2]
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≤ r4

4
+ r√

2ej

∑
i∈Mj

(
r2

2ej

d2
j,i + r√

2ej

dj,i

)

≤ r4

4
+ r√

2ej

∑
i∈Mj

(
r2k

2
√

ej

dj,i + r√
2ej

dj,i

)
,

where in the last step we used that dj,i ≤ k
√

ej when i ∈ Mj . Since
∑

i∈Mj
dj,i ≤

2ej , we see that for each k, the right-hand side is bounded uniformly in j , as
required.

The remaining contribution to er
j will be bounded by

e
H,r
j + e

M,r
j + e

L,r,≥2
j ,

where e
H,r
j = ∑

i∈Hj
Dr

j,i , e
M,r
j = ∑

i∈Mj
D

M,r
j,i , D

M,r
j,i is the degree of i of edges

in subgraph of the sampled graph Smpl(Gj , r/
√

2ej ) induced by restricting to ver-
tices that belong to Mj in Gj , and

e
L,r,≥2
j = ∑

i∈Lj

Dr
j,i1

[
Dr

j,i ≥ 2
]
.

Let Mr
j ⊆ Mj be defined by keeping each vertex in Mj independently with

probability r/
√

2ej . Then e
M,r
j ≤ |Mr

j |2. Observing that are at most 2k
√

ej ver-
tices in Mj , since otherwise there would be too many edges, we stochastically

bound |Mr
j | by v

M,r
j ∼ Bin(2k

√
ej , r/

√
2ej ). Since the expectation of (v

M,r
j )4 is

bounded uniformly in j , this proves that for each k, e
M,r
j is square integrable uni-

formly in j , and hence uniformly integrable.
By the assumption of uniform sampling regularity and the fact that

E
[
e
H,r
j

] = r2

2ej

vj∑
i=1

dj,i1[dj,i > k
√

ej ],

we may uniformly force E[eH,r
j ] to be arbitrarily small by choosing k sufficiently

large.
Finally, direct computation gives that

E
[
Dr

j,i1
[
Dr

j,i ≥ 2
]] = r√

2ej

(
E

[
Br

j,i

] − Pr
(
Br

j,i = 1
)) ≤ (r/

√
2ej )

3d2
j,i ,

whereby

E
[
e
L,r,≥2
j

] ≤
(

r√
2

)3 ∑
i∈Lj

dj,i√
ej

dj,i

ej

≤
(

r√
2

)3 1

k

∑
i∈Lj

dj,i

ej

≤ r3
√

2k
,
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where the second line has used that dj,i/
√

ej < 1/k for every vertex i in Lj .
Now, for any constant c′ > 0,

E
[
er
j 1

[
er
j > c′]] ≤ E

[
(
(
e
r,I
j + e

r,L,1
j + e

M,r
j

)
1
[
(
(
e
r,I
j + e

r,L,1
j + e

M,r
j

)
> c′/2

]]
+E

[
(
(
e
r,I
j + e

r,L,1
j + e

M,r
j

)
1
[
e
L,r,≥2
j + e

H,r
j > c′/2

]]
+E

[
e
L,r,≥2
j

] +E
[
e
H,r
j

]
.

For ε > 0, we may guarantee that the last two terms are each at most ε/4 by
choosing k sufficiently large. For any fixed k, Markov’s inequality shows that
limc′→∞ Pr(eL,r,≥2

j + e
H,r
j > c′/2) = 0. [26], Lemma 4.10, shows that for any

uniformly integrable family {Xj } and sequence of events A1,A2, . . . such that
limk→∞ Pr(Ak) = 0, we have limk→∞ supj E[Xj 1[Ak]] = 0; accordingly, invok-

ing the uniform integrability of e
r,I
j + e

r,L,1
j + e

M,r
j , we may choose c′ (depending

on k) large enough such that the second term is at most ε/4. Similarly, by uniform
integrability, we may choose c′ large enough such that the first term is at most ε/4.
Thus, for any ε there is a c′ > 0 such that

E
[
er
j 1

[
er
j > c′]] < ε

uniformly, as required. �

COROLLARY 3.10. The limiting graphex W = (I, S,W) in Lemma 3.3 is in-
tegrable, with ‖W‖1 ≤ 1 and

∫
W(x,x)dx = limj→∞ �(Gj )/

√
2e(Gj ). Further,

the bound is saturated if and only if the graph sequence is uniformly sampling
regular.

PROOF. Let ξ be the limiting point process as in the proof of Lemma 3.3, let
�r = ξ |[0,r]2 , let �r = �(�r) and let er and er

j be defined by er = e(ξ(· ∩ [0, r)2))

and er
j = e(Lbl(Gj )(· ∩ [0, r)2)).

Observe that �(Smpl(Gj , r/
√

2ej )) ∼ Bin(�(Gj ), r/
√

2ej ), and that loops in
the sampled subgraph can only occur by selecting loops in the original graph.
It then follows that E[�r ] = r limj→∞ �(Gj )/

√
2e(Gj ) for all r ∈R+. Comparing

this expression with Lemma 3.6 establishes the claim about the diagonal part of W .
We have E[er ] ≤ limj→∞E[er

j ] = 1
2r2 by a version of Fatou’s lemma [26],

Lemma 4.11. Comparing with Lemma 3.6 establishes that ‖W‖1 ≤ 1.

The second claim follows from the observation that e(Lbl(Gj )(· ∩ [0, r)2))
d=

e(Smpl(Gj , r/
√

2ej )), Lemma 3.9, and the fact that a sequence of nonnegative
random variables X1,X2, . . . that converges in distribution to X also satisfies
E[Xj ] → E[X] if and only if it is uniformly integrable. �

We now have the ingredients of the main result characterizing the limits of sam-
pling convergent sequences.
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THEOREM 3.11. Let G1,G2, . . . be a sampling convergent graph sequence
such that e(Gj ) → ∞ as j → ∞. Then the limit is a nonrandom graphex W such
that ‖W‖1 ≤ 1, in the sense that SmplD(Gj , r) → GPD(W, r) weakly as j → ∞
for all r ∈ R+. The bound on ‖W‖1 is saturated if and only if the sequence is
uniformly sampling regular.

PROOF. Immediate from Lemmas 3.3 and 3.5 and Corollary 3.10. �

In some other sparse graph limit theories [7–9], only graph sequences satisfying
certain constraints are subsequentially convergent. We prove a compactness result
in Section 6 that has the following corollary.

THEOREM 3.12. Every sequence of graphs G1,G2, . . . satisfying �(Gj ) =
O(

√
e(Gj )) is subsequentially sampling convergent.

PROOF. This will be immediate from Theorem 6.8. �

On the basis of this result, one might hope that sampling convergent limits are
informative about all sparse graph sequences, or at least all uniformly sampling
regular sequences. The next result helps clarify that there are further limitations.
Intuitively speaking, it shows that the sampling limit is degenerate for sparse graph
sequences with relatively homogeneous degrees. In particular, the next result ap-
plies to sequences of bounded degree graphs, for which there is already a well
developed limit theory [5]. It also applies to the random graph Gn,p as long as
p → 0 and n2p → ∞ as n → ∞, or more generally, to inhomogeneous random
graphs obtained by first choosing a dense random graph sequence generated by a
bounded graphon and then subsampling it so that it becomes sparse, again as long
as it is dense enough to guarantee that the number of edges goes to infinity a.s.

To state the theorem, we define the average degree and square average degree of
a graph G as d(G) = 1

v(G)

∑
i di(G) and d2(G) = 1

v(G)

∑
i (di(G))2, where di(G)

is the degree of vertex i not counting loops. We also recall that the edge density of
G is defined as ρ(G) = 2e(G)/(v(G))2 = d(G)/v(G).

THEOREM 3.13. Let G1,G2, . . . be a sampling convergent graph sequence

with e(Gj ) → ∞ as j → ∞. Suppose that the maximal degree of Gj is o(
√

e(Gj ))

or, more generally, that

(3.2)
d2(G)

(d(G))2

√
ρ(Gj ) = o(1).

Then G1,G2, . . . is sampling convergent to a graphex of the form (1/2,0,W),
where the graphon W is zero except on the diagonal.
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PROOF. Let r ∈ R+. For brevity, let vj = v(Gj ), ej = e(Gj ) and pj =
r/

√
2ej . Let dj,i be the degree of vertex i in Gj and let Dr

j,i be the degree of
this vertex in a pj -sampled subgraph, where Dr

j,i = 0 is understood to mean that
the vertex is not included in the subgraph.

We first prove that the assumption (3.2) implies uniform sampling regularity. To
this end, we bound

1

e(Gj )

v(Gj )∑
i=1

dj,i1
[
dj,i > k

√
e(Gj )

] ≤ 1

k(e(Gj ))3/2

v(Gj )∑
i=1

(dj,i)
2

= 2

√
2

k

d2(Gj )
√

ρ(Gj )

(d(Gj ))2
,

from which the claim follows.
Next, we recall that

Dr
j,i | Bj,i ∼ (1 − pj )δ0 + pjδBj,i

where Bj,i ∼ Bin(dj,i , pj ),

so in particular

Pr
(
Dr

j,i ≥ 2
) = pj

(
1 − [

(1 − pj )
dj,i + dj,ipj (1 − pj )

dj,i−1]) ≤ p3
j d

2
j,i ,

using Bernoulli’s inequality. Let Nj be the number of vertices with degree greater
than 1 in the sampled subgraph. Then

E[Nj ] ≤ ∑
i≤vj

Pr
(
Dr

j,i ≥ 2
) ≤ p3

j

∑
i≤vj

d2
j,i = r3 d2(G)

(d(G))2

√
ρ(Gj ) = o(1).

Markov’s inequality then implies that Nj
p−→ 0 as j → ∞. Since r was arbitrary,

this implies convergence to a graphex of the claimed form. �

As a corollary of the theorem, the limit of a sequence of preferential attachment
graphs is the pure edge graphex. More generally, we have the following corollary.

COROLLARY 3.14. Let G1,G2, . . . be a random sequence of simple graphs
such that almost surely (a) the empirical degree distribution converges to a
distribution with finite, positive mean, (b) the average degree converges to the
mean of the limiting degree distribution and (c) lim supj→∞

maxi di (Gj )√
v(Gj )

< ∞ and

limj→∞ e(Gj ) = ∞. Then a.s., G1,G2, . . . is sampling convergent to the graphex
(1/2,0,0).
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PROOF. Let Pd be the limit of the probability that a random vertex in Gj has
degree d , let d be the mean of P and let dj,i and vj be as in the last proof. Then

lim
j→∞

1

vj

∑
i

dj,i1[dj,i ≥ k] a.s.= d − lim
j→∞

1

vj

∑
i

dj,i1[dj,i < k]

a.s.= d − ∑
d<k

dPd = ∑
d≥k

dPd.

Given ε > 0, let k be a (possibly random) finite constant such that the right-hand
side is at most ε/2, and let J < ∞ be such that for j ≥ J ,

1

vj

∑
i

dj,i1[dj,i ≥ k] ≤ ε.

Defining Cj = 1√
vj

maxi dj,i , we then have that

1

vj

∑
i

d2
j,i ≤ Cj√

vj

∑
i

dj,i1[dj,i ≥ k] + k

vj

∑
i

dj,i ≤ εCj
√

vj + kd(Gj ).

Using that ρ(Gj ) = d(Gj )/vj , this shows that√
ρ(Gj )

(d(Gj ))2
d2(Gj ) ≤ d(Gj )

−3/2εCj + k√
vjd(Gj )

.

Recalling that vjd(Gj ) = 2e(Gj ), we can now first take the limit superior over j

and then the limit ε → 0 to see that the condition (3.2) is a.s. satisfied. To com-
plete the proof, we use that every sequence of loopless graphs G1,G2, . . . with
e(Gj ) → ∞ has a convergent subsequence. �

4. Graphex processes are sampling convergent. We now turn to character-
izing the sampling limits of sequences of graphs generated by a graphex process.
Let s1, s2, . . . be some sequence such that sj ↑ ∞ as j → ∞ and let Gj = G(�sj ),
where � is generated by an integrable graphex W . Intuitively speaking, our aim is
to show that the sampling limit of G1,G2, . . . is W .

The basic strategy makes use of the consistent estimation results first established
in [37], although we will appeal to the technically stronger versions of [23]. We
need the following (implicit) result from those papers.

LEMMA 4.1. Let Gs = G(�s), where (�s)s∈R+ is generated by an integrable
graphex W , then Pr(Smpl(Gs, r/s) ∈ · | Gs) → GPD(W, r) weakly almost surely
as s → ∞, for all r ∈ R+.
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PROOF. Let Ŵ(Gs,s) be the empirical graphon of Gs stretched so that each
pixel is 1/s × 1/s. [23], Theorem 5.1, shows that GPD(Ŵ(G,s), r) → GPD(W, r)

weakly almost surely. As noted earlier, GPD(Ŵ(Gs,s), r) = Pr(SmplWR(Gs,

r/s) ∈ · | Gs), and so the result follows from the asymptotic equivalence of with
and without replacement sampling, Lemma 2.22. Indeed, for each fixed r , we have
that a.s. e(Gs)(r/s)

3 → 0 and �(Gs)(r/s)
2 → 0 as s → ∞ (by, e.g., Lemma 4.2

below). Lemma 2.22 then implies that conditioned on (�s)s∈R+ , the total variation
distance between the with and without replacement distributions goes to zero a.s.
as s → ∞. �

To drop the latent times, we will need an extension of a result of [7] relating
e(Gj ) and sj . It will be convenient to partition each �s into three components,
which correspond to the three terms in (2.1). We will use the notation of the Kallen-
berg representation theorem (Theorem 2.8). Let � be the latent Poisson process
used in the Kallenberg representation construction, and let �s be the restriction of
� to [0, s) × R+. We partition �s into the following three pieces, corresponding
to the three terms in the representation theorem:

1. �W
s : the edge induced subgraph given by restricting to edges between ver-

tices that belong to the underlying Poisson process �s ; this is the part of the graph
generated by (0,0,W).

2. �S
s : the edge induced subgraph given by restricting to edges where one

vertex belongs to any latent star Poisson process σjk ; this is the part of the graph
generated by (0, S,0).

3. �I
s : the induced subgraph given by restricting to the remaining edges; this

is the part of the graph generated by (I,0,0).

LEMMA 4.2. Let (�s)s∈R+ be a graphex process generated by graphex W =
(I, S,W), and let eW

s , eS
s and eI

s be the number of edges of �W
s , �S

s and �I
s ,

respectively. Then, almost surely,

lim
s→∞ eW

s /s2 = 1

2
‖W‖1, lim

s→∞ eS
s /s2 = ‖S‖1, lim

s→∞ eI
s /s

2 = I, and

lim
s→∞�(�s)/s =

∫
W(x,x)dx.

PROOF. First, eW
s /s2 → 1

2‖W‖1 a.s. by [7], Proposition 30.
The case ‖S‖1 = 0 is trivial. Assume ‖S‖1 > 0. The star component of the

graphex process can be understood as assigning a Poi(sS(xi)) number of rays to
each point of the underlying point process (ti , xi) ∈ �s , independent of everything
else. By the additive property of independent Poisson distributions, we then have
eS
s | �s ∼ Poi(s

∑
(ti ,xi )∈�s

S(xi)). Since s
∑

(ti ,xi )∈�s
S(xi) ↑ ∞ a.s. as s → ∞,

the law of large numbers implies eS
s /(s

∑
(ti ,xi )∈�s

S(xi)) → 1 a.s. as j → ∞. The
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law of large numbers for Poisson processes gives
∑

(ti ,xi )∈�s
S(xi)/s → ‖S‖1 a.s.

as j → ∞, whereby eS
s /s2 → ‖S‖1 a.s. as j → ∞.

We have eI
s /s

2 → I a.s. as s → ∞ by the law of large numbers for Poisson
processes.

Finally, we may view the loops as an independent marking of the latent Pois-
son process, with a loop on (ti, xi) included with probability W(xi, xi). The fact
that lims→∞ �(�s)/s = ∫

W(x,x)dx then follows by the law of large numbers for
Poisson processes. �

By the two previous lemmas, the limiting distribution of Smpl(Gs, r/s) is gen-
erated by W , and (temporarily simplifying to the case ‖W‖1 + 2‖S‖1 + 2I = 1)
we have s ≈ √

2e(Gs) when s is large. Thus, to prove our main result we would
like to couple Smpl(Gs, r/s) and Smpl(Gs, r/

√
2e(Gs)).

THEOREM 4.3. Let (�s)s∈R+ be a graphex process generated by an inte-
grable graphex W = (I, S,W) such that ‖W‖1 > 0, and let Gs = G(�s) for all
s ∈ R+. Then (Gs)s∈R+ is sampling convergent to W ′, that is, SmplD(Gs, r) →
GPD(W ′, r) weakly almost surely, where W ′ = (I ′, S′,W ′) is defined by

I ′ = I/‖W‖1, S′(x) = (‖W‖1
)−1/2

S
(
x‖W‖1/2

1

)
, and

W ′(x, y) = W
(
x‖W‖1/2

1 , y‖W‖1/2
1

)
.

PROOF. First, for any graph G and any q,p ∈ [0,1] such that q < p, there is
a coupling such that

Pr
(
Smpl(G,p) �= Smpl(G,q)

) ≤ (
2p2e(G) + p�(G)

)
(1 − q/p).

Explicitly, we sample Smpl(G,p) as usual, and we sample Smpl(G,q) as
Smpl(Smpl(G,p), q/p). Then the expected number of vertices included in
Smpl(G,p) that are not selected as candidates for Smpl(G,q) is

E
[
v
(
Smpl(G,p)

)]
(1 − q/p) ≤ (

2E
[
e
(
Smpl(G,p)

)]
+E

[
�
(
Smpl(G,p)

)])
(1 − q/p)

= (
2p2e(G) + p�(G)

)
(1 − q/p),

and the claimed inequality follows by Markov’s inequality and the observation that
Smpl(G,p) = Smpl(G,q) if every vertex of Smpl(G,p) is included as a candidate
for Smpl(G,q).
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Let c = ‖W‖−1/2
1 . Under the above coupling,

Pr
(

Smpl
(
Gs,

r√
2e(Gs)

)
�= Smpl

(
Gs,

rc

s

))

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2r2c2 e(Gs)

s2 + rc
�(Gs)

s

)(
1 − s/c√

2e(Gs)

)
for s/c <

√
2e(Gs), and(

r2 + r
�(Gs)√
2e(Gs)

)(
1 −

√
2e(Gs)

s/c

)
for s/c ≥ √

2e(Gs).

By Lemma 4.2, the right-hand side goes to 0 almost surely as s → ∞. The theorem
statement then follows by Lemma 4.1 and [37], Lemma 5.2, which implies that
GPD(W, rc) = GPD(Wc, r), where Wc = (c2I, cS(·/c),W(·/c, ·/c)). �

COROLLARY 4.4. For any integrable graphex W such that ‖W‖1 ≤ 1 there
is some graph sequence that is sampling convergent to W .

PROOF. Suppose ‖W‖1 = 1, and let s1, s2, . . . be some sequence such that
sj ↑ ∞ as j → ∞ and let Gj = G(�sj ), where � is generated by W ; the sequence
G1,G2, . . . is almost surely sampling convergent to W by Theorem 4.3.

Next, suppose that 0 < ‖W‖1 < 1, and as above, let Gj = G(�sj ), with � gen-
erated by W , and let S1, S2, . . . be a sequence of stars such that e(Sj ) → ∞ as
j → ∞ and limj→∞ e(Gj )/(e(Gj ) + e(Sj )) = 1

2‖W‖1. Under the obvious cou-
pling,

lim
j→∞ Smpl

(
Gj ∪ Sj ,

r√
e(Gj ∪ Sj )

)
a.s.= lim

j→∞ Smpl
(
Gj,

r√
e(Gj ∪ Sj )

)
,

because the probability of seeing even a single edge sampled from Sj is bounded
by the probability of selecting the center of the star as a candidate vertex,
which tends to 0. By Lemma 4.2, e(Gj )/s

2
j → 1

2‖W‖1 a.s. as j → ∞, imply-

ing that e(Gj ∪ Sj )/s
2
j → 1 a.s. as j → ∞. By essentially the same coupling

argument used in the proof of Theorem 4.3, SmplD(Gj ∪ Sj , r) → GPD(W, r)

weakly as j → ∞, showing that G1 ∪ S1,G2 ∪ S2, . . . is sampling convergent
to W .

Next, consider a sequence G1,G2, . . . generated by a graphon W that is 0 ex-
cept on the diagonal, and take e(Sj ) = �(�(Gj )/

∫
W(x,x)dx)2�. By Lemma 4.2

and the fact that e(Gj ) = 0 a.s., we see that e(Gj ∪ Sj )/s
2
j → 1 a.s., showing that

G1 ∪ S1,G2 ∪ S2, . . . is sampling convergent to (0,0,W).
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Finally, the sampling limit of S1, S2, . . . with e(Sj ) = j is (0,0,0), completing
the proof. �

5. Graphon metrics and sampling distributions. In this section, we relate
sampling convergence to the metric convergence of [7]. Intuitively, the basic idea
is to show that if δ1(W1,W2) or δ�(W1,W2) is small then we can construct a
coupling of GPD(W1, r) and GPD(W2, r) such that Pr(G1

r �= G2
r ) is also small,

where Gk
r ∼ GPD(Wk, r) marginally. Note that we require the diagonals to be 0

throughout because the graphon metrics do not control distance between diagonals.
Similarly, we assume the graphons are integrable, since otherwise the metrics are
not defined.

LEMMA 5.1. Let W and W ′ be integrable graphons with vanishing diagonals,
and let H

(1)
r ∼ GPD(W1, r) and H

(2)
r ∼ GPD(W2, r). Then there is a coupling of

H
(1)
r and H

(2)
r such that under this coupling

Pr
(
H(1)

r �= H(2)
r

) ≤ 1

2
r2δ1(W1,W2).

PROOF. We couple H
(1)
r and H

(2)
r according to the following generative

scheme:

1. Draw � ∼ PP([0, r) ×R+, λ ⊗ λ).
2. Draw U-array {Uij }.
3. Include edge (ti, tj ) in graph H

(k)
r if and only if Wk(xi, xj ) > Uij .

4. Drop the labels of the graphs.

That is, we generate both graphon processes using the same latent Poisson process
and U-array. Marginally, this is just the standard graphon process scheme and so
the coupling is obviously valid.

Under this coupling, for each pair of points (ti, xi) and (tj , xj ) in � the prob-
ability, conditional on �, that (ti, tj ) is an edge in one graph and not an edge in
the other is |W1(xi, xj )−W2(xi, xj )|. The expected number of edges that disagree
between the two graphs is then

1

2
E

[ ∑
xi ,xj∈�

∣∣W1(xi, xj ) − W2(xi, xj )
∣∣] = r2

2
‖W1 − W2‖1,

where the expectation is computed by an application of the Slivnyak–Mecke theo-
rem.

The graphs are equal if there are no edges that disagree, so Markov’s inequality
then gives

Pr
(
H(1)

r �= H(2)
r

) ≤ r2

2
‖W1 − W2‖1.
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For any measure-preserving transformation φ of R+, GPD(W ◦ (φ ⊗ φ), r) =
GPD(W, r). It then follows that

Pr
(
H(1)

r �= H(2)
r

) ≤ min
φ1,φ2

r2

2

∥∥W1 ◦ (φ1 ⊗ φ1) − W2 ◦ (φ2 ⊗ φ2)
∥∥

1,

where the minimization is over all pairs of measure-preserving transformations.
�

To show that convergence in stretched cut distance implies convergence of the
laws of the graphs generated by the graphons, we will need a translation of the
corresponding result ([10], Theorem 3.7a) from the theory of dense graph conver-
gence.

LEMMA 5.2. Let W1,W2, . . . be a sequence of integrable graphons with van-
ishing diagonals. Suppose that there is some compact set C such that supp(Wj ) ⊆
C for all j ∈ N. If limj→∞ δ�(Wj ,W) = 0 for some graphon W , then there is a

sequence of couplings of GPD(Wj , r) and GPD(W, r) such that, for H
(j)
r and Hr

distributed according to GPD(Wj , r) and GPD(W, r), respectively,

lim
j→∞ Pr

(
H(j)

r �= Hr

) = 0 a.s.

PROOF. Because C is compact, C ⊆ [0, c]2 for some c ∈ R+. We only require
a C such that supp(Wj ) ⊆ C, and hence we may assume without loss of generality
that C = [0, c]2.

The first ingredient of the coupling is the observation that a sample from
GPD(W, r) may be generated according to the following scheme:

1. Sample Nr ∼ Poi(cr).

2. For i = 1, . . . ,Nr sample features xk
iid∼ U [0, c].

3. Include each edge (k, l) independently with probability W(xk, xl).
4. Drop the labels in [Nr ] and return the edge set.

That is, in the compactly supported graphon case, the edges are sampled indepen-
dently conditional on the number of candidate vertices. This is essentially the same
generative model as is used in the dense graph theory, with the distinction that the
number of vertices is now random and that vertices that do not connect to any
edges are not included in the graph. Our aim is to build a sequence of couplings
that exploits this observation along with the equivalence of left convergence and
cut convergence in the dense graph setting.

Using a common Nr for sampling from each Wj allows us to use results from
the dense graph setting. [10], Theorem 3.7a, shows that if δ�(Wj ,W) → 0 as
j → ∞, then for each fixed graph F ,

lim
j→∞

∣∣Pr
(
H(j)

r = F | Nr

) − Pr(Hr = F | Nr)
∣∣ = 0.
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It is immediate that the limit is also 0 unconditionally; that is,

GPD(Wj , r) → GPD(W, r)

weakly as j → ∞. Since the space of graphs is discrete, weak convergence also
implies convergence in total variation. This implies the existence of the sequence
of couplings in the lemma statement. �

The next result extends this to the case of arbitrary cut convergent graphon se-
quences. The same result has recently been independently proved as [23], Theo-
rem 3.4.

LEMMA 5.3. Let W1,W2, . . . be a sequence of integrable graphons with van-
ishing diagonals such that δ�(Wj ,W) → 0 a.s. as j → ∞ for some integrable
graphon W with vanishing diagonal. Then there is a sequence of couplings such
that, given H

(j)
r and Hr distributed according to GPD(Wj , r) and GPD(W, r),

respectively,

lim
j→∞ Pr

(
H(j)

r �= Hr

) = 0.

PROOF. If the sequence is compactly supported then the result follows from
Lemma 5.2, so assume otherwise.

It suffices to show that for all ε > 0 there is a sequence of couplings (indexed
by j ) such that there is some j ′ such that for all j > j ′,

Pr
(
H(j)

r �= Hr | Wj

) ≤ ε.

The basic structure of our couplings is to pick out compactly supported “dense
cores” of W and Wj such that, with high probability, every edge of H

(j)
r and Hr

is due to the dense cores, and then couple these cores by Lemma 5.2. We control
the error introduced by restricting to the dense cores by Lemma 5.1.

Because δ�(Wj ,W) → 0 a.s. as j → ∞, we can find a sequence of measure-

preserving maps φj : R+ → R+ such that ‖Wφj

j − W‖� → 0. Replacing Wj by

W
φj

j , we may therefore assume without loss of generality that ‖Wj − W‖� → 0.
Since W is integrable, we can find a constant Mr,ε such that ‖W −W1[0,Mr,ε ]2‖1 ≤
εr−2. Next, we observe that

‖Wj − Wj 1[0,Mr,ε ]2‖1

=
∫

(Wj − Wj 1[0,Mr,ε ]2)

=
∫

(W − W1[0,Mr,ε ]2) +
∫

(Wj − W) +
∫

(Wj − W)1[0,Mr,ε ]2

≤ ‖W − W1[0,Mr,ε ]2‖ + 2‖Wj − W‖�,

showing that for j large enough, ‖Wj − Wj 1[0,Mr,ε ]2‖1 ≤ εr−2/2.
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We will construct a series of couplings of H
(j)
r and Hr by first coupling G

(j)
r ∼

GPD(Wj 1[0,Mr,ε ]2, r) and Gr ∼ GPD(W1[0,Mr,ε ]2, r) in such a way that Pr(G(j)
r �=

Gr) ≤ ε/4 for all sufficiently large j . To see that such couplings exists, we first
note that if we define W̃j = Wj 1[0,Mr,ε ]2 and W̃ = W1[0,Mr,ε ]2 , then ‖W̃j − W̃‖� ≤
‖W −Wj‖� → 0 as j → ∞. We can therefore use Lemma 5.2 to get a sequence of

couplings of Gr and G
(j)
r such that for j sufficiently large, Pr(G(j)

r �= Gr) ≤ ε/4.
We now observe that given G

(j)
r , we may sample H

(j)
r according the following

scheme:

1. Let (�,Gr(Wj 1Ur,ε×Ur,ε )) be the tuple of the latent point process used
to generate a graph, and the graph generated by Wj 1[0,Mr,ε ]2 using �. Draw � |
G

(j)
r ∼ Pr(�,Gr(Wj 1[0,Mr,ε ]2)) ∈ · | Gr(Wj 1[0,Mr,ε ]2) = G

(j)
r ).

2. Generate a graph E
(j)
r according to Wj 1

R
2+\([0,Me,ε]2 using �.

3. Return the edge set of the graph union of E
(j)
r and G

(j)
r (taking the com-

mon vertex set to be �, and dropping the labels).

We define Er corresponding to W in the obvious way.
Notice that, by construction, the joint distribution of (�,G

(j)
r ) is the same

as the distribution given by drawing � as a unit rate Poisson process and
then generating G

(j)
r according to Wj 1[0,Mε]2 using �. This makes it clear that

the sampling scheme reproduces the distribution given by the Kallenberg rep-
resentation construction, that is, H

(j)
r ∼ GPD(Wj , r). Also note that E

(j)
r ∼

GPD(Wj 1
R

2+\[0,Mε]2, r), and Er ∼ GPD(W1
R

2+\[0,Mε]2, r) (marginalizing G
(j)
r

and Gr ).
The point of this sampling scheme is that now a coupling of G

(j)
r and Gr im-

mediately lifts to a coupling of H
(j)
r and Hr such that

Pr
(
H(j)

r �= Hr

) ≤ Pr
(
G(j)

r �= Gr or e
(
E(j)

r

)
> 0 or e(Er) > 0

)
≤ Pr

(
G(j)

r �= Gr

) + Pr
(
e
(
E(j)

r

)
> 0

) + Pr
(
e(Er) > 0

)
(5.1)

≤ ε/4 + Pr
(
e
(
E(j)

r

)
> 0

) + Pr
(
e(Er) > 0

)
.(5.2)

By Lemma 5.1, the last two terms of (5.2) are each at most ε/2 and ε/4, respec-
tively, proving the claim. �

We now turn from the convergence of graphons to convergence of graphs.

LEMMA 5.4. Let G1,G2, . . . be a sequence of graphs such that e(Gj ) → ∞
as j → ∞. The following are equivalent:

1. The sequence is sampling convergent to W .
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2. The graphon process corresponding to the stretched empirical graphon
converges to W , in the sense that, for all r ∈ R+, GPD(WGj ,s, r) → GPD(W, r)

weakly as j → ∞.

PROOF. Note that �(Gj ) = O(
√

e(Gj )) is a necessary condition for conver-

gence in either sense. If Hj,r ∼ GPD(WGj ,s, r) then Hr,j may be generated by
first sampling Poi( r√

2e(Gj )
v(Gj )) vertices with replacement from Gj and then

returning the edge set of the vertex induced subgraph. The claim is then sim-
ply Lemma 2.23, the asymptotic equivalence of this with replacement sampling
scheme and r/

√
2e(Gj )-sampling. �

THEOREM 5.5. Let G1,G2, . . . be a uniformly tail regular sequence of simple
graphs and let W be some nonrandom graphon. The following are equivalent:

1. The sequence converges in stretched cut distance to W .
2. The sequence is sampling convergent to W .
3. The graphon process corresponding to the stretched empirical graphon

converges to W , in the sense that, for all r ∈ R+, GPD(WGj ,s, r) → GPD(W, r)

weakly as j → ∞.

PROOF. The equivalence of (2) and (3) is a special case of Lemma 5.4.
By Lemma 5.3 the convergence in stretched cut distance implies that, almost

surely,

GPD
(
WGj,s, r

) → GPD(W, r),

weakly as j → ∞, for all r ∈ R+. Thus (1) implies (3).
Assume the sequence is sampling convergent. Because the sequence is assumed

to be tail regular, it is subsequentially convergent in the stretched cut distance,
by [7], Theorem 15. If there are two subsequences with distinct limits then, be-
cause (1) implies (2), each of these subsequences will be sampling convergent with
the laws of the sampled graphs given by distinct graphexes. By [7], Theorem 27,
graphexes with stretched cut distance not equal to 0 generate distinct distributions.
Distinct subsequential limits thus contradict the assumption of sampling conver-
gence, and so (2) implies (1). �

REMARK 5.6. Stretched cut convergent graph sequences are always tail regu-
lar, so convergence in stretched cut distance implies sampling convergence without
any need to explicitly check tail regularity.

6. Metrization. We now translate our main limit result to the language of
metric convergence and give a compactness result.
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Recall that a sequence of graphexes W1,W2, . . . converges in GP to W if
for all r ∈ R+, GPD(Wj , r) → GPD(W, r) weakly as j → ∞. Let δGP be a
pseudometric on graphexes that metrizes convergence in GP [23]. Then δGP is
a proper metric on the space of equivalence classes of graphexes under the re-
lation that identifies graphexes that generate the same probability distribution.
We will slightly abuse notation in the case where Wj = (Wj ,0,0) and write
δGP(W1,W2) = δGP(W1,W2).

DEFINITION 6.1. Given two finite unlabeled graphs G,H , we define
δGP(G,H) = δGP(WG,s,WH,s) + |1/e(G) − 1/e(H)|.

The metric δGP on graphs metrizes sampling convergence: For sequences such
that e(Gj ) ↑ ∞ (so the limit is a graphex), this is Lemma 5.4. For sequences such
that e(Gj ) < k for some k < ∞ for all j , this is trivial because such a sequence is
sampling convergent (and δGP convergent) if and only if there is some finite graph
H such that, for all j sufficiently large, Gj is isomorphic to H after excluding
isolated vertices. A sequence that satisfies neither condition fails to be sampling
convergent and fails to be δGP convergent.

The term |1/e(G) − 1/e(H)| ensures that δGP(G,H) = 0 only if G and H are
isomorphic after removing isolated vertices; without this term we would identify
complete bipartite symmetric graphs Kn,n for all n.

For completeness, we also define a natural metric between graphs and graphexes,
although we do not make explicit use of it.

DEFINITION 6.2. Given a finite unlabeled graph G and a graphex W , we
define δGP(G,W) = δGP(WG,s,W) + 1/e(G).

DEFINITION 6.3. Let G be the metric space of all edge sets of finite graphs
equipped with δGP (identifying G and H whenever δGP(G,H) = 0). Also, let G0 ⊂
G be the metric space of all simple graphs in G .

DEFINITION 6.4. Let G ∗ and G ∗
0 be the metric completions of G and G0,

respectively.

Our aim is to identify G ∗ with a graphex space.

DEFINITION 6.5. Let W k be the space of equivalence classes of stretched
empirical graphons of k edge graphs, under the equivalence relation ∼ defined by
W1 ∼ W2 if and only if δGP(W1,W2) = 0.

Let W ∞ be the space of equivalence classes of graphexes W satisfying
‖W‖1 ≤ 1, under the equivalence relation ∼ defined by W1 ∼ W2 if and only
if δGP(W1,W2) = 0.

Let W = (W ∞ × {0}) ∪ (
⋃∞

k=1 W k × {1/k}), equipped with the metric δGP
defined by δGP((W1,p), (W2, q)) = δGP(W1,W2) + |p − q|.



2796 BORGS, CHAYES, COHN AND VEITCH

The space W is the natural set of limit points of sampling convergent graph
sequences. Splitting the empirical graphons according to the number of edges of
the corresponding graphs allows for an identification with G .

It is also convenient to define a version of W that excludes loops.

DEFINITION 6.6. Let W0 ⊂ W be the subspace where the graphons have an
a.e. vanishing diagonal (i.e., W(x,x) = 0 for almost all x ∈ R+).

The next theorem encapsulates two of our results: limits of sampling convergent
sequences are graphexes, and (up to natural equivalencies) all integrable graphexes
arise in this way.

THEOREM 6.7. G ∗ and G ∗
0 are isometric to W and W0, respectively.

PROOF. Let G1,G2, . . . be a Cauchy sequence in G . If Gj = H for
some graph H and all sufficiently large j , then we identify the sequence with
(WH,s,1/e(H)). If e(Gj ) → ∞ as j → ∞, Theorem 3.11 shows that the sam-
pling convergent limit is identified with some W ∈ W ∞. We then identify the
sequence with (W,0). We have thus defined a map from G ∗ into W .

Suppose G1,G2, . . . maps to (W1,p) and that H1,H2, . . . is a second Cauchy
sequence that maps to (W2, q). Then

lim
n

δGP(Gn,Hn) = lim
n

δGP
((

WGn,s,1/e(Gn)
)
,
(
WHn,s,1/e(Hn)

))
= δGP

(
(W1,p), (W2, q)

)
,

where the first equality is by definition and the second is by Lemma 5.4 and the
observation that δGP metrizes sampling convergence. The map is thus an isometry.

Finally, the map is surjective: It follows from Corollary 4.4 that for each
(W,0) ∈ W there is some graph sequence with W as the sampling convergent
limit. The analogous statement for (W,1/k) ∈ W with k < ∞ is immediate from
the definition of W .

The fact that under this isometry, G ∗
0 gets mapped into W0 is trivial. �

THEOREM 6.8. If G1,G2, . . . in G is an infinite sequence such that �(Gj ) =
O(

√
e(Gj )), then it has a subsequence that is convergent in G ∗. In particular, the

metric completion G ∗
0 of the space of simple graphs equipped with δGP is compact.

PROOF. Let G1,G2, . . . be some sequence in G . If there is some k ∈ N such
that supj e(Gj ) + �(Gj ) < k, then the existence of a convergent subsequence is
obvious.

It now suffices to show that the closure in G ∗ of sequences such that e(Gj ) →
∞ and �(Gj ) = O(

√
e(Gj )) is sequentially compact. By Lemma 3.2, it is equiva-

lent to show that the canonical embeddings of the graph sequence are sequentially
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compact in the topology of weak convergence. [14], Proposition 11.1.VI, shows
that a sufficient condition for uniform tightness of a family of probability measures
on the space of boundedly finite random measures on R

2+, say (Pr(ξs ∈ ·))s∈I , is
that for any bounded Borel set B and any ε > 0 there is some M ∈ R+ such that
Pr(ξs(B) > M) < ε for all s ∈ I . For a graph sequence G1,G2, . . . , the canoni-
cal labelings have the property that E[Lbl(Gj )([0, r]2)] ≤ r2 + r�(Gj )/

√
2e(Gj )

(with equality whenever
√

2e(Gj ) > r), from which the uniform tightness condi-
tion follows trivially. The result then follows by Prokhorov’s theorem. �

7. Sampling defines exchangeable random graphs. The time parameter
of a graphex process is related to p-sampling by the observation that if G ∼
GPD(W, s) then Smpl(G,p) ∼ GPD(W,ps). That is, the relationship between
graphs at different times is captured by p-sampling. In this section, we show that
this is in fact a defining property of sparse exchangeable random graphs.

DEFINITION 7.1. Call (Gs)s∈R+ an unlabeled random graph process indexed
by R+ if, for all s, Gs is a finite unlabeled graph, and, for all s ≤ t , Gs ⊆ Gt in the
sense that there is some subgraph of Gt that is isomorphic to Gs .

THEOREM 7.2. Let (Gs)s∈R+ be an unlabeled random graph process such
that e(Gs) ↑ ∞ a.s. as s → ∞. For each s ∈ R+ and p ∈ (0,1), let Smpl(Gs,p)

be a p-sampling of Gs . If for all s ∈ R+ and p ∈ (0,1),

Smpl(Gs,p)
d= Gps,

then there is some (possibly random, possibly nonintegrable) almost surely
nonzero graphex W such that, for all s ∈R+, Gs | W ∼ GPD(W, s).

PROOF. To establish the claimed result, it obviously suffices to show that there

is some W such that Lbls(Gs)
d= �s , where (�s)s∈R+ is a graphex process gener-

ated by W .
Let r, s ∈ R+ be such that r < s. Then

(7.1) Lbls(Gs)
([0, r)2 ∩ ·) d= Lblr

(
Smpl

(
Gs,

r

s

))
d= Lblr (Gr).

The first equality follows by the observation that each vertex of Lbls(Gs) has label
in [0, r) independently with probability r/s, so that Lbls(Gs) restricted to [0, r)2

has the same distribution as Lblr (Smpl(Gs, r/s)). The second equality is by hy-
pothesis.

Let ξ be a point process with distribution defined by, for any bounded Borel sets
B1, . . . ,Bn ⊆ R

2+,

{
ξ(B1), . . . , ξ(Bn)

} d= lim
s→∞

{
Lbls(Gs)(B1), . . . ,Lbls(Gs)(Bn)

}
.
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Equation (7.1) makes it clear that the limiting distribution on the right-hand side
is well-defined. Moreover, using the fact that the joint distribution is defined as
counts of the random labeling point process, the consistency conditions necessary
for lims→∞{Lbls(Gs)(B1), . . . ,Lbls(Gs)(Bn)} to be counts with respect to some
point process can easily be seen to be satisfied. By the Kolmogorov existence the-
orem for point processes (see [14], Theorem 9.2.X), this suffices to show that ξ

exists and has a well-defined distribution. Also note that ξ is purely atomic by
construction.

Observe that by (7.1) and the definition of ξ it holds that, for all r ∈R+,

(7.2) Lblr (Gr)
d= ξ

([0, r)2 ∩ ·).
In consequence, for any measure-preserving transformation φ on [0, r), ξ ◦ (φ ⊗
φ)

d= ξ . In particular then, for any dyadic partitioning of R+ and any transposition
τ of this dyadic partitioning we may take r large enough such that the transposition

acts only in [0, r), and thus ξ ◦ (τ ⊗ τ)
d= ξ . By [27], Proposition 9.1, this implies

that ξ is exchangeable.
We now have that ξ is a purely atomic exchangeable point process, so by the

Kallenberg representation theorem, Theorem 2.8, there is some graphex W such
that ξ is generated by W . The proof is then completed by again invoking (7.2).

�
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