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CLASSIFICATION OF SCALING LIMITS OF UNIFORM
QUADRANGULATIONS WITH A BOUNDARY

BY ERICH BAUR1, GRÉGORY MIERMONT2, AND GOURAB RAY3

Bern University of Applied Sciences, ENS de Lyon and University of Victoria

We study noncompact scaling limits of uniform random planar quadran-
gulations with a boundary when their size tends to infinity. Depending on the
asymptotic behavior of the boundary size and the choice of the scaling fac-
tor, we observe different limiting metric spaces. Among well-known objects
like the Brownian plane or the self-similar continuum random tree, we con-
struct two new one-parameter families of metric spaces that appear as scaling
limits: the Brownian half-plane with skewness parameter θ and the infinite-
volume Brownian disk of perimeter σ . We also obtain various coupling and
limit results clarifying the relation between these objects.
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1. Introduction. In this work, we obtain a complete classification of possible
scaling limits of finite random planar quadrangulations with a boundary when their
size tends to infinity.
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Recall that a planar map is a proper embedding of a finite connected graph in the
two-dimensional sphere. The graph may have loops and multiple edges. The faces
of a map are the connected components of the complement of its edges. A planar
quadrangulation with a boundary is a particular planar map where its faces have
degree four, that is, are incident to four edges (an edge is counted twice if it lies
entirely in the face), except possibly one distinguished face which may have an
arbitrary (even) degree. This face is referred to as the external face, whereas the
other faces are called internal faces. The boundary of the map is given by the edges
that are incident to the external face, and the number of such edges is called the
size of the boundary, or the perimeter of the map. The size of the map is given
by the number of its internal faces. We do not demand that the boundary forms a
simple curve. We always consider rooted maps with a boundary, which means that
we distinguish one oriented edge of the boundary such that the root face lies to
the left of that edge. This edge will be called the root edge, and its origin the root
vertex. As usual, two (rooted) maps are considered equivalent if they differ by an
orientation- and root-preserving homeomorphism of the sphere.

We are interested in scaling limits of planar maps picked uniformly at random
among all quadrangulations with a boundary when the size and (possibly) the
perimeter of the map tend to infinity. This means that we view the vertex set of
the quadrangulation as a metric space for the graph distance and consider (under a
suitable rescaling of the distance) distributional limits of such spaces, either in the
global or local Gromov–Hausdorff topology.

In [30] and independently in [34], it was shown that uniformly chosen quad-
rangulations of size n, equipped with the graph distance dgr rescaled by a factor
n−1/4, converge to a random compact metric space called the Brownian map. The
latter turns out to be a universal object which appears as the distributional limit
of many classes of random maps. We refer to the recent overview [35] for various
aspect of the Brownian map and for more references.

Here, we shall deal with quadrangulations of size n having a boundary of size
2σn, and we will distinguish three boundary regimes as n tends to infinity:

(a) σn/
√

n → 0;
(b) σn/

√
n → √

2σ for some σ ∈ (0,∞);
(b) σn/

√
n → ∞.

Bettinelli [9] showed that in regime (a), the boundary becomes negligible in the
scale n−1/4, and the Brownian map appears in the limit when n tends to infinity. In
regime (b), he obtained under the same rescaling convergence along appropriate
infinite subsequences to a random metric space called the Brownian disk BDσ .
Uniqueness of this limit was later established by Bettinelli and Miermont in [11].
For the third regime (c), it is shown in [9] that a rescaling by σ

−1/2
n leads in the

limit to Aldous’ continuum random tree CRT [1, 2].
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The scaling factors considered by Bettinelli [9] ensure that the diameter of the
rescaled planar map stays bounded in probability. Consequently, the limits he ob-
tains are random compact metric spaces, and the right notion of convergence is
the Gromov–Hausdorff convergence in the space of (isometry classes of) compact
metric spaces.

We will study all possible scalings an → ∞ in all the above boundary regimes,
meaning that we replace the graph distance dgr by a−1

n dgr and take the limit
n → ∞. When an grows slower than the diameter of the map as n tends to infinity,
the right notion of convergence is the local Gromov–Hausdorff convergence. De-
pending on the ratio of perimeter and scaling parameter, the boundary will in the
limit be either invisible, or of a size comparable to the full map, or dominate the
map.

In the process, we obtain two new one-parameter families of limit spaces: the
Brownian half-plane BHPθ with parameter θ ∈ [0,∞) and the infinite-volume
Brownian disk IBDσ with boundary length σ ∈ (0,∞). The Brownian disk BDσ

and the Brownian half-plane BHP = BHP0 play a central role in this work. The
latter can be seen as the Gromov–Hausdorff tangent cone in distribution of BDσ at
its root, and also as the scaling limit of the so-called uniform infinite half-planar
quadrangulation UIHPQ. The space BHPθ for θ > 0 can be understood as an in-
terpolation between BHP (when θ → 0) and the so-called self-similar continuum
random tree SCRT introduced by Aldous [1] (when θ → ∞). The IBDσ in turn
interpolates between BHP (when σ → ∞) and the Brownian plane BP introduced
by Curien and Le Gall [20, 21] (when σ → 0).

We begin with a rough overview of our main results on scaling limits of finite-
size quadrangulations with a boundary (including results of [9] and [11]). We then
mention further results that will be obtained below, including limit statements on
BDσ . The precise formulations can be found in Section 3, after a proper definition
of the limit spaces and a reminder on the notion of convergence in Section 2.

As in many works in this context, our approach is based on the Bouttier–Di
Francesco–Guitter bijection [13, 14], which establishes a one-to-one correspon-
dence between (finite-size) quadrangulations with a boundary on the one hand and
discrete labeled forests and bridges on the other hand. The bijection is recalled in
Section 4. Section 5 contains some more auxiliary results, mostly convergence re-
sults on forests and bridges when their size tends to infinity. The statements proved
there are of some independent interest, but can also be skipped at first reading. Sec-
tion 6 contains all the proofs of our main statements.

1.1. Overview over the main results. For any σn ∈ N = {1,2, . . .}, we write
Q

σn
n for a uniformly distributed rooted quadrangulation with n inner faces and a

boundary of size 2σn. The vertex set of Q
σn
n is denoted V (Q

σn
n ), ρn represents

the root vertex and dgr stands for the graph distance on V (Q
σn
n ). For any two

sequences (an, n ∈ N), (bn, n ∈ N) of reals, we write an � bn or bn � an if and
only if an/bn → 0 as n → ∞, and we write an ∼ bn if an/bn → 1.
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We denote by ◦ the trivial one-point metric space and write s-Lim (s-Limloc) for
the scaling limit in law of (V (Q

σn
n ), a−1

n dgr, ρn) in the Gromov–Hausdorff topol-
ogy (in the local Gromov–Hausdorff topology) as n tends to infinity.

Regime σn � √
n.

• If 1 � an � √
σn, then s-Limloc = BHP.

• If 1 � an ∼ (1/9)1/4√2σn/σ , σ ∈ (0,∞), then s-Limloc = IBDσ .
• If

√
σn � an � n1/4, then s-Limloc = BP.

• If an ∼ (8/9)1/4n1/4, then (see [9]) s-Lim = BM.
• If an � n1/4, then s-Lim = ◦.

Regime σn ∼ σ
√

2n, σ ∈ (0,∞).

• If 1 � an � n1/4, then s-Limloc = BHP.
• If an ∼ (8/9)1/4n1/4, then (see [9] and [11]) s-Lim = BDσ .
• If an � n1/4, then s-Lim = ◦.

Regime σn � √
n.

• If σn � n and limn→∞(9/4)1/4an/
√

2n/σn = √
θ ∈ [0,∞), then s-Limloc =

BHPθ .
• If max{1,

√
n/σn} � an � √

σn, then s-Limloc = SCRT.
• If an ∼ √

2σn (see [9]), then s-Lim = CRT.
• If an � √

σn, then s-Lim = ◦.

The new results in these listings are covered by Theorems 3.1, 3.2, 3.3, 3.4
and 3.5 below. In the regime σn � √

n in the first list, the last three convergences
include the case of bounded σn. In the last regime σn � √

n, we allow σn to grow
faster than n. The scaling constants are chosen in such a way that the description
of the limiting objects is the most natural.

Figure 1 shows all possible regimes in one diagram, in which the x-axis
denotes the limiting possible values for the logarithm of the boundary length
log(σn)/ log(n) in units of log(n), and the y-axis corresponds to the limit of the
logarithm of the scaling factor log(an)/ log(n) in units of log(n). For the specific
value y = 0, it will be assumed that an = 1, so that we are in the regime of lo-
cal limits with no rescaling. Similarly, for some specific values of (x, y), that are
shown on the colored lines, we will require some particular scaling behaviors that
are detailed in the list above. For instance, for x = 1/2 and y = 1/4, we really
ask that σn ∼ σ

√
2n for some σ > 0 and an ∼ (8/9)1/4n1/4. Note that the portion

x ≥ 1 of the y = 0 axis has been left hashed: indeed it corresponds to a regime of
unrescaled local limits, which are studied in [4].

As it is shown in Theorem 3.6, the BHP can also be obtained from the UIHPQ
by zooming-out around the root: λ · UIHPQ → BHP in distribution in the local
Gromov–Hausdorff sense as λ → 0. Here, λ · UIHPQ is obtained from UIHPQ by
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FIG. 1. The user’s manual to this paper, displaying all possible regimes and limits for the rescaled
pointed space (V (Q

σn
n ), a−1

n dgr, ρn). Taking the asymptotic cone (tangent cone) of a pointed space
refers to zooming-out (zooming-in) around the distinguished point. We refer to the statements of the
results in Section 3 for the precise meaning.

keeping the same set of points, but rescaling the metric by a factor λ; see Sec-
tion 2.4.2 below.

Many of our results, for example, those involving the Brownian half-planes
BHPθ , θ ≥ 0, are based on coupling methods, which yield in fact stronger state-
ments than those mentioned above. In particular, couplings will allow us to deter-
mine the topologies of BHPθ and IBDσ (Corollaries 3.8 and 3.13).

The above results will moreover enable us to determine the limiting behavior
of the Brownian disk BDT ,σ with volume T and perimeter σ when zooming-in
around its root vertex, or, equivalently by scaling, by blowing up its volume and
perimeter. Depending on the behavior of the “perimeter” function σ(·) : (0,∞) →
(0,∞) for large volumes T , we observe BP, IBDς , BHPθ or the SCRT as the
distributional limit in the local Gromov–Hausdorff sense of BDT ,σ (T ) when T →
∞; see Figure 4 below and Corollary 3.15.

2. Definitions. In this section, we define our limit objects and recall some
facts about the (local) Gromov–Hausdorff convergence.

All our limit metric spaces will be defined in terms of certain random processes.
To make the presentation unified, we will denote by (X,W) the canonical con-
tinuous process in C(I,R)2, where I will always denote an interval of the form
I = [0, T ] for some T > 0, or I = R. In the definitions to come, when we say, for
instance, that X is a Brownian motion, we will really mean that X is considered
under the law of Brownian motion. The set C(I,R) of continuous functions on I is
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equipped with the compact-open topology (topology of uniform convergence over
compact subsets of I ). For reasons that will become clear later on, we will often
refer to X as the contour process, whereas W will be called the label process.

For t ∈ I ∩ [0,∞), we write Xt = inf[0,t] X, and in case I = R, we put for t < 0
Xt = inf(−∞,t] X.

If Y = (Yt , t ≥ 0) is a real-valued process indexed by the positive real half-line,
we write �(Y) for its Pitman transform defined as �(Y)t = Yt − 2Y t , t ≥ 0. We
will often use the fact that if B = (Bt , t ≥ 0) is a standard Brownian motion, then
its Pitman transform �(B) has the law of a three-dimensional Bessel process, and
inf[t,∞) �(B) = − inf[0,t] B for every t ≥ 0; see [36], Theorem 0.1(ii).

2.1. Metric spaces coded by real functions.

Real trees. Let f ∈ C(I,R). For s, t ∈ I , we denote by f (s, t) the quantity

f (s, t) =
⎧⎪⎨
⎪⎩

inf[s,t]f if s ≤ t,

inf
I\(t,s) f if s > t,

and for s, t ∈ I we let

(2.1) df (s, t) = f (s) + f (t) − 2 max
{
f (s, t), f (t, s)

}
.

The function df defines a pseudo-metric on I , which is a class function for the
equivalence relation {df = 0}. Therefore, we can define the quotient space Tf =
I/{df = 0}, on which df induces a true distance, still denoted by df for simplicity.
Since we assumed that I contains 0, it is natural to “root” the space (Tf , df ) at the
point ρ given by the equivalence class [0] = {s ∈ I : df (0, s) = 0} of 0.

The metric space (Tf , df , ρ) is called the continuum tree coded by f . In more
precise terms, it is a rooted R-tree, which is also compact if I is compact. This
fact is well known in the “classical case” where f is a nonnegative function on
an interval [0, T ], and f (0) = f (T ) = 0; see, for example, [31], Section 3, and it
remains true in our more general context.

Note that the space (Tf , df ) comes with a natural Borel σ -finite measure, μf ,
which is defined as the push-forward of the Lebesgue measure on I by the canon-
ical projection pf : I → Tf .

Metric gluing of a real tree on another. Let f,g be two elements of C(I,R).
These functions code two R-trees Tf ,Tg in the preceding sense. We define a new
metric space (Mf,g,Df,g) by informally quotienting the space (Tg, dg) by the
equivalence relation {df = 0}. Formally, for s, t ∈ I , we let Df,g(s, t) be given
by

(2.2) inf

⎧⎨
⎩

k∑
i=1

dg(si, ti) : k ≥ 1, s1, . . . , sk, t1, . . . , tk ∈ I, s1 = s, tk = t,

df (ti , si+1) = 0 for every i ∈ {1,2, . . . , k − 1}

⎫⎬
⎭ .
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This defines a pseudo-metric on I , and we let Mf,g be the quotient space
I/{Df,g = 0}, endowed with the true metric inherited from Df,g (and again, still
denoted by Df,g). Again, the space (Mf,g,Df,g) is naturally pointed at the equiva-
lence class of 0 for {Df,g = 0} (which we still denote by ρ), and naturally endowed
with the measure μf,g , defined as the push-forward of the Lebesgue measure on I

by the canonical projection pf,g : I → Mf,g .
Note that in the classical definition of the Brownian map and related objects,

one has the extra property that df (s, t) = 0 implies that g(s) = g(t), and this will
indeed always be the case in all concrete cases considered in this paper. However,
the definition makes sense without this assumption.

2.2. Random snakes. The definition of most of our limiting random spaces de-
pend on the notion of a random snake, which we introduce next. Let f ∈ C(I,R) be
a continuous path on an interval I satisfying f (0) = f (T ) in case I = [0, T ]. The
random snake driven by f is a centered Gaussian process (Z

f
s , s ∈ I ) satisfying

Z
f
0 = 0 a.s. and

E
[∣∣Zf

s − Z
f
t

∣∣2] = df (s, t).

These specifications characterize the law of Zf : roughly speaking, it can be seen
as Brownian motion indexed by the tree Tf ; see, for example, Section 4 of [31]. It
is easy to see and well known that the process Zf admits a continuous modification
as soon as f is a locally Hölder-continuous function on I . In this case, we always
work with this modification.

We will consider random snakes driven by random functions. The snake driven
by a random function Y is simply defined as the random Gaussian process ZY con-
ditionally given Y . In all our applications, Y will be considered under probability
distributions that make it a Hölder-continuous function with probability one. More-
over, Y will almost surely satisfy Y0 = YT = 0 in the two cases where I = [0, T ]
(namely for the Brownian map and disk).

2.3. Limit random metric spaces. We apply the preceding constructions to a
variety of random versions of the functions f,g.

2.3.1. Compact spaces. In this section, the processes considered all take val-
ues in C([0, T ],R) for some T > 0.

DEFINITION 2.1. Let T > 0. The continuum random tree CRTT with volume
T is the real tree (TX,dX,ρ) where X = (Xt , t ∈ [0, T ]) is a Brownian excursion
with duration T .

The CRTT was introduced by Aldous [1, 2]. We simply write CRT instead of
CRT1. Note the scaling relation λ · CRTT =d CRTλ2T for λ > 0. This comes from
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the fact that if eT is a Brownian excursion with duration T , then λeT (·/λ2) has
same distribution as eλ2T . We stress that the point ρ plays no distinguished role
in the above construction. Indeed, roughly speaking, the rerooting property of
CRTT [2], (20), states that if ρ′ is distributed according to μX/μX(1) (the nor-
malized version of the measure defined above), then (TX,dX,ρ′) has same law as
(TX,dX,ρ).

DEFINITION 2.2. Let T > 0. The Brownian map BMT with volume T is the
metric space (MX,W ,DX,W ,ρ) where X is a Brownian excursion of duration T ,
and W is the snake driven by X.

See [30, 34] for a description of the Brownian map. We write BM instead
of BM1. The scaling properties of Gaussian processes imply that for λ > 0,
λ · BMT =d BMλ4T . Just as for CRTT , the point ρ in BMT should be seen as a ran-
dom choice according to the normalized measure μX,W/μX,W (1), which is known
as the rerooting property of the Brownian map (Theorem 8.1 of [29]).

DEFINITION 2.3. Let T > 0, σ > 0. The Brownian disk BDT ,σ with volume
T and boundary length σ is the metric space (MX,W ,DX,W ,ρ) where X is a first
passage Brownian bridge from 0 to −σ of duration T , and conditionally given X,
(Wt ,0 ≤ t ≤ T ) has same distribution as (

√
3γ−Xt

+ Zt,0 ≤ t ≤ T ), where:

• (Zt ,0 ≤ t ≤ T ) = ZX−X is the snake driven by the process (Xt − Xt,0 ≤ t ≤
T );

• (γx,0 ≤ x ≤ σ) is a Brownian bridge with duration σ , independent of ZX−X .

The Brownian disk has first been constructed in [9, 11]. Note that the conditional
covariances of the snake ZX−X are given by

E[ZsZt | X] = min[s,t](X − X), 0 ≤ s ≤ t ≤ T .

If T = 1, we will simply write BDσ instead of BD1,σ . The Brownian disks are
homeomorphic to the closed unit disk D, where D = {z ∈ C : |z| < 1}; see [9],
Proposition 21 (cited as Lemma 6.11 below). They enjoy the following scaling
property: For λ > 0, λ · BDT ,σ =d BDλ4T ,λ2σ . Contrary to the Brownian tree or the
Brownian map, ρ does not play the role of a random point distributed according
to μX,W/μX,W (1). The reason is that ρ is a.s. a point of the boundary of the disk,
which is of zero measure (see [11] for more details).

2.3.2. Noncompact spaces. In this section, all processes take values in
C(R,R).

DEFINITION 2.4. The self-similar continuum random tree SCRT is the real
tree (TX,dX,ρ) where X = (Xt , t ∈ R) is such that (Xt , t ≥ 0) and (X−t , t ≥ 0)

are two independent three-dimensional Bessel processes started at 0.
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The SCRT appears as process 2 in [1]. It fulfills the self-similarity property λ ·
SCRT =d SCRT for every λ > 0. Note that if we let Y be the canonical process in
C(R,R) under the probability law which turns (Yt , t ≥ 0) and (Y−t , t ≥ 0) into two
independent Brownian motions, then (TY , dY , [0]) has same law as SCRT. This
follows readily from the fact that �((Yt , t ≥ 0)) has the law of a three-dimensional
Bessel process.

DEFINITION 2.5. The Brownian plane BP is the metric space given by
(MX,W ,DX,W ,ρ) where:

• (Xt , t ≥ 0) and (X−t , t ≥ 0) are two independent three-dimensional Bessel pro-
cesses;

• given X = (Xt , t ∈ R), W has same distribution as the snake ZX driven by X.

The Brownian plane was introduced in [20] (see also [15] for a hyperbolic ver-
sion). It is a.s. homeomorphic to R2 and invariant under scaling, in the sense that
for λ > 0, λ · BP =d BP.

DEFINITION 2.6. Let θ ≥ 0. The Brownian half-plane BHPθ with skewness
parameter θ is the metric space (MX,W ,DX,W ,ρ) where:

• (Xt , t ≥ 0) is a Brownian motion with linear drift −θ , and (X−t , t ≥ 0) is the
Pitman transform �(X′) of an independent copy X′ of (Xt , t ≥ 0);

• given X, W has same distribution as (
√

3γ−Xt
+ Zt, t ∈R), where:

– (Zt , t ∈ R) = ZX−X is the snake driven by the process (Xt − Xt, t ∈ R);
– (γx, x ∈ R) is a two-sided Brownian motion with γ0 = 0, independent of

ZX−X .

The Brownian half-planes are the first truly new limiting metric spaces that we
encounter in this study. The space BHPθ enjoys the scaling property λ · BHPθ =d

BHPθ/λ2 for λ > 0. This makes the value θ = 0 special in the sense that BHP0 is
self-similar in law (just as SCRT or BP), and we shall often write BHP instead of
BHP0. We will see in Corollary 3.8 that for every θ ≥ 0, BHPθ is a.s. homeomor-
phic to the closed half-plane H= R×R+.

REMARK 2.7. A random metric space called the Brownian half-plane first
appeared in the recent work [17], where it is conjectured to arise as the scaling
limit of the uniform infinite half-planar quadrangulation UIHPQ; see Section 4.4.
Theorem 3.6 below states indeed that the scaling limit of UIHPQ is the space BHP0.
However, the definition of the Brownian half-plane from [17] differs from ours:
it is still of the form (MX,W ,DX,W ,ρ), but for processes (X,W) having a very
different law from that of Definition 2.6 (with θ = 0). We do not actually prove
that the two definitions coincide, since we believe that this would require some
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specific work. Nonetheless, we prefer to stick to the name “Brownian half-plane”
since we feel that this should be the proper denomination for the scaling limit of
the UIHPQ.

DEFINITION 2.8. Let σ > 0. The infinite-volume Brownian disk IBDσ with
boundary length σ is the metric space (MX,W ,DX,W ,ρ) where:

• (Xt , t ∈ R) has the law of (Vt−L − U, t ∈ R), where (Vt , t ≥ 0) and (V−t , t ≥
0) are two independent three-dimensional Bessel processes with V0 = 0, U is
uniform on [0, σ ] and independent of V , and L = sup{t ≥ 0 : V−t = U};

• given X, W has same distribution as (
√

3γ−Xσ
t

+ Zt, t ∈ R), where:
–

X
t
=

⎧⎪⎨
⎪⎩

min
{

inf
(−∞,t]X, inf[0,∞)

X + σ

}
if t ≤ 0,

min[0,t] X if t ≥ 0

and Xσ = X − σ on (−∞,0), Xσ = X on [0,∞);

– (Zt , t ∈ R) = ZX−X is the random snake driven by the process X − X;

– (γx,0 ≤ x ≤ σ) is a Brownian bridge with duration σ , independent of ZX−X .

The infinite-volume Brownian disk should be thought of as a Brownian disk
with perimeter σ filled in with a Brownian plane BP; see Remark 2.9 below. It
enjoys the scaling property λ · IBDσ =d IBDλ2σ for λ > 0. We will prove in Corol-
lary 3.13 that for every σ > 0, IBDσ is a.s. homeomorphic to the pointed closed
disk D \ {0}.

REMARK 2.9. We give an equivalent description of the contour process X

under the law of the infinite-volume Brownian disk IBDσ , which will be useful
for our purpose. Let (Bt , t ≥ 0) be a Brownian motion with B0 = 0, Tx = inf{t ≥
0 : Bt < −x} the first hitting time of (−∞,−x), R,R′ two independent three-
dimensional Bessel processes independent of B , and U0 a uniform random variable
in [0, σ ], independent of B,R,R′. Letting

Yσ
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R′−t+TU0−Tσ
+ σ − U0 if t ≤ TU0 − Tσ ,

BTσ +t + σ if TU0 − Tσ ≤ t ≤ 0,

Bt if 0 ≤ t ≤ TU0,

−U0 + Rt−TU0
if t ≥ TU0,

William’s time-reversal theorem (see, e.g., (0.29) of [36]) entails that (Y σ
t , t ∈ R)

has same law as the canonical process (Xt , t ∈ R) under the law of IBDσ . In-
tuitively, at time TU0 , the encoding of a Brownian plane in terms of the Bessel
processes R and R′ “inside” a (free pointed) Brownian disk with boundary length
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FIG. 2. The contour process (Y σ
t , t ∈R) of the infinite-volume Brownian disk IBDσ .

σ starts. The contour process of the latter is given by (Y σ
t , TU0 − Tσ ≤ t ≤ TU0).

The denomination “free” means that the volume of the disk is not fixed; we refer
to [11], Section 1.5, for a precise definition. An illustration is shown in Figure 2.

Finally, we will encounter the uniform infinite half-planar quadrangulation
UIHPQ Q∞∞ = (V (Q∞∞), dgr, ρ), which is an infinite rooted random quadran-
gulation with an infinite boundary. It arises as the distributional limit of Q

σn
n ,

1 � σn � n, for the so-called local metric dmap; see Proposition 3.11. We de-
fer to Section 2.4.3 for a definition of the metric and to Section 4.4 for a precise
construction of the UIHPQ.

2.4. Notions of convergence.

2.4.1. Gromov–Hausdorff convergence. Given two pointed compact metric
spaces E = (E,d,ρ) and E′ = (E′, d ′, ρ′), the Gromov–Hausdorff distance be-
tween E and E′ is given by

dGH
(
E,E′) = inf

{
dH

(
ϕ(E),ϕ′(E)

)∨ δ
(
ϕ(ρ),ϕ′(ρ′))},

where the infimum is taken over all isometric embeddings ϕ : E → F and ϕ′ :
E′ → F of E and E′ into the same metric space (F, δ), and dH denotes the Haus-
dorff distance between compact subsets of F . The space of all isometry classes of
pointed compact metric spaces (K, dGH) forms a Polish space.

An alternative characterization of the Gromov–Hausdorff distance can be ob-
tained via correspondences. A correspondence between two pointed metric spaces
E = (E,d,ρ), E′ = (E′, d ′, ρ′) is a subset R ⊂ E × E′ such that (ρ,ρ′) ∈ R, and
for every x ∈ E there exists at least one x′ ∈ E′ such that (x, x′) ∈ R as well as for
every y′ ∈ E′, there exists at least one y ∈ E such that (y, y′) ∈ R. The distortion
of R with respect to d and d ′ is given by

dis(R) = sup
{∣∣d(x, y) − d ′(x′, y′)∣∣ : (x, x′), (y, y′) ∈ R

}
.

Then it holds that (see, e.g., [16], Theorem 7.3.25)

dGH
(
E,E′) = 1

2
inf
R

dis(R),

where the infimum is taken over all correspondences between E and E′.
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The convergences listed in the overview above which involve compact limiting
spaces, that is, BM, BDσ , CRT and the trivial one-point space, hold in distribution
in (K, dGH).

2.4.2. Local Gromov–Hausdorff convergence. Noncompact limits like the
spaces BHPθ , IBDσ or SCRT will be obtained in the local Gromov–Hausdorff
topology. Roughly speaking, local Gromov–Hausdorff convergence requires only
convergence of balls of a fixed radius seen as compact metric spaces.

We give only a quick reminder; for more details, we refer to Chapter 8 of [16].
As in [20], we can restrict ourselves to the case of (pointed) complete and lo-
cally compact length spaces (see our discussion below). Recall that a metric space
(E,d) is a length space if for every pair (x, y) of points in E, the distance d(x, y)

agrees with the infimum over the lengths of all continuous paths from x to y.
Here, a continuous path from x to y is a continuous function γ : [0, T ] → E with
γ (0) = x and γ (T ) = y for some T ≥ 0, and the length of γ is given by

L(γ ) = sup
τ

n−1∑
k=1

d
(
γ (tk), γ (tk+1)

)
,

where the supremum is taken over all subdivisions τ of [0, T ] of the form 0 = t1 <

t2 < · · · < tn = T for some n ∈ N. A path γ for which the infimum over the length
is attained is called a geodesic. Note that in a complete and locally compact length
space (E,d), any two points x, y ∈ E with d(x, y) < ∞ are joined by a geodesic;
see [16], Theorem 2.5.23.

Now let E = (E,d,ρ) be a pointed metric space, that is, a metric space with a
distinguished point ρ ∈ E. We denote by Br(E) the closed ball of radius r around
ρ in E. Equipped with the restriction of d , we view Br(E) as a pointed compact
metric space.

Given pointed complete and locally compact length spaces (En)n and E, the
sequence (En)n converges to E in the local Gromov–Hausdorff sense if for every
r ≥ 0,

dGH
(
Br(En),Br(E)

) → 0 as n → ∞.

This notion of convergence is metrizable (see [20], Section 2.1, for a possible def-
inition of the metric) and turns the space Kbcl of isometry classes of pointed com-
plete and locally compact length spaces into a Polish space. In passing, we note
that a length space E is complete and locally compact if and only if it is boundedly
compact, meaning that all closed balls in E are compact; see Proposition 2.5.22
of [16].

As discrete planar maps, quadrangulations are clearly not length spaces. Fol-
lowing [20], we may nonetheless interpret a (finite or infinite) quadrangulation
Q as a complete and locally compact length space Q. Namely, we replace each
edge of Q by an Euclidean segment of length one such that two segments can
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intersect only at their endpoints, and they do so if and only if the corresponding
edges in E share one or two vertices. Equipped with the shortest-path metric, the
resulting metric space Q is then a union of copies of the interval [0,1], one for
each edge of Q. Moreover, with the root vertex of Q as distinguished point, Q is
a (pointed) complete and locally compact length space, and it is easy to see that
dGH(Br(Q),Br(Q)) ≤ 1 for every r ≥ 0.

NOTATION. Given a pointed metric space E = (E,d,ρ) and λ > 0, we write
λ · E for the dilated (or rescaled) space (E,λ · d,ρ). In particular, if λ, δ > 0,
λ · Bδ(E) = Bλδ(λ · E).

REMARK 2.10. From our observation above, we deduce that our limit results
for quadrangulations Q

σn
n in the local Gromov–Hausdorff sense will follow if we

show that for each r ≥ 0, Br(a
−1
n · Qσn

n ) converges in distribution in K toward the
ball of radius r in the corresponding limit space. Note that all our limit spaces
in the local Gromov–Hausdorff sense, that is, the spaces BP, BHPθ , IBDσ and
SCRT, are already complete locally compact length spaces. Indeed, real trees are
always length spaces, and the metric gluing of length spaces produces again a
length space; see the discussion in [16] after Exercice 3.1.13.

We therefore do not have to deal with the more complicated notion of local
Gromov–Hausdorff convergence for general (pointed) metric spaces; see [16],
Definition 8.1.1.

2.4.3. Local limits of maps. Local limits of maps in the sense of Benjamini
and Schramm [6] concern the convergence of combinatorial balls. More specif-
ically, given a rooted planar map m and r ≥ 0, write Ballr (m) for the combina-
torial of radius r , that is the submap of m formed by all the vertices v of m with
dgr(�, v) ≤ r , together with the edges of m in between such vertices. For two rooted
maps m and m′, the local distance between m and m′ is defined as

dmap
(
m,m′) = (

1 + sup
{
r ≥ 0 : Ballr (m) = Ballr

(
m′)})−1

.

The metric dmap induces a topology on the set of all finite quadrangulations (with
or without boundary). Infinite quadrangulations are the elements in the completion
of this space with respect to dmap that are not finite quadrangulations (the UIHPQ
is a random infinite quadrangulation with an infinite boundary). See [22] for more
on this.

3. Main results. We formulate now in a proper way our main results, which
cover together with the results of [9, 11] all the convergences listed in the Introduc-
tion. The proofs will be given in Section 6, except for the proof of Theorem 3.5,
which can be found in the Supplementary Material [3].
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3.1. Scaling limits of quadrangulations with a boundary. Recall the notation
introduced in Section 1.1. All convergences in this section are in law, with respect
to the local Gromov–Hausdorff topology. We always consider the limit n → ∞.

THEOREM 3.1. Assume σn � √
n and

√
σn � an � n1/4. Then

(
V
(
Qσn

n

)
, a−1

n dgr, ρn

) −→ BP.

THEOREM 3.2. Assume 1 � σn � √
n and an ∼ (4/9)1/4√σn/σ for some

σ ∈ (0,∞). Then

(
V
(
Qσn

n

)
, a−1

n dgr, ρn

) −→ IBDσ .

THEOREM 3.3. Assume 1 � σn � n and 1 � an � min{√σn,
√

n/σn}. Then

(
V
(
Qσn

n

)
, a−1

n dgr, ρn

) −→ BHP.

THEOREM 3.4. Assume
√

n � σn � n and an ∼ 2
√

θn/3σn for some θ ∈
(0,∞). Then

(
V
(
Qσn

n

)
, a−1

n dgr, ρn

) −→ BHPθ .

THEOREM 3.5. Assume σn � √
n and max{1,

√
n/σn} � an � √

σn. Then

(
V
(
Qσn

n

)
, a−1

n dgr, ρn

) −→ SCRT.

When the scaling sequence (an, n ∈N) satisfies an � max{√σn,n
1/4}, then the

limiting space is the trivial one-point metric space. This is a direct consequence of
the results in [9], for example.

The Brownian half-plane BHP does also arise as the weak scaling limit of the
UIHPQ (similarly, the Brownian plane BP is the scaling limit of the so-called uni-
form infinite planar quadrangulation UIPQ; see the first part of [20], Theorem 2).
The following result was also obtained by Gwynne and Miller in an independent
and essentially simultaneous work [24]. Their work includes the convergence of
the UIHPQ with a simple boundary toward the BHP, which is left out here.

THEOREM 3.6. λ · UIHPQ
λ→0−−−→ BHP.

In [4], a similar discrete approximation is given for BHPθ when θ > 0.
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3.2. Couplings and topology. For proving Theorem 3.3, we follow a strategy
similar to that in Curien and Le Gall [20]. As an intermediate step, we establish a
coupling between the Brownian disk BDσ and the Brownian half-plane BHPθ .

THEOREM 3.7. Let ε > 0, r ≥ 0. Let σ(·) : (0,∞) → (0,∞) be a function
satisfying limT →∞ σ(T )/T = θ ∈ [0,∞) and, in case θ = 0, lim infT →∞ σ(T )/√

T > 0. Then there exists T0 = T0(ε, r, σ ) such that for all T ≥ T0, one can con-
struct copies of BDT ,σ (T ) and BHPθ on the same probability space such that with
probability at least 1 − ε, there exist two isometric open subsets OBD, OBHP in
these spaces which are both homeomorphic to the closed half-plane H and con-
tain the balls Br(BDT ,σ (T )) and Br(BHPθ ), respectively.

We remark that for the proof of Theorem 3.3, it would be sufficient to show
that the balls of radius r around the root in the corresponding spaces are isometric.
From the stronger version of the coupling stated above, we can, however, addition-
ally deduce

COROLLARY 3.8. For every θ ≥ 0, the space BHPθ is a.s. homeomorphic to
the closed half-plane H =R×R+.

Since the Brownian half-plane BHP = BHP0 is scale-invariant, that is, λ ·
BHP =d BHP for every λ > 0, Theorem 3.7 moreover implies that BHP is locally
isometric to the disk BDσ (= BD1,σ ).

COROLLARY 3.9. Fix σ ∈ (0,∞), and let ε > 0. Then one can find δ > 0 and
construct on the same probability space copies of BDσ and BHP such that with
probability at least 1 − ε, Bδ(BHP) and Bδ(BDσ ) are isometric.

The proof of Corollary 3.9 is immediate from the scaling properties of BDT ,σ

and BHP, whereas Corollary 3.8 needs an extra argument, which we give in Sec-
tion 6.2.

REMARK 3.10. The local isometry between BHP and BDσ together with the
fact that BHP is scale-invariant uniquely characterizes the law of BHP in the set
of all probability measures on Kbcl. This follows from the argument in the proof
of [21], Proposition 3.2, where a similar characterization of the Brownian plane is
given.

For establishing Theorem 3.3, we shall also need a coupling between the UIHPQ
and Q

σn
n when σn grows slower than n.

PROPOSITION 3.11. Assume 1 � σn � n, and put ϑn = min{σn,n/σn}.
Given any ε > 0, there exist δ > 0 and n0 ∈ N such that for every n ≥ n0, one
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can construct copies of Q
σn
n and UIHPQ on the same probability space such that

with probability at least 1 − ε, the balls Bδ
√

ϑn
(Q

σn
n ) and Bδ

√
ϑn

(UIHPQ) are iso-
metric. Moreover, we have the local convergence(

V
(
Qσn

n

)
, dgr, ρn

) −→ UIHPQ

in distribution for the metric dmap, as n → ∞.

Note that the above mentioned UIPQ is in turn the weak limit in the sense of
dmap for uniform quadrangulations without a boundary; see Krikun [27].

For proving Theorem 3.2 and determining the topology of the infinite-volume
Brownian disk IBDσ , we couple the Brownian disk BDT ,σ for large volumes T

with IBDσ .

THEOREM 3.12. Fix σ ∈ (0,∞), and let ε > 0, r ≥ 0. There exists T0 =
T0(ε, r, σ ) such that for all T ≥ T0, we can construct copies of BDT ,σ and IBDσ on
the same probability space such that with probability at least 1 − ε, there exist two
isometric open subsets ABD, AIBD in these spaces which are both homeomorphic
to the pointed closed disk D \ {0} and contain the balls Br(BDT ,σ ) and Br(IBDσ ),
respectively.

It will be straightforward to deduce the following.

COROLLARY 3.13. For each σ ∈ (0,∞), the space IBDσ is a.s. homeomor-
phic to the pointed closed disk D \ {0}, where D= {z ∈ C : |z| < 1}.

In order to prove Theorem 3.2, we finally need a coupling of balls in the quad-
rangulations Q

σn
n and Q

σn

Rσ 2
n

of a radius of order
√

σn, when 1 � σn � √
n and R

is large.

PROPOSITION 3.14. Assume 1 � σn � √
n. Given any ε > 0 and r > 0, there

exist R0 > 0 and n0 ∈ N such that for every integer R ≥ R0 and every n ≥ n0, one
can construct copies of Qσn

n and Q
σn

Rσ 2
n

on the same probability space such that with

probability at least 1 − ε, the balls Br
√

σn
(Q

σn
n ) and Br

√
σn

(Q
σn

Rσ 2
n
) are isometric.

Some of our results involving UIHPQ, BHP and BDσ are depicted in Figure 3,
which should be compared with [20], Figure 1.

3.3. Limits of the Brownian disk. Our statements from the last two sections
imply various limit results for the Brownian disk BDT ,σ (T ) when zooming-in
around its root. We let σ(·) : (0,∞) → (0,∞) be a function of the volume T

of the Brownian disk that specifies its perimeter, and we write X for the distri-
butional limit of BDT ,σ (T ) in the local Gromov–Hausdorff topology upon letting
T → ∞ (if it exists).
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FIG. 3. Illustration of [11], Theorem 1, for the regime σn ∼ σ
√

2n, Theorem 3.3, Theorem 3.6,
Corollary 3.15 in the case σ(T ) ≡ σ ∈ (0,∞), and Proposition 3.11. Compare with [20], Figure 1.

COROLLARY 3.15. We have

X =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

BP if lim
T →∞σ(T ) = 0,

IBDς if lim
T →∞σ(T ) = ς ∈ (0,∞),

BHPθ if σ(T ) → ∞ and σ(T )/T → θ ∈ [0,∞) as T → ∞,

SCRT if σ(T )/T → ∞ as T → ∞.

Note that the third case includes the case σ(T ) = √
T . Then θ = 0, and since by

scaling, T 1/4 · BD1 =d BD
T ,

√
T

, it follows that BHP is the tangent cone in distribu-
tion of any disk BDA,L for fixed A,L > 0. See [16], Section 8.2, for an explanation
of this terminology, and compare with [20], Theorem 1, where it is shown that the
Brownian plane is the tangent cone of the Brownian map at its root.

For completeness, but without going into details, let us mention that identically
to the proof of the first (or last) case of Corollary 3.15, a combination of [11],
Theorem 1, and [9], Theorem 4 (or [9], Theorem 4) leads to the convergences

BDT ,σ
σ→0−−−→ BMT , BDT ,σ

T →0−−−→ CRT3σ

in law in the sense of the global Gromov–Hausdorff topology. The factor 3 in
CRT3σ stems from the particular normalization of the Brownian disk.

REMARK/EXERCISE 3.16. We leave it as an exercise to the reader to find the
right combination of our (or Bettinelli’s; cf. [9]) foregoing results to deduce the
following additional results on tangent cones (in distribution, with respect to the
local Gromov–Hausdorff topology):

CRTT
T →∞−−−→ SCRT, BHPθ

θ→0−−→ BHP, IBDσ
σ→∞−−−→ BHP.
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FIG. 4. Zooming-in around the root of the Brownian disk BDT ,σ (T ) with volume T and perimeter
σ(T ). The figure shows all possible weak limits in the local Gromov–Hausdorff sense when T → ∞
(Corollary 3.15).

Combining results from the regime σn � √
n in the first and from σn � √

n in the
second case, one may also prove the following scaling results in law:

BHPθ
θ→∞−−−→ SCRT, IBDσ

σ→0−−−→ BP.

In the terminology of [16], Section 8.2, the last two results imply that the SCRT
is the asymptotic cone in distribution of BHPθ for θ > 0, and similarly, BP is the
asymptotic cone of IBDσ .

4. Encoding of quadrangulations with a boundary. We will use a vari-
ant of the Cori–Vauquelin–Schaeffer [19, 39] bijection developed by Bouttier, Di
Francesco and Guitter [13] to encode quadrangulations with a boundary. More
specifically, we will encode planar quadrangulations of size n with a boundary of
size 2σ in terms of σ trees with n edges in total, which are attached to a discrete
bridge of length σ . We first introduce the encoding objects. Our notation is inspired
by [8, 9].

4.1. Encoding in the finite case.

4.1.1. Well-labeled tree, forest and bridge. A well-labeled tree of size |τ | = n

is a pair (τ, (�(u))u∈V (τ)) consisting of a rooted plane tree τ with n edges together
with integer labels (�(u))u∈V (τ) attached to the vertices of τ , such that the root has
label 0, and |�(u) − �(v)| ≤ 1 whenever u and v are neighbors.

A well-labeled forest with σ trees and n tree edges is a collection f =
(τ0, . . . , τσ−1) of σ trees with n edges in total, together with a labeling of ver-
tices l : ⋃σ−1

i=0 V (τi) → Z, which has the property that for each i = 0, . . . , σ − 1,
the tree τi together with the restriction l � V (τi) forms a well-labeled tree.

The vertex set of f is V (f) = ⋃σ−1
i=0 V (τi). Note that |V (f)| = n + σ . The size

of f is given by |f| = n, that is, its number of edges. We write (0), . . . , (σ − 1)
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for the root vertices of τ0, . . . , τσ−1. If u is a vertex of a tree of f, r(u) denotes
the root of this tree. In particular, the vertex set of the j th tree of f is the set
{u ∈ V (f) : r(u) = (j − 1)}, j = 1, . . . , σ . We write t (f) = σ for the number of
trees of f. We will often identify the root vertices with the integers 0, . . . , σ − 1
and consequently regard r(u) as a number.

We call the pair (f, l) a well-labeled forest and denote by

Fn
σ = {

(f, l) : t (f) = σ, |f| = n
}

the set of all well-labeled forests of size n with σ trees.
A bridge of length σ ≥ 1 is a sequence of numbers (b(0),b(1), . . . ,b(σ )) with

b(0) = 0 and such that b(i + 1) − b(i) ∈ N0 ∪ {−1} for i = 0, . . . , σ − 1, and
b(σ ) ≤ 0.

By linear interpolation between integer values, we will view b : [0, σ ] → R as a
continuous function and write Bσ ⊂ C([0, σ ],R) for the set of all possible bridges
of length σ .

The terminal value b(σ ) of a bridge has a special interpretation: It keeps the
information where to find the root in the quadrangulation associated to a triplet
((f, l),b) ∈ Fn

σ ×Bσ ; see Section 4.3 below.

4.1.2. Contour pair and label function. Consider a well-labeled forest (f, l)

of size n with σ trees. In order to define its contour pair and label function, it is
convenient to represent (f, l) in the plane, as depicted in Figure 5. We add σ − 1
edges which link the root vertices (0), . . . , (σ − 1), such that vertex (i − 1) gets
connected to (i) for i = 1, . . . , σ − 1, plus an extra vertex (σ ) and an extra edge
linking (σ − 1) to (σ ). We extend l to (σ ) by setting l((σ )) = 0. We refer to the
segment connecting the roots of f and the extra vertex (σ ) as the floor of f.

The facial sequence f(0), . . . , f(2n+σ) of f is the sequence of vertices obtained
from exploring (the embedding of) f in the contour order, starting from vertex (0).
In other words, f(0), . . . , f(2n + σ − 1) is given by the sequence of vertices of
the discrete contour paths of the trees τ0, . . . , τσ−1, and the sequence terminates

FIG. 5. On the left: A proper representation of a finite well-labeled forest (f, l) of size 13 with 4
trees, together with its facial sequence. The rightmost vertex indexed by 4 is the added extra vertex.
On the right: Its contour pair.



SCALING LIMITS OF QUADRANGULATIONS WITH A BOUNDARY 3417

with value f(2n+σ) = (σ ); see, for example, [31], Section 2, for more on contour
paths.

Given a well-labeled forest (f, l), we define its contour pair (Cf,Lf) by

Cf(j) = df
(
f(j), (σ )

)− σ, Lf(j) = l
(
f(j)

)
, j = 0, . . . ,2n + σ.

Here, df denotes the graph distance on the representation of f in the plane.
We call Cf the contour function of f, since it is obtained from concatenating the

contour paths of the trees τ0, . . . , τσ−1, with an additional −1 step after a tree has
been visited. Note that Lf(f(j)) = 0 if f(j) lies on the floor of f; see again Figure 5
for an illustration.

Now consider additionally a bridge b ∈ Bσ . Put Cf(j) = min[0,j ] Cf. The func-
tion

Lf(j) = Lf(j) + b
(−Cf(j)

)
, j = 0, . . . ,2n + σ,

is called the label function associated to ((f, l),b). The label function plays an
important role in measuring distances in the quadrangulation associated through
the Bouttier–Di Francesco–Guitter bijection; see Section 4.5.1.

By linear interpolation between integers, we extend all three functions Cf, Lf

and Lf to continuous real-valued functions on [0,2n + σ ].

4.2. Encoding in the infinite case. We next introduce the infinite analogs of
the objects from the previous section. They will encode certain infinite quadrangu-
lations with an infinite boundary.

4.2.1. Well-labeled infinite forest and infinite bridge. A well-labeled infinite
forest is an infinite collection f = (τi, i ∈ Z) of finite rooted plane trees, together
with a labeling of vertices l : ⋃i∈Z V (τi) → Z such that for each i ∈ Z, τi together
with the restriction of l to V (τi) forms a well-labeled tree.

We write again (k) for the root vertex of τk and often identify (k) with k ∈ Z.
The set of all well-labeled infinite forests (f, l) will be denoted by F∞.

An infinite bridge is a sequence of numbers b = (b(i), i ∈ Z∪ {∂}) with b(0) =
0, b(i + 1) − b(i) ∈ N0 ∪ {−1} for all i ∈ Z and b(∂) ∈ {b(−1) − 1, . . . ,0}. Note
that b(−1) ≤ 1.

The extra value b(∂) will keep track of the position of the root in the quad-
rangulation. Often, we consider only the values b(i), i ∈ Z, and then view b as a
continuous function from R to R, by linear interpolation between integer values.
We write B∞ for the set of all infinite bridges b which have the property that
infi∈N b(i) = −∞, and infi∈N b(−i) = −∞.

4.2.2. Contour pair and label function in the infinite case. We consider a well-
labeled infinite forest (f, l) ∈ F∞. Again, we view f as a graph properly embedded
in the plane (Figure 6): We identify the set of roots of the trees of f with Z and
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FIG. 6. On the left: A proper representation of a well-labeled infinite forest (f, l), together with its
facial sequence. On the right: Its contour function.

connect neighboring roots by an edge. We obtain what we call the floor of f. The
trees τi of f are drawn in the upper half-plane and attached to the floor.

The facial sequence (f(i), i ∈ Z) of f is defined as follows: (f(0), f(1), . . .) is
the sequence of vertices of the contour paths of the trees τi, i ∈ N0, in the contour
order, starting from the root of the tree τ0, and (f(−1), f(−2), . . .) is given by the
sequence of vertices of the contour paths τ−1, τ−2, . . . , in the counterclockwise
order, starting from the root of the tree τ−1.

In analogy to the finite case, given a well-labeled infinite forest (f, l), its contour
pair (Cf,Lf) is the pair of functions defined via

Cf(j) = df
(
f(j), r

(
f(j)

))− r
(
f(j)

)
, Lf(j) = l

(
f(j)

)
, j ∈ Z,

where df is the graph distance on the embedding of f, and r(f(j)) denotes the
root of the tree f(j) belongs to. Be aware of the small abuse of notation: In the
expression for Cf, r(f(j)) is first viewed as a vertex and then as an integer. As for
a finite forest, we call Cf the contour function of f.

If additionally b ∈ B∞, we define the label function associated to ((f, l),b) by

Lf(j) = Lf(j) + b
(−Cf(j)

)
, j ∈ Z, Lf(∂) = b(∂),

where Cf(j) = inf(−∞,j ] Cf for j < 0 and Cf(j) = min[0,j ] Cf for j ≥ 0, as above.
Again by linear interpolation between integers, we view Cf,Lf and Lf as con-

tinuous functions on R.

4.3. Bouttier–Di Francesco–Guitter bijection. Recall that a rooted quadran-
gulation with a boundary comes with a distinguished edge along the boundary, the
root edge, whose origin is the root vertex. We write Qσ

n for the set of all rooted
quadrangulations with n inner faces and a boundary of size 2σ .

A pointed quadrangulation with a boundary is a pair (q, v•), where q is a rooted
quadrangulation with a boundary and v• ∈ V (q) is a distinguished vertex. The set
of all rooted pointed quadrangulations with n internal faces and 2σ boundary edges
is denoted by

Q•
n,σ = {(

q, v•) : q ∈ Qσ
n , v• ∈ V (q)

}
.
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4.3.1. The finite case. The Bouttier–Di Francesco–Guitter bijection [13] pro-
vides us with a bijection

�n : Fn
σ ×Bσ −→ Q•

n,σ .

We shall here content ourselves with the description of the mapping from the en-
coding objects to the quadrangulations. We follow largely the presentation in [9],
where also a description of the reverse direction can be found.

In this regard, let ((f, l),b) ∈ Fn
σ × Bσ . Out of this triplet, we will now con-

struct a rooted pointed quadrangulation (q, v•) ∈ Q•
n,σ . Recall the facial sequence

f(0), . . . , f(2n+σ) of f obtained from exploring the trees of f in the contour order,
as well as the associated label function Lf. We view f as embedded in the plane
(as explained above) and add an additional vertex v• inside the only face of f, with
label Lf(v

•) = −∞.
The vertex set of q is given by V (f)∪{v•}. Note that by definition, the additional

vertex (σ ) which forms part of the embedding of f is not an element of V (f). In
order to specify the edges between the vertices of q, we define for i = 0, . . . ,2n +
σ −1 the successor succ(i) ∈ {0, . . . ,2n+σ −1}∪ {∞} of i to be the first number
k in the list (i + 1, . . . ,2n + σ − 1,0, . . . , i − 1) with the property that Lf(k) =
Lf(i) − 1, with succ(i) = ∞ if there is no such number. Letting f(∞) = v•, we
now follow the facial sequence of f and draw for every i = 0, . . . ,2n + σ − 1 an
arc between f(i) and f(succ(i)), in such a way that it neither crosses arcs that were
previously drawn, nor edges of the embedding of f. Since any vertex of f which is
not a leaf is visited at least twice in the contour exploration, there can be several
arcs connecting f(i) and f(succ(i)). By a small abuse of language, we therefore
speak of the arc connecting i to succ(i) and write

i � succ(i) or i � succ(i)

for the oriented arc from i toward succ(i) or from succ(i) toward i, respectively.
The arcs between the vertices V (f)∪ {v•} form the edges of q, and it remains to

specify the root edge of q: Denoting by succk the kth functional power of the func-
tion succ (with succ(∞) = ∞), the root vertex is given by f(succ−b(σ )(0)), and the
root edge is in case b(σ ) > b(σ − 1)− 1 given by succ−b(σ )(0) � succ−b(σ )+1(0),
and in case b(σ ) = b(σ − 1) − 1 by 2n + σ − 1 � succ(2n + σ − 1). Note that
in the second case, we have indeed f(succ(2n + σ − 1)) = f(succ−b(σ )(0)), that is,
f(succ(2n + σ − 1)) is the root vertex; see Figure 7.

4.3.2. The infinite case. Let Q denote the completion of the space of all rooted
finite quadrangulations with a boundary with respect to dmap. We extend �n to a
mapping

� :
( ⋃

n,σ∈N
Fn

σ ×Bσ

)
∪ (F∞ ×B∞) −→ Q
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FIG. 7. The Bouttier–Di Francesco–Guitter bijection �n applied to an element ((f, l),

b) ∈ Fn
σ × Bσ . The forest f is the same as in Figure 5, but the labels are shifted by the values of

the bridge b. The (nonsimple) boundary of the associated quadrangulation on the left is represented
in red. Note that the extra vertex v• is in this example a boundary vertex. The rightmost vertex
f(22) = (4) on the left is not a vertex of the quadrangulation. Its label −2 captures the information
where to find the root edge, which is indicated by an arrow.

as follows. For elements ((f, l),b) ∈ Fn
σ × Bσ , we let �((f, l),b) = �n((f, l),b),

where we view the latter as an element in Qσ
n , by simply forgetting its distin-

guished vertex.
Now let ((f, l),b) ∈ F∞ ×B∞. For i ∈ Z, we define the successor succ∞(i) to

be the smallest number k greater than i such that Lf(k) = Lf(i)−1. Note that since
infi∈N b(i) = −∞, the definition make sense. We consider a proper embedding of
f in the plane as described above and draw an arc between f(i) and f(succ∞(i)), for
any i ∈ Z, as indicated by Figure 8. Again we can do this in a way such that arcs
do not cross. The vertex set of �((f, l),b) is given by V (f), and the edges are the
arcs we constructed. Finally, we follow a rooting convention which is analogous
to the finite case (we adapt the notion i � succ∞(i) in the obvious way): The root

FIG. 8. The Bouttier–Di Francesco–Guitter mapping applied to an element ((f, l),b) ∈ F∞ ×B∞.
The successor of 0 is 7, which is also the successor of −6,−2,1,2,4,6. The vertex labels are given
by Lf, as in Figure 7. The root edge of the map is the oriented arc −1 � succ∞(−1) indicated by
an arrow.
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vertex is given by f(succ−b(∂)∞ (0)), and the root edge is in case b(∂) > b(−1) − 1
given by succ−b(∂)∞ (0) � succ−b(∂)+1∞ (0), and in case b(∂) = b(−1) − 1 by −1 �

succ∞(−1).

REMARK 4.1. Notice that a triplet ((f, l),b) in Fn
σ × Bσ or in F∞ × B∞

is uniquely determined by its associated contour and label functions (Cf,Lf). In
particular, it makes sense to speak of the quadrangulation associated to (Cf,Lf).
The distinguished vertex v• in the finite case will play no particular role in our
statements, since we view quadrangulations as metric spaces pointed at their root
vertices.

4.4. Construction of the UIHPQ. We first introduce an F∞-valued random ele-
ment (f∞, l∞) together with a B∞-valued random element b∞, which will encode
the UIHPQ.

4.4.1. Uniformly labeled critical infinite forest. Let τ be a finite random plane
tree. Conditionally on τ , we assign a sequence of i.i.d. random variables with the
uniform distribution on {−1,0,1} to the edges of τ . The label �(u) of a vertex u of
τ is defined to be the sum of the random variables along the edges of the (unique)
path from the root to u. Such a random labeling � : V (τ) → Z is referred to as a
uniform labeling. If the tree τ is a Galton–Watson tree with a geometric offspring
distribution of parameter 1/2, we say that τ is a critical geometric Galton–Watson
tree. If � is a uniform labeling of τ , we refer to the pair (τ, (�(u))u∈V (τ)) as a
uniformly labeled critical geometric Galton–Watson tree.

A uniformly labeled critical infinite forest is a random element (f∞, l∞) taking
values in F∞ such that the pairs (τi, l∞ � V (τi)), i ∈ Z, are independent uniformly
labeled critical geometric Galton–Watson trees.

4.4.2. Uniform infinite bridge. Let b∞ = (b∞(i), i ∈ Z) be a two-sided ran-
dom walk starting from 0 at time 0, that is, b∞(0) = 0, which has independent
increments given by

P
(
b∞(i) − b∞(i − 1) = k

) = 2−k−2, k ∈N0 ∪ {−1}, for i ∈ Z \ {0},
and

P
(−b∞(−1) = k

) = (k + 2)2−(k+3), k ∈ N0 ∪ {−1}.
Note that −b∞(−1) has same law as G + G′ − 1 for G and G′ two independent
geometric random variables of parameter 1/2. This follows from the well-known
fact that G + G′ + 1 is distributed as a size-biased geometric random variable. We
refer to Section 4.5.2 for more explanations. Next, given b∞(−1), we let b∞(∂)

be a uniformly distributed random variable in {b∞(−1) − 1, . . . ,0}, independent
of everything else.
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We call the random element b∞ = (b∞(i), i ∈ Z ∪ {∂}) with values in B∞ the
uniform infinite bridge.

We review now the construction of the UIHPQ given in [23]. Note that there
the encoding is defined in a slightly different (but equivalent) manner, and the root
edge is oriented in the opposite direction. The following definition is justified by
Proposition 3.11.

DEFINITION 4.2. Let (f∞, l∞) be a uniformly labeled critical infinite forest,
and let b∞ be a uniform infinite bridge independent of (f∞, l∞). The uniform infi-
nite half-planar quadrangulation UIHPQ is the (rooted) random infinite quadrangu-
lation Q∞∞ = (V (Q∞∞), dgr, ρ) with an infinite boundary obtained from applying
the Bouttier–Di Francesco–Guitter mapping � to ((f∞, l∞),b∞).

In [23], it was shown that in the sense of dmap, there are the weak convergences
Q

σn
n −→ Qσ∞ as n → ∞, and Qσ∞ −→ Q∞∞ as σ → ∞, where Qσ∞ is the so-called

(rooted) uniform infinite planar quadrangulation with a boundary of perimeter 2σ .
We also point at the recent work [17], where a construction of the UIHPQ with
a positivity constraint on labels is given, similar to the Chassaing–Durhuus con-
struction [18] of the UIPQ.

REMARK 4.3. We stress that while we use the notation (f, l) for both a finite
or infinite (deterministic) well-labeled forest, and similarly, b represents a finite
or infinite bridge, (f∞, l∞) ∈ F∞ and b∞ ∈ B∞ will always stand for random
elements with the particular law just described. We will implicitly assume that
b∞ is independent of (f∞, l∞). Similarly, for given σn, ((fn, ln),bn) will denote a
random element with the uniform distribution on Fσn

n ×Bσn ; see Section 4.5.4.

4.5. Some ramifications. We gather here some consequences and remarks
which we will tacitly use in the following. We begin with some observations con-
cerning the Bouttier–Di Francesco–Guitter bijection.

4.5.1. Distances. Let (q, v•) ∈ Q•
n,σ be a (rooted) pointed quadrangulation of

size n with a boundary of size 2σ . Then (q, v•) corresponds to a pair ((f, l),b) ∈
Fn

σ ×Bσ via the Bouttier–Di Francesco–Guitter bijection, and the sets V (q)\ {v•}
and V (f) are identified through this bijection. Recall that the label function L = Lf

represents the labels shifted tree by tree according to the values of the bridge b.
By a slight abuse of notation, we will view L also as a function on V (q) \ {v•} (or
V (f)): If v ∈ V (q) \ {v•}, there is at least one i ∈ {0, . . . ,2n + σ − 1} such that v

is visited in the ith step of the contour exploration, and we let L(v) = L(i). Note
that this definition makes sense, since L(i) = L(j) if f(i) = f(j).

Write dq for the graph distance on q. From the description of the bijection
above, we deduce that

(4.1) dq(u, v•) = L(u) − minL+ 1.
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Moreover, if v0 is the root vertex of q, we know that its distance to vertex f(0) = (0)

is

(4.2) dq
(
v0, (0)

) = −b(σ ).

In general, there is no simple formula for distances in q. However, as we explain
next, there exist lower and upper bounds in terms of L.

We first discuss a lower bound. If u, v ∈ V (f) are vertices of the same tree τ of
f, that is, r(u) = r(v), we let �u, v� be the vertex set of the unique injective path in
τ connecting u to v. If (i), (j) are two tree roots of f with i < j , we let �(i), (j)�
denote the sequence of root vertices (i), (i + 1), . . . , (j). For the remaining cases,
if r(u) < r(v), we put

�u, v� = �u, r(u)� ∪ �r(u), r(v)� ∪ �v, r(v)�,

whereas if r(v) < r(u), we let

�u, v� = �u, r(u)� ∪ �r(u), (σ − 1)� ∪ �(0), r(v)� ∪ �v, r(v)�.

Now let u, v ∈ V (q) \ {v•}. The so-called cactus bound states that

(4.3) dq(u, v) ≥ L(u) + L(v) − 2 max
{

min
�u,v�

L, min
�v,u�

L

}
.

See [35], Proposition 2.3.8, for a proof in a slightly different context, which is
readily adapted to our setting. Since vertex (0) has label L(0) = 0 and L coincides
with the values of the bridge along the floor of f, the distance dq((0), u) for u ∈
V (q) \ {v•} is lower bounded by

(4.4) dq
(
(0), u

) ≥ −max
{

min[0,r(u)] b, min[r(u),σ−1] b
}
.

For an upper bound of dq(u, v) when u, v ∈ V (q) \ {v•}, choose i, j ∈
{0, . . . ,2n + σ − 1} such that f(i) = u and f(j) = v. Define

−−→[i, j ] =
{{i, . . . , j} if i ≤ j,

{i, . . . ,2n + σ − 1} ∪ {0, . . . , j} if i > j.

Then there is the upper bound (see [33], Lemma 3, for a proof)

(4.5) dq(u, v) ≤ L(u) + L(v) − 2 max
{

min−−→[i,j ]
L(f),min−−→[j,i]

L(f)

}
+ 2.

Bounds similar to (4.3), (4.4) and (4.5) can be formulated for infinite quad-
rangulations q∞ constructed from triplets ((f, l),b) ∈ F∞ × B∞. For example, if
u, v ∈ V (f) with r(u) ≤ r(v), the cactus bound (4.3) reads

(4.6) dq∞(u, v) ≥ L(u) + L(v) − 2 min
�u,v�

L.
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4.5.2. Bridges. We will need some properties of elements in Bσ . First, as it
is shown in [9], Lemma 6, by identifying a bridge (b(i),0 ≤ i ≤ σ) ∈ Bσ with the
sequence

(4.7) (+1, . . . ,+1,︸ ︷︷ ︸
b(0)−b(σ )

times

−1,+1, . . . ,+1,︸ ︷︷ ︸
b(1)−b(0)+1

times

−1,+1, . . . ,+1,︸ ︷︷ ︸
b(2)−b(1)+1

times

. . . ,−1,+1, . . . ,+1︸ ︷︷ ︸
b(σ )−b(σ−1)+1

times

),

one obtains a one-to-one correspondence between Bσ and the set of sequences in
{−1,+1}2σ counting exactly σ times the number −1. As a consequence, |Bσ | =(2σ

σ

)
.

It is helpful to adopt the following point of view. Imagine that we mark σ points
on the discrete circle Z/2σZ uniformly at random. Marked points obtain label −1,
unmarked points label +1. Now choose uniformly at random one of the 2σ circle
points as the origin. By walking around the circle in the clockwise order starting
from the chosen origin, one observes a sequence of consecutive +1 and −1, which
is distributed as (4.7) when b is chosen uniformly at random in Bσ . In particular,
(b(σ )− b(σ − 1)+ 1)+ (b(0)− b(σ )+ 1) = −b(σ − 1)+ 2 has the law of a size-
biased pick among all σ consecutive segments of the form (+1,+1, . . . ,+1,−1).
When σ tends to infinity, it is readily seen that −b(σ −1) converges in distribution
to G + G′ − 1, where G and G′ are two independent geometric random variables
of parameter 1/2. This explains the particular law of the increment −b∞(−1) of a
uniform infinite bridge b∞ that forms part of the encoding of the UIHPQ.

Next, let (Xi, i ∈ N) be a sequence of i.i.d. random variables with distribution

P(X1 = k) = 2−k−2, k ≥ −1.

Put �j = ∑j
i=1 Xi , with �0 = 0. Fix 0 ≤ k ≤ σ , and denote by S(k) = (S(k)(j),

j = 0, . . . , σ ) the discrete bridge distributed as (�j , j = 0, . . . , σ ) conditioned on
{�σ = −k}. Then the above considerations imply that S(k) is uniformly distributed
over the set of all bridges in Bσ which attain the terminal value −k at time σ .
Second, using that b is uniformly distributed over Bσ , we can compute

(4.8) P
(
b(σ ) = −k

) = 1

2

(2σ − k − 1)!
(2σ − 1)!

σ !
(σ − k)! ≤ 2−k,

and P(b(σ ) = −k) → 2−k−1 as σ → ∞; see [9], Proof of Proposition 7, for a
complete argument.

4.5.3. Forests. In the rest of this paper, we will often use the following well-
known fact (see, e.g., [31], Section 2): If f = (τ0, . . . , τσ−1) is chosen uniformly at
random among all forests with σ trees and n edges, then the corresponding discrete
contour path (Cf(j), j = 0, . . . ,2n + σ), is distributed as a simple random walk
path starting at 0 and conditioned to end at −σ at time 2n + σ . As a consequence,
we have for j ∈ {1, . . . , σ } and a positive integer k,

(4.9) P

(j−1∑
i=0

|τi | = k

)
= P(T−j = 2k + j | T−σ = 2n + σ),
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where T−i denotes the first hitting time of −i of a simple random walk started
at 0. Also note that the joint law of the trees (τ0, . . . , τσ−1) is invariant under
permutation of its components. Moreover, the sequence of trees (τ0, . . . , τσ−1) has
the law of σ independent critical geometric Galton–Watson trees conditioned to
have total size n. In this context, we recall (see, e.g., [31], Section 2.2) that if PGW
is the law of critical geometric Galton–Watson tree and τ a given finite tree, then

(4.10) PGW(τ ) = (1/2)4−|τ |.

Probabilities as in (4.9) can be computed using Kemperman’s formula (see,
e.g., [36], Chapter 6). It tells us that if (Si, i ∈ N0) is a simple random walk started
at 0, then

(4.11) P(Tj = k) = |j |
k
P(Sk = j), j ∈ Z, k ∈ N.

By applying Kemperman’s formula to P(T−σ = 2n+σ) and counting paths, we
obtain

∣∣Fn
σ

∣∣ = 3n σ

2n + σ

(
2n + σ

n

)
.

Note that the factor 3n accounts for the 3n possible labelings of a forest with n tree
edges.

For estimating P(Sk = j) when k and j are large, one typically applies a local
central limit theorem. Setting

p(k, j) = 2√
2πk

exp
(
−j2

2k

)
, j ∈ Z, k ∈N,

and p(0, j) = δ0(j), one has (see, e.g., [28], Theorem 1.2.1)

(4.12) P(Sk = j) = p(k, j) + O
(
1/k3/2)

if k + j is even, and P(Sk = j) = 0 otherwise. Note that the above display holds
uniformly in the choice of j . For us, it will mostly be sufficient to record that
P(Sk = j) ≤ Ck−1/2 for some C > 0 uniformly in j and k.

However, in the boundary regime σn � √
n, we will sometimes find ourselves

in an atypical regime for simple random walk, where the control provided by (4.12)
is not good enough. In this case, we use the following asymptotic expression due
to Beneš [5], Theorem 1.3, first case. For x � m such that x + m is even,

(4.13) P(Sm = x) =
√

2

πm
exp

(
−

∞∑
�=1

1

2�(2� − 1)

x2�

m2�−1

)(
1 + O

(
x2

m2 + 1

m

))
,

uniformly in (x,m). Note that as it is remarked in [5], this expression can also be
obtained from [12], Theorem 6.1.6, by an explicit calculation of the rate function.
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4.5.4. Remarks on notation. For ease of reading, let us finally specify a (nota-
tional) framework.

THE USUAL SETTING. For each n ∈ N, we let Q
σn
n = (V (Q

σn
n ), dgr, ρn) be

uniformly distributed over the set Qσn
n of rooted quadrangulations with n internal

faces and 2σn boundary edges. Given Q
σn
n , we choose v•

n uniformly at random
among the elements of V (Q

σn
n ), and then (Q

σn
n , v•

n) is uniformly distributed over
Q•

n,σn
and corresponds through the Bouttier–Di Francesco–Guitter bijection to a

triplet ((fn, ln),bn) uniformly distributed over the set Fn
σn

×Bσn . We let (Cn,Ln)

be the contour pair corresponding to (fn, ln) and write

Ln = (
Ln(t) + bn

(−Cn(t)
)
,0 ≤ t ≤ 2n + σn

)
for the label function associated to ((fn, ln),bn).

The random triplet ((f∞, l∞),b∞) represents a uniformly labeled critical in-
finite forest and an independent uniform infinite bridge and encodes the UIHPQ
Q∞∞ = (V (Q∞∞), dgr, ρ). We write (C∞,L∞) for the corresponding contour pair
and L∞ for the label function.

While Br(Q
σn
n ) denotes the closed ball of radius r around the root ρn in Q

σn
n

(viewed as a compact metric space), we will also consider the ball B
(0)
r (Q

σn
n )

around the vertex fn(0) = (0), and similarly for the UIHPQ.

Given a random variable (or sequence) U and an event E , we will write L(U)

and L(U | E) for the law of U and the conditional law of U given E , respectively.
The total variation norm of a probability measure is denoted by ‖ · ‖TV.

5. Auxiliary results. In this part, we collect general results and observations
which will be useful later on. Our statements on Galton–Watson trees might be of
some interest on its own.

5.1. Convergence of forests. The first two lemmas in this section provide the
necessary control over the trees of a forest fn chosen uniformly at random in Fσn

n

in the regime σn � √
n. The proofs are given in the Supplementary Material [3].

LEMMA 5.1. Assume σn � √
n. Denote by (τi)1≤i≤σn a family of σn indepen-

dent critical geometric Galton–Watson trees. Then, for every 0 < δ < 1,

lim
n→∞P

(
∃i ∈ {1, . . . , σn} with |τi | ≥ δn

∣∣∣ σn∑
i=1

|τi | = n

)
= 1.

LEMMA 5.2. Assume σn � √
n. Denote by (τi)1≤i≤σn a family of σn indepen-

dent critical geometric Galton–Watson trees. Write i∗ for the smallest index such
that |τi∗ | ≥ max1≤i≤σn,i �=i∗ |τj |. Then

lim
n→∞

∥∥∥∥∥L
(
(τi)1≤i≤σn,i �=i∗

∣∣∣ σn∑
i=1

|τi | = n

)
−L

(
(τi)1≤i≤σn−1

)∥∥∥∥∥
TV

= 0.
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The next statement will prove useful for the regimes 1 � σn � √
n and σn ∼

σ
√

2n, σ ∈ (0,∞), as well as for the local convergence of Q
σn
n toward the UIHPQ

when 1 � σn � n. We stress that if σn � √
n, the following lemma is already a

corollary of Lemmas 5.1 and 5.2.

LEMMA 5.3. Assume 1 � σn � n. Denote by (τi)1≤i≤σn a family of σn in-
dependent critical geometric Galton–Watson trees. If kn is a sequence of positive
integers with kn ≤ σn and kn = o(σn ∧ (n/σn)) as n → ∞, then

lim
n→∞

∥∥∥∥∥L
(
(τi)1≤i≤kn

∣∣∣ σn∑
i=1

|τi | = n

)
−L

(
(τi)1≤i≤kn

)∥∥∥∥∥
TV

= 0.

For the proof, we refer again to the Supplementary Material [3].

5.2. Convergence of bridges. Here, we collect two convergence results of a
bridge bn uniformly distributed in Bσn which are valid in all regimes σn � 1.
The first lemma follows from [7], Lemma 10 (recall the remarks above on the
distribution of bn).

LEMMA 5.4. Assume σn → ∞, and let bn be a bridge of length σn uniformly
distributed in Bσn . Then (bn(σns)/

√
2σn,0 ≤ s ≤ 1) converges as n → ∞ to a

standard Brownian bridge b, and the convergence holds in distribution in the space
C([0,1],R).

The next lemma provides a finer convergence without normalization for the
bridge restricted to the first and last kn values when kn = o(σn).

LEMMA 5.5. Assume σn → ∞. Let bn be uniformly distributed in Bσn , and
let b∞ be a uniform infinite bridge as defined in Section 4.4.2. Then, if kn is a
sequence of positive integers with kn ≤ σn and kn = o(σn) as n → ∞,

lim
n→∞

∥∥L((bn(σn − kn), . . . ,bn(σn − 1),bn(0),bn(1), . . . ,bn(kn)
))

−L
((

b∞(−kn), . . . ,b∞(−1),b∞(0),b∞(1), . . . ,b∞(kn)
))∥∥

TV = 0.

The proof of Lemma 5.5 is provided in the Supplementary Material [3].

5.3. Root issues. We work in the usual setting introduced in Section 4.5.4.
As the next lemma shows, instead of showing distributional convergence of balls
in Q

σn
n or Q∞∞ around the roots, we can as well consider the corresponding balls

around (0).

LEMMA 5.6. Let (an, n ∈ N) be a sequence of positive reals with an → ∞ as
n → ∞. Let r ≥ 0. Then, in the usual notational setting, we have the following
convergences in probability as n → ∞:
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(a) dGH(Br(a
−1
n · Qσn

n ),B
(0)
r (a−1

n · Qσn
n )) → 0,

(b) dGH(Br(a
−1
n · Q∞∞),B

(0)
r (a−1

n · Q∞∞)) → 0.

The proof will be a consequence of the following general lemma.

LEMMA 5.7. Let r ≥ 0, and let E = (E,d,ρ) and E′ = (E′, d ′, ρ′) be two
pointed complete and locally compact length spaces. Let R ⊂ E × E′ be a subset
with the following properties:

• (ρ,ρ′) ∈ R,
• for all x ∈ Br(E), there exists x′ ∈ E′ such that (x, x′) ∈R,
• for all y′ ∈ Br(E′), there exists y ∈ E such that (y, y′) ∈R.

Then dGH(Br(E),Br(E′)) ≤ (3/2)dis(R).

REMARK 5.8. Note that R is not necessarily a correspondence; nonetheless,
the definition of the distortion dis(R) from Section 2.4 makes sense (we allow it
to take the value +∞).

PROOF OF LEMMA 5.7. We construct a correspondence R̃ between Br(E)

and Br(E′). For each x ∈ Br(E), there exists by assumption x′ = x′
x ∈ E′ such

that (x, x′) ∈ R. Since d ′(x′, ρ′) ≤ d(x,ρ) + dis(R), we see that in fact x′ ∈
Br+dis(R)(E′). We choose z′ = z′(x) ∈ Br(E′) that minimizes d ′(x′, z′). Note that
such a z′ exists in a complete and locally compact length space. Then d ′(x′, z′) ≤
dis(R). In an entirely similar way, using the third property of R instead of the sec-
ond, we assign to each y′ ∈ Br(E′) an element z = z(y′) ∈ Br(E). In this notation,
we now define

R̃ = {(
x, z′(x)

) : x ∈ Br(E)
}∪ {(

z
(
y′), y′) : y′ ∈ Br

(
E′)}.

Clearly, R̃ is a correspondence between Br(E) and Br(E′), and a straightforward
application of the triangle inequality shows that in fact dis(R̃) ≤ 3dis(R). This
proves our claim, and hence the lemma. �

PROOF OF LEMMA 5.6. We show only (a), the proof of (b) is similar. We
apply Lemma 5.7 as follows. Instead of considering (V (Q

σn
n ), dgr, ρn), we may

work with the corresponding pointed length space En = (En, d,ρn) obtained from
replacing edges by Euclidean segments of length one, as explained in Section 2.4.2
(the distance d between two points is given by the length of a shortest path between
them). Similarly, we replace (V (Q

σn
n ), dgr, (0)) by E′

n = (En, d, (0)). Define

Rn = {(
ρn, (0)

)}∪ {
(x, x) : x ∈ En

}
.

Then Rn fulfills trivially the properties of Lemma 5.7, and we have dis(Rn) ≤
d(ρn, (0)) = −bn(σn) by (4.2). From (4.8) we see that bn(σn) is stochastically
bounded, and the claim follows. �



SCALING LIMITS OF QUADRANGULATIONS WITH A BOUNDARY 3429

6. Main proofs.

6.1. Brownian plane. We prove Theorem 3.1, where
√

σn � an � n1/4.

IDEA OF THE PROOF. Let ((fn, ln),bn) be uniformly distributed over Fn
σn

×
Bσn . Thanks to Lemmas 5.1 and 5.2, we know that for large n, fn has a unique
largest tree of order n, and all the other σn − 1 trees behave as independent critical
geometric Galton–Watson trees. The maximal label in these σn −1 nonlargest trees
is of order

√
σn; see Lemma 6.2. Upon rescaling distances by a−1

n , this implies by a
result of Bettinelli [9], Lemma 23, that the part of the quadrangulation encoded by
the forest without its largest tree τ is negligible in the limit n → ∞. Conditionally
on its size, τ is uniformly distributed among all plane trees, and so is the associated
quadrangulation among all quadrangulations with |τ | faces and no boundary. Now
the second part of [20], Theorem 2, applies, stating that the Brownian plane is the
scaling limit m → ∞ of uniform quadrangulations with m faces when the scaling
grows slower than m1/4.

To make things precise, we recall the following.

LEMMA 6.1 (Lemma 23 in [9]). Let σ ∈ N. Let ((f, l),b) ∈ Fn
σ × Bσ . Fix any

tree τ of f. Let b ∈ {−1,0}. We view (τ, l � τ) as an element of F|τ |
1 and denote by

qf ∈ Qσ
n and qτ ∈ Q1|τ | the quadrangulations associated to ((f, l),b) and ((τ, l �

τ), (0, b)), respectively, through the Bouttier–Di Francesco–Guitter bijection (the
distinguished vertices are omitted). Then

dGH
(
V (qf),V (qτ )

) ≤ 2
(

max
V (f\τ̊ )

l̂− min
V (f\τ̊ )

l̂+ 1
)
,

where τ̊ stands for the tree τ without its root vertex, and

l̂(u) = l(u) + b
(
r(u)

)
, u ∈ V (f),

is the labeling of f shifted by the values of the bridge b (see Section 4.1).

Let r ≥ 0. For the balls Br(qf) and Br(qτ ) around the root vertices, we claim
that

(6.1) dGH
(
Br(qf),Br(qτ )

) ≤ 3dGH
(
V (qf),V (qτ )

)+ 8.

Indeed, we may first replace both V (qf) and V (qτ ) by the corresponding length
spaces Qf and Qτ as explained in Section 2.4.2. We obtain∣∣dGH

(
Br(qf),Br(qτ )

)− dGH
(
Br(Qf),Br(Qτ )

)∣∣ ≤ 2.
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We now note that every correspondence between Qf and Qτ satisfies the require-
ments of Lemma 5.7, so that by this lemma

dGH
(
Br(Qf),Br(Qτ )

) ≤ (3/2) inf
R

dis(R) = 3dGH(Qf,Qτ )

≤ 3dGH
(
V (qf),V (qτ )

)+ 6,

where the infimum is taken over all correspondences between Qf and Qτ . The
preceding arguments give (6.1). We are now in position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. We have to show that for each r ≥ 0,

(6.2) Br

(
a−1
n · Qσn

n

) (d)−−−→
n→∞ Br(BP)

in distribution in K. Let ((fn, ln),bn) be uniformly distributed in Fn
σn

× Bσn , and

denote by τ
(n)∗ the largest tree of fn (we take that with the smallest index if sev-

eral trees attain the largest size). We let bn ∈ {−1,0} be uniformly distributed
and independent of everything else and denote by Q̂n the quadrangulation en-
coded by ((τ

(n)∗ , ln � τ
(n)∗ ), (0, bn)), in the same way as in Lemma 6.1. Assuming

as usual that Q
σn
n is encoded by ((fn, ln),bn), we obtain from (6.1) together with

Lemma 6.1 that

(6.3) dGH
(
Br

(
a−1
n ·Qσn

n

)
,Br

(
a−1
n · Q̂n

)) ≤ 6

an

(
max

V (fn\τ̊ (n)∗ )

l̂n − min
V (fn\τ̊ (n)∗ )

l̂n

)
+o(1)

as n → ∞, where in the notation of Lemma 6.1, τ̊
(n)∗ stands for the tree τ

(n)∗ with-
out its root, and l̂n(u) = ln(u) + bn(r(u)), u ∈ V (fn), is the labeling of fn shifted
by bn. We claim that the right-hand side of (6.3) converges to zero in probability.
In this regard, recall that by Lemma 5.4, the values of bn are of order

√
σn � an,

so that we may replace l̂n by ln in (6.3). Denote by f′n = fn \ τ
(n)∗ the forest ob-

tained from fn by removing τ
(n)∗ , that is, if τ

(n)∗ is the tree of fn with index i, then
f′n = (τ

(n)
0 , . . . , τ

(n)
i−1, τ

(n)
i+1, . . . , τ

(n)
σn−1). We write (C′

n,L
′
n) for the contour pair cor-

responding to (f′n, ln � f′n). We view both C′
n and L′

n as continuous functions on
[0,∞) by letting C′

n(s) = C′
n(s ∧ (2(n − |τ (n)∗ |) + σn − 1)), and similarly with

L′
n. The convergence to zero of the right-hand side in (6.3) follows now from the

following lemma.

LEMMA 6.2. In the notation from above, if an � √
σn, then for every ε > 0,

lim
n→∞P

(
sup
t≥0

1

an

∣∣L′
n(t)

∣∣ ≥ ε

)
= 0.

PROOF. Let (τ̃i , (�̃i(u))u∈V (τi)), i = 0, . . . , σn − 2, be a sequence of σn − 1
uniformly labeled critical geometric Galton–Watson trees. Consider the forest f̃n =
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(τ̃0, . . . , τ̃σn−2) together with the labeling l̃n given by l̃n � V (τ̃i) = �̃i , for all i. Let
(C̃n, L̃n) denote the contour pair associated to (f̃n, l̃n), continuously extended to
[0,∞) outside [0,2

∑σn−2
i=0 |τ̃i | + σn − 1] as described above.

By Lemma 5.2, we can for each δ > 0 couple the pairs (C′
n,L

′
n) and (C̃n, L̃n)

on the same probability space such that with probability at least 1 − δ, we have
the equality (C′

n,L
′
n) = (C̃n, L̃n) as elements of C([0,∞),R)2, provided n is suf-

ficiently large. Our claim therefore follows if

(6.4) lim
n→∞P

(
sup
t≥0

1

an

∣∣L̃n(t)
∣∣ ≥ ε

)
= 0.

From Section 4.5.3, we know that C̃n has the law of a simple random walk started
from 0 and stopped upon hitting −(σn −1), with linear interpolation between inte-
ger values. By Donsker’s invariance principle, we know that ((1/σn)C̃n(σ

2
n t), t ≥

0) converges in distribution to a Brownian motion (Bt∧T−1, t ≥ 0) stopped
upon hitting −1. Arguments like in [31], proof of Theorem 4.3, then im-
ply convergence of the finite-dimensional laws on C([0,∞),R2) of the pro-
cess ((1/σn)C̃n(σ

2
n ·), (1/

√
σn)L̃n(σ

2
n ·)), and tightness of the second component

follows via Kolmogorov’s criterion from moment bounds on C̃n as in [31],
Lemma 2.13, (in our case, these bounds are in fact easier to establish, since we
consider an unconditioned random walk). We do not repeat the arguments here,
but refer the reader to [31] or [7], Section 5, for more details. We obtain the con-
vergence in distribution(

1

σn

C̃n

(
σ 2

n ·), 1√
σn

L̃n

(
σ 2

n ·)) (d)−−−→
n→∞ (B·∧T−1,Z) in C

([0,∞),R2),
where Z = (Zt , t ≥ 0) is the Brownian snake driven by (Bt∧T−1, t ≥ 0). Since
an � √

σn, this last result clearly implies (6.4) and hence the assertion of the
lemma. �

Going back to (6.3), it remains to show that for ε > 0, F : K → R continuous
and bounded and n ≥ n0,

(6.5)
∣∣E[F (

Br

(
a−1
n · Q̂n

))]−E
[
F
(
Br(BP)

)]∣∣ ≤ ε.

Let 0 < δ < 1. We estimate∣∣E[F (
Br

(
a−1
n · Q̂n

))]−E
[
F
(
Br(BP)

)]∣∣
≤ 2 sup |F |P(∣∣τ (n)∗

∣∣ ≤ δn
)

+
n∑

k=�δn�
P
(∣∣τ (n)∗

∣∣ = k
)∣∣E[F (

Br

(
a−1
n · Q̂n

)) | ∣∣τ (n)∗
∣∣ = k

]
−E

[
F
(
Br(BP)

)]∣∣.
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For n ≥ n(δ, ε) ∈ N sufficiently large, Lemma 5.1 gives 2 sup |F |P(|τ (n)∗ | ≤ δn) ≤
ε/2. As to the sum, we note that conditionally on |τ (n)∗ | = k, Q̂n is uniformly dis-
tributed among all rooted quadrangulations with k inner faces and a boundary of
size 2. Removing the only edge of the boundary which is not the root edge, we ob-
tain a uniform quadrangulation with k faces and no boundary. Clearly, the removal
of this edge does not change the underlying metric space. By [20], Theorem 2, we
therefore get for k ≥ �δn� and n sufficiently large, recalling that an � n1/4,∣∣E[F (

Br

(
a−1
n · Q̂n

))] ∣∣ ∣∣τ (n)∗
∣∣ = k

]−E
[
F
(
Br(BP)

)]∣∣ ≤ ε/2.

This shows (6.5), and hence (6.2). �

6.2. Coupling of Brownian disk and half-planes. We will now prove Theo-
rem 3.7 and Corollary 3.8. Let us first show how the corollary follows from the
theorem.

PROOF OF COROLLARY 3.8. Theorem 3.7 implies that with probability 1, for
every r ≥ 0, the ball Br(BHPθ ) is included in an open set of BHPθ homeomor-
phic to H. This shows that BHPθ is a simply connected topological surface with a
boundary, and that this boundary is connected and noncompact: it must therefore
be homeomorphic to R. We construct a surface S without boundary by gluing a
copy H of the closed half-plane H to BHPθ along the boundary. This noncompact
surface is still simply connected by van Kampens’ theorem (see Theorem 1.20
in [25]), and in particular, it is one-ended. Therefore, it must be homeomorphic to
R2; see [37]. Now if φ is a homeomorphism from the boundary of BHPθ to R, then
a simple variation of the Jordan–Schoenflies theorem (see, e.g., [40], Theorem 3.1)
implies that φ can be extended to a homeomorphism φ from S to R2, and the two
halves BHPθ and H of S must be sent via φ to the two half-spaces H and −H.
In particular, φ induces a homeomorphism from BHPθ to a closed half-plane, as
wanted. �

We turn to Theorem 3.7, and in this regard, we first collect some notation used
throughout this section.

6.2.1. Notation: Brownian half-plane and disk. We fix a perimeter function
σ(·) : (0,∞) → (0,∞) as given in the statement of Theorem 3.7 and let θ =
limT →∞ σ(T )/T ∈ [0,∞). For T > 0 large but fixed, we will work with the fol-
lowing processes, which we tacitly assume to be defined on a joint probability
space:

• F a first passage Brownian bridge on [0, T ] from 0 to −σ(T );
• b a Brownian bridge on [0, σ (T )] from 0 to 0, scaled by

√
3, independent of F ;

• B a Brownian motion on [0,∞) with drift −θ , started from B0 = 0;
• � the Pitman transform of an independent copy of B;
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• γ a two-sided Brownian motion on R with γ0 = 0, scaled by the factor
√

3,
independent of (B,�).

Recall Definition 2.3. We will assume that the Brownian disk BDT ,σ (T ) is given in
terms of the contour function F , and that its label function W is defined by

(Wt ,0 ≤ t ≤ T ) = (b−F t
+ Zt,0 ≤ t ≤ T ),

where (Zt ,0 ≤ t ≤ T ) = ZF−F is the random snake driven by F − F , with
F t = inf[0,t] F . We shall write dF and dW for the pseudo-metrics on I = [0, T ]
associated to F and W , respectively; cf. (2.1). Moreover, we write D instead of
DF,W (cf. (2.2)), so that the Brownian disk BDT ,σ (T ) is the pointed metric space
([0, T ]/{D = 0},D,ρ), with ρ being the equivalence class of 0.

REMARK 6.3. We stress that all the quantities appearing in the definition of
BDT ,σ (T ) depend on T or σ(T ) (like F,b,W,Z or the pseudo-metric D). The real
T measuring the volume will be chosen sufficiently large later on, but for the ease
of reading, we mostly suppress T from the notation. Note moreover that we define
here W in terms of the processes F,b and Z; in particular, W does not denote the
canonical process as in Section 2. Finally, we stress that the factor

√
3 is already

part of the definition of γ , contrary to Definition 2.3.

Next, recall Definition 2.6. We will assume that the Brownian half-plane BHPθ ,
θ ∈ [0,∞), is given in terms of contour and label processes Xθ = (Xθ

t , t ∈ R) and
Wθ = (Wθ

t , t ∈ R) defined as follows:

Xθ
t =

{
Bt if t ≥ 0,

�t if t < 0,
Wθ = (

γ−Xθ
t
+ Zθ

t , t ∈ R
)
,

where Zθ = (Zθ
t , t ∈ R) = ZXθ−Xθ

is the random snake driven by Xθ − Xθ , with
Xθ

t = inf[0,t] Xθ for t ≥ 0, and Xθ
t = inf(−∞,t] Xθ for t < 0. We write dXθ and

dWθ for the pseudo-metrics on R associated to Xθ and Wθ , respectively, and Dθ

instead of DXθ,Wθ , so that the Brownian half-plane BHPθ is given by the pointed
metric space (R/{Dθ = 0},Dθ , ρθ ), with ρθ being the equivalence class of 0.

6.2.2. Absolute continuity relation between contour functions. A key step in
proving Theorem 3.7 is to relate the contour function Xθ for BHPθ to the contour
function F for BDT ,σ (T ), in spirit of [20], Proposition 3.

Let T > 0, and α,β > 0 with α + β < T . We interpret the pair ((Ft )0≤t≤α ,
(FT −t )0≤t≤β ) as an element of the space C([0, α],R) × C([0, β],R) and write
(ω,ω′) for a generic element of this space. We next introduce some probability
kernels. Let t > 0. For x ∈ R, the heat kernel is denoted

pt(x) = 1√
2πt

exp
(
−x2

2t

)
.



3434 E. BAUR, G. MIERMONT AND G. RAY

For x, y > 0, the transition density of Brownian motion killed upon hitting 0 is
given by

p∗
t (x, y) = p∗

t (y, x) = pt(y − x) − pt(y + x).

The density of the first hitting time of level x > 0 of Brownian motion started at 0
is

gt (x) = x

t
pt (x).

The transition density of a three-dimensional Bessel process takes the form

(6.6) rt (x, y) =
{

2ygt (y) if x = 0,

x−1p∗
t (x, y)y if x, y > 0.

In [38], Theorem 1, Pitman and Rogers show that the Pitman transform of a one-
dimensional Brownian motion with drift −θ has the law of the radial part of a
three-dimensional Brownian motion with a drift of magnitude θ . In particular, if
θ = 0, it has the law of a three-dimensional Bessel process, and for all θ ≥ 0, it
is a transient process. In [38], Theorem 3, it is moreover shown that its transition
density is given by

(6.7) q
(θ)
t (x, y) = exp

(−(t/2)θ2)h−1(xθ)rt (x, y)h(yθ),

where

h(x) =
{
x−1 sinhx if x > 0,

1 if x = 0.

LEMMA 6.4. In the notation from above (and from Section 6.2.1), the law of(
(Ft )0≤t≤α, (FT −t )0≤t≤β

)
is absolutely continuous with respect to the law of(

(Bt )0≤t≤α,
(
�t − σ(T )

)
0≤t≤β

)
,

with density given by the function

ϕT,α,β

(
ω,ω′)

= 1{ωs>−σ(T ) for s∈[0,α]}(ω)

× p∗
T −(α+β)(ωα + σ(T ),ω′

β + σ(T ))

2(ω′
β + σ(T ))gT (σ (T ))

exp(ωαθ + α+β
2 θ2)

h((ω′
β + σ(T ))θ)

.

Moreover, if Pα,β denotes the joint (product) law of ((Bt )0≤t≤α, (�t)0≤t≤β), the
following holds true: For each ε > 0, there exists T0 > 0 and a measurable set
E = E(ε,T0) ⊂ C([0, α],R) × C([0, β],R) with Pα,β(E) ≥ 1 − ε such that for
T ≥ T0,

sup
(ω,ω′+σ(T ))∈E

∣∣ϕT,α,β

(
ω,ω′)− 1

∣∣ ≤ ε.
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Note that ϕT,α,β depends on the second coordinate ω′ only through its end-
point ω′

β .

PROOF OF LEMMA 6.4. First, note that the law of the first passage Brownian
bridge F is specified by FT = −σ(T ) and

(6.8) E
[
f
(
(Ft )0≤t≤T ′

)] = E

[
f
(
(γ̂ )0≤t≤T ′

)
1{γ̂

T ′>−σ(T )}
gT −T ′(γ̂T ′ + σ(T ))

gT (σ (T ))

]
for all 0 ≤ T ′ < T and all functions f ∈ C([0, T ′],R), where γ̂ is a one-
dimensional Brownian motion started from zero (without drift). Let us next sim-
plify notation. For x ∈ R, write x̃ = x + σ(T ). For 0 < t1 < t2 < · · · < tp and
x1, . . . , xp > −σ(T ), let

Gt1,...,tp (x1, . . . , xp) = p∗
t1

(
σ(T ), x̃1

)
p∗

t2−t1
(x̃1, x̃2) · · ·p∗

tp−tp−1
(x̃p−1, x̃p).

For 0 < t ′1 < t ′2 < · · · < t ′q and xp+1, . . . , xp+q > −σ(T ), let

Ht ′1,...,t ′q (xp+q, . . . , xp+1)

= gt ′1(x̃p+q)p
∗
t ′2−t ′1

(x̃p+q, x̃p+q−1) · · ·p∗
t ′q−t ′q−1

(x̃p+2, x̃p+1).

Now fix 0 < t1 < t2 < · · · < tp = α and 0 < t ′1 < t ′2 < · · · < t ′q = β . We infer
from (6.8) that the density of the (p + q)-tuple (Ft1, . . . ,Ftp ,FT −t ′q , . . . ,FT −t ′1) is
given by the function

ft1,...,tp,t ′1,...,t ′q (x1, . . . , xp+q)

= Gt1,...,tp (x1, . . . , xp)Ht ′1,...,t ′q (xp+q, . . . , xp+1)

· p∗
T −(α+β)(x̃p, x̃p+1)

gT (σ (T ))
.(6.9)

From Girsanov’s theorem, we know that the finite-dimensional distributions
(Bt1, . . . ,Btp) of a one-dimensional Brownian motion B with drift −θ are abso-
lutely continuous with respect to those of Brownian motion γ̂ without drift, with
a density given by exp(−θγ̂tp − αθ2/2). Next, we see from (6.7) that the law of
(�t ′1 − σ(T ), . . . ,�t ′q − σ(T )) has density

πt ′1,...,t ′q (xp+q, . . . , xp+1)

= 2x̃p+1 exp
(−(β/2)θ2)h(x̃p+1θ)Ht ′1,...,t ′q (xp+q, . . . , xp+1),

for xp+q, . . . , xp+1 > −σ(T ). By (6.9) and the last two observations, the first
claim of the statement follows.

As for the second claim, for every δ > 0, by continuity of B and �, we can find
a constant K = K(δ,α,β) > 0 in such a way that

(6.10) P
(

min[0,α]B > −K,max[0,β] � < K
)

≥ 1 − δ.
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The second claim now follows from (6.10) and the fact that for every δ′ > 0, if T

is large enough, we have

(6.11)
∣∣∣∣p

∗
T −(α+β)(x + σ(T ), y + σ(T ))

2(y + σ(T ))gT (σ (T ))

exp(xθ + α+β
2 θ2)

h((y + σ(T ))θ)
− 1

∣∣∣∣ ≤ δ′

uniformly in x ∈ R with |x| ≤ K and y ≥ −σ(T ) with |y + σ(T )| ≤ K . The last
display in turn follows from a straightforward but somewhat tedious calculation;
we give some indication for the case limT →∞ σ(T )/T = θ > 0. First, as T → ∞,

p∗
T −(α+β)(x + σ(T ), y + σ(T ))

2(y + σ(T ))gT (σ (T ))

exp(xθ + α+β
2 θ2)

h((y + σ(T ))θ)

∼
(exp(− (y−x)2

2(T −(α+β))
) − exp(− (x+y+2σ(T ))2

2(T −(α+β))
)

exp(−σ 2(T )/(2T ))

) exp(xθ + α+β
2 θ2)

2 sinh(θ(y + σ(T )))
.

Then, uniformly in x and y as specified above, we find

exp
(
− (y − x)2

2(T − (α + β))
+ σ 2(T )

2T

)
∼ exp

((−x + y + σ(T )
)
θ − α + β

2
θ2

)
,

and

exp
(
−(x + y + 2σ(T ))2

2(T − (α + β))
+ σ 2(T )

2T

)
∼ exp

((−x − y − σ(T )
)
θ − α + β

2
θ2

)
.

Putting these three estimates together, (6.11) follows. The remaining case
limT →∞ σ(T )/T = 0 with lim infT →∞ σ(T )/

√
T > 0 is similar but easier (note

that the expression for ϕT,α,β simplifies when θ = 0). �

We need a similar absolute continuity property for the Brownian bridge b. In the
next lemma, we let additionally γ ′ be an independent copy of the linear Brownian
motion γ (again scaled by the factor

√
3).

LEMMA 6.5. The law of ((bt )0≤t≤α, (bσ(T )−t )0≤t≤β) is absolutely continuous
with respect to the law of ((γt )0≤t≤α, (γ ′

t )0≤t≤β), with density given by the function

ϕ̃T ,α,β

(
ω,ω′) = pσ(T )−(α+β)((ω

′
β − ωα)/

√
3)

pσ(T )(0)
.

Moreover, if Pα,β denotes the joint law of ((γt )0≤t≤α, (γ ′
t )0≤t≤β), the following

holds true: For each ε > 0, there is T0 > 0 and a measurable set E = E(ε,T0) ⊂
C([0, α],R) × C([0, β],R) with Pα,β(E) ≥ 1 − ε such that for T ≥ T0,

sup
(ω,ω′)∈E

∣∣ϕ̃T ,α,β

(
ω,ω′)− 1

∣∣ ≤ ε.
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PROOF. The first part is immediate from the fact that the law of the Brownian
bridge b is specified by bσ(T ) = 0 and

(6.12) E
[
f
(
(bt )0≤t≤T ′

)] = E

[
f
(
(γt )0≤t≤T ′

)pσ(T )−T ′(γT ′/
√

3)

pσ(T )(0)

]

for all 0 ≤ T ′ < σ(T ) and all f ∈ C([0, T ′],R). The proof of the second part is
very similar to that of Lemma 6.4. We omit the details. �

6.2.3. Cactus bounds for BDT ,σ (T ) and BHPθ . We shall need the continuous
analog of the cactus bound (4.3) for the pseudo-metric D associated to the Brow-
nian disk BDT ,σ (T ). Recall from Section 2.1 that the contour function F encodes
a random real tree (TF , dF ). We write pF : [0, T ] → TF for the canonical projec-
tion. Being almost surely a class function for the equivalence relation {dF = 0},
we may view the label function W as well as a (random) function on TF . In anal-
ogy to (4.3), given 0 ≤ s ≤ t ≤ T , we denote by �s, t �TF

the geodesic segment
between pF (s) and pF (t) in the tree TF , whereas �t, s�TF

stands for the union of
the geodesic segments from pF (t) to pF (T ) and from pF (0) to pF (s). The cactus
bounds now reads

(6.13) D(s, t) ≥ Ws + Wt − 2 max
{

min
�s,t �TF

W, min
�t,s�TF

W

}
, s, t ∈ [0, T ].

See, for example, [20] for a proof of the corresponding bound in the context of the
Brownian map, which can easily be adapted to the Brownian disk. We will often
use the fact that for s ≤ t , �s, t �TF

contains all the vertices of the form pF (r∗),
where r∗ is a time between s and t where F attains a new minimum. In fact, TF

has a distinguished geodesic segment of length σ(T ) given by pF ({Ty,0 ≤ y ≤
σ(T )}), where we have set here Ty = inf{r ≥ 0 : Fr = −y}. One may view this
segment as the floor of a forest of R-trees of the form Ty = pF ((Ty−, Ty]) coded
by the excursions of F above its past infimum. One may then imagine the R-tree Ty

as being attached to the point pF (Ty) of the floor. Note that pF (Ty) is at distance
y from pF (0) (in TF ). See also [11], Section 2.

A similar bound holds for the pseudo-metric Dθ associated to the Brownian
half-plane BHPθ , namely

(6.14) Dθ

(
s′, t ′

) ≥ Wθ
s′ + Wθ

t ′ − 2 min
�s′,t ′�T

Xθ

Wθ , s′ ≤ t ′ ∈ R.

Here, in hopefully obvious notation, �s′, t ′�T
Xθ stand for the geodesic segment

between pXθ (s′) and pXθ (t ′) in the (infinite) random tree TXθ , and pXθ : R →
TXθ is the canonical projection. We refer again to the proof in [20], which can be
transferred to our setting.
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6.2.4. Isometry of balls in BDT ,σ (T ) and BHPθ . Before finally proving The-
orem 3.7, we first prove the following weaker statement (compare with Proposi-
tion 4 of [20] for the Brownian map and the Brownian plane).

PROPOSITION 6.6. Let ε > 0, r ≥ 0. Let σ(·) : (0,∞) → (0,∞) be a function
satisfying limT →∞ σ(T )/T = θ ∈ [0,∞) and, in case θ = 0, lim infT →∞ σ(T )/√

T > 0. Then there exists T0 = T0(ε, r, σ ) such that for all T ≥ T0, one can con-
struct copies of BDT ,σ (T ) and BHPθ on the same probability space such that with
probability at least 1−ε, the balls Br(BDT ,σ (T )) and Br(BHPθ ) of radius r around
the respective roots are isometric.

PROOF. We use the notation specified in Section 6.2.1. For x ∈ R, let

ηl(x) = inf{t ≥ 0 : Bt ≤ −x}, ηr(x) = sup{t ≥ 0 : �t = x}.
We fix ε > 0 and r ≥ 0 and first introduce some auxiliary events. For A > 0, define

E1(A) =

⎧⎪⎪⎨
⎪⎪⎩

min[0,A]γ < −6r, min
[A,A2]

γ < −6r, min
[A2,A3]

γ < −6r,

min[−A,0]γ < −6r, min
[−A2,−A]

γ < −6r, min
[−A3,−A2]

γ < −6r

⎫⎪⎪⎬
⎪⎪⎭ .

Next, for u0 > 0, A > 0, let

E2(A,u0) = {
ηl
(
A3) ≤ u0

}
, E3(A,u0) = {

ηr
(
A3) ≤ u0

}
.

For u2 ≥ u1 > 0, let

E4(u1, u2) =
{

inf[u2,∞)
� > min[u1,u2]

�

}
.

For u3 ≥ u2 > 0 and T ≥ u3, let

E5(u2, u3, T ) =
{

min[0,T −u3]
F > min[T −u3,T −u2]

F

}
.

Standard properties of Brownian motion imply that there exist A > 0 such that
P(E1) ≥ 1 − ε/10, and we fix A accordingly. Then we can find u0 > 0 in such
a way that P(E2) ≥ 1 − ε/10 and P(E3) ≥ 1 − ε/10, due to the fact that � is
transient. Then we can find u1 and u2 with u2 ≥ u1 ≥ u0 such that P(E4) ≥ 1 −
ε/10.

At last, we claim that we can find u3 satisfying u3 ≥ u2 and T ′
0 with T ′

0 ≥
2u3 such that for T ≥ T ′

0, P(E5) ≥ 1 − ε/10. To see this, let A′ > 0 be a number
whose exact value will be fixed later on. If T is such that σ(T ) > A′, note that
E5(u2, u3, T ) contains the event {τσ(T )−A′ ∈ [T − u3, T − u2]}, where τx is the
first hitting time of −x by the first-passage bridge F . A use of (6.8) and the strong
Markov property shows that the law of T − τσ(T )−A′ has a density given by

gt

(
A′) · gT −t (σ (T ) − A′)

gT (σ (T ))
, 0 < t < T .
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It is a simple exercise to see that this converges to g
(θ)
t (A′) = gt (A

′) exp(θA′ −
θ2t/2) as T → ∞, which in turn is the probability density of the first hitting time
of level −A′ by a Brownian motion with drift −θ . An application of Scheffé’s
lemma entails that P(T − τσ(T )−A′ ∈ [u2, u3]) converges to

∫ u3
u2

g
(θ)
t (A′)dt . For

a fixed u2, one can choose A′ such that
∫∞
u2

g
(θ)
t (A′)dt ≥ 1 − ε/40 (this is clear

from the interpretation of gθ
t (A′) as the density of the hitting time of −A′ for a

Brownian motion with drift). For this choice of A′, we can then choose u3 such
that

∫ u3
u2

g
(θ)
t (A′)dt ≥ 1 − ε/20. Finally, we see that for T large enough, one has

P
(
E5(u2, u3, T )

) ≥ P
(
T − τσ(T )−A′ ∈ [u2, u3]) ≥ 1 − ε/10,

as wanted.
We now fix numbers A,u3 ≥ u2 ≥ u1 ≥ u0 and T ′

0 as specified above. By Lem-
mas 6.4 and 6.5, we deduce that we can find T0 > T ′

0 in such a way that for every
T ≥ T0, the processes F,b,B,�,γ can be coupled on the same probability space
such that the event

E6(T ) =
⎧⎨
⎩

Ft = Bt, FT −t = �t − σ(T ) for t ∈ [0, u3],
bx = γx, bσ(T )−x = γ−x for x ∈ [

0,A3]
⎫⎬
⎭

has probability at least 1 − ε/2, F is independent of b, B is independent of �, and
γ is independent of (B,�).

Now fix T ≥ T0. Recall that the label function (Wt ,0 ≤ t ≤ T ) of the Brownian
disk BDT ,σ (T ) is defined in terms of F , b, and the snake Z; see Section 6.2.1. We
put

Wt =
{
Wt if t ∈ [0, u1],
WT +t if t ∈ [−u1,0].

Given F , the process (Wt )t∈[−u1,u1] is Gaussian; moreover, if we restrict ourselves
to the event E5, we have

FT −t = min[T −u3,T −t]F for t ∈ [0, u1].

Hence the covariance of (Wt )t∈[−u1,u1] is on E5 a function of the process

(6.15)
(
(Ft )0≤t≤u3, (FT −t )0≤t≤u3

)
.

We turn to the Brownian half-plane and its label function Wθ = (Wθ
t , t ∈ R),

which are defined in terms of B , �, γ , Zθ ; see again Section 6.2.1. Condition-
ally on (B,�), Wθ is a Gaussian process. Moreover, since on the event E4,

inf[t,∞)
� = min[t,u3]

� for t ∈ [0, u1],

the covariance of the restriction of Wθ to [−u1, u1] is on E4 given by exactly
the same function of the process ((Bt )0≤t≤u3, (�t)0≤t≤u3) as the covariance of
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(Wt )t∈[−u1,u1] as a function of the process in (6.15). Since a shift of � does not
affect the covariance, we can instead consider the process

(6.16)
(
(Bt )0≤t≤u3,

(
�t − σ(T )

)
0≤t≤u3

)
.

On the event E6, both processes (6.15) and (6.16) coincide. On the event E4 ∩E5 ∩
E6, we can therefore construct W and Wθ in such a way that

(6.17) Wt = Wθ
t , WT −t = Wθ−t for all t ∈ [0, u1].

We shall now work on the event F = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6, which has
probability at least 1− ε, and assume that the identity (6.17) holds true. According
to our convention explained in Remark 6.3, we mostly drop T from the notation.

We follow a strategy similar to [20]. Let s, t ∈ [0, T ]. If either both s, t ∈
[0, T /2] or both s, t ∈ [T/2, T ], we let

d̃W (s, t) = Ws + Wt − 2 min[s∧t,s∨t]W.

Otherwise, we set

d̃W (s, t) = Ws + Wt − 2 min[0,s∧t]∪[s∨t,T ]W.

In the notation from above, we have the following.

LEMMA 6.7. Assume F holds.

(a) For every t ∈ [ηl(A), T − ηr(A)], D(0, t) > r .
(b) For every s, t ∈ [0, ηl(A)] ∪ [0, T − ηr(A)] with max{D(0, s),D(0, t)} ≤ r ,

it holds that

(6.18) D(s, t) = inf
s1,t1,...,sk,tk

k∑
i=1

d̃W (si, ti),

where the infimum is over all possible choices of k ∈ N and reals s1, . . . , sk, t1,

. . . , tk ∈ [0, ηl(A
2)]∪[T −ηr(A

2), T ] such that s1 = s, tk = t , and dF (ti, si+1) = 0
for 1 ≤ i ≤ k − 1.

PROOF. (a) If t ∈ [ηl(A), T − ηr(A)], then the cactus bound (6.13) yields

(6.19) D(0, t) ≥ Wt − 2 max
{

min
�0,t �TF

W, min
�t,0�TF

W

}
.

Let us show how to bound the first minimum on the right-hand side. On the event
E6, bx = γx for x ∈ [0,A3] and Ft = Bt for t ∈ [0, u3]. On the event E2, we know
that the first instant ηl(A) when B attains the value −A is bounded from above
by u0, which satisfies u0 ≤ u1 ≤ u3. It follows that for t ≥ ηl(A), the geodesic
segment in TF between pF (0) and pF (t) contains the segment �0, ηl(A)�TF

and,
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therefore, all the vertices of the form pF (ηl(x)) for 0 ≤ x ≤ A. Moreover, on E1,
min[0,A] γ < −6r . Going back to the definition of W (and using the fact that Zt

equals zero if F attains a new minimum at t), we obtain that the first minimum on
the right-hand side is bounded from above by −6r .

For the second minimum on the right of (6.19), we first observe that on the
event E6, we have also bL−x = γ−x for x ∈ [0,A3] and FT −t = �t − σ(T ) for
t ∈ [0, u3]. Now on E5 ∩ E6, we have

FT −t = min[T −u3,T −t]F = min[t,u3]
(
� − σ(T )

)
for t ∈ [0, u1].

But on E3, ηr(A) ≤ u0 ≤ u1, so that in particular

FT −ηr(A) = min[ηr(A),u3]
(
� − σ(T )

) ≥ A − σ(T ),

where for the last inequality we used the fact that �t ≥ A for t ≥ ηr(A). On E1,
also min[−A,0] γ < −6r , and since �t,0�TF

contains all the vertices of the form
pF (T − ηr(x)) for 0 ≤ x ≤ A, the second minimum is bounded above again by
−6r . This proves D(0, t) ≥ 6r whenever t ∈ [ηl(A), T − ηr(A)], which is more
than we claimed.

(b) Recall that D(s, t) is given by

inf

{
k∑

i=1

dW(si, ti) : k ≥ 1, s1, . . . , sk, t1, . . . , tk ∈ [0, T ], s1 = s, tk = t,

dF (ti, si+1) = 0 for every i ∈ {1, . . . , k − 1}
}
.(6.20)

Since D(s, t) ≤ D(0, s) + D(0, t) ≤ 2r for s, t as in the statement, it suffices to
look at s1, . . . , sk, t1, . . . , tk ∈ [0, T ] with

(6.21)
k∑

i=1

dW(si, ti) ≤ 3r.

We now argue that on the right-hand side of (6.20), we can restrict ourselves to re-
als s1, . . . , sk, t1, . . . , tk ∈ [0, ηl(A

2)] ∪ [T − ηr(A
2), T ]. Note that from the cactus

bound and the fact that W0 = WT = 0, we have |Ws | ≤ r whenever D(0, s) ≤ r .
Therefore, the cactus bound gives

D(s, ti) ≥ −r − max
{

min
�s,ti �TF

W, min
�ti ,s�TF

W

}
.

On the event E6, bx = γx , bL−x = γ−x for x ∈ [0,A3], and Ft = Bt , FT −t = �t −
σ(T ) for t ∈ [0, u3]. Moreover, on E2, we have ηl(A

2) ≤ u0, ηr(A
2) ≤ u0.

Recall that by assumption s ∈ [0, ηl(A)] ∪ [T − ηr(A), T ]. If there is i ∈
{1, . . . , k} such that ti is not included in [0, ηl(A

2)] ∪ [T − ηr(A
2), T ], then both
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minima on the right-hand side in the display above are taken over segments which
include either �ηl(A), ηl(A

2)�TF
or �T − ηr(A

2), T − ηr(A)�TF
. Therefore, in this

case,

(6.22) D(s, ti) ≥ −r − max
{

min
�ηl(A),ηl(A

2)�TF

W, min
�T −ηr(A2),T −ηr(A)�TF

W

}
.

We can now argue similar to (a) to show that both minima are bounded from above
by −6r . Since [−A2,−A] ⊂ B([ηl(A), ηl(A

2)]), and since the geodesic segment
�ηl(A), ηl(A

2)�TF
contains all the vertices of the form ηl(x) for A ≤ x ≤ A2, the

bound on the first minimum follows from the fact that on E1, min[A,A2] γ < −6r .
The second minimum is treated similarly and left to the reader.

With these bounds, we obtain D(s, ti) ≥ 5r . On the other hand, we know
from (6.21) that D(s, ti) ≤ 3r , a contradiction. The case where si is not included
in [0, ηl(A

2)] ∪ [T − ηr(A
2), T ] for some i ∈ {1, . . . , k} is analogous.

Therefore, we can restrict ourselves in (6.20) to reals s1, . . . , sk, t1, . . . , tk ∈
[0, ηl(A

2)] ∪ [T − ηr(A
2), T ]. We still have to show that we can replace dW

in (6.20) by d̃W . Let s1, . . . , sk, t1, . . . , tk ∈ [0, ηl(A
2)] ∪ [T − ηr(A

2), T ] with
s1 = s, tk = t and such that (6.21) holds. Assume first that there is i ∈ {1, . . . , k}
such that si ∈ [0, ηl(A

2)] and ti ∈ [T − ηr(A
2), T ], and let us show that then

dW(si, ti) = d̃W (si, ti). First, by (6.21) in the first inequality,

3r ≥ dW(s, si) ≥ Ws − Wsi .

Since Ws ≥ −r , this shows Wsi ≥ −4r , and identically one obtains Wti ≥ −4r .
Using again (6.21),

3r ≥ dW(si, ti)

= Wsi + Wti − 2 max
{

min[si ,ti ]
W, min[0,si ]∪[ti ,T ]W

}

≥ −8r − 2 max
{

min[si ,ti ]
W, min[0,si ]∪[ti ,T ]W

}
.

We claim that this last inequality can only hold if the maximum is attained at
the second minimum (which means precisely dW(si, ti) = d̃W (si, ti)). Indeed,
if si ∈ [0, ηl(A

2)] and ti ∈ [T − ηr(A
2), T ], then [si, ti] contains the interval

[ηl(A
2), ηl(A

3)]. Arguing in the same way as for the first minimum in (6.22), we
deduce that min[si ,ti ] W ≤ −6r , which proves our claim.

The case where ti ∈ [0, ηl(A
2)] and si ∈ [T −ηr(A

2), T ] is treated by symmetry.
Assume now both si, ti lie in [0, ηl(A

2)]. Then the interval [si ∨ ti , T ] contains
the interval [ηl(A

2), ηl(A
3)], so that min[si∨ti ,T ] W ≤ −6r by the same reasoning,

which gives again dW(si, ti) = d̃W (si, ti). If both si, ti lie in [T − ηr(A
2), T ], then

[0, si ∧ ti] contains [T − ηr(A
3), T − ηr(A

2)], and the minimum of W over this
interval is again bounded from above by −6r , using arguments as for the second
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minimum in (6.19) (or (6.22)). This leads to dW(si, ti) = d̃W (si, ti) also in this
case, which completes the proof of (b). �

We turn to the analogous statement for the pseudo-distance function Dθ of the
Brownian half-plane BHPθ . Recall the definition of (Xθ ,Wθ); cf. Section 6.2.1.

LEMMA 6.8. Assume F holds.

(a) For every t ′ ∈ (−∞,−ηr(A)] ∪ [ηl(A),∞), Dθ(0, t ′) > r .
(b) For every s ′, t ′ ∈ [−ηr(A), ηl(A)] with max{Dθ(0, s′),Dθ(0, t ′)} ≤ r , it

holds that

(6.23) Dθ

(
s′, t ′

) = inf
s′
1,t

′
1,...,s

′
k,t

′
k

k∑
i=1

dWθ

(
s′
i , t

′
i

)
,

where the infimum is over all possible choices of k ∈ N and reals s′
1, . . . , s

′
k, t

′
1,

. . . , t ′k ∈ [−ηr(A
2), ηl(A

2)] such that s ′
1 = s′, t ′k = t ′ and dXθ (t ′i , s′

i+1) = 0 for 1 ≤
i ≤ k − 1.

PROOF. Essentially, one can rely on the identity (6.17) and then follow the
proof of Lemma 6.7. Let us now sketch how to prove (a); the proof of (b) is left to
the reader. If t ′ ∈ (−∞,−ηr(A)], the cactus bound (6.14) gives

Dθ

(
0, t ′

) ≥ − min
�−ηr(A),0�T

Xθ

Wθ .

The very definitions of Wθ and ηr(A) together with the fact that on E1,
min[−A,0] γ < −6r , entail that the minimum is bounded from above by −6r . The
same bound holds if t ′ ∈ [ηl(A),∞), which proves (a). �

Combining Lemmas 6.7 and 6.8, we obtain the following corollary. For the rest
of the proof of Proposition 6.6, we set for u ∈ [0, T ],

I (u) =
{
u if u ∈ [0, T /2],
u − T if u ∈ [T/2, T ].

COROLLARY 6.9. Assume F holds. Let s, t ∈ [0, ηl(A)] ∪ [T − ηr(A), T ].
Then max{D(0, s),D(0, t)} ≤ r if and only if max{Dθ(0, I (s)),Dθ(0, I (t))} ≤ r .
Under these conditions,

D(s, t) = Dθ

(
I (s), I (t)

)
.

PROOF. Let s, t ∈ [0, ηl(A)] ∪ [T − ηr(A), T ]. We first claim that the expres-
sion on the right-hand side of formula (6.18) agrees with that on the right-hand side
of (6.23) for s′ = I (s), t ′ = I (t). First, recall that on F , max{ηl(A

2), ηr(A
2)} ≤
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u0 ≤ T/2. Therefore, u ∈ [0, ηl(A
2)] ∪ [T − ηr(A

2), T ] if and only if I (u) ∈
[−ηr(A

2), ηl(A
2)]. Now let s1, . . . , sk, t1, . . . , tk ∈ [0, ηl(A

2)] ∪ [T − ηr(A
2), T ]

such that s1 = s and tk = t . On F , we have dF (ti, si+1) = 0 if and only if
dXθ (I (ti), I (si+1)) = 0, and d̃W (si, ti) = dWθ (I (si), I (ti)) for each i ∈ {1, . . . , k},
which proves our claim. Next, we argue that max{D(0, s),D(0, t)} ≤ r implies
max{Dθ(0, I (s)),Dθ(0, I (t))} ≤ r . Indeed, the right-hand side of (6.23) special-
ized to s′ = I (s), t ′ = 0 yields an upper bound on Dθ(0, I (s)), and then the equal-
ity of the right-hand sides of (6.18) and (6.23) just shown gives Dθ(0, I (s)) ≤
D(0, s) ≤ r , and the same for Dθ(0, I (t)). The fact that max{Dθ(0, I (s)),

Dθ(0, I (t))} ≤ r implies max{D(0, s),D(0, t)} ≤ r follows from a symmetric ar-
gument.

Under these conditions, Lemma 6.7 shows that the right-hand side of (6.18) is
equal to D(s, t), whereas by Lemma 6.8, the right-hand side of (6.23) is equal to
Dθ(I (s), I (t)). (Note here that on F , s, t ∈ [0, ηl(A)] ∪ [T − ηr(A), T ] is clearly
equivalent to I (s), I (t) ∈ [−ηr(A), ηl(A)].) Using once more the equality of the
right-hand sides of (6.18) and (6.23), we obtain D(s, t) = Dθ(I (s), I (t)), and the
proof of the corollary is complete. �

We complete the proof of Proposition 6.6 by showing that the balls
Br(BDT ,σ (T )) and Br(BHPθ ) are isometric on the event F . By Lemma 6.7(a),
points in Br(BDT ,σ (T )) are on F equivalence classes of the form [s] for s ∈
[−ηr(A), ηl(A)]. By the last statement of Corollary 6.9, we deduce that the map
I from above can be viewed as an isometric map from Br(BDT ,σ (T )) to the quo-
tient BHPθ = (R/{Dθ = 0},Dθ , ρθ ). From Lemma 6.8(a), we see that I maps
Br(BDT ,σ (T )) onto Br(BHPθ ), and it sends ρ, the equivalence class of 0 in
BDT ,σ (T ), to ρθ , the equivalence class of 0 in BHPθ . This completes the proof
of the proposition. �

We end this section by improving Proposition 6.6 to the statement of Theo-
rem 3.7.

6.2.5. Proof of Theorem 3.7. We will need some known facts about the Brow-
nian disks of finite volume, mostly from Bettinelli [9, 10]. We will simply write
Y = ([0, T ]/{D = 0},D,ρ) instead of BDT ,σ (T ), and, accordingly, pY : [0, T ] → Y
denotes the canonical projection.

Although many of our quantities will in the following depend on T , we follow
our convention explained in Remark 6.3 and mostly omit T from the notation.

LEMMA 6.10 (Proposition 17 in [10]). Let s, t ∈ [0, T ] with s �= t be
such that pY(s) = pY(t) (equivalently D(s, t) = 0). Then either dF (s, t) = 0 or
dW(s, t) = 0. Moreover, the topology of Y is equal to the quotient topology of
[0, T ]/{D = 0}.
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LEMMA 6.11 (Theorem 2 and Proposition 21 in [9]). Almost surely, the space
Y is homeomorphic to the closed unit disk D. The boundary of Y as a topological
surface is determined by

p−1
Y (∂Y) = {

s ∈ [0, T ] : Fs = F s

}
.

Let f be a real-valued function defined on an interval J ⊂ R, and let t ∈ J . We
say that t is a right-increase point of f if there exists ε > 0 such that [t, t + ε] ⊂ J

and f (s) ≥ f (t) for every s ∈ [t, t + ε]. Left-increase points are defined similarly,
and a unilateral increase point is a time t which is either a left-increase point or
a right-increase point. Note for instance that the preceding lemma implies that a
point of ∂Y is necessarily of the form pY(s), where s is a unilateral increase point
of F .

LEMMA 6.12 (Lemma 12 in [9]). Almost surely, the sets of unilateral increase
points of F and W are disjoint.

The following lemma is not strictly needed but useful; see also [32].

LEMMA 6.13 (Lemma 11 in [9]). Almost surely, there exists a unique s∗ ∈
(0, T ) such that Ws∗ = min[0,T ] W .

For t ∈ [0, T ), define

�t(r) = inf{s ≥◦ t : Ws = Wt − r}, 0 ≤ r ≤ Wt − Ws∗,

where in the notation ≥◦, it should be understood that we consider the cyclic
order in [0, T ] when T and 0 are identified. More precisely, identifying [0, T )

with R/TZ, for s, t ∈ [0, T ), let [s, t]◦ be the cyclic interval from s to t , namely,
[s, t]◦ = [s, t] if s ≤ t and [s, t]◦ = [s, T ) ∪ [0, t] if t < s. Then �t(r) = s if and
only if Wu > Wt − r for every u ∈ [t, s]◦ \ {s}, and Ws = Wt − r . The properties
that we will need are summarized in the following statement. For the rest of this
section, the time s∗ ∈ (0, T ) is specified as in Lemma 6.13.

LEMMA 6.14. The following properties hold almost surely:

(a) For every t ∈ [0, T ), the path �t = pY ◦ �t is a geodesic path from pY(t) to
x∗ = pY(s∗).

(b) For every geodesic path � to x∗ in Y, there exists a unique t ∈ [0, T ) such
that �t = �.

(c) For every t ∈ [0, T ), the path �t intersects ∂Y, if at all, only at its origin
�t(0).
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(d) Let s, t ∈ [0, T ) with s �= t . Then the intersection of the sets {�s(r) : 0 ≤
r ≤ D(s∗, s)} and {�t(r) : 0 ≤ r ≤ D(s∗, t)} is the set{

�s

(
D(s∗, s) − r

) : 0 ≤ r ≤ max
{

inf[s,t]◦
W, inf[t,s]◦

W

}
− Ws∗

}
.

In particular, there exists ε > 0 such that {�s(r) : 0 ≤ r ≤ ε} and {�t(r) : 0 ≤ r ≤
ε} are disjoint.

We note that the length of �t is given by D(s∗, t) = Wt −Ws∗ ; see, for example,
(2) in [10].

PROOF. (a) and (b) are proved in [10], Proposition 23. To prove (c), we notice
that from the definition of �t , every point in the set {�t(r) : 0 < r ≤ D(s∗, t)} must
be of the form pY(s), where s is a left-increase point of W . By Lemma 6.12, it can-
not be a unilateral increase point of F , and thus pY(s) is not in ∂Y by Lemma 6.11.

To prove (d), we first note that whenever a < max{inf[s,t]◦ W, inf[t,s]◦ W }, it
must hold that inf{u ≥◦ s : Wu = a} = inf{u ≥◦ t : Wu = a}, and the fact that
�s(D(s∗, s) − r) = �t(D(s∗, t) − r) for r in the range given in the statement is
a simple rewriting of this property and of the fact that D(s∗, s) = Ws − Ws∗ . On
the other hand, if max{inf[s,t]◦ W, inf[t,s]◦ W } < a ≤ Ws ∧ Wt , then it is simple to
see that sa = inf{u ≥◦ s : Wu = a} and ta = inf{u ≥◦ t : Wu = a} are such that
dW(sa, ta) > 0, and since both points are left-increase points for W , this implies
that pY(sa) �= pY(ta) by Lemmas 6.12 and 6.10. We leave it to the reader to check
that this implies (d). �

Let a0 > 0, which will be fixed later on, and let O0
BD = [0, ηl(a0)] ∪ [T −

ηr(a0), T ], where

ηl(a0) = inf{t ≥ 0 : Ft ≤ a0}, ηr(a0) = T − sup
{
t ≤ T : Ft ≥ −σ(T ) + a0

}
.

We stress that later, we will argue on an event F where the definitions of
ηl(a0), ηr(a0) coincide with those given in the proof of Proposition 6.6.

We reason on the event that s∗ /∈ O0
BD, which will later be granted (with high

probability) by the fact that T is bound to go to infinity. For now, we only assume
that σ(T ) > 2a0 so that by Lemma 6.11, the points xl = pY(ηl(a0)) and xr =
pY(T − ηr(a0)) are distinct elements of ∂Y (outside an event of zero probability).
Let t∗ ∈ O0

BD be such that Wt∗ = minO0
BD

W (this defines t∗ uniquely a.s., but we
are not going to need this fact explicitly). By (d) in Lemma 6.14, together with
the fact that s∗ /∈ O0

BD, the paths �ηl(a0) and �T −ηr(a0) are disjoint until they first
meet at the point y∗ = pY(t∗). We let P be the union of the segments of �ηl(a0) and
�T −ηr(a0) between xl, xr and y∗.

LEMMA 6.15. In the above setting, the set P is a simple curve in Y from xl to
xr, that intersects ∂Y only at xl and xr. Letting OBD be the connected component of
Y \P that contains pY(0), then OBD is a.s. homeomorphic to the closed half-plane
H, and is the interior of the set pY(O0

BD) in Y.
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PROOF. The fact that P is a simple path follows from the discussion around
its definition, and the fact that it intersects the boundary only at its extremities
follows at once from Lemma 6.14(c). The fact that OBD is a.s. homeomorphic to
H follows from this and the fact that Y is homeomorphic to D. It remains to show
that OBD is the interior of the set pY(O0

BD).
Note that the curve β : x �→ pY(inf{s ∈ [0, T ] : Fs = −x}) is a continuous curve

from [0, σ (T )] to ∂Y with same starting and ending point, and taking distinct val-
ues otherwise. If we view β as defined on the circle R/σ(T )Z, then it realizes a
homeomorphism onto ∂Y. In particular, pY(O0

BD) contains the segment S of ∂Y be-
tween xl and xr that contains ρ = pY(0) (including xl, xr), while pY([0, T ] \ O0

BD)

contains the other segment which is equal to S′ = ∂Y \ S. For every s ∈ [0, T ], let

�s(r) = sup{t ≤ s : Ft = Fs − r}, 0 ≤ r ≤ Fs − F s.

Then pY ◦ �s defines a continuous path in Y from pY(s) to the point π(s) =
pY(sup{t ≤ s : Ft = F t }) which is in ∂Y. Moreover, for every r ∈ (0,Fs − F s],
the point �s(r) is a right-increase point of F , so by Lemma 6.12 it does not be-
long to P \{xl, xr}, since the latter set contains only points of the form pY(t) where
t is a unilateral increase point of W . Clearly, π(s) ∈ S if s ∈ O0

BD, while π(s) ∈ S′
otherwise. We have proved that for every x ∈ OBD, there exists a continuous path
from x to pY(0) not intersecting P , while for every x ∈ Y \ pY(O0

BD), there ex-
ists a continuous path from x to S′ not intersecting P . This shows that OBD and
Y \ pY(O0

BD) are the two connected components of Y \ P . �

To complete the proof of Theorem 3.7, fix r > 0 and 0 < ε < 1. Let a0 be large
enough so that

P

(
min[0,a0]

γ < −2r, min[−a0,0]γ < −2r

)
≥ 1 − ε/4.

Then we choose r0 > r such that, with Wθ the label function of BHPθ ,

P
(
ω
(
Wθ,

[−ηr(a0), ηl(a0)
])

< r0/2
) ≥ 1 − ε/4,

where ω(f, I ) = supI f − infI f is the modulus of continuity of f over the set I .
We now use the event F specified in the proof of Proposition 6.6 on which for
every T ≥ T0(ε/4), the balls Br0(Y) and Br0(BHPθ ) are isometric with probability
at least 1 − ε/4 (in the definition of F we have to make sure that A is chosen so
that A > a0). We can moreover assume that T0 is chosen large enough such that
for T ≥ T0, the probability of s∗ /∈ O0

BD is at least 1 − ε/4. Then the intersection
of F ∩ {s∗ /∈ O0

BD} with{
min[0,a0]

γ < −2r, min[−a0,0]γ < −2r

}
∩ {

ω
(
Wθ,

[−ηr(a0), ηl(a0)
])

< r0/2
}

has probability at least 1 − ε. On this event we claim that there are the inclusions

Br(Y) ⊂ OBD ⊂ Br0(Y).
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FIG. 9. The ball Br(Y) (shaded in green) itself is not simply connected, but it is included in a
simply connected open set OBD ⊂ Y, which is homeomorphic to the closed half-plane H. The set
OBD is bordered by the simple curve P (in red) in Y, which is the union of two geodesic segments
starting from xl and xr, respectively, and by the boundary segment S = pY(O0

BD) ∩ ∂Y. The larger
ball Br0(Y) encompasses OBD.

The second inclusion comes from the fact that for every s ∈ [0, ηl(a0)] ∪ [T −
ηr(a0), T ], we have D(0, s) ≤ dW(0, s) ≤ 2ω(Wθ, [−ηr(a0), ηl(a0)]) (recall that
W = Wθ on the set [−ηr(A

3), ηl(A
3)] on F ). The first inclusion comes from the

cactus bound, with the fact that min[0,a0] γ < −2r and min[−a0,0] γ < −2r , just
as in the proof of (a) in Lemma 6.7. To be more precise, this shows that B2r (Y) ⊂
pY([0, ηl(a0)]∪[T −ηr(a0), T ]), and since OBD is equal to the interior of the latter
set, the wanted inclusion follows. We refer to Figure 9 for an illustration.

Finally, recalling that I maps Br0(Y) isometrically onto Br0(BHPθ ) (see the end
of the proof of Proposition 6.6), we deduce that OBHP = I (OBD) is an open subset
of BHPθ , which concludes the proof of Theorem 3.7.

6.3. Coupling of quadrangulations of large volumes. In this section, we pro-
vide the proofs of Propositions 3.11 and 3.14. The proof of Proposition 3.11 is in
spirit of [20], Lemma 8 and Proposition 9.

PROOF OF PROPOSITION 3.11. Assume 1 � σn � n. Let ε > 0, and set ϑn =
min{σn,n/σn}. Let ((fn, ln),bn) be uniformly distributed over the set Fn

σn
× Bσn ,

and consider a triplet ((f∞, l∞),b∞) of a uniformly labeled critical infinite forest
and a uniform infinite bridge.

We first argue that we can find δ > 0 and n0 such that for all n ≥ n0, we can
construct ((fn, ln),bn) and ((f∞, l∞),b∞) on the same probability space such that
on an event of probability at least 1 − ε, the corresponding balls of radius 2δ

√
ϑn

around the vertices fn(0) and f∞(0) in the associated quadrangulations are isomet-
ric.
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For 0 ≤ k ≤ σn − 1, write τ(fn, k) for the tree of fn rooted at (k), and put
τ(fn, σn) = τ(fn,0). Similarly, define τ(f∞, k) to be the tree of f∞ rooted at (k),
where now k ∈ Z.

As a consequence of Lemmas 5.3 and 5.5, there exist δ′ > 0 and n′
0 ∈ N

such that for n ≥ n′
0, with An = �δ′ϑn�, we can construct ((fn, ln),bn) and

((f∞, l∞),b∞) on the same probability space such that if we let

E1(n, δ′) = {
τ(fn, i) = τ(f∞, i), τ (fn, σn − i) = τ(f∞,−i),0 ≤ i ≤ An

}
∩ {

bn(i) = b∞(i),bn(σn − i) = b∞(−i),1 ≤ i ≤ An

}
∩ {

ln � τ(fn, i) = l∞ � τ(f∞, i),

ln � τ(fn, σn − i) = l∞ � τ(f∞,−i),0 ≤ i ≤ An

}
,

then E1(n, δ′) has probability at least 1 − ε/3. We fix such a δ′. For δ > 0 and
n ∈N, put

E2(n, δ) =
{

min[0,An] b∞ < −5δ
√

ϑn, min[−An,0] b∞ < −5δ
√

ϑn

}

∩ {−b∞(−1) < δ−1},
and let

E3(n, δ) =
{

min[An+1,σn−(An+1)] bn < −5δ
√

ϑn

}
.

Donsker’s invariance principle applied to (b∞(i), i ∈ Z) guarantees that we can
find δ > 0 such that for all sufficiently large n, P(E2(n, δ)) ≥ 1 − ε/3. Moreover,
provided n is large enough and δ > 0 is sufficiently small, Lemma 5.4 ensures
that P(E3(n, δ)) ≥ 1 − ε/3. We fix n0 ≥ n′

0 and δ > 0 such that for all n ≥ n0, the
bounds in the last two displays hold.

From now on, we work on the event E1(n, δ′) ∩ E2(n, δ) ∩ E3(n, δ). Let
(Q

σn
n , v•) = �n((fn, ln),bn) and Q∞∞ = �((f∞, l∞),b∞) be the quadrangulations

constructed from the triplets ((fn, ln),bn) and ((f∞, l∞),b∞) via the Bouttier–
Di Francesco–Guitter mapping. We denote by dn and d∞ the graph distances on
V (Q

σn
n ) and V (Q∞∞). We write

f′n = (
τ(fn, σn − An), . . . , τ (fn, σn − 1), τ (fn,0), . . . , τ (fn,An)

)
for the forest obtained from restricting fn to the last An and the first An + 1 trees,
and identically

f′∞ = (
τ(f∞,−An), . . . , τ (f∞,−1), τ (f∞,0), . . . , τ (f∞,An)

)
.

Recall the cactus bounds (4.3) and (4.6) for Q
σn
n and Q∞∞, respectively. For vertices

v ∈ V (fn) \ V (f′n), we obtain, with (0) = fn(0),

dn

(
(0), v

) ≥ −max
{

min[0,An] bn, min[σn−An,σn−1] bn

}
≥ 5δ

√
ϑn,
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and identically, for vertices v ∈ V (f∞) \ V (f′∞), writing now (0) for f∞(0),
d∞((0), v) ≥ 5δ

√
ϑn. We proceed now similarly to the second part in the proof

of [20], Lemma 8. First, if u ∈ V (fn) is any vertex with dn((0), u) ≤ 5δ
√

ϑn − 1,
then any vertex on a geodesic path from (0) to u in Q

σn
n satisfies the same bound

and must therefore belong to one of the trees in f′n. From the construction of
edges in the Bouttier–Di Francesco–Guitter mapping, we deduce that any edge
of Q

σn
n on such a geodesic path corresponds to an edge of Q∞∞ with the same

endpoints, provided none of these edges in Q
σn
n connect two vertices w and w′

such that the set of vertices between w and w′ in the cyclic contour order around
the forest fn contains the vertices of fn \ f′n. In other words, one wants to avoid
the case where one of the corners in τ(fn,0), . . . , τ (fn,An) would have a suc-
cessor in τ(fn, σn − An), . . . , τ (fn, σn − 1). But on the event E3(n, δ), the set of
vertices between w and w′ would in particular contain a (root) vertex of fn \ f′n
with label less than −5δ

√
ϑn. This would imply that both vertices w and w′ of

such an edge have a label which is smaller than −5δ
√

ϑn, too, in contradiction
to the fact that dn((0), v) ≤ 5δ

√
ϑn − 1 for all vertices v on a geodesic between

(0) and u. We deduce that if u ∈ V (fn) satisfies dn((0), u) ≤ 5δ
√

ϑn − 1, then
d∞((0), u) ≤ dn((0), u). Since in turn any edge of Q∞∞ on a geodesic between (0)

and a vertex u ∈ V (f∞) with d∞((0), u) ≤ 5δ
√

ϑn − 1 does correspond to an edge
of Q

σn
n with the same endpoints, we obtain also dn((0), u) ≤ d∞((0), u). There-

fore, we have that vertices with distance at most 5δ
√

ϑn − 1 from (0) are the same
in Q

σn
n and Q∞∞. Recall from Section 4.5.4 the notation for the metric balls around

the root and (0), respectively. We claim that

(6.24) dn(u, v) = d∞(u, v) whenever u, v ∈ B
(0)

2δ
√

ϑn

(
Qσn

n

)
.

Indeed, if u, v are vertices in B
(0)

2δ
√

ϑn
(Q

σn
n ), then any geodesic connecting u to v

in Q
σn
n must lie entirely in B

(0)

4δ
√

ϑn
(Q

σn
n ), and any edge on such a geodesic corre-

sponds to an edge in Q∞∞. Since the converse is also true, we obtain (6.24), and
with the correspondence of edges between Q

σn
n and Q∞∞ alluded to above we de-

duce that the balls B
(0)

2δ
√

ϑn
(Q

σn
n ) and B

(0)

2δ
√

ϑn
(Q∞∞) are isometric on an event of

probability at least 1 − ε.
Finally, recall from the Bouttier–Di Francesco–Guitter bijection that the root

vertex ρn of Q
σn
n is given by fn(succ−bn(σn)(0)), where conditionally on bn(σn−1),

bn(σn) is uniformly distributed on {bn(σn − 1) − 1, . . . ,0}. Similarly, the root ver-
tex ρ of Q∞∞ is given by f∞(succ−b∞(∂)(0)), where conditionally on b∞(−1),
b∞(∂) is uniformly distributed on {b∞(−1) − 1, . . . ,0}. On the event E1(n, δ′) ∩
E2(n, δ), we can couple bn(σn) and b∞(∂) such that bn(σn) = b∞(∂). More-
over, for n large enough, we have on this event Bδ

√
ϑn

(Q
σn
n ) ⊂ B

(0)

2δ
√

ϑn
(Q

σn
n ) and

Bδ
√

ϑn
(Q∞∞) ⊂ B

(0)

2δ
√

ϑn
(Q∞∞). Therefore, we have equality of Bδ

√
ϑn

(Q
σn
n ) and

Bδ
√

ϑn
(Q∞∞) on the event E1(n, δ′) ∩ E2(n, δ) ∩ E3(n, δ). Local convergence of
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Q
σn
n toward UIHPQ in the sense of dmap is a direct consequence of this, and the

proposition is proved. �

We now turn to the proof of Proposition 3.14. We will adopt the notion of [20],
Section 4.3.1, concerning pruned (pointed) trees. More precisely, a (finite) pointed
tree consists of a pair τ = (τ, ξ), where τ is a tree of finite size and ξ is a dis-
tinguished vertex of τ . Given such a pointed tree τ = (τ, ξ) and h an integer
with 0 ≤ h < |ξ |, P(τ , h) represents the subtree of τ containing all the vertices
u ∈ V (τ) such that the height of the most recent common ancestor of u and ξ

is strictly less than h, together with the ancestor [ξ ]h of ξ at height exactly h.
By pointing P(τ , h) at [ξ ]h, this subtree is itself considered as a pointed tree. If
h ≥ |ξ |, we agree that P(τ , h) = ({∅},∅), where ∅ represents the root vertex of
τ . It is straightforward to see that if τ = (τ, ξ) is a pointed tree and h and h′ are
two integers with h′ ≥ h ≥ 0, then

(6.25) P
((

τ , h′), h) = P(τ , h).

PROOF OF PROPOSITION 3.14. We assume 1 � σn � √
n and fix ε > 0 and

r > 0 for the rest of this proof. We let ((fn, ln),bn) be uniformly distributed over
the set Fn

σn
× Bσn , and for a given R ∈ N, we let ((f′n, l′n),b′

n) be uniformly dis-

tributed over F
Rσ 2

n
σn × Bσn . Identically to the proof of Proposition 3.11, it suffices

to show that we can find R0 > 0 and n0 ∈ N such that for all integers R ≥ R0 and
all n ≥ n0, we can construct ((fn, ln),bn) and ((f′n, l′n),b′

n) on the same probability
space such that on an event of probability at least 1 − ε, the corresponding balls
of radius 2r

√
σn around the vertices fn(0) and f′n(0) in the associated quadrangu-

lations are isometric.
For 0 ≤ k ≤ σn − 1, we let τ(fn, k) be the tree of fn rooted at (k) and denote

by i∗ the smallest index such that |τ(fn, i∗)| ≥ |τ(fn, k)| for all 0 ≤ k ≤ σn − 1.
We shall point the tree τ(fn, i∗), by choosing conditionally on τ(fn, i∗) a vertex
ξn ∈ V (τ(fn, i∗)) uniformly at random. We write (τ (fn, i∗), ξn) for the pointed
tree obtained in this way, and for h ∈ N, we write ln � P((τ (fn, i∗), ξn), h) for the
restriction of the labels ln of fn to the subtree P((τ (fn, i∗), ξn), h) of (τ (fn, i∗), ξn)

pruned at height h; see the notation above. Finally, we let (τi, �i), 0 ≤ i ≤ σn − 1,
be a sequence of independent uniformly labeled critical geometric Galton–Watson
trees.

For H ∈ N, set Hn = Hσn. Recall that the law of ((f′n, l′n),b′
n) depends on R ∈

N. We claim that for each fixed integer H ∈ N, provided n and R are sufficiently
large, we can construct ((fn, ln),bn), ((f′n, l′n),b′

n), ξn, ξ ′
n and (τi, �i) for 0 ≤ i ≤

σn − 1 on the same probability space such that, with i ′∗ being defined as i∗ but in
terms of f′n, the event

E1(n,R,H)

= {
i∗ = i′∗

}∩ {
τ(fn, i) = τ

(
f′n, i

) = τi,0 ≤ i ≤ σn − 1, i �= i∗
}
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∩ {
P

((
τ(fn, i∗), ξn

)
,Hn

) = P
((

τ
(
f′n, i ′∗

)
, ξ ′

n

)
,Hn

) �= ({∅},∅)}
∩ {

bn(i) = b′
n(i),0 ≤ i ≤ σn

}
∩ {

ln � τ(fn, i) = l′n � τ
(
f′n, i

) = �i,0 ≤ i ≤ σn − 1, i �= i∗
}

∩ {
ln � P

((
τ(fn, i∗), ξn

)
,Hn

) = l′n � P
((

τ
(
f′n, i ′∗

)
, ξ ′

n

)
,Hn

)}
has probability at least 1 − ε/2. Let us look separately at the different sets on the
right-hand side. First, from Lemma 5.1 we know that fn has with high probabil-
ity a unique largest tree of order σ 2

n , and its index is uniform in {0, . . . , σn − 1}.
Moreover, Lemma 5.2 asserts that the other trees of fn are close in total variation to
σn − 1 critical geometric Galton–Watson trees. The same holds for f′n, from which
we deduce that fn, f

′
n and τi , 0 ≤ i ≤ σn − 1, can be coupled such that the intersec-

tion of the first two events on the right-hand side has probability at least 1 − ε/3,
say. For the event on the second line concerning the pruned trees, we use that
fact that conditionally on |τ(fn, i∗)| = mn, (τ (fn, i∗), ξn) is uniformly distributed
over the set of all pointed trees of size mn. A similar statement holds for τ(f′n, i ′∗).
Now by Lemma 5.1, for any K > 0, the probability that |τ(fn, i∗)| ≥ Kσ 2

n tends
to one with increasing n, since n � σ 2

n . Similarly, for any given K > 0, by choos-
ing R large enough, we can ensure that |τ(f′n, i ′∗)| ≥ Kσ 2

n holds with a probability
as close to one as we wish for large n. An application of Proposition 7 of [20]
therefore shows that both P((τ (fn, i∗), ξn),Hn) and P((τ (f′n, i ′∗), ξ ′

n),Hn) are
for large R and n close in total variation to the so-called uniform infinite tree (or
Kesten’s tree) pruned at height Hn. Applying the triangle inequality, we see that the
total variation distance between P((τ (fn, i∗), ξn),Hn) and P((τ (f′n, i ′∗), ξ ′

n),Hn)

can be made as small as we wish, provided R and n are taken sufficiently large.
Combining the above coupling with this last observation, we infer that we can

in fact couple fn, f′n, ξn, ξ ′
n and τi for 0 ≤ i ≤ σn − 1 such that the intersection

of the first three events on the right-hand side has probability at least 1 − ε/2
for large R and n. Since the bridges bn and b′

n have both the same law and are
independent of the trees, we can additionally assume that the probability space
carries realizations of bn and b′

n such that bn ≡ b′
n. A similar argument allows us

to couple the labelings ln, l′n and �i such that the last two events on the right-
hand side in the definition of E1(n,R,H) hold true. This proves the claim about
E1(n,R,H).

We will now work on the event E1(n,R,H). Let (Q
σn
n , v•) = �n((fn, ln),bn)

and (Q
σn

Rσ 2
n
,w•) = �Rσ 2

n
((f′n, l′n),b′

n) be the quadrangulations constructed from

((fn, ln),bn) and ((f′n, l′n),b′
n), respectively. Recall that [ξn]Hn denotes the ancestor

of ξn in τ(fn, i∗) at height Hn. Let

Mn = − min
�∅,[ξn]Hn �

ln,

where �∅, [ξn]Hn � is the vertex set of the unique injective path in τ(fn, i∗) con-
necting the (tree) root ∅ to [ξn]Hn . By definition of the labeling ln, conditionally
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on the tree, Mn has the law of the maximum attained by a random walk started
at zero and stopped after Hn many steps, with increments uniformly distributed in
{−1,0,1}. Setting

E2(n,H) = {Mn ≥ 5r
√

σn},
we can ensure by an application of Donsker’s invariance principle that for H ∈ N

sufficiently large (recall that r was fixed at the beginning, and Hn = Hσn), the
event E2(n,H) has probability at least 1 − ε/2. In particular, by choosing H ∈ N

large enough, we obtain that E1(n,R,H) ∩ E2(n,H) has probability at least 1 − ε

for all R, n ∈ N sufficiently large.
It remains to convince ourselves that on the event E1(n,R,H) ∩ E2(n,H), the

balls B
(0)

2r
√

σn
(Q

σn
n ) and B

(0)

2r
√

σn
(Q

σn

Rσ 2
n
) are isometric. Since the arguments are very

close to those given in the proofs of Proposition 3.11 above and [20], Lemma 8,
we only sketch them. Write ∅ = u0, u1, . . . , uHn = [ξn]Hn for the vertices of the
nonbacktracking path connecting ∅ to [ξn]Hn in τ(fn, i∗). Let kn ∈ {0, . . . ,Hn}
such that

ln(ukn) = − min
�∅,[ξn]Hn �

ln.

Recall the identification of V (Q
σn
n ) \ {v•} with V (fn). Denote by dn the graph

distance on V (Q
σn
n ). If v is a vertex of τ(fn, i∗) that does not belong to the subtree

P((τ (fn, i∗), ξn), kn), then the ancestral lines of v and ξn coincide at least up to
level kn. In particular, they both contain the vertex ukn . For such vertices v, we
obtain from the cactus bound (4.3) on the event E1(n,R,H)∩E2(n,H) the bound

dn

(
(0), v

) ≥ 5r
√

σn,

with (0) = fn(0). See [20], Proof of Lemma 8, for the complete argument
(note, however, that (0) might be the root of a tree different from τ(fn, i∗)). On
E1(n,R,H), using additionally (6.25),

P
((

τ(fn, i∗), ξn

)
, kn

) = P
((

τ
(
f′n, i ′∗

)
, ξ ′

n

)
, kn

)
,

and the labelings ln and l′n restricted to the subtrees on the left and right, respec-
tively, agree. Therefore, a similar inequality holds for Q

σn

Rσ 2
n
, for vertices v′ of

τ(f′n, i ′∗) which do not belong to the subtree P((τ (f′n, i ′∗), ξ ′
n), kn). Adapting now

the reasoning of [20], Proof of Lemma 8, to our situation (see also the proof of
Proposition 3.11 above), we obtain that vertices with distance at most 5r

√
σn − 1

from (0) are the same in Q
σn
n and Q

σn

Rσ 2
n

on the event E1(n,R,H)∩E2(n,H), and,

with d ′
n being the graph distance in Q

σn

Rσ 2
n
,

dn(u, v) = d ′
n(u, v) whenever u, v ∈ B

(0)

2r
√

σn

(
Qσn

n

)
.

This completes our proof. �
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6.4. Brownian half-plane with zero skewness. We work in the usual setting
from Section 4.5.4. Our proofs of Theorems 3.3 and 3.6 are essentially conse-
quences of the coupling of balls between the Brownian disk BD

T ,
√

T
and the Brow-

nian half-plane BHP (Proposition 6.6), of the fundamental convergence

(6.26)
(
V
(
Qσn

n

)
, (8/9)−1/4n−1/4dgr, ρn

) (d)−−−→
n→∞ BDσ = BD1,σ

proved in [11], Theorem 1, for the regime σn ∼ σ
√

2n when σ ∈ (0,∞) is a fixed
real, and of the coupling between Q

σn
n and the UIHPQ Q∞∞ (Proposition 3.11).

PROOF OF THEOREM 3.6. In view of Remark 2.10, the result follows if we
show that for every r ≥ 0 and every sequence of positive reals an → ∞,

Br

(
a−1
n · Q∞∞

) (d)−−−→
n→∞ Br(BHP)

in distribution in K. For notational simplicity, we restrict ourselves to the case
r = 1. Fix ε > 0. By Proposition 6.6, we find T0 = T0(ε) > 0 such that for all
T ≥ T0, we can construct copies of BDT ,

√
T and BHP on the same probability

space such that

(6.27) B1(BD
T ,

√
T
) = B1(BHP)

with probability at least 1 − ε.
Let σn = �√2n�. By Proposition 3.11, there exists δ > 0 such that for n large

enough, we can couple Q
σn
n and Q∞∞ on the same probability space such that with

probability at least 1−ε, Bδ
√

σn
(Q

σn
n ) = Bδ

√
σn

(Q∞∞). We can and will assume that

δ < 2T
−1/4

0 . We put mn = �δ−4a4
n�. Then an ≤ δ

√
σmn . With mn taking the role

of n, the last observation enables us to find a coupling between Q
σmn
mn and Q∞∞ on

the same probability space such that for large n, we have with probability at least
1 − ε,

(6.28) Ban

(
Q

σmn
mn

) = Ban

(
Q∞∞

)
.

Let F : K → R be bounded and continuous, and put T = δ−4(8/9). Note that
T ≥ T0. We work with a coupling of Q

σmn
mn and Q∞∞ as well as with a coupling of

BD
T ,

√
T

and BHP such that the properties just mentioned hold. Then∣∣E[F (
B1

(
a−1
n · Q∞∞

))]−E
[
F
(
B1(BHP)

)]∣∣
≤ ∣∣E[F (

a−1
n · Ban

(
Q∞∞

))− F
(
a−1
n · Ban

(
Q

σmn
mn

))]∣∣
+ ∣∣E[F (

B1
(
a−1
n · Qσmn

mn

))]−E
[
F
(
B1(BDT ,

√
T )

)]∣∣
+ ∣∣E[F (

B1(BD
T ,

√
T
)
)− F

(
B1(BHP)

)]∣∣.
Using the coupling (6.28) for the first and the coupling (6.27) for the third sum-
mand on the right-hand side, we see that both of them are bounded from above by
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2ε sup |F |. The second summand converges to zero as n → ∞, using (6.26) and the
scaling relation BD

T ,
√

T
=d T 1/4BD1. This concludes the proof of Theorem 3.6.

�

PROOF OF THEOREM 3.3. We have to show that when 1 � σn � n, we
have for every r ≥ 0 and any sequence 1 � an � min{√σn,

√
n/σn}, Br(a

−1
n ·

Q
σn
n ) −→ Br(BHP) in distribution in K as n → ∞. Let ε > 0 and r ≥ 0. By Propo-

sition 3.11, we can couple Q
σn
n and Q∞∞ on the same probability space such that

with probability at least 1 − ε, for n ≥ n0, Bran(Q
σn
n ) = Bran(Q

∞∞). Then, for
F :K→R bounded and continuous,∣∣E[F (

Br

(
a−1
n · Qσn

n

))− F
(
Br(BHP)

)]∣∣
≤ ∣∣E[F (

a−1
n · Bran

(
Qσn

n

))− F
(
a−1
n · Bran

(
Q∞∞

))]∣∣
+ ∣∣E[F (

Br(BHP)
)− F

(
a−1
n · Bran

(
Q∞∞

))]∣∣.
Under our coupling, the first summand behind the inequality is bounded by
2ε sup |F | provided n ≥ n0. By Theorem 3.6, the second summand converges to
zero as n → ∞. �

REMARK 6.16. Notice that in our proofs of the couplings Proposition 6.6
(between BDσ and BHP) and Proposition 3.11 (between Q

σn
n and UIHPQ), we

construct in fact joint couplings of contour functions, label functions and balls in
the corresponding metric spaces. As a consequence, the theorems proved in this
section can be strengthened in a way we now exemplify based on Theorem 3.6.

Recall that we view the contour and label functions C∞ and L∞ that specify
the UIHPQ Q∞∞ as (random) continuous functions from R to R; cf. Sections 4.5.4
and 4.2. The Brownian half-plane BHP is constructed from the contour and label
functions X0 = (X0

t , t ∈ R) and W 0 = (W 0
t , t ∈ R) specified in Section 6.2.1.

We now claim that for each r ≥ 0 and any positive sequence an → ∞,
(6.29)(

C∞((9/4)a4
n·)

(3/2)a2
n

,
L∞((9/4)a4

n·)
an

,Br

(
a−1
n · Q∞∞

)) (d)−−−→
n→∞

(
X0,W 0,Br(BHP)

)
jointly in the space C(R,R) × C(R,R) ×K. The convergence does also hold with
Br(a

−1
n · Q∞∞) replaced by B

(0)
r (a−1

n · Q∞∞).
To see why (6.29) holds, one has to slightly enhance the proof of Theorem 3.6.

Since all the necessary arguments were already given, we restrict ourselves to a
sketch of proof and leave it to the reader to fill in the details. We assume r = 1 for
simplicity. Let T > 0, denote by (F,W) the contour and label function of BD

T ,
√

T
,

and set F(−t) = F(T − t) + √
T and W(−t) = W(T − t) for t ∈ [0, T ]. Now fix

K > 0.
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First, the arguments in the proof of Proposition 6.6 show that for T > K large,
one can construct a coupling such that with high probability, equality (6.27) holds
jointly with an equality of (F,W) and (X0,W 0) on [−K,K]2 ⊂ [−T ,T ]2.

Second, let mn = �δ−4a4
n� and σmn = �√2mn� be as in the proof of Theo-

rem 3.6. We extend the contour function Cmn of Q
σmn
mn to t ∈ [−(2mn + σmn),0]

by setting Cmn(t) = Cmn(2mn + σmn + t) + σmn . Similarly, we extend the label
function Lmn to [−(2mn + σmn),0], by letting Lmn(t) = Lmn(2mn + σmn + t)

for t ∈ [−(2mn + σmn),−1], and then by linear interpolation on [−1,0] between
Lmn(−1) and Lmn(0) = 0.

From the proof of Proposition 3.11, we deduce that for δ small and n large,
one can construct a coupling such that with high probability, equality (6.28) holds
jointly with an equality of (Cmn,Lmn) and (C∞,L∞) on [−Ka4

n,Ka4
n]2.

Thanks to [9, 11], we already know that the convergence of a−1
n · Q

σmn
mn to

BD
T ,

√
T

(with T = δ−4(8/9)) holds jointly with the convergence

(
Cmn((9/4)a4

n·)
(3/2)a2

n

,
Lmn((9/4)a4

n·)
an

)
(d)−−−→

n→∞ (F,W)

in C([−T ,T ],R)2. Putting these observations together, (6.29) follows.
We come back to display (6.29) in the proof of Theorem 3.4.

6.5. Brownian half-plane with nonzero skewness. Here, we prove Theo-
rem 3.4, which covers the regime

√
n � σn � n when an ∼ 2

√
θn/3σn for some

θ ∈ (0,∞). The parameter θ measures the skewness of the limiting Brownian half-
plane. Note that the regimes where the space BHP corresponding to the choice
θ = 0 appears is already treated in Theorem 3.3.

We work in the usual setting introduced in Section 4.5.4; in particular, the pair
(Q

σn
n , v•) consisting of a quadrangulation and a distinguished vertex is uniformly

distributed over Q•
n,σn

and encoded by a triplet ((fn, ln),bn) ∈ Fn
σn

× Bσn . The
associated contour pair is denoted (Cn,Ln), and the corresponding label function
takes the form Ln(t) = Ln(t) + bn(−Cn(t)), 0 ≤ t ≤ 2n + σn.

It will be convenient to view both Cn and Ln as continuous functions on R.
Let N = 2n + σn. We extend Cn first to [−N,N] by Cn(t) = Cn(N + t) + σn

for t ∈ [−N,0], and then to all reals t by setting Cn(t) = Cn((t ∨ (−N)) ∧ N).
Similarly, we let Ln(t) = Ln(N + t) for t ∈ [−N,−1], with linear interpolation
on [−1,0] between Ln(−1) and 0. Outside [−N,N], we set Ln(t) = Ln((t ∨
(−N)) ∧ N). In this way, we interpret Cn and Ln as elements of C(R,R). Recall
that they completely determine (Q

σn
n , v•).

IDEA OF THE PROOF. For fixed r ≥ 0, the ball Bran(Q
σn
n ) is with high prob-

ability encoded by the union of the first ca2
n and last ca2

n trees of fn for some
c = c(r) > 0, together with their labels and the corresponding bridge values along
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the floor of fn. In Lemma 6.17, we calculate the Radon–Nikodym derivative of the
law of these 2ca2

n trees with respect to the law of 2ca2
n independent critical geo-

metric Galton–Watson trees. In this way, we explicitly relate the laws of Bran(Q
σn
n )

and Bran(Q
∞∞) to each other. Since we already know that a−1

n · Bran(Q
∞∞) con-

verges to Br(BHP0) jointly with its properly rescaled contour and label functions
(see Remark 6.16), it remains to identify the limiting Radon–Nikodym derivative,
which we find to be the Radon–Nikodym derivative of a (two-sided) Brownian
motion with drift −θ with respect to standard Brownian motion. An application of
the Pitman transform then concludes the proof.

Let us now give the details and first introduce some supplementary notation. For
this section, given a continuous function f : R→R and x ∈ R, we let

Ux(f ) = inf
{
t ≤ 0 : f (t) = x

}
, Tx(f ) = inf

{
t ≥ 0 : f (t) = x

}
.

In words, Ux(f ) is the time of the first visit to x to the left of 0, with Ux(f ) = −∞
if there is no such time, and Tx(f ) is the first time f visits x to the right of 0, with
Tx(f ) = ∞ if there is no such time. Of course, we can also apply Tx to functions
in C([0,∞),R), and Ux to functions in C((−∞,0],R).

For f ∈ C(R,R) and x > 0, set

v(f, x) = 1

2

(
T−x(f ) − Ux(f ) − 2x

)
whenever all terms on the right-hand side are finite, and v(f, x) = ∞ otherwise.
Note that if x is an integer and f is the contour path of an infinite forest, then
v(f, x) is the total number of edges of the 2x trees that are encoded by f along
the interval [Ux(f ), T−x(f )].

Let s > 0 be given. For the rest of this section, we will always set sn =
�(3/2)sa2

n�. Since a2
n � σn � n, we will implicitly assume that n is so large such

that 2sn < σn < n.
We first prove an absolute continuity relation on the interval [Usn, T−sn] between

Cn and the contour function C∞ of a critical infinite forest. For that purpose, we
define two probability laws Pn,s , Qn,s on C(R,R) as follows:

Pn,s = L
((

Cn

((
t ∨ Usn(Cn)

)∧ T−sn(Cn)
)
, t ∈ R

))
,

Qn,s = L
((

C∞
((

t ∨ Usn(C∞)
)∧ T−sn(C∞)

)
, t ∈R

))
.

LEMMA 6.17. Let s > 0 and ε > 0. There exists n0 ∈ N such that for all
n ≥ n0, with sn = �(3/2)sa2

n�,∑
f ∈supp(Pn,s )

∣∣Pn,s(f ) − e
2sθ− v(f,sn)

(9/4)a4
n
θ2

Qn,s(f )
∣∣ ≤ ε,

where supp(Pn,s) ⊂ C(R,R) denotes the support of Pn,s . Moreover, the support of
Pn,s is contained in the support of Qn,s , and we have

Qn,s

(
supp(Qn,s)\supp(Pn,s)

) = o(1) as n → ∞.
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PROOF. From the constructions of Cn and C∞, it is clear that each realization
of Pn,s is a realization of Qn,s . Now fix s > 0, and let ε > 0. We first show that for
cv > 0 sufficiently large,

e2sθQn,s

(
f ∈ C(R,R) : v(f, sn) > cva

4
n

) ≤ ε/4 and

Pn,s

(
f ∈ C(R,R) : v(f, sn) > cva

4
n

) ≤ ε/4.(6.30)

Write Tk for the first hitting time of k of a simple random walk started at zero. By
construction of C∞, we have

Qn,s

({
v(f, sn) > cva

4
n

}) = P
(
T−2sn > 2cva

4
n + 2sn

)
,

and standard random walk estimates give the existence of n0 ∈ N and cv > 0 (de-
pending on s, but s is fixed) such that for n ≥ n0, e2sθQn,s({v(f, sn) > cva

4
n}) ≤

ε/4. Similarly,

Pn,s

({
v(f, sn) > cva

4
n

}) = P
(
T−2sn > 2cva

4
n + 2sn | T−σn = 2n + σn

)
,

and since σn � √
n, it is easy to check that the probability on the right is

bounded by the unconditioned probability P(T−2sn > 2cva
4
n + 2sn) ≤ ε/4. This

shows (6.30).
Note that f ∈ supp(Qn,s)\supp(Pn,s) requires v(f, sn) > n. Since a4

n � n, it is
therefore a consequence of the second part of (6.30) that

Qn,s

(
supp(Qn,s)\supp(Pn,s)

) = o(1).

Moreover, recalling that θ and s are fixed, display (6.30) implies that for cv suffi-
ciently large, we have for all n large enough

∑
f ∈supp(Pn,s ):
v(f,sn)>cva4

n

∣∣Pn,s(f ) − e
2sθ− v(f,sn)

(9/4)a4
n
θ2

Qn,s(f )
∣∣ ≤ ε/2.

It remains to argue that for fixed cv and all n large enough, we have also

(6.31)
∑

f ∈supp(Pn,s ):
v(f,sn)≤cva4

n

∣∣Pn,s(f ) − e
2sθ− v(f,sn)

(9/4)a4
n
θ2

Qn,s(f )
∣∣ ≤ ε/2.

In this regard, consider a sequence fn ∈ C(R,R) of functions in the support of Pn,s

such that vn = v(fn, sn) ≤ cva
4
n. Let

xn = σn − 2sn, yn = 2(n − vn) + σn − 2sn.

We can assume that both xn and yn are positive numbers. Let (S(i), i ∈N0) denote
a simple random walk started at S(0) = 0. The probability Pn,s(fn) is given by the
probability to observe 2sn particular trees of total size vn as the first 2sn trees in
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a forest of size n with σn trees. By (4.10) and Kemperman’s formula (4.11), we
obtain

Pn,s(fn) =
xn

yn
2ynP(S(yn) = xn)

σn

2n+σn
22n+σnP(S(2n + σn) = σn)

= xn

yn

2n + σn

σn

2−2(vn+sn) P(S(yn) = xn)

P(S(2n + σn) = σn)
.(6.32)

By definition of C∞, Qn,s(fn) is the probability of a particular realization of 2sn
independent critical geometric Galton–Watson trees with vn edges in total. There-
fore, by (4.10),

(6.33) Qn,s(fn) = 2−2(vn+sn).

Moreover, by assumption on σn and an, we have uniformly in all possible choices
of fn that satisfy vn ≤ cva

4
n,

(6.34)
∣∣∣∣xn

yn

2n + σn

σn

− 1
∣∣∣∣ = o(1).

Since σn � √
n, the fraction of random walk probabilities in (6.32) is not con-

trolled well enough by a standard local central limit theorem as formulated
in (4.12). Instead, we use (4.13) and obtain

P(S(yn) = xn)

P(S(2n + σn) = σn)

= exp
(
−

∞∑
�=1

1

2�(2� − 1)

(
x2�
n

yn
2�−1 − σ 2�

n

(2n + σn)2�−1

))(
1 + o(1)

)
.(6.35)

We now analyze the terms in the sum inside the exponential in the last display,
similar to the proof of Lemma 5.3. First,

x2�
n

yn
2�−1 − σ 2�

n

(2n + σn)2�−1

= σ 2�
n

(2n + σn)2�−1

[
−2�

2sn

σn

+ (2� − 1)
2(vn + sn)

2n + σn

+ O

((
sn

σn

)2)
+ O

((
vn + sn

2n + σn

)2)]
.(6.36)

Using that vn + sn = vn(1 + o(1)), we now observe that

− 2�σ 2�
n

(2n + σn)2�−1

2sn

σn

= (−4�sθ + o(1)
) σ

2(�−1)
n

(2n + σn)2(�−1)
and

(2� − 1)σ 2�
n

(2n + σn)2�−1

2(vn + sn)

2n + σn

= (2� − 1)
2vn

(9/4)a4
n

(
θ2 + o(1)

) σ
2(�−1)
n

(2n + σn)2(�−1)
.
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Since σn � n, we deduce from the last display that if � ≥ 2, all the terms in (6.36)
converge to 0 as n → ∞, whereas for � = 1, the right-hand side of (6.36) is equal
to −4sθ + 2vn

(9/4)a4
n
θ2 + o(1). For n large enough, σn/(2n + σn) < 1/2, so that each

term in the sum in (6.35) is bounded by C(1/2)2(�−1) for some universal constant
C > 0, which is summable. Therefore, by dominated convergence

P(S(yn) = xn)

P(S(2n + σn) = σn)
= exp

(
2sθ − vn

(9/4)a4
n

θ2
)

+ o(1).

Note that all the error terms above do depend on fn only through the constant cv .
Combining the last display with (6.33) and (6.34), display (6.31), and hence the
claim of the lemma follow. �

REMARK 6.18. Note that C∞ is a discrete analog of the contour function
of the Brownian half-plane BHP: The process (C∞(i), i ∈ N0) is a simple ran-
dom walk, and if S = (S(i), i ∈N0) denotes another (independent) simple random
walk, then it is straightforward to check that(

C∞(−i), i ∈N
) =d

(
S(i + 1) − 2 min

0≤�≤i+1
S(�) + 1, i ∈ N

)
,

that is, (C∞(−i), i ∈ N) is a discrete Pitman-type transform of a simple random
walk. In particular, −Uk(C∞) =d T−k(S).

For proving Theorem 3.4, it is convenient to introduce some more notation. Let
us first define rescaled versions Cn,s and Ln,s of the contour and label functions
Cn and Ln that capture the information encoded by the first sn = �(3/2)sa2

n� trees
(τ0, . . . , τsn−1) and the last sn trees (τσn−sn, . . . , τσn−1) of fn,

(
Cn,s(t), t ∈ R

) =
(

1

(3/2)a2
n

Cn

((
(9/4)a4

nt ∨ Usn(Cn)
)∧ T−sn(Cn)

)
, t ∈ R

)
,

(
Ln,s(t), t ∈ R

) =
(

1

an

Ln

((
(9/4)a4

nt ∨ Usn(Cn)
)∧ T−sn(Cn)

)
, t ∈ R

)
.

Let ((f∞, l∞),b∞) encode the UIHPQ, with C∞ and L∞ denoting the asso-
ciated contour and label functions. In analogy to the last display, we define two
random functions C∞

n,s and L∞
n,s from R to R by setting

(
C∞

n,s(t), t ∈R
) =

(
1

(3/2)a2
n

C∞
((

(9/4)a4
nt ∨ Usn(C∞)

)∧ T−sn(C∞)
)
, t ∈ R

)
,

(
L∞

n,s(t), t ∈R
) =

(
1

an

L∞
((

(9/4)a4
nt ∨ Usn(C∞)

)∧ T−sn(C∞)
)
, t ∈ R

)
.

Recall the definition of the contour and label functions Xθ = (Xθ(t), t ∈ R) and
Wθ = (Wθ(t), t ∈ R) which encode the Brownian half-plane BHPθ (in the notation
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used in Section 6.2.1). We set

Xθ,s = (
Xθ,s(t), t ∈ R

) = (
Xθ ((t ∨ Us

(
Xθ ))∧ T−s

(
Xθ )), t ∈ R

)
,

Wθ,s = (
Wθ,s(t), t ∈ R

) = (
Wθ ((t ∨ Us

(
Xθ ))∧ T−s

(
Xθ )), t ∈ R

)
.

Finally, for f ∈ C(R,R), put

λn,s(f ) = exp
(

2sθ − v(f, sn)

(9/4)a4
n

θ2
)
.

PROOF OF THEOREM 3.4. Let r ≥ 0. By Lemma 5.6, our claim follows if we
show that

B(0)
r

(
a−1
n · Qσn

n

) (d)−−−→
n→∞ Br(BHPθ )

in distribution in K, where we recall that θ = limn→∞(3/2)a2
nσn/2n. For n ∈ N

and s > 0, define the events

E1(n, s) =
{

min[0,sn] bn < −3ran, min[σn−sn,σn−1] bn < −3ran

}

∩
{

min[sn+1,σn−(sn+1)] bn < −3ran

}
and similarly

E2(n, s) =
{

min[0,sn] b∞ < −3ran, min[−sn,0] b∞ < −3ran

}
,

E3(s) =
{
min[0,s] γ < −3r, min[−s,0]γ < −3r

}
.

Let ε > 0 be given. Applying Lemma 5.4, we find n0 ∈ N and s > 0 sufficiently
large such that for n ≥ n0, P(E1(n, s)) ≥ 1 − ε. For possibly larger values of n and
s, Donsker’s invariance principle shows that also P(E2(n, s)) ≥ 1−ε, and standard
properties of Brownian motion give P(E3(s)) ≥ 1 − ε for s large enough. We now
fix s > 0 and n0 ∈ N such that for all n ≥ n0, each of the events E1,E2,E3 has
probability at least 1 − ε.

As in the proof of Proposition 3.11, we write τ(f∞, k) for the tree of f∞ which
is attached to (k), k ∈ Z. We identify V (f∞) with V (Q∞∞), as usual. Recall that the
root ρ of UIHPQ is at distance at most −b∞(−1) + 1 away from (0). On the event
E2(n, s), the cactus bound (4.6) thus gives for vertices v ∈ V (Q∞∞) which do not
belong to any of the trees τ(f∞, k), k = −sn, . . . , sn,

d∞(0, v) ≥ −max
{

min[0,sn] b∞, min[−sn,0] b∞
}

≥ 3ran

for large n. Since for vertices u, v in B
(0)
ran(Q

∞∞), any geodesic between u and v

in Q∞∞ lies entirely in B
(0)
2ran

(Q∞∞), we obtain from the construction of edges in
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the Bouttier–Di Francesco–Guitter mapping that the submap B
(0)
ran(Q

∞∞) is a mea-
surable function of (C∞

n,s,L
∞
n,s). A similar argument which we leave to the reader

(see also the first part of the proof of Proposition 3.11) shows that on E1(n, s),
the submap B

(0)
ran(Q

σn
n ) is given by the same function of (Cn,s,Ln,s). Moreover, on

E3(s), Br(BHP) is determined by (X0,s ,W0,s).
By Lemma 5.5, recalling that a2

n � σn, we have for large n∥∥L((bn(σn − sn), . . . ,bn(σn − 1),bn(0),bn(1), . . . ,bn(sn)
))

−L
((

b∞(−sn), . . . ,b∞(−1),b∞(0),b∞(1), . . . ,b∞(sn)
))∥∥

TV ≤ ε.

Combining this bound with Lemma 6.17, the above observations entail that for any
measurable and bounded F : C(R,R)2 ×K→R and n large enough∣∣E[F (

Cn,s,Ln,s,B
(0)
r

(
a−1
n · Qσn

n

))
1E1(n,s)

]
−E

[
λn,s(C∞)F

(
C∞

n,s,L
∞
n,s,B

(0)
r

(
a−1
n · Q∞∞

))
1E2(n,s)

]∣∣ ≤ Cε,(6.37)

where C > 0 is a constant that depends only on F and θ, s, which are fixed.
Recall from the proof of Lemma 6.17 that for each δ > 0, we find cδ > 0 such
that P(v(C∞, sn) > cδa

4
n) ≤ δ. Keeping in mind Remark 6.18, the joint conver-

gence (6.29) thus implies

(
C∞

n,s,L
∞
n,s,B

(0)
r

(
a−1
n · Q∞∞

)) (d)−−−→
n→∞

(
X0,s ,W 0,s,Br(BHP)

)
in C(R,R)2 ×K, and

v(C∞, sn)

(9/4)a4
n

(d)−−−→
n→∞

1

2
(T−s − Us)

(
X0),

where, in hopefully obvious notation, X0 stands for the contour function of the
Brownian half-plane BHP with zero skewness, and X0,s ,W 0,s were defined above
in terms of BHP. For large n, we can therefore ensure that∣∣E[λn,s(C∞)F

(
C∞

n,s,L
∞
n,s,B

(0)
r

(
a−1
n · Q∞∞

))]
−E

[
exp

(
2sθ − (T−s − Us)

(
X0)θ2/2

)
F
(
X0,s ,W 0,s,Br(BHP)

)]∣∣ ≤ ε.(6.38)

We will now rewrite the second expectation in the last display using Girsanov’s
(and implicitly Pitman’s) transform. More specifically, an application of Gir-
sanov’s theorem for Brownian motion with drift −θ (see, e.g., [26], Chapter 3.5
Part C) to the right part (Xθ,s(t), t ≥ 0) as well as to the left part (Xθ,s(t), t ≤ 0)

(recall that the time-reversal of this left part is the Pitman transform of such a
Brownian motion with drift, so that −Us is the first hitting time of −s for this
Brownian motion) shows that for G : C(R,R) →R continuous and bounded,

E
[
exp

(
2sθ − (T−s − Us)

(
X0)θ2/2

)
G
(
X0,s)] = E

[
G
(
Xθ,s)].
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Since on the event E3(s), Br(BHP) is a measurable function of (X0,s ,W 0,s) (and
Br(BHPθ ) is given by the same measurable function of (Xθ,s,Wθ,s)), we obtain

E
[
exp

(
2sθ − (T−s − Us)

(
X0)θ2/2

)
F
(
X0,s,W 0,s ,Br(BHP)

)
1E3(s)

]
= E

[
F
(
Xθ,s,Wθ,s,Br(BHPθ )

)
1E3(s)

]
.(6.39)

Using that the three events E1(n, s), E2(n, s) and E3(s) have all probability at least
1 − ε, a combination of (6.37), (6.38) and (6.39) shows that for large n∣∣E[F (

Cn,s,Ln,s,B
(0)
r

(
a−1
n · Qσn

n

))]−E
[
F
(
Xθ,s,Wθ,s,Br(BHPθ )

)]∣∣ ≤ C′ε

for some C′ depending only on F and s, θ . Clearly, this implies our claim. �

6.6. Coupling of Brownian disks. We aim at showing Theorem 3.12 and
Corollary 3.13. The main ideas are similar to those of Section 6.2, but closer in
spirit to [20]. We begin with showing how Theorem 3.12 implies that IBDσ is
homeomorphic to the pointed closed disk D \ {0}.

PROOF OF COROLLARY 3.13. The arguments are similar to the proof of
Corollary 3.8. First, Theorem 3.12 shows that with probability 1, for every r > 0,
the ball Br(IBDσ ) is contained in an open set of IBDσ homeomorphic to D \ {0}.
In particular, IBDσ is a noncompact surface with a boundary homeomorphic to the
circle S1, and it has only one end. Let us glue a copy D of D along the bound-
ary of IBDσ , hence obtaining a noncompact surface S without boundary, which
is now simply connected. This surface is thus homeomorphic to R2. Again, the
Jordan–Schoenflies theorem shows that any homeomorphism from the boundary
of IBDσ to S1 can be extended to a homeomorphism from S to R2, and this home-
omorphism must send IBDσ to the unbounded region {z : |z| ≥ 1}, which in turn is
homeomorphic to D \ {0}, as wanted. �

For proving Theorem 3.12, we first collect some notation. Throughout this sec-
tion, σ ∈ (0,∞) is fixed, and T denotes always a strictly positive real.

6.6.1. Notation: (infinite-volume) Brownian disk. We again assume that the
following processes are defined on a joint probability space:

• F a first passage Brownian bridge on [0, T ] from 0 to −σ ;
• b a Brownian bridge on [0, σ ] from 0 to 0, multiplied by

√
3, independent of F ;

• B a standard Brownian motion started from B0 = 0, independent of b;
• R, R′ two independent three-dimensional Bessel processes with R0 = R′

0 = 0,
independent of b;

• U0 a uniform random variable in [0, σ ], independent of (F, b,B,R,R′).
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We define the Brownian disk BDT ,σ in terms of the processes F and b and use
the notation for Section 6.2.1. In particular, Z = ZF−F denotes the random snake
driven by F − F , and the label process is given by Wt = b−F t

+ Zt , 0 ≤ t ≤ T .
As for the infinite-volume Brownian disk IBDσ , we will work with the repre-

sentation of the contour process given in Remark 2.9 (and denoted Yσ there). We
define it in terms of the Bessel processes R and R′ and the Brownian motion B

stopped at times TU0 and Tσ . We will moreover write ZI = ZYσ −Yσ

for the ran-
dom snake driven by Yσ − Yσ (see Definition 2.8), and W I

t = b−Yσ
t

+ ZI, t ∈ R,
for the label process associated with IBDσ . Note that we use the same bridge b in
the definition of BDT ,σ and IBDσ .

We now establish a coupling between the processes encoding BDT ,σ and IBDσ ,
similar to Section 6.2 above.

6.6.2. Coupling of contour functions. It will be convenient to write Tx =
inf{t ≥ 0 : Bt < −x} for the first hitting time of (−∞,−x) of the Brownian mo-
tion B , so that (Tx,0 ≤ x ≤ σ) is a stable subordinator of index 1/2 and Laplace
exponent − logE[exp(−λT1)] = √

2λ. Recall that the density of Tx is denoted by
g·(x).

We may write the jump sizes of (Tx,0 ≤ x ≤ σ), together with the times in
[0, σ ] at which they occur, as a point measure

M = ∑
i≥1

δ(�i,Ui),

so that TUi
− TUi− = �i . By well-known properties of subordinators, this mea-

sure is Poisson with intensity measure (2πy3)−1/2 dy ⊗ du1[0,σ ](u). The first
passage bridge consists in the process (Bt ,0 ≤ t ≤ T ) conditioned on the event
{Tσ = T } = {∑i �i = T }. In order to describe the conditional law of M, we fol-
low Pitman ([36], Chapter 4) and fix the ordering �1,�2, . . . as the size-biased
ordering of the jumps, so that conditionally given (�1, . . . ,�i), �i+1 is chosen
from all the remaining jumps with probability that is proportional to its size. The
random variables Ui, i ≥ 1, are then i.i.d. uniform in [0, σ ] and independent of
(�1,�2, . . .). This property will remain true when we condition the measure M
on events that involve only the sequence (�1,�2, . . .).

The following lemma is a consequence of [36], Lemma 4.1.

LEMMA 6.19. Conditionally given {Tσ = T }, the law of �1 is

P(�1 ∈ dy | Tσ = T ) = σ dy

T (2πy)1/2

gT −y(σ )

gT (σ )

= eσ 2/2T

√
T

y
gT −y(σ )dy,

and given {Tσ = T ,�1 = y}, the remaining jumps (�2,�3, . . .) have the same
distribution as (�1,�2, . . .) conditionally given {Tσ = T − y}.
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This allows us to obtain the main technical lemma of this section, which one
should see as the continuum version of Lemmas 5.1 and 5.2: it says that given,
Tσ = T , the jumps behave as those of the unconditioned subordinator (Tx,0 ≤
x ≤ σ), with the exception of the largest jump of size approximately T .

LEMMA 6.20. (a) For every δ ∈ (0,1), one has

lim inf
T →∞ P

(
�1 > (1 − δ)T

∣∣∣∑
i

�i = T

)
= 1.

(b) One has

lim
T →∞

∥∥∥∥L
(
�2,�3, . . .

∣∣∣∑
i

�i = T

)
−L(�1,�2, . . .)

∥∥∥∥
TV

= 0.

PROOF. From the description of the conditional law of �1 provided by
Lemma 6.19, we obtain

P

(
�1 > (1 − δ)T

∣∣∣∑
i

�i = T

)
= eσ 2/2T

∫ δT

0
dx

√
T

T − x
gx(σ )dx,

and, as T → ∞, the latter expression converges to
∫∞

0 gx(σ )dx = 1 by dominated
convergence, since

√
T/(T − x) ≤ (1 − δ)−1/2. This proves (a). For (b), one can

use the second part of Lemma 6.19 to obtain the disintegration

L
(
�2,�3, . . .

∣∣∣∑
i

�i = T

)

=
∫ T

0
dxeσ 2/2T

√
T

T − x
gx(σ )L

(
�1,�2, . . .

∣∣∣∑
i

�i = x

)
.

Since g·(σ ) is the density function of Tσ = ∑
i �i , we also have the disintegration

L(�1,�2, . . .) =
∫ ∞

0
dxgx(σ )L

(
�1,�2, . . .

∣∣∣∑
i

�i = x

)
,

which entails that∥∥∥∥L
(
�2,�3, . . .

∣∣∣∑
i

�i = T

)
−L(�1,�2, . . .)

∥∥∥∥
TV

≤
∫ ∞
T

gx(σ )dx +
∫ T

0

∣∣∣∣eσ 2/2T

√
T

T − x
− 1

∣∣∣∣gx(σ )dx.

The first integral obviously converges to 0, and we can split the second integral at
T/2 and rewrite it, after simple manipulations, as∫ T/2

0

∣∣∣∣eσ 2/2T

√
T

T − x
− 1

∣∣∣∣gx(σ )dx + T

∫ 1/2

0

∣∣∣∣eσ 2/2T

√
1

x
− 1

∣∣∣∣gT (1−x)(σ )dx.
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FIG. 10. The coupling of contour functions stated as Proposition 6.21, with s = s(t) = t − TU0 ,
r = r(t) = T − t .

The first term converges to 0 by dominated convergence, and the second vanishes
as well since gT (1−x)(σ ) ≤ 2σ/

√
πT 3 for every x ∈ [0,1/2]. �

Recall the definitions of F,B,R,R′,U0 from Section 6.6.1. We let T F (x) =
inf{t ≥ 0 : Ft < −x} ∧ T for 0 ≤ x ≤ σ . Similarly, we let �F

0 ,�F
1 ,�F

2 , . . . be the
jump sizes of T F ranked in size-biased order, and UF

0 ,UF
1 , . . . be the correspond-

ing times. For i ≥ 0, we let

eF
i (t) = UF

i + F
(
T F (UF

i −)+ t
)
, 0 ≤ t ≤ �F

i ,

be the excursion of F above level −UF
i ; note that �F

i = T F (UF
i ) − T F (UF

i −).
We also let �1,�2, . . . be the jump sizes of the first-hitting time subordinator

(Tx,0 ≤ x ≤ σ). Figure 10 illustrates the following.

PROPOSITION 6.21. For every ε ∈ (0,1) and α,β > 0, there exists T 0 > 0
such that for every T ≥ T 0, it is possible to couple F,B,R,R′,U0 on the same
probability space in such a way that with probability at least 1 − ε, one has U0 =
UF

0 and

Ft = Bt, 0 ≤ t ≤ T F (U0−) = TU0,

FT −t = BTσ −t , 0 ≤ t ≤ T − T F (U0) = Tσ − TU0

and

eF
0 (t) = Rt, 0 ≤ t ≤ α, eF

0
(
�F

0 − t
) = R′

t , 0 ≤ t ≤ β,

and finally

inf[α,∞)
R ∧ inf[β,∞)

R′ = min
[α,�F

0 −β]
eF

0 .

PROOF. By Lemma 6.20, for T large enough, say T > T 1, it is possible to
couple two sequences �1,�2, . . . and �′

0,�
′
1,�

′
2, . . . on the same probability

space such that:
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• (�1,�2, . . .) has the law of the jump sizes of (Tx,0 ≤ x ≤ σ) ranked in size-
biased order, and

• (�′
0,�

′
1,�

′
2, . . .) has the law of the sequence (�1,�2, . . .) conditionally given∑

i≥1 �i = T ,

in such a way that on an event E1 of probability at least 1 − ε/2, one has

�i = �′
i , i ≥ 1, and �′

0 > T/2.

Extending the probability space if necessary, we can assume that it also supports
an independent family of random variables e0, e1, e2, . . . that are independent nor-
malized Brownian excursions, and U0,U1,U2, . . . that are independent uniform
random variables in [0, σ ], independent of all the rest.

By Itô’s synthesis of Brownian motion from its excursions, if we set, for i ≥ 1,

Bt = −Ui +√
�iei

((
t − ∑

j :Uj<Ui

�j

)/
�i

)
,

whenever
∑

j≥1:Uj<Ui
�i < t ≤ ∑

j≥1:Uj≤Ui
�j , then this a.s. extends to a contin-

uous path (Bt ,0 ≤ t ≤ ∑
i≥1 �i) which is a trajectory of Brownian motion stopped

when first hitting −σ , which occurs at time Tσ = ∑
i≥1 �i . Similarly, setting, this

time for i ≥ 0,

F(t) = −Ui +
√

�′
iei

((
t − ∑

j :Uj<Ui

�′
j

)/
�′

i

)
,

whenever
∑

j≥0:Uj<Ui
�′

i < t ≤ ∑
j≥0:Uj≤Ui

�′
j , this extends to a trajectory of a

first passage bridge (F (t),0 ≤ t ≤ T ) from 0 to −σ , as the notation suggests, and
if we set �F

i = �′
i for i ≥ 0, then, by definition of F , (�F

i , i ≥ 0) is indeed a size-
biased ordering of the jumps of the first hitting time process of negative values
of F .

On the event E1, the two processes B and F coincide on [0,
∑

j≥1:Uj<U0
�j ],

and likewise, BTσ −· and F(T −·) coincide on [0,
∑

j≥1:Uj>U0
�j ]. This yields the

first displayed identity in the statement, since by construction∑
j≥1:Uj<U0

�′
j = T F (U0−),

∑
j≥1:Uj<U0

�j = ∑
j≥1:Uj≤U0

�j = TU0,

while we have∑
j≥1:Uj>U0

�′
j = T − T F (U0),

∑
j≥1:Uj>U0

�j = ∑
j≥1:Uj≥U0

�j = Tσ − TU0 .

Finally, in this construction, and still in restriction to E1, eF
0 = e0(�

′
0·)/

√
�′

0 is an

excursion of Brownian motion with duration �′
0 > T/2. At this point, we can ap-

ply Proposition 3 in [20], in the same way as in the proof of Proposition 4 therein.
Up to a further extension of the probability space, as soon as T is chosen large
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enough, say T > T 2, we can couple this “long” excursion with two independent
Bessel processes R,R′ (and independent of all previously defined random vari-
ables) in such a way that the three last identities of the statement are satisfied on
an event E2 with probability at least 1 − ε/2. This yields the wanted result with
T 0 = T 1 ∨ T 2, since the intersection E1 ∩ E2 has probability at least 1 − ε. �

6.6.3. Isometry of balls in BDT ,σ and IBDσ . As in Section 6.2, we first prove
the following simplification of Theorem 3.12.

PROPOSITION 6.22. Fix σ ∈ (0,∞), and let ε > 0, r ≥ 0. There exists T0 =
T0(ε, r, σ ) such that for all T ≥ T0, we can construct copies of BDT ,σ and IBDσ

on the same probability space such that with probability at least 1 − ε, the balls
Br(BDT ,σ ) and Br(IBDσ ) of radius r around the respective roots are isometric.

With the coupling from the preceding section at hand, the proof of the propo-
sition is a minor modification of [20], Proof of Proposition 4 (compare also with
Proposition 6.6 and its proof). We will point at the necessary modifications and
leave it to the reader to fill in the remaining details.

PROOF. We fix σ ∈ (0,∞), ε > 0 and let r ≥ 0. We work with the notation and
with the processes specified in Section 6.6.1. Let us first introduce a few events.
For K > 0, put

E1(K) =
{

max[0,σ ] b < K

}
.

Then, given A > 0, with ζ = (ζt , t ≥ 0) denoting a Brownian motion started at 0,
let

E2(ζ,A,K) =
{

min[0,A] ζ < −10r−K, min
[A,A2]

ζ < −10r−K, min
[A2,A4]

ζ < −10r−K

}
,

and for A > 0 and α > 0, set

E3(A,α) =
{

inf[α,∞)
R ∧ inf[α,∞)

R′ > A4
}
.

We first choose K sufficiently large such that P(E1) ≥ 1 − ε/6. Then standard
properties of Brownian motion allow us to find A > 0 such that P(E2) ≥ 1 − ε/6
as well, and with such a fixed A, we find by transience of the Bessel process an
α > 0 large enough such that P(E3) > 1 − ε/3.

Recall from Section 6.6.1 and Remark 2.9 the construction of the contour pro-
cess Yσ of IBDσ . On the coupling event E4 = E4(α,T ) described in the statement
of Proposition 6.21 (with β = α), we obtain that

Ft = Yσ
t for t ∈ [0, TU0 + α],

FT −t + σ = Yσ−t for t ∈ [0, Tσ − TU0 + α].
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We now work always conditionally on (F,B,R,R′,U0). Recall that Z = ZF−F

and ZI = ZYσ −Yσ

are the random snakes driven by F − F and Yσ − Yσ , re-
spectively. Similar to the considerations around (6.15) and (6.16) in the proof of
Proposition 6.6, one checks that on the event E4, the conditional covariance func-
tion knowing F of(

Zt,0 ≤ t ≤ TU0 + α
)
,

(
ZT −t ,0 ≤ t ≤ Tσ − TU0 + α

)
is the same as the conditional covariance knowing Yσ of(

ZI
t ,0 ≤ t ≤ TU0 + α

)
,

(
ZI

T −t ,0 ≤ t ≤ Tσ − TU0 + α
)
.

(Note that the special definition of the snake when the driving function is indexed
by (−∞,∞) is used in a crucial way here; see Section 2.2.) Consequently, we
may assume that Z and ZI are coupled such that Zt = ZI

t for t ∈ [0, TU0 + α], and
ZT −t = ZI−t for t ∈ [0, Tσ − TU0 + α]. Still on the event E4, we have F t = Yσ

t
for

t ∈ [0, TU0 + α], and FT −t = Yσ
−t

for t ∈ [0, Tσ − TU0 + α], so that for the label

functions W and W I, we have

Wt = W I
t for t ∈ [0, TU0 +α], WT −t = W I−t for t ∈ [0, Tσ −TU0 +α].

From Proposition 6.21, we derive that for the choice of α from above, the coupling
event E4(α,T ) has probability at least 1− ε/3 provided T is sufficiently large, and
we shall work with such a T . The reminder of the proof is now close to [20], Proof
of Proposition 4. For every x ≥ 0, let

η′
l(x) = sup

{
0 ≤ t ≤ �F

0 /2 : eF
0 (t) = x

}+ TU0,

η′
r(x) = �F

0 − inf
{
�F

0 /2 ≤ t ≤ �F
0 : eF

0 (t) = x
}+ Tσ − TU0,

where we agree that η′
l(x) = −∞ (or η′

r(x) = −∞) if the supremum (or infimum)
is taken over the empty set. Furthermore, let

ηI
l(x) = sup{t ≥ 0 : Rt = x} + TU0,

ηI
r(x) = sup

{
t ≥ 0 : R′

t = x
}+ Tσ − TU0 .(6.40)

Then the process (ZI
ηI

l (x)
, x ≥ 0) has the law of Brownian motion started at ZI

TU0
=

0. Choosing this Brownian motion in the definition of the event E2 from above, so
that on E2, we have

(6.41)

min[0,A]Z
I
ηI

l (·) < −6r − K,

min
[A,A2]

ZI
ηI

l (·) < −6r − K,

min
[A2,A4]

ZI
ηI

l (·) < −6r − K,
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we shall from now on work on the intersection of events

(6.42) G = E1 ∩ E2 ∩ E3 ∩ E4,

which has probability at least 1 − ε.
On E3 ∩ E4, we note that min[α,�F

0 −α] eF
0 = inf[α,∞) R ∧ inf[α,∞) R

′ > A4,

whence for x ∈ [0,A4], η′
l(x) = ηI

l(x) < TU0 + α and η′
r(x) = ηI

r(x) < Tσ − TU0 +
α. It follows that for any x ∈ [0,A4],

Zη′
l(x) = ZI

ηI
l (x)

= ZI
−ηI

r(x)
= ZT −η′

r(x).

We are now almost in a setting where we can appeal to the reasoning in [20],
Section 3.2. We should still adapt the definition of d̃W (s, t) given just before
Lemma 6.7 to the setting considered here. Let s, t ∈ [0, T ]. If s, t lie both in either
[0, TU0 + �F

0 /2] or in [TU0 + �F
0 /2, T ], we let

d ′
W(s, t) = Ws + Wt − 2 min[s∧t,s∨t]W.

Otherwise, we set

d ′
W(s, t) = Ws + Wt − 2 min[0,s∧t]∪[s∨t,T ]W.

Recall the definition of the pseudo-metric D(s, t) associated to the Brownian
disk BDT ,σ . The following statement replaces Lemma 6.7 and is close to [20],
Lemma 5(i).

LEMMA 6.23. Assume G holds.

(a) For every t ∈ [η′
l(A), T − η′

r(A)], D(0, t) > r .
(b) For every s, t ∈ [0, η′

l(A)] ∪ [0, T − η′
r(A)] with max{D(0, s),D(0, t)} ≤ r ,

it holds that

D(s, t) = inf
s1,t1,...,sk,tk

k∑
i=1

d ′
W(si, ti),

where the infimum is over all possible choices of k ∈ N and reals s1, . . . , sk, t1,

. . . , tk ∈ [0, η′
l(A

2)]∪[T −η′
r(A

2), T ] such that s1 = s, tk = t , and dF (ti, si+1) = 0
for 1 ≤ i ≤ k − 1.

PROOF. One can follow the same line of reasoning as in [20], proof of
Lemma 5(i), with one small modification, which is apparent from the proof of (a),
so let us prove this part. If t ∈ [η′

l(A), T −η′
r(A)], then by the cactus bound (6.13),

D(0, t) ≥ Wt − 2 max
{

min
�0,t �TF

W, min
�t,0�TF

W

}
.
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Recalling that Wt = b−F t
+ Zt , we first remark that on the event E3 ∩ E4, since

η′
l(A) < TU0 + α, we have Z = ZI on [0, η′

l(A)]. Since η′
l([0,A]) ⊂ [0, η′

l(A)],
it follows now from (6.41) that the minimum of Z on [0, η′

l(A)] is bounded
from above by −6r − K . But on E1, maxb < K , so that min�0,t �TF

W ≤
min�0,η′

l(A)�TF
W ≤ −6r . A similar argument holds for the second minimum, so

that in fact D(0, t) ≥ 6r whenever t ∈ [η′
l(A), T − η′

r(A)]. For (b), one can fol-
low [20], proof of Lemma 5(i), or modify the proof of (b) in Lemma 6.7. �

Entirely similar, one finds the corresponding statement for the pseudo-metric
DI of IBDσ that replaces Lemma 6.8: In the statement there, η′

r and η′
l have to

be replaced by ηI
r and ηI

l as defined under (6.40), and Dθ , dWθ by DI and dW I .
Following again [20], or adapting the second part of the proof of Proposition 6.6,
these two lemmas lead to the stated isometry between Br(BDT ,σ ) and Br(IBDσ )

on the event G of probability at least 1 − ε, completing thereby the proof of Propo-
sition 6.22. �

It remains to show how Proposition 6.22 can be improved to Theorem 3.12.

6.6.4. Proof of Theorem 3.12. The proof is close in spirit to that of Theo-
rem 3.7: for a fixed r ≥ 0, we must find some r0 > r large enough so that for all T

sufficiently large, the ball Br0(BDT ,σ ) contains with high probability an open set
ABD homeomorphic to the pointed closed disk D \ {0} which, in turn, contains the
ball Br(BDT ,σ ) with high probability. Then we will apply Proposition 6.22 to cou-
ple the balls Br0(BDT ,σ ) and Br0(IBDσ ). The set ABD will be defined as a region
bounded by certain geodesic paths.

We use the notation specified in Section 6.6.1 and abbreviate the Brownian disk
BDT ,σ again by Y = ([0, T ]/{D = 0},D,ρ). As in the proof of Theorem 3.7, we
denote by pY the associated canonical projection. We will also use the geodesic
paths �s, s ∈ [0, T ], in Y respectively from pY(s) to x∗ = pY(s∗) defined around
Lemma 6.14, together with the properties stated there.

We will work on the coupling event G given by (6.42). The parameters of this
event (in particular the real A and the coupling radius r0) will be chosen later on.
Furthermore, we consider another real a0 > 0; below the proof of Lemma 6.24, we
will first choose a0 and then A such that a0 ≤ A4, which we will assume from now
now.

We let A0
BD = [0, η′

l(a0)] ∪ [T − η′
r(a0), T ], where η′

l, η
′
r are defined on G in

the proof of Proposition 6.22. Since a0 ≤ A4, we know on G that η′
l(a0) < ∞ and

the same for η′
r(a0). We will moreover work on the event {s∗ /∈ A0

BD}, which holds
with high probability provided T is large enough.

The set A0
BD will play a role analogous to that of O0

BD in the proof of Theo-
rem 3.7. Note, however, that the points pY(η′

l(a0)) and pY(T − η′
r(a0)) are equal,

and we denote this point by x0. From Lemma 6.11, we know that x0 /∈ ∂Y. We let
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FIG. 11. Illustration of the proof of Theorem 3.12. We look at the disk Y = BDT ,σ from above. The
ball Br(Y) contains the full boundary of Y and is included in the larger ball Br0(Y), whose boundary
in Y is indicated by the loops in blue. The ball Br0(Y) encompasses the open set ABD, which is
homeomorphic to the pointed disk D \ {0}. The set ABD is bordered by the boundary of Y and the
simple loop P (in red), which is formed by two segments of geodesics between x0 and pY(t∗).

t∗ ∈ A0
BD be such that Wt∗ = minA0

BD
W . The geodesic paths �η′

l(a0)
and �T −η′

r(a0)

both start from x0, but by Lemma 6.14(d), they become disjoint until they meet
again for the first time at the point pY(t∗). Therefore, the segments of these
geodesics between x0 and pY(t∗) form a simple loop P , which is disjoint from
the boundary ∂Y by (c) in Lemma 6.11. We point at Figure 11 for an illustration.
The analog of Lemma 6.15 is the following.

LEMMA 6.24. In the above setting, the set P is a simple loop in Y containing
x0 that does not intersect ∂Y. Letting ABD be the connected component of Y \ P

that contains pY(0), then ABD is almost surely homeomorphic to the pointed closed
disk D \ {0}, and is the interior of the set pY(A0

BD) in Y.

PROOF. The proof is very similar to that of Lemma 6.15. The fact that ABD is
a.s. homeomorphic to D \ {0} is a direct consequence of the fact that Y is homeo-
morphic to D and that P is a simple loop not intersecting ∂Y. It only remains to be
proved that ABD is the interior of pY(A0

BD). However, using the paths �s defined in
the proof of Lemma 6.15, it is simple to see that a point in pY(A0

BD) is linked to ∂Y,
and hence to pY(0), by a simple path that intersects P , if at all, only at its starting
point. On the other hand, we claim that for every x ∈ Y \ pY(A0

BD), we can find
a simple path from x to x∗ = pY(s∗) not intersecting P . (Note that since we are
working on the event {s∗ /∈ A0

BD}, we have x∗ /∈ ABD.) Indeed, writing x = pY(s),
such a path can be obtained by concatenating segments of the paths pY ◦ �s and
pY ◦�s∗ . We leave the details to the reader. This proves that ABD and Y \pY(A0

BD)

are the two connected components of Y \ P and, therefore, ABD is the interior of
pY(A0

BD). �
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We turn back to the proof of Theorem 3.12 and fix once for all σ > 0, r > 0, and
0 < ε < 1. Recall the construction of the space IBDσ and the definition of ηI

l(x)

and ηI
r(x) from (6.40) in terms of its contour function. We first choose K > 0 so

large such that the event E1(K) = {max[0,σ ] b < K} considered in the proof of
Proposition 6.22 has probability at least 1 − ε/24. Next, we may choose a0 > 0
large enough such that

P

(
min[0,a0]

ZI
ηI

l (·) < −2r − K

)
≥ 1 − ε/4.

With ω(f, I ) = supI f − infI f , we then fix r0 ≥ r large enough in such a way
that

P
(
ω
(
W I,

[−ηI
r(a0), η

I
l(a0)

]) ≤ r0/2
) ≥ 1 − ε/4.

We now specify the parameters of the coupling event G given by (6.42): we use r0
instead of r , the above real K , and we choose the parameter A large enough such
that A4 ≥ a0. We may moreover choose the remaining parameters α and T in the
definition of G in such a way that P(G) ≥ 1 − ε/4. We recall that on G, one has
η′

l(x) = ηI
l(x) and η′

r(x) = ηI
r(x) for every x ≤ A4, so that these equalities hold in

particular whenever x ≤ a0 by our choice of A. By possibly taking T even larger,
we can moreover ensure that the event {s∗ /∈ A0

BD} has probability at least 1 − ε/4.
We finally work on the event

G ∩
{

min[0,a0]
ZI

ηI
l (·) < −2r − K

}
∩ {

ω
(
W I,

[−ηI
r(a0), η

I
l(a0)

]) ≤ r0/2
}∩ {

s∗ /∈ A0
BD

}
,

which has probability at least 1 − ε. From here on, we may follow the end of
the proof of Theorem 3.7: We replace OBD and OBHP = I (OBD) by ABD and
AIBD = I (ABD), where I is defined as before Corollary 6.9 and defines an isom-
etry between Br0(Y) and Br0(IBDσ ) on the coupling event G. Then, by virtually
the same arguments, we obtain that on the above intersection of events, we have
Br(Y) ⊂ ABD ⊂ Br0(Y). Being the image of ABD under the isometric map I , AIBD

is itself open and homeomorphic to the pointed closed disk, and the proof of The-
orem 3.12 follows.

6.7. Infinite-volume Brownian disk. For proving Theorem 3.2, we will com-
bine the convergence toward the Brownian disk BDT ,σ proved in [11], Theorem 1
(see display (6.26)) with the couplings Theorem 3.12 and Proposition 3.14. We
work in the usual setting specified in Section 4.5.4.

PROOF OF THEOREM 3.2. Let 1 � σn � √
n, and assume that for some σ ∈

(0,∞), an ∼ (4/9)1/4√σn/σ . We have to show that for each r ≥ 0,

Br

(
a−1
n · Qσn

n

) (d)−−−→
n→∞ Br(IBDσ )
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in distribution in K. We fix ε > 0 and r ≥ 0. By Theorem 3.12, we find T0 such
that for all T ≥ T0, we can construct on the same probability space copies of BDT ,σ

and IBDσ such that with probability at least 1 − ε, we have an isometry of balls

(6.43) Br(BDT ,σ ) = Br(IBDσ ).

By Proposition 3.14, we find R0 ≥ T0/(2σ 2) such that for R ≥ R0 and n suffi-
ciently large, we can construct on the same probability space copies of Q

σn
n and

Q
σn

Rσ 2
n

such that with probability at least 1 − ε, there is the isometry

(6.44) Bran

(
Qσn

n

) = Bran

(
Q

σn

Rσ 2
n

)
.

Now let F :K→R be a bounded and continuous function and R ≥ R0. We assume
that Q

σn
n and Q

σn

Rσ 2
n

are constructed on the same probability space such that (6.44)

holds, and similarly BD2Rσ 2,σ and IBDσ so that (6.43) is satisfied. We write∣∣E[F (
Br

(
a−1
n · Qσn

n

))]−E
[
F
(
Br(IBDσ )

)]∣∣
≤ ∣∣E[F (

a−1
n · Bran

(
Qσn

n

))− F
(
a−1
n · Bran

(
Q

σn

Rσ 2
n

))]∣∣
+ ∣∣E[F (

a−1
n · Bran

(
Q

σn

Rσ 2
n

))]−E
[
F
(
Br(BD2Rσ 2,σ )

)]∣∣
+ ∣∣E[F (

Br(BD2Rσ 2,σ )
)− F

(
Br(IBDσ )

)]∣∣.
Using (6.44) and (6.43) (note that 2Rσ 2 ≥ T0), the first and third summand on
the right-hand side are bounded from above by 2ε supF . The scaling property
λ · BD1,σ =d BDλ4,λ2σ for λ > 0 combined with the convergence (6.26) implies
that the second summand converges to zero as n → ∞. This completes the proof
of Theorem 3.2. �

6.8. Brownian disk limits.

PROOF OF COROLLARY 3.15. Depending on the regime, we define the limit
space X as in the statement of Corollary 3.15. We then have to show that for each
r ≥ 0, when T tends to infinity, Br(BDT ,σ (T )) converges in law to the ball of radius
r around the root in X . As usual, we consider only the case r = 1. Let F :K→R

be bounded and continuous. For T ∈ N and n ∈ N, we set

mn(T ) = T n, σn(T ) = ⌊
σ(T )

√
2n

⌋
, an = (8/9)1/4n1/4.

We write ∣∣E[F (
B1(BDT ,σ (T ))

)]−E
[
F
(
B1(X )

)]∣∣
≤ ∣∣E[F (

B1(BDT ,σ (T ))
)]−E

[
F
(
a−1
n · Ban

(
Q

σn(T )
mn(T )

))]∣∣
+ ∣∣E[F (

a−1
n · Ban

(
Q

σn(T )
mn(T )

))]−E
[
F(B1(X )

)]∣∣.
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For each fixed T ∈ N, [11], Theorem 1, and the scaling property of the Brownian
disk imply that the first summand on the right-hand side is bounded by ε, provided
n ≥ n0(T ) (see also (6.26) above for the case T = 1). We now argue by contra-
diction that for large enough T , there exists n0 = n0 = (T , ε) such that for any
n ≥ n0, the second summand is bounded by ε as well. Indeed, assuming this is not
the case, we find two sequences of integers (Tk, k ∈ N), (nk, k ∈ N) with Tk → ∞,
nk → ∞, such that∣∣E[F (

a−1
nk

· Bank

(
Q

σnk
(Tk)

mnk
(Tk)

))]−E
[
F
(
B1(X )

)]∣∣ > ε.

In the first case of the corollary where σ(T ) → 0 as T → ∞ and X = BP, we have√
σnk

(Tk) � ank
� (mnk

(Tk))
1/4, and the last display clearly contradicts Theo-

rem 3.1. In the second case where σ(T ) → ς ∈ (0,∞), we use Theorem 3.2 in-
stead of Theorem 3.1, and an identical argument allows us to complete the proof
in this case, with X given by IBDς . In the fourth case where σ(T )/T → ∞ and
X = SCRT, we apply Theorem 3.5 instead.

Let us finally look at the third case where σ(T ) → ∞, σ(T )/T → θ ∈ [0,∞),
and X = BHPθ . If θ = 0, then, along sequences (Tm,m ∈ N) tending to infinity
for which σ(Tm)/

√
Tm → 0 as m → ∞, we follow the same argumentation by

contradiction and use Theorem 3.3, whereas if lim infm→∞ σ(Tm)/
√

Tm > 0, the
corollary is a direct consequence of Theorem 3.7, and so it is in the case θ > 0.

�
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SUPPLEMENTARY MATERIAL

Supplement to “Classification of scaling limits of uniform quadrangula-
tions with a boundary.” (DOI: 10.1214/18-AOP1316SUPP; .pdf). We provide
the proofs of Lemmas 5.1, 5.2, 5.3 and 5.5, as well as the proof of Theorem 3.5,
where the SCRT appears in the limit.
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