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ERDŐS–FELLER–KOLMOGOROV–PETROWSKY LAW OF
THE ITERATED LOGARITHM FOR SELF-NORMALIZED

MARTINGALES: A GAME-THEORETIC APPROACH

BY TAKEYUKI SASAI, KENSHI MIYABE AND AKIMICHI TAKEMURA1,2

University of Tokyo, Meiji University and Shiga University

We prove an Erdős–Feller–Kolmogorov–Petrowsky law of the iterated
logarithm for self-normalized martingales. Our proof is given in the frame-
work of the game-theoretic probability of Shafer and Vovk. Like many other
game-theoretic proofs, our proof is self-contained and explicit.

1. Main result. Let Sn be a martingale with respect to a filtration {Fn}∞n=0,
and let xn = Sn − Sn−1 be the martingale difference. Various versions of the
law of the iterated logarithm (LIL), assuming different regularity conditions on
the growth of |xn|, have been given in literature. The Erdős–Feller–Kolmogorov–
Petrowsky law of the iterated logarithm (EFKP-LIL [17], Chapter 5.2) is an im-
portant one.

Lévy stated the EFKP-LIL for symmetric Bernoulli random variables without
proving it [13]. Kolmogorov seems to be the first to give a proof. Later, Ville [21]
proved the validity part of EFKP-LIL and Erdős [6] proved both the validity part
and the sharpness part, with a complete proof. EFKP-LIL has been generalized
by Feller [7] for bounded and independent random variables and [8] (see also Bai
[1]) for the i.i.d. case. Further, EFKP-LIL has been generalized for martingales by
Strassen [20], Jain, Jogdeo and Stout [10], Philipp and Stout [16], Einmahl and
Mason [5] and Berkes, Hörmann and Weber [2]. In particular, Einmahl and Mason
[5] proved a martingale analogue of Feller’s result in [7], just as Stout [19] obtained
a martingale analogue of Kolmogorov’s result in [11].

For self-normalized processes, EFKP-LIL was derived by [3, 9] in the i.i.d. case.
However EFKP-LIL has not been derived in the martingale case, even though de
la Peña, Klass and Lai [4] obtained the usual LIL. The purpose of this paper is to
prove EFKP-LIL for self-normalized martingales.

For a positive nondecreasing continuous function ψ(λ), let

I (ψ) :=
∫ ∞

1
ψ(λ)e−ψ(λ)2/2 dλ

λ
.(1.1)

We state our main theorem.
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THEOREM 1.1. Let Sn,n = 1,2, . . . , be a martingale with S0 = 0 and xn =
Sn − Sn−1 be the corresponding martingale difference with respect to a filtration
{Fn}∞n=0 such that

|xn| ≤ cn a.s.

for some Fn−1-measurable random variable cn. Set

A2
n :=

n∑
i=1

x2
i

and suppose ψ is a positive nondecreasing continuous function.
If I (ψ) < ∞, then

(1.2) P
(
Sn < Anψ

(
A2

n

)
a.a.

∣∣ limAn = ∞, lim sup cn

ψ(A2
n)

3

An

< ∞
)

= 1,

where a.a. (almost always) means “except for a finite number of n.”
If I (ψ) = ∞, then

(1.3) P
(
Sn ≥ Anψ

(
A2

n

)
i.o.

∣∣ limAn = ∞, lim sup cn

ψ(A2
n)

3

An

< ∞
)

= 1,

where i.o. (infinitely often) means “for infinitely many n.”

This theorem is a self-normalized version of the result in Einmahl and Mason
[5] and a EFKP-LIL version of the result in de la Peña, Klass and Lai [4]. Note that
our result is not a direct generalization of these results, because the assumptions
in our theorem are somewhat different from those of the previous results. We are
not assuming the existence of the second moment of xn. In the Appendix, we give
examples of martingales which satisfy the assumptions of Theorem 1.1 but do
not possess finite second moments. The order of growth An/(ψ(A2

n))
3 for cn is

currently the best known order for EFKP-LIL even in the independent case ([2]).
We call (1.2) the validity and (1.3) the sharpness of EFKP-LIL.

Implicit in the statements (1.2) and (1.3) is the assumption that

P
(

limAn = ∞, lim sup cn

ψ(A2
n)

3

An

< ∞
)

> 0,

but we are not assuming

P
(

limAn = ∞, lim sup cn

ψ(A2
n)

3

An

< ∞
)

= 1.

Thus (1.2) is equivalent to

(1.4) P
(

limAn = ∞, lim sup cn

ψ(A2
n)

3

An

< ∞, Sn ≥ Anψ
(
A2

n

)
i.o.

)
= 0.
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For our proof, we adopt Shafer and Vovk’s framework of game-theoretic prob-
ability [18]. To prove (1.2), for example, we explicitly construct a nonnegative
martingale diverging to infinity on the event of (1.4).

We use the following notation throughout the paper:

lnk n := ln ln . . . ln︸ ︷︷ ︸
k times

n.

We also fix a small positive δ for the rest of this paper, for example, δ = 0.01. For
our proof, as is often seen in the upper-lower class theory (cf. Feller [8], Lemma 1),
we can restrict our attention to ψ such that

ψL(n) ≤ ψ(n) ≤ ψU(n) for all sufficiently large n,(1.5)

where

ψL(n) := √
2 ln2 n + 3 ln3 n, ψU(n) := √

2 ln2 n + 4 ln3 n.

Here, L means the lower class and U means the upper class. It can be verified that
I (ψU) < ∞ and I (ψL) = ∞.

The rest of this paper is organized as follows. In Section 2, we give a game-
theoretic statement corresponding to our main theorem. In Section 3, we prove
validity, and in Section 4 we prove sharpness.

2. Preliminaries on game-theoretic probability. Before setting up a game-
theoretic framework for our result, we give some general discussion on how game-
theoretic proofs are constructed. The game-theoretic probability initiated by Shafer
and Vovk [18] provides a foundation of probability theory alternative to the stan-
dard measure-theoretic probability. Game-theoretic proofs of standard results, such
as the strong law of large numbers, are self-contained and explicit. Also game-
theoretic results are often stronger than measure-theoretic results, because game-
theoretic results can be immediately translated to measure-theoretic results by re-
placing moves of a player, called Reality, by measure-theoretic random variables.
This is discussed in Chapter 8 of [18]. In this paper, our main result is in fact The-
orem 2.1 below, which can be translated to Theorem 1.1 by replacing xn in the
game SPUFG below by realizations of xn in Theorem 1.1.

Our aim is to prove (1.4) by a game-theoretic argument. Let E denote the
event in (1.4). In order to prove P(E) = 0 in the measure-theoretic sense, we con-
struct a nonnegative martingale Kn which diverges to infinity on E, more precisely
lim supKn = ∞ on E. Then by the martingale convergence theorem for nonneg-
ative martingales we have P(E) = 0. This can be accomplished by setting up an
appropriate game and constructing a betting strategy, such that its capital process
Kn is always nonnegative and Kn diverges to infinity for every path in E. A game-
theoretic proof often looks very different from a measure-theoretic one, because
a game-theoretic proof is based on a path-wise argument and in this sense it is
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deterministic. Verifying a game-theoretic proof consists of checking series of in-
equalities for Kn for a fixed path. Self-normalization is natural for game-theoretic
probability, because the normalization is given by the path itself. In order to deal
with conditional variance, a game should include a setup for pricing the quadratic
variation of a martingale.

In order to state a game-theoretic version of Theorem 1.1, consider the following
simplified predictably unbounded forecasting game (SPUFG, Section 5.1 of [18])
with the initial capital α > 0.

SIMPLIFIED PREDICTABLY UNBOUNDED FORECASTING GAME

Players: Forecaster, Skeptic, Reality
Protocol:

K0 := α.
FOR n = 1,2, . . .:

Forecaster announces cn ≥ 0.
Skeptic announces Mn ∈R.
Reality announces xn ∈ [−cn, cn].
Kn :=Kn−1 + Mnxn.

Collateral Duties: Skeptic must keep Kn nonnegative. Reality must keep Kn from
tending to infinity.

Usually α is taken to be 1, but in Section 4 we use α �= 1 for notational simplicity.
We prove the following theorem, which implies Theorem 1.1 by Chapter 8 of

[18].

THEOREM 2.1. Consider SPUFG. Let ψ be a positive nondecreasing contin-
uous function. If I (ψ) < ∞, Skeptic can force

(2.1) A2
n → ∞ and lim sup cn

ψ(A2
n)

3

An

< ∞ ⇒ Sn < Anψ
(
A2

n

)
a.a.

and if I (ψ) = ∞, Skeptic can force

(2.2) A2
n → ∞ and lim sup cn

ψ(A2
n)

3

An

< ∞ ⇒ Sn ≥ Anψ
(
A2

n

)
i.o.

An advantage of the game-theoretic statement in this theorem is that no as-
sumption is needed on the probability of the conditioning event “A2

n → ∞ and
lim sup cnψ(A2

n)
3/An < ∞.”

We use the same line of argument as in [15] and Chapter 5 of Shafer and Vovk
[18]. We employ a Bayesian mixture of constant-proportion betting strategies.
Here, we give basic properties of constant-proportion betting strategies.

A constant-proportion betting strategy with betting proportion γ > 0 sets

Mn = γKn−1.
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However, Kn becomes negative if γ xn < −1. For simplicity, we consider applying
the strategy (“keep the account open”) as long as γ cn ≤ δ and set Mn = 0 once
γ cn > δ happens (“freeze the account”). Define a stopping time

σγ := min{n | γ cn > δ}.(2.3)

Note the monotonicity of σγ , that is, σγ ′ ≥ σγ if γ ′ ≤ γ . We denote the capital
process of the constant-proportion betting strategy with this stopping time by Kγ

n .
With the initial capital of Kγ

0 = α, the value of Kγ
n is written as

Kγ
n = α

min(n,σγ −1)∏
i=1

(1 + γ xi).

We have

t − t2

2
− t2 × |t | ≤ ln(1 + t) ≤ t − t2

2
+ t2 × |t |

when |t | ≤ δ. Then by taking the logarithm of
∏n

i=1(1 + γ xi), for n < σγ , we have

γ Sn − γ 2A2
n

2
− γ 3A2

nc̄n ≤ ln
(
Kγ

n /α
) ≤ γ Sn − γ 2A2

n

2
+ γ 3A2

nc̄n

and

(2.4) e−γ 3A2
nc̄neγ Sn−γ 2A2

n/2 ≤ Kγ
n /α ≤ eγ 3A2

nc̄neγ Sn−γ 2A2
n/2,

where

c̄n := max
1≤i≤n

ci .

We also set up some notation for expressing the condition in (2.1) and
(2.2). An infinite sequence of Forecaster’s and Reality’s announcements ω =
(c1, x1, c2, x2, . . .) is called a path and the set of paths 	 = {ω} is called the sample
space. Define a subset 	<∞ of 	 by

	<∞ :=
{
ω

∣∣ A2
n → ∞, lim sup

n
cn

ψ(A2
n)

3

An

< ∞
}
.

For an arbitrary path ω ∈ 	<∞, we have

(2.5)

∃C(ω) < ∞,∃n1(ω),∀n > n1(ω),

cn < C(ω)
An

ψ(A2
n)

3 , ψ
(
A2

n

) ≥ 1.

The last inequality holds by the lower bound in (1.5).
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3. Validity. We prove the validity in (2.1) of Theorem 2.1. In this section, we
let α = 1. We discretize the integral in (1.1) as

∞∑
k=1

ψ(k)

k
e−ψ(k)2/2 < ∞.(3.1)

Since xe−x2/2 is decreasing for x ≥ 1, the function λ �→ ψ(λ)
λ

e−ψ(λ)2/2 is decreas-
ing for λ such that ψ(λ) ≥ 1, and convergence of the integral in (1.1) is equivalent
to convergence of the the sum in (3.1).

Convergence of the infinite series in (3.1) implies the existence of a nondecreas-
ing sequence of positive reals ak diverging to infinity (ak ↑ ∞), such that the series
multiplied term by term by ak is still convergent:

Z :=
∞∑

k=1

ak

ψ(k)

k
e−ψ(k)2/2 < ∞.

This is easily seen by dividing the infinite series into blocks of sums less than or
equal to 1/2k and multiplying the kth block by k (see also [14], Lemma 4.15).

For k ≥ 1, let

pk := 1

Z
ak

ψ(k)

k
e−ψ(k)2/2

and consider the capital process of a countable mixture of constant-proportion
strategies

Kn :=
∞∑

k=1

pkKγk
n where γk := ψ(k)√

k
.(3.2)

Note that Kn is never negative. By the upper bound in (1.5), as k → ∞ we have

(3.3) γk ≤ ψU(k)√
k

=
√

2 ln2 k + 4 ln3 k

k
→ 0.

We will show that lim supnKn = ∞ on any path ω ∈ 	<∞ satisfying Sn ≥
Anψ(A2

n) i.o. We bound ZKn as

(3.4) ZKn ≥
�A2

n�∑
k=�A2

n−A2
n/ψ(A2

n)�
pkKγk

n .

We first check that all accounts on the right-hand side of (3.4) are open for suf-
ficiently large n and that the lower bound in (2.4) can be applied to each term of
(3.4) for ω ∈ 	<∞.

LEMMA 3.1. Let ω ∈ 	<∞. Let C = C(ω) in (2.5). For sufficiently large n,

(3.5) c̄n = max
1≤i≤n

ci < (1 + δ)C
An

ψ(A2
n)

3 .
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PROOF. Note that the first n1(ω) c’s that is, c1, . . . , cn1(ω), do not matter since
limn→∞ An/ψ(A2

n)
3 = ∞. For l > n1(ω), by (2.5) we have

cl ≤ C
Al

ψ(A2
l )

3
≤ CAl.

Hence cl such that Al ≤ An/ψ(A2
n)

3 do not matter in c̄n.

For cl such that Al > An/ψ(A2
n)

3, we have

cl ≤ C
Al

ψ(A2
n/ψ(A2

n)
6)3 ≤ C

An

ψ(A2
n/ψ(A2

n)
6)3 = C

An

ψ(A2
n)

3

ψ(A2
n)

3

ψ(A2
n/ψ(A2

n)
6)3 .

But by (1.5), both ψ(A2
n) and ψ(A2

n/ψ(A2
n)

6) are of the order
√

2 ln2 A2
n(1+o(1))

and ψ(A2
n)/ψ(A2

n/ψ(A2
n)

6) → 1 as n → ∞. Hence (3.5) holds. �

LEMMA 3.2. Let ω ∈ 	<∞. For sufficiently large n, σγk
> n for all k =

�A2
n − A2

n/ψ(A2
n)�, . . . , �A2

n�.

PROOF. By the monotonicity of ψ , we have

γk ≤ ψ
(
A2

n

)
/

√⌊
A2

n − A2
n/ψ

(
A2

n

)⌋
for k = �A2

n − A2
n/ψ(A2

n)�, . . . , �A2
n�. Then by the monotonicity of σγ , it suffices

to show

ψ(A2
n)√

�A2
n − A2

n/ψ(A2
n)�

c̄n ≤ δ

for sufficiently large n. By (3.5), the left-hand side is bounded from above by

ψ(A2
n)√

�A2
n − A2

n/ψ(A2
n)�

× (1 + δ)C
An

ψ(A2
n)

3

= (1 + δ)C
An√

�A2
n − A2

n/ψ(A2
n)�

1

ψ(A2
n)

2 .

But this converges to 0 as n → ∞. �

By Lemma 3.2 and the lower bound in (2.4), for sufficiently large n, we have

Kγk
n ≥ e−γ 3

k A2
nc̄neγkSn−γ 2

k A2
n/2, k = ⌊

A2
n − A2

n/ψ
(
A2

n

)⌋
, . . . ,

⌊
A2

n

⌋
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and ZKn can be bounded from below as

ZKn ≥ Z

�A2
n�∑

k=�A2
n−A2

n/ψ(A2
n)�

pk exp
(
γkSn − γ 2

k A2
n

2
− γ 3

k A2
nc̄n

)

=
�A2

n�∑
k=�A2

n−A2
n/ψ(A2

n)�
ak

ψ(k)

k
exp

(
−ψ(k)2

2
+ γkSn − γ 2

k A2
n

2
− γ 3

k A2
nc̄n

)
.

Now we assume that Sn ≥ Anψ(A2
n) i.o. for the path ω ∈ 	<∞. Then for

sufficiently large n such that Sn ≥ Anψ(A2
n), ψ(A2

n)/(ψ(A2
n) − 1) ≤ 1 + δ and

An/(�A2
n − A2

n/ψ(A2
n)�)1/2 ≤ 1 + δ, we bound the exponent part by (2.4) as

−ψ(k)2

2
+ γkSn − γ 2

k A2
n

2
≥ −ψ(k)2

2
+ Anψ

(
A2

n

)ψ(k)√
k

− ψ(k)2

k

A2
n

2

= ψ(k)

(
−1

2

(
1 + A2

n

k

)
ψ(k) +

√
A2

n

k
ψ

(
A2

n

))

≥ −ψ(A2
n)

2

2

(√
A2

n

k
− 1

)2
≥ −ψ(A2

n)
2

2

(
A2

n

k
− 1

)2

≥ −1

2

(
ψ(A2

n)

ψ(A2
n) − 1

)2
≥ −1

2
− 2δ

and by Lemma 3.1

(3.6)

γ 3
k A2

nc̄n ≤ ψ(A2
n)

3

(�A2
n − A2

n/ψ(A2
n)�)3/2 A2

n(1 + δ)C
An

ψ(A2
n)

3

≤ (1 + δ)C

(
An

(�A2
n − A2

n/ψ(A2
n)�)1/2

)3

≤ C(1 + δ)4.

For sufficiently large n, we have

ψ
(
A2

n

) ≤ ψU (
A2

n

)
< ψU(2k)

= √
2 ln2 2k + 4 ln3 2k

< 2
√

2 ln2 k + 3 ln2 k

= 2ψL(k) ≤ 2ψ(k).
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Thus by (3.6),

ZKn ≥
�A2

n�∑
k=�A2

n−A2
n/ψ(A2

n)�
ak

ψ(k)

k
exp

(
−1

2
− 2δ − C(1 + δ)4

)

≥ a�A2
n−A2

n/ψ(A2
n)�

ψ(A2
n)

2A2
n

�A2
n�∑

k=�A2
n−A2

n/ψ(A2
n)�

exp
(
−1

2
− 2δ − C(1 + δ)4

)

≥ a�A2
n−A2

n/ψ(A2
n)�

ψ(A2
n)

2A2
n

(
A2

n

ψ(A2
n)

− 1
)

exp
(
−1

2
− 2δ − C(1 + δ)4

)

= a�A2
n−A2

n/ψ(A2
n)�

(
1

2
− ψ(A2

n)

2A2
n

)
exp

(
−1

2
− 2δ − C(1 + δ)4

)
.

Since a�A2
n−A2

n/ψ(A2
n)� → ∞ as n → ∞, we have shown

ω ∈ 	<∞, Sn ≥ Anψ
(
A2

n

)
i.o. ⇒ lim sup

n→∞
Kn = ∞.

4. Sharpness. We prove the sharpness in (2.2) of Theorem 2.1. As in Sec-
tion 4.2 of [18] and in [14], in order to prove the sharpness, it suffices to show the
following proposition.

PROPOSITION 4.1. Consider SPUFG. Let ψ be a positive nondecreasing con-
tinuous function. If I (ψ) = ∞, then for each C > 0, Skeptic can force

(4.1) A2
n → ∞, lim sup

n
cn

ψ(A2
n)

3

An

≤ C ⇒ Sn ≥ Anψ
(
A2

n

)
i.o.

Once we prove this proposition, we can take the mixture over C = 1,2, . . . .
Then the sharpness follows, because for each ω ∈ 	<∞, there exists C(ω) satisfy-
ing (2.5). We denote

	C :=
{
ω ∈ 	

∣∣ A2
n → ∞, lim sup

n
cn

ψ(A2
n)

3

An

< (1 − δ)C

}
,

	0 :=
{
ω ∈ 	

∣∣ lim
n→∞A2

n < ∞
}
,

	=∞ :=
{
ω ∈ 	

∣∣ A2
n → ∞, lim sup

n
cn

ψ(A2
n)

3

An

= ∞
}
.

We divide our proof of Proposition 4.1 into several subsections. For notational
simplicity, we use the initial capital of α = 1 − 2/e = (e − 2)/e in this section. In
Sections 4.1 and 4.2, we only consider γ and n with n < σγ . As in Lemma 3.2 for
the validity, this condition will be satisfied for sufficiently small γ and relevant n.



EFKP-LIL: A GAME-THEORETIC APPROACH 1145

4.1. Uniform mixture of constant-proportion betting strategies. We consider
a continuous uniform mixture of constant-proportion strategies with the betting
proportion uγ , 2/e ≤ u ≤ 1. This is a Bayesian strategy, a similar one to which
has been considered in [12].

Define

Lγ
n :=

∫ 1

2/e

min(n,σγ −1)∏
i=1

(1 + uγ xi) du, Lγ
0 = α = 1 − e/2.

At round n < σγ this strategy bets Mn = ∫ 1
2/e uγ

∏n−1
i=1 (1 + uγ xi) du. Then by

induction on n < σγ the capital process is indeed written as

Lγ
n = Lγ

n−1 + Mnxn

=
∫ 1

2/e

n−1∏
i=1

(1 + uγ xi) du + xn

∫ 1

2/e
uγ

n−1∏
i=1

(1 + uγ xi) du

=
∫ 1

2/e

n∏
i=1

(1 + uγ xi) du.

Applying (2.4), we have

e−γ 3A2
nc̄n

∫ 1

2/e
euγ Sn−u2γ 2A2

n/2 du ≤ Lγ
n ≤ eγ 3A2

nc̄n

∫ 1

2/e
euγ Sn−u2γ 2A2

n/2 du

for n < σγ . We further bound the integral in the following lemma.

LEMMA 4.2. For n < σγ ,

Lγ
n ≤ eγ 3A2

nc̄ne2γ (Sn/e−γA2
n/e2) if Sn ≤ 2γA2

n/e,(4.2)

Lγ
n ≤ eγ 3A2

nc̄n min
{
eS2

n/(2A2
n)

√
2π

γAn

, eγSn/2
}

if 2γA2
n/e < Sn < γA2

n,(4.3)

Lγ
n ≤ eγ 3A2

nc̄n min
{
eS2

n/(2A2
n)

√
2π

γAn

, eγSn−γ 2A2
n/2

}
if Sn ≥ γA2

n.(4.4)

PROOF. Completing the square, we have

−1

2
u2γ 2A2

n + uγSn = −γ 2A2
n

2

(
u − Sn

γA2
n

)2
+ S2

n

2A2
n

.

Hence by the change of variables

v = γAn

(
u − Sn

γA2
n

)
, du = dv

γAn

,
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we obtain∫ 1

2/e
euγ Sn−u2γ 2A2

n/2 du = eS2
n/(2A2

n)
∫ 1

2/e
exp

(
−γ 2A2

n

2

(
u − Sn

γA2
n

)2)
du

= eS2
n/(2A2

n) 1

γAn

∫ γAn−Sn/An

2γAn/e−Sn/An

e−v2/2 dv.

Then for all cases we can bound Lγ
n from above as

(4.5) Lγ
n ≤ eγ 3A2

nc̄n+S2
n/(2A2

n)

√
2π

γAn

.

Without change of variables, we can also bound the integral
∫ 1

2/e g(u) du,

g(u) := euγSn−u2γ 2A2
n/2, directly as∫ 1

2/e
g(u) du ≤ max

2/e≤u≤1
g(u).

Note that

(4.6) g(2/e) = e2γ (Sn/e−γAn/e2), g(1) = eγSn−γ 2A2
n/2.

We now consider the following three cases.

Case 1. Sn ≤ 2γA2
n/e. In this case, Sn/(γA2

n) ≤ 2/e and by the unimodality of
g(u) we have max2/e≤u≤1 g(u) = g(2/e). Hence (4.2) follows from (4.6).

Case 2. 2γA2
n/e < Sn < γA2

n. In this case, max2/e≤u≤1 g(u) = g(Sn/(γA2
n)) =

eS2
n/(2A2

n) and Lγ
n ≤ eγ 3A2

nc̄neS2
n/(2A2

n). Furthermore, in this case S2
n < γA2

nSn im-
plies S2

n/(2A2
n) < γSn/2 and we also have

(4.7) Lγ
n ≤ eγ 3A2

nc̄neγ Sn/2.

By (4.5) and (4.7), we have (4.3).
Case 3. Sn ≥ γA2

n. Then Sn/(γA2
n) ≥ 1 and max2/e≤u≤1 g(u) = g(1). Hence

(4.8) Lγ
n ≤ eγ 3A2

nc̄neγ Sn−γ 2A2
n/2.

By (4.5) and (4.8), we have (4.4). �

4.2. Buying a process and selling a process. Next, we consider the following
capital process:

(4.9) Qγ
n := 2Lγ

n −Kγ e
n .

This capital process consists of buying two units of Lγ
n and selling one unit of

Kγ e
n . As we show in Lemma 4.3, Kγ e

n cuts off the growth of Lγ
n in Sn ≥ eγA2

n.
This combination of selling and buying is essential in the game-theoretic proof of
LIL in Chapter 5 of [18] and [15].

We want to bound Qγ
n from above.
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LEMMA 4.3. Let

C1 := 2eγ 3A2
nc̄n exp

(
(2e − 1)((1 + e3)γ 3A2

nc̄n + ln 2)

(e − 1)2

)
.(4.10)

Then for n < σγe,

Qγ
n ≤ C1 if Sn ≤ γA2

n/e,(4.11)

Qγ
n ≤ 2eγ 3A2

nc̄n min
{
eS2

n/(2A2
n)

√
2π

γAn

, eγSn

}
if γA2

n/e < Sn < eγA2
n,(4.12)

Qγ
n ≤ C1 if Sn ≥ eγA2

n.(4.13)

REMARK 4.4. In this lemma, C1 depends on c̄n, γ and An through γ 3A2
nc̄n.

However, from Section 4.5 on, we bound γ 3A2
nc̄n from above by a constant. Hence,

C1 can be also taken to be a constant [cf. (4.34)] not depending on γ and An. Also
note that the interval for Sn in (4.12) is larger than the interval in (4.3).

REMARK 4.5. As shown in the following figure, 2Lγ
n increases more slowly

with increasing Sn than Kγ
n .

Sn

Values of Martingales

2Lγ
n

Kγ
n

γA2
n/e eγA2

n

In Section 4.5, we introduce another capital process N γk,D
n which contains many

Qγ
n with various betting ratios γ and we complete the proof of sharpness by the

strategy based on N γk,D
n . This slow increase of Qγ

n or 2Lγ
n enables us to derive the

bound (4.43) and this fact is crucial for our proof of EFKP-LIL.

PROOF OF LEMMA 4.3. We bound Qγ
n = 2Lγ

n − Kγ e
n from above in the fol-

lowing three cases:

(i) Sn ≤ γA2
n/e, (ii) γA2

n/e < Sn < eγA2
n, (iii) Sn ≥ eγA2

n.
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Case (i). In this case, Sn/e − γA2
n/e

2 ≤ 0. Hence (4.11) follows from (4.2)
and Qγ

n ≤ 2Lγ
n .

Case (ii). We again use Qγ
n ≤ 2Lγ

n . If γA2
n/e < Sn ≤ 2γA2

n/e, then

Sn

e
− γA2

n

e2 ≤ γA2
n

e2 ≤ Sn

e

and Lγ
n ≤ eγ 3A2

nc̄ne2γ Sn/e ≤ eγ 3A2
nc̄neγ Sn from (4.2). Otherwise, (4.12) follows

from (4.3) and (4.4).
Case (iii). Since Sn ≥ eA2

nγ > A2
nγ , by (4.8) we have

Lγ
n ≤ eγ 3A2

nc̄neγ Sn−γ 2A2
n/2

and

Qγ
n ≤ 2Lγ

n −Kγ e
n ≤ 2eγ 3A2

nc̄neγ Sn−γ 2A2
n/2 − e−γ 3e3A2

nc̄neγ eSn−γ 2e2A2
n/2

= 2eγ 3A2
nc̄neγ Sn−γ 2A2

n/2
(

1 − 1

2
e−(1+e3)γ 3A2

nc̄neγ (e−1)Sn−(e2−1)γ 2A2
n/2

)
.

Hence if the right-hand side is nonpositive we have Qγ
n ≤ 0:

(4.14)

Sn ≥ eA2
nγ and

−(
1 + e3)

γ 3A2
nc̄n − ln 2 + γ (e − 1)Sn − 1

2

(
e2 − 1

)
γ 2A2

n ≥ 0

⇒ Qγ
n ≤ 0.

Otherwise, write Bn := (1 + e3)γ 3A2
nc̄n + ln 2 and consider the case

γ (e − 1)Sn − 1

2

(
e2 − 1

)
γ 2A2

n ≤ Bn.

Dividing this by e − 1 and also considering Sn ≥ eA2
nγ , we have

γ Sn − 1

2
(e + 1)γ 2A2

n ≤ Bn

e − 1
,(4.15)

−Sn + eA2
nγ ≤ 0.(4.16)

γ × (4.16) + (4.15) gives

1

2
(e − 1)γ 2A2

n ≤ Bn

e − 1
or

1

2
γ 2A2

n ≤ Bn

(e − 1)2 .

Then by (4.15)

γ Sn − 1

2
γ 2A2

n ≤ Bn

e − 1
+ e

2
γ 2A2

n ≤ Bn

e − 1
+ eBn

(e − 1)2 = (2e − 1)Bn

(e − 1)2 .
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Hence just using Qγ
n ≤ 2Lγ

n and (4.8) in this case, we obtain

Qγ
n ≤ 2eγ 3A2

nc̄n exp
(

(2e − 1)((1 + e3)γ 3A2
nc̄n + ln 2)

(e − 1)2

)
= C1.(4.17)

This also covers (4.14) and we have (4.17) for the whole case (iii). �

4.3. Change of time scale and dividing the rounds into cycles. For proving the
sharpness, we consider the change of time scale from λ to k:

λ = e5k lnk = k5k.

By taking the derivative of lnλ = 5k ln k, we have dλ/λ = 5(ln k + 1) dk. Since
lnk and ln k + 1 coincide within a constant factor, the integrability condition is
written as∫ ∞

1
ψ(λ)e−ψ(λ)2/2 dλ

λ
= ∞ ⇔

∫ ∞
1

(lnk)ψ
(
e5k lnk)e−ψ(e5k lnk)2/2 dk = ∞.

Let f (x) := ψ(e5x lnx)e−ψ(e5x lnx)2/2. Since xe−x2/2 is decreasing for x ≥ 1, the
function f (x) is decreasing for x such that ψ(e5x lnx) ≥ 1. Thus, for sufficiently
large k and x such that k ≤ x ≤ k + 1, we have

1

2
ln(k + 1)f (k + 1) ≤ lnkf (x + 1) ≤ lnxf (x) ≤ ln(k + 1)f (x) ≤ 2 lnkf (k).

Hence, we have ∫ ∞
1

(ln k)ψ
(
e5k lnk)e−ψ(e5k lnk)2/2 dk = ∞

⇔
∞∑

k=1

(lnk)ψ
(
e5k lnk)e−ψ(e5k lnk)2/2 = ∞.

Then it suffices to show (4.1) if
∑∞

k=1(ln k)ψ(e5k ln k)e−ψ(e5k lnk)2/2 = ∞.
As in Chapter 5 of [18] and [15], we divide the time axis into “cycles.” However,

unlike in Chapter 5 of [18] and [15], our cycles are based on stopping times. Let

(4.18) nk := k5k, k = 1,2, . . . ,

and define a family of stopping times

(4.19) τk := min
{
n | A2

n ≥ nk

}
.

We define the kth cycle by [τk, τk+1], k ≥ 1. Note that τk is finite for all k if
and only if A2

n → ∞. Betting strategy for the kth cycle is based on the following
betting proportion:

(4.20) γk := ψ(nk+1)√
nk+1

k2.

Note that γk in (4.20) is slightly different from (3.2).
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For the rest of this section, we check the growth of various quantities along the
cycles. Let ω ∈ 	C . For sufficiently large n,

(4.21) |xn| ≤ cn ≤ C
An

ψ(A2
n)

3 .

Furthermore A2
n = A2

n−1 + x2
n . This allows us to bound x2

n and A2
n in terms of

A2
n−1. By squaring (4.21), we have

(4.22) x2
n ≤ C2 A2

n−1

ψ(A2
n)

6 − C2

and

(4.23) A2
n = A2

n−1 + x2
n ≤ A2

n−1

(
1 + C2

ψ(A2
n)

6 − C2

)
= A2

n−1
ψ(A2

n)
6

ψ(A2
n)

6 − C2 .

Since ψ(A2
n)

6/(ψ(A2
n)

6 − C2) → 1 as n → ∞, we have

lim
n→∞

A2
n

A2
n−1

= 1.

Note that A2
τk−1 < nk ≤ A2

τk
by the definition of τk . Hence for ω ∈ 	C , we also

have

(4.24) lim
k→∞

A2
τk

nk

= 1.

The limits in the following lemma will be useful for our argument.

LEMMA 4.6. For ω ∈ 	C ,

(4.25)
lim

k→∞
ψU(nk)

ψ(nk+1)
= 1, lim

k→∞
k5A2

τk

nk+1
= e−5,

lim
k→∞γkAτk

ψ(nk+1) = 0.

PROOF. All of ψU(nk), ψU(nk+1), ψL(nk), ψL(nk+1), ψ(nk+1),
ψ(nk+1/k4) are of the order

(4.26)
√

2 ln ln e5k lnk
(
1 + o(1)

) = √
2 lnk

(
1 + o(1)

)
as k → ∞ and the first equality holds by (1.5). The second equality holds by (4.24)
and

lim
k→∞

k5nk

nk+1
= lim

k→∞
k5(k+1)

(k + 1)5(k+1)
= lim

k→∞

(
1 − 1

k + 1

)5(k+1)

= e−5.

Then A2
τk

/nk+1 = (1 + o(1))nk/nk+1 = O(k−5) and the third equality holds by

γkAτk
ψ(nk+1) ≤ ψ(nk+1)

2k2(
(1 + δ)nk/nk+1

)1/2 → 0 (k → ∞). �
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4.4. Stopping times for aborting and sequential freezing for each cycle. In
(4.32) of the next section, we will introduce another capital process Mγk,k

n , which
will be employed in each cycle. Here, we introduce some stopping times for abort-
ing the cycle and for sequential freezing of accounts in Mγk,k

n .
We say that we abort the kth cycle, when we freeze all accounts in the kth cycle

and wait for the (k + 1)th cycle. There are two cases for aborting the kth cycle.
The first case is when some cn is too large for ω ∈ 	C . Define

(4.27) σk,C := min
{
n ≥ τk | cnψ

(
A2

τk

)3
> (1 + δ)CAn−1

}
.

We will abort the kth cycle if σk,C < τk+1. Note that for ω ∈ 	C , there exists k1(ω)

such that

(4.28) σk,C = ∞ for k ≥ k1(ω).

Another case is when Sn is too large. Define

νk := min
{
n ≥ τk

∣∣ Anψ
(
A2

n

)
< Sn

}
.(4.29)

If νk < τk+1, then Skeptic is happy to abort the kth cycle, because he wants to
force Sn ≥ Anψ(A2

n) i.o. The above two stopping times will be used in the final
construction of a dynamic strategy in Section 4.6.

For each cycle, we define another family of stopping times indexed by w =
1, . . . , �lnk�, by

τk,w := min
{
n

∣∣ A2
n ≥ e2(w+2) nk+1

k4

}
(4.30)

for sequential freezing of accounts of Mγk,k
n in (4.32). We have τk ≤ τk,w for k ≥ 1

and w ≥ 1, because

nk+1

k4 = (k + 1)5(k+1)

k4 > k5k = nk.

LEMMA 4.7. Let ω ∈ 	C . τk,�lnk� ≤ τk+1 for sufficiently large k.

PROOF. By A2
τk,w−1 ≤ e2(w+2)nk+1/k4 and by (4.22), for sufficiently large k

we have

x2
τk,w

≤ (1 + δ)C2
A2

τk,w−1

ψ(A2
τk

)6 ≤ (1 + δ)C2

ψ(A2
τk

)6 × e2(w+2)nk+1

k4

and

A2
τk,w

≤ A2
τk,w−1 + x2

τk,w
≤ (1 + δ)e2(w+2) nk+1

k4 .(4.31)

Then

A2
τk,�ln k� ≤ (1 + δ)

(
e2(ln k+2) nk+1

k4

)
= (1 + δ)e4 nk+1

k2 ≤ nk+1 ≤ A2
τk+1

. �
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We also compare τk,w to σγke
−w+1 defined in (2.3). This is needed for applying

the bounds derived in previous sections to Mγk,k
n in the next section.

LEMMA 4.8. Let ω ∈ 	C . τk,w ≤ σγke
−w+1 for sufficiently large k.

PROOF. By (4.31) and by Lemma 3.1, for sufficiently large k

γke
−w+1c̄τk,w

≤ ψ(nk+1)√
nk+1

k2e−w+1 × (1 + δ)2C
ew+2√nk+1

k2ψ(A2
τk

)3

≤ (1 + δ)2Ce3 ψ(nk+1)

ψ(A2
τk

)3 ≤ δ,

because ψ(nk+1)/ψ(A2
τk

)3 → 0 as k → ∞ by (4.26). �

4.5. Further discrete mixture of processes for each cycle with sequential freez-
ing. We introduce another discrete mixture of capital processes for the kth cycle.
Define

(4.32)

Mγk,k
n := 1

�lnk�
�lnk�∑
w=1

Qγke
−w

min(n,τk,w)

= 1

�ln k�
�ln k�∑
w=1

(
2Lγke

−w

min(n,τk,w) −Kγke
−w+1

min(n,τk,w)

)
.

As we show in Lemma 4.10, the growth of Mγk,k
n can be bounded from above

because of splitting the initial capital into �ln k� accounts and applying Qγke
−w

min(n,τk,w)

to each account. This boundedness of Mγk,k
n is important because we use Mγk,k

n in
the form of (4.37) below. Note that the wth account in the sum of Mγk,k

n is frozen
at the stopping time τk,w . This is needed since the bound for cn is growing even
during the kth cycle.

In order to bound Mγk,k
n , we first bound C1 in (4.10) for each w in the sum of

(4.32) by a constant independent of n. Note that we only need to consider n ≤ τk,w

for the wth account.

LEMMA 4.9. Let ω ∈ 	C . (γke
−w)3A2

nc̄n, and hence C1 are bounded from
above by(

γke
−w)3

A2
nc̄n ≤ (1 + δ)5Ce6,(4.33)

C1 ≤ 2e(1+δ)5Ce6
exp

(
(2e − 1)((1 + δ)5Ce6(1 + e3) + ln 2)

(e − 1)2

)
(4.34)

=: C̄1

for sufficiently large k.
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PROOF. By (4.26), for sufficiently large k

ψ(nk+1)

ψ(A2
τk,w

)
≤ ψ(nk+1)

ψ(nk)
≤ 1 + δ.(4.35)

Thus

γ 3
k e−3wA2

min(n,τk,w)c̄min(n,τk,w) ≤ γ 3
k e−3w × A2

τk,w
× c̄min(n,τk,w)

≤ ψ(nk+1)
3

n
3/2
k+1

k6e−3w × A2
τk,w

× (1 + δ)C
Aτk,w

ψ(A2
τk

)3

≤ (1 + δ)C
ψ(nk+1)

3

ψ(A2
τk

)3 k6e−3w
A3

τk,w

n
3/2
k+1

≤ (1 + δ)5Ce6. �

LEMMA 4.10. Let ω ∈ 	C . For sufficiently large k,

(4.36)
Mγk,k

n ≤ C̄1 + 2

�lnk�e(1+δ)5Ce6
max

γ∈[γk/k,γk]

(
min

{
eS2

n/(2n)

√
2π

γAn

, eγSn

})
,

n ∈ [τk, τk+1],
where C̄1 is given by the right-hand side of (4.34).

PROOF. We have |γke
−wc̄min(n,τk,w)| ≤ |γke

−w+1c̄min(n,τk,w)| ≤ δ by
Lemma 4.8. Then we can complete the proof of (4.36) by Lemma 4.3 and
Lemma 4.8 because the length of the interval{

w
∣∣ Sn

ne
< γ e−w <

Sne

n

}
is equal to 2. �

As in Chapter 5 of Shafer and Vovk [18], we use Mγk,k
n in the following form:

(4.37)

N γk,D
n := α + 1

D
�ln k�ψ(nk+1)e

−ψ(nk+1)
2/2(

α −Mγk,k
n−τk

)
,

α = 1 − 2

e
, D = 24

√
2πe(1+δ)5e6C + 4C̄1

α
.

Here, we give a specific value of D for definiteness, but from the proof below it will
be clear that any sufficiently large D can be used. Since the strategy for Mγk,k

n−τk
is

applied only to xn’s in the cycle, α = N γk,D
τk =Mγk

0 . Concerning N γk,D
n , we prove

the following two propositions.
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PROPOSITION 4.11. Let ω ∈ 	C . Suppose that

−Anψ
U (

A2
n

) ≤ Sn ≤ Anψ
(
A2

n

) ∀n ∈ [τk, τk+1](4.38)

and τk+1 < σk,C . Then for sufficiently large k

N γk,D
n ≥ α

2
∀n ∈ [τk, τk+1],(4.39)

and

N γk,D
τk+1

≥ α

(
1 + 1 − δ

D
�ln k�ψ(nk+1)e

−ψ(nk+1)
2/2

)
.(4.40)

PROOF. In our proof, we denote t = n− τk , St = Sn −Sτk
and A2

t = A2
n −A2

τk

for n > τk . For proving (4.39), we use (4.36) for St . We bound Mγk,k
t from above.

By the term 2
�lnk� on the right-hand side of (4.36), it suffices to show

St ≤ Aτk
ψU (

A2
τk

) +
√

A2
τk

+ A2
t ψ

(
A2

τk
+ A2

t

)
⇒ ψ(nk+1)e

−ψ(nk+1)
2/22e(1+δ)5e6C min

{
eS2

t /(2A2
t )

√
2π

γAt

, eγ St

}
≤ Dα

4

∀γ ∈ [γk/k, γk],∀t ∈ [0, τk+1 − τk]
for sufficient large k. Let

c1 = 9

(1 + 2δ)2 s.t.
1

2
− 1√

c1
− δ > 0.(4.41)

We distinguish two cases:

(a) A2
t ≤ ψ(nk+1)

2

c1γ 2 , (b)
ψ(nk+1)

2

c1γ 2 < A2
t ≤ A2

τk+1
− A2

τk
.

For case (a), Aτk
ψU(A2

τk
) ≤ (1 + δ)Aτk

ψ(nk+1) by the first equality in
Lemma 4.6 for sufficiently large k. Also ψ(A2

τk
+ A2

t ) ≤ ψ(nk+1). Hence in this
case

γ St ≤
(
(1 + δ)γAτk

+
√

γ 2A2
τk

+ ψ(nk+1)2/c1

)
ψ(nk+1).

Then for γ ≤ γk by the third equality in Lemma 4.6,

γ St ≤
(
(1 + δ)γkAτk

+
√

γ 2
k A2

τk
+ ψ(nk+1)2/c1

)
ψ(nk+1)

= ψ(nk+1)
2
(

1√
c1

+ δ

)(4.42)
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for sufficiently large k. Since

ψ(nk+1)e
−ψ(nk+1)

2/22e(1+δ)5e6CeγSt

≤ ψ(nk+1) exp
(
−ψ(nk+1)

2
(

1

2
− 1√

c1
− δ

))
2e(1+δ)5e6C

→ 0 (k → ∞),

we have N γk,D
n ≥ α/2 uniformly in γ ∈ [γk/k, γk].

For case (b), ψ(nk+1)/
√

c1 < γAt and St ≤ ((1+δ)Aτk
+

√
A2

τk
+ A2

t )ψ(nk+1).
Hence
(4.43)

ψ(nk+1)e
−ψ(nk+1)

2/2 × 2e(1+δ)5e6CeS2
t /(2A2

t )

√
2π

γAt

≤ ψ(nk+1)e
−ψ(nk+1)

2/2

× 2e(1+δ)5e6C
√

2π
√

c1

ψ(nk+1)
exp

(((1 + δ)Aτk
+

√
A2

τk
+ A2

t )
2

2A2
t

ψ(nk+1)
2
)

= 2e(1+δ)5e6C
√

2π
√

c1

× exp
((1 + (1 + δ)2)A2

τk
+ 2(1 + δ)Aτk

√
A2

τk
+ A2

t

2A2
t

ψ(nk+1)
2
)
.

For γ ≤ γk ,

ψ(nk+1)
2

c1γ 2 < A2
t

⇒ A2
τk

A2
t

ψ(nk+1)
2 < c1γ

2A2
τk

≤ c1γ
2
k A2

τk

= c1
A2

τk

nk+1
k4ψ(nk+1)

2 = O
(
k−1 lnk

)
.

Hence ψ(nk+1)
2A2

τk
/A2

t → 0 as k → ∞. Similarly, ψ(nk+1)
2Aτk

/At → 0 as k →
∞, because ψ(nk+1)

2Aτk
/At = O(k−1/2(ln k)3/2). Therefore, the right-hand side

of (4.43) is bounded from above by 2e(1+δ)5e6C
√

2π
√

c1(1 + δ) for sufficiently
large k and

ψ(nk+1)e
−ψ(nk+1)

2/2 × 2e(1+δ)5e6CeS2
t /(2A2

t )

√
2π

γAt

≤ Dα

4
,

with the choice of D in (4.37) and c1 in (4.41). This proves (4.39).
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Now we prove (4.40). We focus on the wth account when n ≥ τk,w . Recall that
in this proof we have been denoting A2

t = A2
n − A2

τk
. Similarly, we denote A2

τk,w

instead of A2
τk,w

− A2
τk

. Thus

e2(w+2) nk+1

k4 − A2
τk

≤ A2
τk,w

.(4.44)

We will show that lim supk→∞Mγk,k
τk+1−τk

≤ 0, if

(4.45)
Sτk,w

≤ Aτk
ψ

(
A2

τk

) + Aτk,w
ψ

(
A2

τk,w

)
≤ ψ(nk+1){Aτk

+ Aτk,w
} ≤ 2ψ(nk+1)Aτk,w

.

We bound

Lγke
−w,k

τk,w
:=

∫ 1

2/e
exp

(
uγke

−wSτk,w
− u2γ 2

k e−2wA2
τk,w

/2
)
du

from above. Because uγke
−wSτk,w

− u2γ 2
k e−2wA2

τk,w
/2 is maximized at u =

Sτk,w
/(γke

−wA2
τk,w

) and

Sτk,w

γke−wA2
τk,w

≤ 2ψ(nk+1)Aτk,w

(ψ(nk+1)k2/
√

nk+1)e−wA2
τk,w

≤ 2
√

nk+1

k2e−wAτk,w

≤ 2

e2 ≤ 2

e
,

the integrand in Lγke
−w,k

τk,w is maximized at 2/e and we have

Lγke
−w,k

τk,w
≤ exp

(
2

e
γke

−wSτk,w
− 2γ 2

k e−2wA2
τk,w

e2

)
.

By (4.44) and (4.45), for sufficiently large k,

2

e
γke

−wSτk,w
− 2γ 2

k e−2wA2
τk,w

e2 ≤ 4γkψ(nk+1)Aτk,w

ew+1 − 2γ 2
k A2

τk,w

e2(w+1)

= ψ(nk+1)
2k2Aτk,w√

nk+1ew

(
4

e
− 2k2Aτk,w

e2√nk+1ew

)

≤ ψ(nk+1)
2k2Aτk,w√

nk+1ew

(
4

e
− 2

e2

√
e4 − (1 + δ)k4nk

nk+1e2w

)

≤ −ψ(nk+1)
2 k2

√
nk+1ew

×
√

nk+1e
w+2

k2 × 1

2

= −e2ψ(nk+1)
2

2
.

The last inequality holds because limk→∞ k4nk/nk+1 = 0 and 4/e − 2 < −1/2.

Hence Lγke
−w,k

τk,w → 0 uniformly in 1 ≤ w ≤ �lnk�. This implies

lim sup
k→∞

Mγk,k
τk+1−τk

≤ 0. �
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PROPOSITION 4.12. Let ω ∈ 	C . Suppose that νk ≤ min(τk+1, σk,C) and

−Anψ
U (

A2
n

) ≤ Sn ∀n ∈ [τk, νk].
Then for sufficiently large k,

N γk,D
νk

≥ α

2
.

PROOF. As in the proof of the previous lemma, we denote t = n − τk ,
St = Sn − Sτk

and A2
t = A2

n − A2
τk

. We distinguish two cases:

(a) A2
νk

≤ ψ(nk+1)
2

c1γ 2 , (b)
ψ(nk+1)

2

c1γ 2 < A2
νk

≤ A2
τk+1

− A2
τk

.

For case (a), for sufficiently large k and for any γ ≤ γk , as in (4.42),

γ Sνk
≤ γ (Sνk−1 + cνk

)

≤ γ

((
(1 + δ)Aτk

+
√

A2
τk

+ A2
νk−1

)
ψ(nk+1) + (1 + δ)C

√
A2

τk
+ A2

νk−1

ψ(A2
τk

)3

)

≤ ψ(nk+1)
2
(

1√
c1

+ δ

)

and

ψ(nk+1)e
−ψ(nk+1)

2/22e(1+δ)5e6CeγSνk → 0 (k → ∞).

Hence N γk,D
νk ≥ α/2 uniformly in γ ∈ [γk/k, γk].

For case (b), Sνk
can be bounded as

Sνk
≤ Sνk−1 + cνk

≤ Sνk−1 + (1 + δ)C

√
A2

τk
+ A2

νk−1

ψ(A2
τk

)3

≤
(
(1 + δ)Aτk

+
√

A2
τk

+ A2
νk

)
ψ(nk+1) + (1 + δ)C

√
A2

τk
+ A2

νk

ψ(A2
τk

)3

≤
(
(1 + δ)Aτk

+
√

A2
τk

+ A2
νk

(
1 + (1 + δ)C

ψ(A2
τk

)3ψ(nk+1)

))
ψ(nk+1)

by (4.35). Put

q2
k := A2

τk

A2
νk

≤ c1γ
2
k

ψ(nk+1)2 , sk := (1 + δ)C

ψ(A2
τk

)3ψ(nk+1)
,
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so that limk qkψ(nk+1)
2 = 0 and limk skψ(nk+1)

2 = 0. Then for sufficiently
large k,

S2
νk

2A2
νk

≤
(
(1 + δ)2 q2

k

2
+ (1 + δ)(1 + sk)qk

√
1 + q2

k + (1 + sk)
2
(

1

2
+ q2

k

2

))

× ψ(nk+1)
2

≤ ψ(nk+1)
2

2
+ δ.

Then

ψ(nk+1)e
−ψ(nk+1)

2/2 × 2e(1+δ)5e6Ce
S2

νk
/(2A2

νk
)

√
2π

γAνk

≤ 2e(1+δ)5e6C+δ
√

2πc1e
δ ≤ Dα

4
. �

4.6. Dynamic strategy forcing the sharpness. Finally, we prove Proposi-
tion 4.1. We assume, which we may do by the validity result, that Skeptic al-
ready employs a strategy forcing Sn ≥ −Anψ

U(A2
n) a.a. for ω ∈ 	C and we define

ϑk := min{n ≥ τk | −Anψ
U(A2

n) > Sn}. In addition to this strategy, consider the
following strategy, based on Proposition 4.11:

Start with initial capital K0 = α.
Set k = 1.
Do the following repeatedly:

1. Apply the capital process N γk,D
νk

with the strategy in Proposition 4.11
for n ∈ [τk, τk+1].
If τk+1 < min(σk,C, νk,ϑk), then go to 2. Otherwise go to 3.

2. Let k = k + 1. Go to 1.
3. Freeze all accounts in the capital process in N γk,D

νk
and wait until k′ =

min{k′ > k | −√
τk′ψU(τk′) ≤ Sτk′ ≤ √

τk′ψ(τk′)}. Set k = k′ and go to 1.

By this strategy, Skeptic keeps his capital nonnegative for every path ω. For ω ∈
	0, τk = ∞ for some k and Skeptic stays in Step 1 forever. For ω ∈ 	=∞, Step 3
is performed infinite number of times, but the overshoot of |xn| in Step 3 does not
make Skeptic bankrupt by Proposition 4.12. Now consider ω ∈ 	C . Since Skeptic
already employs a strategy forcing Sn ≥ −Anψ

U(A2
n) a.a., the lower bound in

(4.38) violated only finite number of times. By ω ∈ 	C , n ≥ σk,C is happens only
finite number of times. Hence if Sn ≤ Anψ(A2

n) a.a., then Step 3 is performed only
finite number of times and there exists k0 such that only Step 2 is repeated for all
k ≥ k0. Now by Proposition 4.11, Skeptic multiplies his capital at least by

1 + 1 − δ

D
�lnk�ψ(nk+1)e

−ψ(nk+1)
2/2



EFKP-LIL: A GAME-THEORETIC APPROACH 1159

for each iteration of Step 2. Then

(4.46)

1 − δ

D

∞∑
k=k0

�ln k�ψ(nk+1)e
−ψ(nk+1)

2/2

≤
∞∏

k=k0

(
1 + 1 − δ

D
�ln k�ψ(nk+1)e

−ψ(nk+1)
2/2

)
.

Since the left-hand side diverges to infinity, the above strategy forces the sharpness.

APPENDIX: EXAMPLES OF EFKP-LIL FOR SELF-NORMALIZED
MARTINGALES WITHOUT THE SECOND MOMENT

As discussed after Theorem 1.1, we are not assuming the existence of the second
moment of xn. Then the process can not be normalized by a quantity based on
the second moment and the self-normalization becomes essential. Here are some
examples.

Let W > 1 be a random variable such that E(W) < ∞ but E(W 2) = ∞. Let
αn ∈ (0,1), n = 1,2, . . . , be a sequence of positive reals such that

∑
n αn < ∞.

Define xn, n = 1,2, . . . by

P(xn = W) = P(xn = −W) = αn

2
, P (xn = 1) = P(xn = −1) = 1 − αn

2
.

Here, the sign of xn is independent of W,x1, . . . , xn−1. Let Fn, n = 1, . . . , be
the σ -field generated by W,x1, . . . , xn. F0 is the σ -field generated by W . Note
that E|xn| < ∞, 0 = E(xn) = E(xn | Fn−1), but E(x2

n) = ∞ and the conditional
variance does not exist. We let cn = W . P(|xn| = W i.o.) = 0, because

∑
n αn <

∞. Hence xn = ±1 a.a. and A2
n = O(n). Then our result holds but the result of

Einmahl and Mason [5] or the result of de la Peña, Klass and Lai [4] cannot be
applied.

The above simple example can be generalized as follows.
Let Wn,n = 1,2, . . . , be a sequence of positive random variables with E(Wn) <

∞, E(W 2
n ) = ∞. Assume that Wn converges to a positive random variable W

almost surely. Let εn, n = 1,2, . . . , be independently and identically distributed
random variables over the interval [−1,1]. We assume that {εn} are indepen-
dent of {Wn}, E(εn) = 0, E(ε2

n) = σ 2 > 0. Let Fn be the σ -field generated by
{W1, . . . ,Wn, ε1, . . . , εn}. Let cn = Wn−1, S0 = 0.

xn = Sn − Sn−1 = Wn−1εn, n = 1,2, . . . .

Then E(x2
n) = ∞. An is of order O(n) by the existence of W∞ = limn Wn and

lim supn cnψ(A2
n)

3/An = 0 holds.
This example can be further generalized to the case that cn grows polynomially

in n.
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