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GENEALOGICAL CONSTRUCTIONS OF POPULATION MODELS

BY ALISON M. ETHERIDGE1 AND THOMAS G. KURTZ2

Oxford University and University of Wisconsin–Madison

Representations of population models in terms of countable systems of
particles are constructed, in which each particle has a “type,” typically record-
ing both spatial position and genetic type, and a level. For finite intensity
models, the levels are distributed on [0, λ], whereas in the infinite inten-
sity limit λ → ∞, at each time t , the joint distribution of types and lev-
els is conditionally Poisson, with mean measure �(t) × � where � denotes
Lebesgue measure and �(t) is a measure-valued population process. The
time-evolution of the levels captures the genealogies of the particles in the
population.

Key forces of ecology and genetics can be captured within this com-
mon framework. Models covered incorporate both individual and event based
births and deaths, one-for-one replacement, immigration, independent “thin-
ning” and independent or exchangeable spatial motion and mutation of in-
dividuals. Since birth and death probabilities can depend on type, they also
include natural selection. The primary goal of the paper is to present particle-
with-level or lookdown constructions for each of these elements of a popula-
tion model. Then the elements can be combined to specify the desired model.
In particular, a nontrivial extension of the spatial �-Fleming–Viot process is
constructed.
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1. Introduction.

1.1. Background. There is now a vast mathematical literature devoted to mod-
eling the dynamics of biological populations. The models employed generally fall
into one of two classes: ecological models, that aim to elucidate the interactions
within and between populations, and between those populations and the environ-
ment; and models of population genetics, that aim to explain the patterns of genetic
variation observed in samples from a population. Ecological models typically take
into account (some of) spatial structure, competition for resources, predator–prey
interactions and changing environmental conditions. Often they assume infinite
populations, allowing one to concentrate on fluctuations in growth rates and ig-
nore demographic stochasticity. Models from population genetics, by contrast, of-
ten concentrate on the demographic stochasticity (known in that context as random
genetic drift) which arises from the randomness due to reproduction in a finite pop-
ulation and assume that the population from which one is sampling is panmictic
(i.e., there are no group structures or mating restrictions) and of constant size.
The “size,” however, is not taken to be the census population size, but rather an
effective population size, which is intended to capture the effects of things like
varying population size and spatial structure. In particular, the underlying ecology
is supposed to be encapsulated in this single parameter. This strategy has been
surprisingly effective, but in most situations, notably when the population is geo-
graphically dispersed, the influence of different evolutionary and ecological forces
on the value of the effective population size remains unresolved. To address these
effects, one must combine ecological and genetical models.
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Whereas in ecological models one usually asks about the existence of equilibria
or the probability that a species can invade new territory, in population genetics,
data on the differences between genes sampled from a finite number of individ-
uals in the population is used to infer the “genealogical trees” that relate those
genes, and so from a practical point of view, it is the distribution of these trees
that one would like to describe. As a result, we require a framework for model-
ing populations which allows one to combine ecology and genetics in such a way
that the genealogical trees relating individuals in a sample from the population are
retained. Our goal in this paper is to provide just such a framework.

Mathematical population genetics is concerned with models that capture, for
large populations, the key forces of evolution that are acting on the population,
but which are robust to changes in the fine detail of local reproduction mecha-
nisms. Diffusion limits lie at the heart of the theory. The prototypical example is
the Wright–Fisher diffusion which arises as an approximation to the dynamics of
allele frequencies in large panmictic populations of neutral genes whose dynamics
can be governed by a plethora of different models. In this situation, the genealog-
ical trees relating individuals in a sample are approximated by Kingman’s coales-
cent, in which each pair of ancestral lineages coalesces into a common ancestor
at a rate inversely proportional to the effective population size. Naïvely one ob-
tains the Kingman coalescent as a “moment dual” to the diffusion. However, this
is not sufficient to guarantee that it really approximates the genealogy of a sample
from one of the individual based models. Indeed, there are examples of systems
of individual based models for which the allele frequencies are approximated by
a common diffusion, but for which the genealogical trees relating individuals in a
sample from the limiting populations have different distributions [Taylor (2009)].
Whereas the structure of the genealogical trees is usually implicit in the description
of individual based models, in the diffusion limit the individuals have disappeared
and with them their genealogies. Our approach allows us to retain information
about the genealogies as we pass to the limit.

The framework that we shall present here is very general. It will allow us to con-
struct population models that capture the key ecological forces shaping the popula-
tion as well as demographic stochasticity. Many “classical” examples will emerge
as special cases. We shall use it to pass from individual based models to continuous
approximations, but while retaining information about the way in which individu-
als in a random sample from the population are related to one another. In particular,
we shall fulfill one of our primary aims when we began this project, by construct-
ing the spatial �-Fleming–Viot process [that was introduced in Barton, Etheridge
and Véber (2010) and Etheridge (2008)] as a high-density limit of a class of in-
dividual based models that generalize those considered by Berestycki, Etheridge
and Hutzenthaler (2009) (Section 4.1). We also present a different construction,
equivalent in the high-density limit to that of Véber and Wakolbinger (2015), but
requiring somewhat weaker conditions. Moreover, we present a generalisation of
the spatial �-Fleming–Viot process which incorporates fluctuations of the local
population density (Section 4.2).
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1.2. Approach. Our approach belongs to the family of “lookdown construc-
tions.” Building on the ideas of Donnelly and Kurtz (1996) and Donnelly and Kurtz
(1999), a number of authors have developed constructions of population models
that incorporate information about genealogical relationships. These constructions
typically involve assigning each individual in the population to a (nonnegative) in-
teger or real-valued “level,” with connections between the levels determining the
genealogical trees. They are generically referred to as “lookdown” constructions
since, in most cases, during reproduction events, offspring inserted at a given level
“look down” to individuals at lower levels to determine their parent.

Lookdown constructions are simplest if the spatial locations or types of indi-
viduals in the population do not affect the reproductive dynamics. In that setting,
the “levels” can be taken to be nonnegative integer-valued. The processes are con-
structed in such a way that at each time t , the types, elements of an appropriate
space E, of the individuals indexed by their levels {Xi(t)} are exchangeable, that
is, the joint distribution does not change if we permute the indices, and in an in-
finite population limit, the measure that gives the state of the limiting measure-
valued process is simply the de Finetti measure of the infinite exchangeable family
{Xi(t)}.

We illustrate the key idea for the simple example originally considered in
Donnelly and Kurtz (1996). Consider a population of constant size N . Individuals
are assigned levels 1, . . . ,N by choosing uniformly at random among all possi-
ble assignments. The dynamics are as follows: we attach an independent Poisson
process π(i,j), of rate λ, to each pair (i, j) of levels. At a point of π(i,j), the in-
dividual with the higher of the two levels i and j dies and is replaced by a copy
of the individual with the lower level. In between these replacement events, in-
dividuals (independently) accumulate mutations. Since the level of an individual
has such a strong impact on its evolution, it is not at all obvious that this de-
scription gives rise to a sensible population model. To see that it does, one must
show that if {Xi(0)} is exchangeable, then for each t > 0, {Xi(t)} is exchangeable,
and that the probability-measure-valued process ZN given by the empirical mea-
sure ZN(t) = ∑N

i=1 Xi(t)/N has the same distribution as the probability-measure-
valued process ẐN obtained from a sensible population model.

Ignoring the possibility of mutations, the generator of the process described
above is

ANf (x) = ∑
1≤i<j≤N

λ
(
f
(
�ij (x)

)− f (x)
)
,

where �ij (x) is obtained from x by replacing xj by xi . A sensible population
model, specifically, a simple Moran model, has generator

ÂNf (x) = 1

2

∑
1≤i �=j≤N

λ
(
f
(
�ij (x)

)− f (x)
)
.
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In Donnelly and Kurtz (1996), it was shown that if XN is a solution of the martin-
gale problem for AN and X̂N is a solution of the martingale problem for ÂN such
that XN(0) and X̂N(0) have the same exchangeable initial distribution, then ZN

and ẐN have the same distribution as P(E)-valued processes.
The proof in Donnelly and Kurtz (1996) is based on an explicit construction

and a filtering argument. This filtering argument, along with a similar argument
used in Kliemann, Koch and Marchetti (1990) in a proof of Burke’s theorem in
queueing theory, motivated the development of the Markov mapping theorem in
Kurtz (1998), Theorem A.2 in the Appendix of this paper, which is a fundamental
tool in the present work.

To apply the Markov mapping theorem in the setting of Donnelly and Kurtz
(1996), for x ∈ EN , let zN ∈ P(E) be given by zN = 1

N

∑N
i=1 δxi

. For f ∈ B(EN),
the bounded, measurable functions on EN , define

αf (zN) = 1

N !
∑
σ

f (xσ(1), . . . , xσ(N)),

where the sum is over all permutations of {1, . . . ,N}. In other words, we average
out over the (uniform) distribution of the assignment of individuals to levels. We
then observe that for f ∈ B(EN),

αANf (zN) = αÂNf (zN)

= 1

2

∑
1≤i �=j≤N

λ
(
αf

(
zN + N−1(δxi

− δxj
)
)− αf (zN)

)
≡ CNαf (zN)

for any choice of x satisfying zN = 1
N

∑N
i=1 δxi

. Theorem A.2 then implies that for
any solution Z̃ of the martingale problem for CN there exist solutions XN and X̂N

of the martingale problems for A and Â, respectively, such that ZN and ẐN have
the same distribution as Z̃N . In other words, our model is really just the classical
Moran model, but augmented with a very particular labeling of the individuals in
the population. A nice property of this labeling, is that the model for a population
of size N is embedded in that for a population of size M for any M > N , and so it
is straightforward to identify what will happen in the limit as N → ∞.

Finally, observe that for f ∈ ⋃
N B(EN), we can define

Af (x) = ∑
1≤i<j

λ
(
f
(
�ij (x)

)− f (x)
)
,

that is, if f ∈ B(EN), Af (x) = ANf (x).
Let {Xi(0)} be an infinite exchangeable sequence in E, and construct a pro-

cess X(t) = {Xi(t)} using independent Poisson processes π(i, j) as above. Then
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{X1, . . . ,XN } is a solution of the martingale problem for AN and hence X is a
solution of the martingale problem for A. The limit Z(t) of ZN(t) is the de Finetti
measure for {Xi(t)} and averaging implies that for each f ∈ B(EN),〈

f,Z(N)(t)
〉− 〈

f,Z(N)(0)
〉− ∫ t

0

〈
Af,Z(N)(s)

〉
ds,

where Z(N)(t) is the N -fold product measure of Z(t), is a {FZ
t }-martingale. That,

in turn, implies Z is a Fleming–Viot process. These observations give an explicit
construction of a process given implicitly in Dawson and Hochberg (1982).

From the construction of X, it is also a simple matter to see that the genealogical
trees relating individuals in the population are governed by the Kingman coales-
cent, just as for the Moran model. In addition, the genealogy of a sample of size
n, that is, the particles at the n lowest levels, does not change as we increase the
population size since, by construction, the processes at the n lowest level are not
affected by the processes at the higher levels.

In order to extend the lookdown construction to the setting in which the loca-
tions or types of individuals in the population affect their reproductive dynamics,
Kurtz (2000) introduced the idea of taking random levels in [0,∞). More pre-
cisely, writing E for the space in which the population evolves, conditional on
the empirical measure of the population configuration being K(t) at time t , “in-
dividuals” are assigned types and levels according to a Poisson distribution on
E × [0,∞) with mean measure K(t) × �, where � is Lebesgue measure. If we
“average out” over the distribution of the levels we recover K(t). Under appro-
priate conditions, the most important of which is that the generator governing the
dynamics of the labeled population respects the conditionally Poisson structure
(the analogue of the exchangeability in the case of fixed levels), the Markov map-
ping theorem, Theorem A.2, allows us to conclude that by “removing the levels”
we recover the Markov process whose generator is obtained through this process
of averaging. In particular, existence of a solution to the martingale problem for
the unlabeled population process is enough to guarantee existence of a solution to
the martingale problem for the labeled population, from which a solution to that
for the unlabeled population can be read off by averaging. Moreover, uniqueness
of the solution of the labeled martingale problem guarantees that of the solution
to the unlabeled martingale problem. In Kurtz (2000), this approach was used to
construct measure-valued population models with spatially dependent birth and
death rates: for a given spatial location, offspring can be inserted at rates that de-
pend on the local configuration without destroying the conditionally Poisson struc-
ture. Poisson levels have been used extensively since [e.g., Buhr (2002), Donnelly
et al. (2000), Greven, Limic and Winter (2005), Véber and Wakolbinger (2015)].
In Kurtz and Rodrigues (2011), levels are again conditionally Poisson, but now
they are allowed to evolve continuously with time, a device which we shall also
exploit in this work. The main novelty in the examples presented here is that we are
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able to (flexibly) incorporate “event-based” updating mechanisms in the lookdown
construction.

Our approach in this article will be to define population models in which in-
dividuals are assigned levels, to average out over those levels in order to identify
the unlabeled population model, and to pass to an infinite population limit. Justi-
fication of this approach to constructing the unlabeled population model is based
upon filtering arguments, that is, the “averaging out” corresponds to conditioning
on all information about the past of the process except the levels of the particles.
Ensuring the validity of this conditioning argument requires that the assignment
of individuals to levels be done in such a way that past observations of the distri-
bution of spatial positions and genetic types does not give any information about
the current levels of individuals in the population. It is important to realize that
such assignments are far from unique. For example, in Section 3.1 we provide
three possible ways for levels to evolve in a simple pure death process and in Sec-
tion 4.1, we give two different particle constructions of the spatial �-Fleming–Viot
process.

In the models we consider, new individuals have a single parent. This assump-
tion is common in both genetic and ecological models. To specify a model, one
must specify the rules by which a parent is selected, the rules by which the number
and types of offspring are determined, the rules that determine the time of death of
an individual, and the rules by which types change through movement, mutation or
other process. One can also include such processes as immigration. The primary
goal of the paper is to outline how one can obtain a lookdown construction for
any such model, and hence determine the genealogy of a sample of individuals
from the population. In Section 3, we consider each of the pieces separately. One
then constructs a model by selecting “one of these” and “one of those” and “one of
something else.” Since we are considering Markov models, each piece corresponds
to a generator, and the final model is essentially obtained by adding the generators.
Since each piece has a lookdown representation built in, the lookdown representa-
tion of the final model is obtained. This description of the construction is formal
and additional work must be done to ensure that the generator obtained uniquely
determines a process. One useful approach to proving uniqueness is to show that
the martingale problem is equivalent to a system of stochastic equations (cf., Theo-
rem A.6) and then prove uniqueness for the system of equations. For example, see
Lemma 4.3, which gives a new proof of uniqueness for the spatial �-Fleming–Viot
process under conditions given in Véber and Wakolbinger (2015).

1.3. Structure of paper. The rest of the paper is laid out as follows. In Sec-
tion 2, we lay out the notation that we need for our discrete and continuous pop-
ulation models and for the “averaging” operations that we apply when we use the
Markov mapping theorem. In order to construct our general models, we exploit the
fact that sums of generators are typically generators [see, e.g., Problem 32 in Sec-
tion 4.11 of Ethier and Kurtz (1986)], and so we can break our models apart into
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component pieces. In Section 3, we examine each of these components in turn. In
Section 4, we draw these together into a collection of familiar, and not so familiar,
examples. For convenience, some useful identities for Poisson random measures
are gathered together in Appendix A.1, and the Markov mapping theorem is stated
in Appendix A.2. We refer to Appendix A.2 of Kurtz and Rodrigues (2011) for
necessary results on conditionally Poisson systems.

We need to emphasize that although Section 3 is the main focus of the paper, it
contains calculations, not proofs. These calculations give the first step in the ap-
plication of the Markov mapping theorem, Theorem A.2, which ensures that the
lookdown constructions actually represent the desired processes, but additional de-
tails must be checked for particular applications. We spell this out in the simplest
example of a pure death process in Section 3.1 and in the novel setting of the
spatial �-Fleming–Viot process and its extensions in Section 4.1 and Section 4.2.
In addition, the discrete particle models, indexed by λ > 0, should converge to
measure-valued models as λ → ∞. For many of the models, convergence of the
lookdown constructions is obvious while in other cases, convergence follows eas-
ily by standard generator/martingale problem arguments. It is then useful to know
that convergence of the lookdown constructions implies convergence of the corre-
sponding measure-valued processes. Appendix A.3 of Kurtz and Rodrigues (2011)
provides the results needed to verify this convergence.

The results given in Section 4 are intended to be rigorous unless otherwise in-
dicated.

2. Notation. We consider continuous-time, time-homogeneous, Markov mod-
els specified by their generators. Each individual will have a type chosen from a
complete separable metric space (E,d). We emphasize that here we are using
“type” as shorthand for both spatial location and genetic type. The distribution of
types over E may be discrete, that is, given by a counting measure that “counts” the
number of individuals in each subset of E, or continuous, that is, the distribution of
types is given by a measure on E as in the classical examples of Dawson–Watanabe
and Fleming–Viot. In addition, each individual will be assigned a “level” which in
the discrete case will be sampled from an interval [0, λ] and in the continuous case
from [0,∞). No two individuals will have the same level, and in the continuous
case, the types along with their levels give a countable collection of particles that
determines the measure.

A state of one of our discrete population models will be of the form η =∑
δ(x,u), where (x, u) ∈ E × [0, λ]. We shall abuse notation and treat η both as a

set and a counting measure, with the understanding that multiple points are treated
as distinct individuals. In other words,∑

(x,u)∈η

g(x,u) =
∫

g(x,u)η(dx, du)
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and ∏
(x,u)∈η

g(x,u) = exp
{∫

logg(x,u)η(dx, du)

}
.

The projection of η on E will be denoted η = ∑
(x,u)∈η δx and η will have the prop-

erty that conditional on η, the levels of the individuals in the population are inde-
pendent uniform random variables on [0, λ]. It will be crucial that this conditioning
property be preserved by the transformations of η induced by the components in
our generator. Notice that allocating levels as independent uniform random vari-
ables is the natural continuous analogue of the way in which we allocated discrete
levels through a uniform random sample from all possible permutations. We shall
write α(η, ·) for the joint distribution of independent uniform [0, λ] random vari-
ables Ux indexed by the points x ∈ η. If f is a function of the Ux , then αf will
denote the corresponding expectation.

When there is a need to be precise about the state space N0 for the counting
measures η, we will assume that N0 satisfies the following condition.

CONDITION 2.1. There exist ck ∈ C(E × [0,∞)) (or ck ∈ C(E × [0, λ]) if
λ < ∞), k = 1,2, . . . , ck ≥ 0,

∑∞
k=1 ck(x,u) > 0, (x, u) ∈ E × [0,∞) such that

η ∈ N0 if and only if
∫
E×[0,∞) ck(x, u)η(dx, du) < ∞ for each k, and for ηn, η ∈

N0, ηn → η if and only if
∫
E×[0,∞) f dηn → ∫

E×[0,∞) f dη for each f ∈ C(E ×
[0,∞)) such that |f | ≤ af ck for some k and some af ∈ (0,∞).

We note that N0 defined in this way will be a Polish space, and if all the ck have
compact support, convergence is just vague convergence.

Under appropriate conditions (which we make explicit for the examples in Sec-
tion 4) we can pass from the discrete population models to an infinite density
limit. The resulting continuous population models arise as limits of states ηλ un-
der assumptions that imply λ−1ηλ(·, [0, λ]) converges (at least in distribution) to a
(possibly random) measure � on E. This is the analogue of convergence of the em-
pirical distribution in the simple case of a fixed number of discrete levels described
in Section 1.2. Since we require that the levels in ηλ be conditionally independent
uniform random variables given ηλ, it follows that η∞, the limit of the ηλ, will be
a counting measure on E ×[0,∞) that is conditionally Poisson with Cox measure
� × �, � being Lebesgue measure. That is, for example,

E
[
e− ∫

E×[0,∞) f (x,u)η(dx,du)|�] = e− ∫
E

∫∞
0 (1−e−f (x,u)) du�(dx).

To mirror our notation in the discrete setting, in the continuous case, α(�, ·) will
denote the distribution of a conditionally Poisson random measure η on E×[0,∞)

with mean measure �(dx) × �. See Appendix A.1 and Appendices A.1, A.2 and
A.3 of Kurtz and Rodrigues (2011).
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To describe the generators of our population models, we take the domain to
consist of functions of the form

(2.1) f (η) = ∏
(x,u)∈η

g(x,u) = exp
{∫

logg(x,u)η(dx, du)

}
,

where g is continuous in (x, u), differentiable in u and 0 ≤ g ≤ 1. In order for the
generator to be defined in specific examples, g may, for example, be required to
satisfy additional regularity conditions, but the key point is that the collection of
g employed will be large enough to ensure that the domain is separating. In what
follows, we will frequently write expressions in which f (η) is multiplied by one
or more factors of the form 1/g(x,u). It should be understood that if g(x,u) = 0,
it simply cancels the corresponding factor in f (η). Since linear combinations of
martingales are martingales, we could, of course, extend the domain to include
finite linear combinations of functions of the form (2.1).

In the discrete case, if a transformation moves the level of an individual above
λ, then the individual dies. We therefore impose the condition g(x,u) = 1 if u ≥ λ.
In this case αf (η) = ∏

x∈η g(x), where g(x) = λ−1 ∫ λ
0 g(x,u) du.

In the continuous case, we assume that there exists some ug such that g(x,u) =
1 for u ≥ ug . Consequently, h(x) = ∫∞

0 (1 − g(x,u)) du is finite, and we have

αf (�) = e− ∫
E

∫∞
0 (1−g(x,u)) du�(dx) = e− ∫

E h(x)�(dx).

3. Components of our generators. Having established our notation, we now
turn to the building blocks of our population models. By combining these com-
ponents, we will be able to consider models which incorporate a wide range of
reproduction mechanisms.

3.1. Pure death process. In this subsection, we introduce a component which,
when we average over levels, corresponds to each individual in the population,
independently, dying at an instantaneous rate d0(x) ≥ 0 which may depend on
its type, x. We reiterate that x encodes both spatial position and genetic type. In
particular, we do not require the population to be selectively neutral.

We assume that the level of an individual of type x evolves according to the
differential equation u̇ = d0(x)u. The individual will be killed when its level first
reaches λ. Note that since the initial level u(0) of an individual must be uniformly
distributed on [0, λ], if nothing else affects the level, the lifetime of the individual
(that is the time τ until the level hits λ) is exponentially distributed,

P {τ > t} = P
{
u(0)ed0(x)t < λ

} = P
{
u(0) < λe−d0(x)t} = e−d0(x)t ,

and conditional on {τ > t} = {u(0)ed0(x)t < λ}, u(0)ed0(x)t is uniformly distributed
on [0, λ].
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The generator of this process is

Apdf (η) =
∫
E×[0,λ]

f (η)d0(x)u
∂ug(x,u)

g(x,u)
η(dx, du).

Note that g(x,u) in the denominator cancels the corresponding factor in f (η).
Consequently,

αApdf (η) = αf (η)

∫
E

1

g(x)
λ−1

∫ λ

0
d0(x)u∂ug(x,u) duη(dx).

Observing that

λ−1
∫ λ

0
u∂ug(x,u) du = λ−1u

(
g(x,u) − 1

)∣∣λ
0 − λ−1

∫ λ

0

(
g(x,u) − 1

)
du

= 1 − g(x),

we see that

(3.1) αApdf (η) = αf (η)

∫
E

d0(x)

(
1

g(x)
− 1

)
η(dx),

so that in this case, the projected population model is indeed just a pure death
process in which the death rates may depend on the types of the individuals.

The calculation above was purely formal. It is instructive to illustrate the work
required to apply Theorem A.2 in the context of this simple example. The key is
that we must be able to check (A.7); that is, we restrict the domain of Apd and
exhibit a function ψ ≥ 1 for which, for each f in this smaller domain, we can find
a constant cf such that |Apdf (η)| ≤ cf ψ(η). To this end, suppose K1 ⊂ K2 ⊂ · · ·
are subsets of E such that E = ⋃

k Kk [e.g., if E = R
d , we might take Kk =

Bk(0)]. Then let D(A) be the collection of f of the form f (η) = ∏
(x,u) g(x,u)

for g(x,u) ∈ Cb(E × [0, λ]) satisfying ∂ug(x,u) ∈ Cb(E × [0, λ]) and g(x,u) =
1 for (x, u) /∈ Kk × [0, ug] for some k ∈ N and 0 ≤ ug ≤ λ. We can take ψ in
Theorem A.2 to be of the form

ψ(η) =
∫
E×[0,λ]

∑
k

d0(x)δk1Kk
(x)η(dx, du) + 1

for some {δk} satisfying
∑

k δk supx∈Kk
d0(x) < ∞. (The “+1” is just to guar-

antee that ψ ≥ 1.) Then for g(x,u) = 1 outside Kk × [0, ug], we can take
cf = ug‖∂ug‖δ−1

k in (A.7), where ‖ · ‖ denotes the sup norm. The function ψ̃

of Theorem A.2, which is just αψ(η), takes the form

ψ̃(η) =
∫
E

∑
k

d0(x)δk1Kk
(x)η(dx) + 1.

Then, by Theorem A.2, any solution of the martingale problem for αApd satisfying
E[∫ t

0 ψ̃(ηs) ds] < ∞ (which will hold provided E[ψ̃(η0)] < ∞) can be obtained
from a solution of the martingale problem for Apd .
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Other choices of the dynamics of the process with levels would have projected
onto the same population model on averaging out the levels. For example, we could
equally have obtained (3.1) by starting with

Ãpdf (η) =
∫
E×[0,λ]

f (η)d0(x)

(
1

g(x,u)
− 1

)
η(dx, du)

(the levels do not move; the particles just disappear) or

Âpdf (η) =
∫
E×[0,λ]

f (η)d0(x)

(
λ2

2
− u2

2

)
∂2
ug(x,u)

g(x,u)
η(dx, du)

for g such that ∂ug(x,u)|u=0 = 0 (the levels diffuse and absorption at λ corre-
sponds to death of the particle). Checking that αÂpdf = αApd given in (3.1) is an
exercise in integration by parts.

For the continuous population limit, conditionally Poisson as described in Sec-
tion 1.2, it is immediate that

Apdf (η) =
∫
E×[0,∞)

f (η)d0(x)u
∂ug(x,u)

g(x,u)
η(dx, du).

Recall that g(x,u) = 1 for u above some ug . Defining

h(x) =
∫ ∞

0

(
1 − g(x,u)

)
du,

and using the identities of Lemma A.1,

αApdf (�) = αf (�)

∫
E

∫ ∞
0

d0(x)u∂ug(x,u) du�(dx)

= αf (�)

∫
E

d0(x)h(x)�(dx),

(3.2)

where αf (�) = e− ∫
E h(x)�(dx). Define

(3.3) �t(dx) = e−d0(x)t�0(dx),

and note that

d

dt
αf (�t) = αf (�t)

∫
E

d0(x)h(x)�t(dx),

so αApd is the generator corresponding to the evolution of � given by (3.3).

3.2. Multiple deaths. Whereas in the pure death process of the previous sub-
section, individuals are removed from the population one at a time, we now turn
to a model that allows for multiple simultaneous deaths. Moreover, in place of in-
dividual based death rates, deaths in the population will be driven by a series of
“events” at which a specified number of deaths occur. Since in the discrete setting,
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death occurs when the level of an individual crosses level λ, in order to have mul-
tiple simultaneous deaths, the levels must evolve through a series of jumps (cf. the
thinning transformation in Section 3.6).

We parametrize the multiple death events by points from some abstract
space Ud . Corresponding to each z ∈ Ud is a pair (k(z), d1(·, z)), where k(z) is
an integer and d1(·, z) is a nonnegative function on E, which allows us to weight
each individual’s relative probability of death during an event according to its type
and spatial position. We shall focus on the case in which events happen with in-
tensity determined by a measure μd on Ud , but exactly the same approach applies
if we demand that the events occur at discrete times.

For a given pair (k, d1(·)), let

τ(k, d1, η) = inf
{
v : η{(x, u) : evd1(x)u ≥ λ

} ≥ k
}
,

where the infimum of an empty set is infinite. After the death event, the configura-
tion becomes

θk,d1η ≡ {(
x, eτ(k,d1,η)d1(x)u

) : (x, u) ∈ η and eτ(k,d1,η)d1(x)u < λ
}
.

Note that k individuals will die if η({(x, u) : d1(x) > 0}) ≥ k. Otherwise, all indi-
viduals in {(x, u) : d1(x) > 0} are killed.

Now assuming that k and d1 depend on z ∈ Ud , the generator for the model in
which discrete death events occur with intensity μd(dz) then takes the form

Amdf (η) =
∫
Ud

( ∏
(x,u)∈η

g
(
x,ueτ(k(z),d1(·,z),η)d1(x,z))− f (η)

)
μd(dz).

Since, conditional on η, the levels of individuals in the population are independent
uniformly distributed random variables on [0, λ], τx,z given by Uxe

d1(x,z)τx,z = λ

is exponential with parameter d1(x, z). The lack of memory property of the ex-
ponential distribution guarantees that the levels of individuals in the population
after the event are still uniformly distributed on [0, λ]. Moreover, since the τx,z are
independent,

αAmdf (η) =
∫
Ud

1{k(z)≤|η|}
∑

S⊂η,|S|=k(z)

d(S, z)αf (η)

(
1∏

x∈S g(x)
− 1

)
μd(dz)

+
∫
Ud

1{k(z)>|η|}
(
1 − αf (η)

)
μd(dz),

where

d(S, z) = P
{
max
x∈S

τx,z < min
x∈η\S τx,z

}
.

Note that while all the points in η will be distinct (no two points can have the
same level), we have not ruled out the possibility that multiple points may have the



1840 A. M. ETHERIDGE AND T. G. KURTZ

same type. Consequently, the same value of x may appear multiple times in S, that
is, we allow η and S to be multisets.

As particular examples, if k(z) = 1 and S = {x}, then

d(S, z) = d1(x, z)∫
E d1(y, z)η(dy)

,

and if d1(x, z) = ζz1Cz(x) and S ⊂ Cz, |S| = k(z) [so that k(z) individuals will be
chosen at random from the region Cz to die], then

d(S, z) =
(
η(Cz)

k(z)

)−1

.

Many interesting high density limits require a balance between birth and death
events. However, we close this subsection with a high density limit for the discrete
death process above when there are no balancing births. Suppose that λ−1ηλ → �

as λ → ∞. At an event of type z ∈ Ud ,

P
{
τ
(
k(z), d1(·, z), ηλ

)
> λ−1c

} = P
{
ηλ

{
(x, u) : ecd1(x,z)/λu ≥ λ

}
< k(z)

}
.

Now since, conditional on ηλ, the levels u are independent uniform random vari-
ables on [0, λ], for a single (x, u) ∈ ηλ, the probability that u ≥ λe−cd1(x,z)/λ is
1 − e−cd1(x,z)/λ and the events {u ≥ λe−cd1(x,z)/λ} are independent. Consequently,
a Poisson approximation argument implies that P {τ(k(z), d1(·, z), ηλ) > λ−1c}
converges to P {Zc < k(z)} where, conditional on �, Zc is Poisson distributed
with parameter

∫
cd1(x, z)�(dx).

Consider the motion of a single level. The jumps of size(
eτ(k(z),d1(·,z),ηλ)d1(x,z) − 1

)
u

that it experiences whenever a death event falls are independent (by lack of mem-
ory of the exponential distribution) and so if we speed up time by λ and apply
the law of large numbers, observing that λE[τ(k(z), d1(·, z), ηλ)] = ∫∞

0 P [Zc <

k(z)]dc = k(z)/
∫

d1(x, z)�(dx), we see that, in the limit as λ → ∞, the motion
of a single level converges to

u̇ =
∫
Ud

k(z)

θ(z,�(t))
d1(x, z)μd(dz)u,

where θ(z,�) = ∫
d1(x, z)�(dx). The limit of λA is

A∞
mdf (η) =

∫
Ud

f (η)

∫
k(z)

θ(z,�)
d1(x, z)u

∂ug(x,u)

g(x,u)
η(dx, du)μd(dz).

Integrating the limiting form of the generator by parts, exactly as we did to obtain
(3.2), yields

αA∞
mdf (�) = αf (�)

∫
Ud

∫
E

k(z)d1(x, z)h(x)

θ(z,�)
�(dx)μd(z).

Note that there is a time change relative to the generator (3.2) even in the case
when k(z) ≡ 1 and d1(x, z) ≡ d1(x), since deaths are driven by “events” and not
linked to individuals.
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3.3. Discrete birth events. We shall consider two different approaches to birth
events. Just as in the case of deaths, a fundamental distinction will be that in the
approach outlined in this subsection, births will be based on events and particle
levels will evolve in a series of jumps, whereas in the next subsection, births will
be individual based and levels will evolve continuously, according to the solution
of a differential equation. To emphasize this point, we shall refer to discrete and
continuous birth events.

A discrete birth event involves the selection of a parent, the determination of the
number of offspring, and the placement of the offspring. Selection of the parent
is controlled by a function r with r(x) ≥ 0 [the larger r(x), the more likely an
individual of type x is to be the parent]; the number of offspring is specified by an
integer k; and the placement of the offspring is determined by a transition function
q(x, dy) from E to Ek . In this discrete model, we can either assume that the parent
is eliminated from the population or that it is identified with the offspring at level
v∗ defined below [in which case it jumps according to q(x, dy) as a result of the
event].

For a birth event to occur for (r, k, q), we must have
∫

r(x)η(dx) > 0, other-
wise no individual is available to be the parent. If there is a parent available, then
k points, v1, . . . , vk , are chosen independently and uniformly on [0, λ]. These will
be the levels of the offspring of the event. Let v∗ denote the minimum of the k

new levels. For old points (x,u) ∈ η with u > v∗ and r(x) > 0, let τx be defined
by e−r(x)τx = λ−u

λ−v∗ and for (x,u) ∈ η satisfying u < v∗ and r(x) > 0, let τx be
determined by e−r(x)τx = u

v∗ . Note that conditioned on u > v∗, λ−u
λ−v∗ is uniformly

distributed on [0,1] and similarly, conditioned on u < v∗, u
v∗ is uniformly dis-

tributed on [0,1], so in both cases, τx is exponentially distributed with parameter
r(x). Take (x∗, u∗) to be the point in η with τx∗ = min(x,u)∈η τx . This point will be
the parent. We have

P
{
x∗ = x′} = r(x′)∫

r(x)η(dx)
, x′ ∈ η.

After the event, the configuration γk,r,qη of levels and types in the population is ob-
tained by assigning types (y1, . . . , yk) with joint distribution q(x∗, dy) uniformly
at random to the k new levels and transforming the old levels so that

γk,r,qη = {(
x,λ − (λ − u)er(x)τx∗ ) : (x,u) ∈ η, τx > τx∗, u > v∗}

∪ {(
x,uer(x)τx∗ ) : (x,u) ∈ η, τx > τ ∗

x , u < v∗}
∪ {

(yi, vi), i = 1, . . . , k
}
.

Notice that the parent has been removed from the population and that if r(x) = 0,
the point (x,u) is unchanged.

Since x∗ and τx∗ are deterministic functions of η and v∗ ≡ ∧k
j=1 vk , for (x,u) ∈

η, (x,u) �= (x∗, u∗), that is an “old” individual which is not the parent, we can
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write the new level as J λ
r (x, u, η, v∗). Then

f (γk,r,qη) = ∏
(x,u)∈η,u �=u∗

g
(
x,J λ

r

(
x,u, η, v∗))∏g(yi, vi).

The crucial feature of this construction is captured by the following lemma.

LEMMA 3.1. Conditional on {(yi, vi)} and η, {J λ
r (x, u, η, v∗) : (x, u) ∈

η,u �= u∗} are independent and uniformly distributed on [0, λ].

PROOF. Conditioned on η and the vector v = (v1, . . . , vk), the levels u are
independent and uniformly distributed on [0, λ]. Conditioned further on u < v∗, u

is uniform on [0, v∗], whereas conditioned on u > v∗, u is uniform on [v∗, λ].
Now if u < v∗ and u �= u∗, then, by definition, uer(x)τx∗ < v∗, that is, u <

v∗e−r(x)τx∗ and, conditional on τx∗ and this event, u is uniform on [0, v∗e−r(x)τx∗ ].
Similarly, conditioning on u > v∗ and u �= u∗, knowing τx∗ , u is uniform on

[λ − (λ − v∗)e−r(x)τx∗ , λ].
Consequently, for (x, u) ∈ η, we compute

E
[
g
(
J λ

r

(
x,u, η, v∗))|η,u �= u∗, v∗]

= E
[
g
(
λ − (λ − u)er(x)τx∗ ), u > v∗|η,u �= u∗, v∗]

+ E
[
g
(
uer(x)τx∗ ), u < v∗|η,u �= u∗, v∗]

= E
[
g
(
λ − (λ − u)er(x)τx∗ )|η,λ − (λ − u)er(x)τx∗ > v∗, u > v∗, v∗]λ − v∗

λ

+ E
[
g
(
uer(x)τx∗ )|η,uer(x)τx∗ < v∗, u < v∗, v∗]v∗

λ

= 1

λ − v∗
∫ λ

v∗
g(z) dz

λ − v∗

λ
+ 1

v∗
∫ v∗

0
g(z) dz

v∗

λ

= 1

λ

∫ λ

0
g(z) dz,

where the conditioning λ − (λ − u)er(x)τx∗ > v∗ in the first line of the second
equality captures u �= u∗ and to pass from the third line to the fourth we partition
over τx∗ (and perform a change of variable in the integral). �

By Lemma 3.1,

E
[
f (γk,r,qη)|η] = ∑

x′∈η

r(x′)∫
r(x)η(dx)

αf (η)
1

g(x′)

∫ k∏
i=1

g(yi)q
(
x′, dy

)
.

Of course, if
∫

r(x)η(dx) = 0, there is no parent and γk,r,qη = η.
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This tells us how a configuration will be transformed by a single discrete birth
event. Now, just as in the previous subsection, we suppose that the events are
parametrized by some abstract space, this time denoted by Ub, equipped with a
measure μdb that determines the intensity of events. The discrete birth generator
will then be of the form

Adbf (η) =
∫
Ub

1{∫ r(x,z)η(dx)>0}
(
Hk(z),r(·,z),q(·,z,·)(g, η) − f (η)

)
μdb(dz),

where

Hk(z),r(·,z),q(·,z,·)(g, η) = λ−k(z)
∫
[0,λ]k(z)

∏
(x,u)∈η,u �=u∗(η,v∗)

g
(
x,J λ

r(·,z)
(
x,u, η, v∗))

×
∫
Ek(z)

k(z)∏
i=1

g(yi, vi)q
(
x∗(η, v∗), z, dy

)
dv1 · · · dvk(z).

Integrating out the levels gives

αAdbf (η) =
∫
Udb

1{∫ r(x,z)η(dx)>0}

×
(∑

x′∈η

r(x′, z)∫
r(x, z)η(dx)

αf (η)

g(x′)

(∫
Ek(z)

k(z)∏
i=1

g(yi)q
(
x′, z, dy

))

− αf (η)

)
μdb(dz).

If we wish to pass to a high density limit, we must control the size and frequency
of the jumps in the level of an individual, so that the level process converges as we
increase λ. To investigate the restriction that this will impose on the discrete birth
events, we examine J λ

r (x, u, η, v∗) more closely. Recall that for u > v∗, τx is
defined by e−r(x)τx = (λ − u)/(λ − v∗). Evidently, we are only interested in the
case when λ−1ηλ converges to a nontrivial limit, and in changes in those levels
that we actually “see” in our limiting model, that is, to levels that are of order one.
For such changes, v∗ will also be order one, and then it is easy to see that for λ

sufficiently large, we will have u∗ > v∗ and, since (λ−u∗)/(λ−v∗) → 1, τx∗ → 0
as λ → ∞. Now

J λ
r

(
x,u, η, v∗)
= 1{u>v∗}

(
λ − (λ − u)er(x)τx∗ )+ 1{u<v∗}uer(x)τx∗

= 1{u>v∗}
(
uer(x)τx∗ − λ

(
er(x)τx∗ − 1

))+ 1{u<v∗}uer(x)τx∗ ,

(3.4)
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and so it follows that for u < v∗, J λ
r (x, u, η, v∗) = uer(x)τx∗ → u. However, for

(x,u) ∈ η with u > v∗, u �= u∗, and r(x) > 0,

J λ
r

(
x,u, η, v∗) = uer(x)τx∗ − λ

(
er(x)τx∗ − 1

)
= uer(x)τx∗ − λ

(er(x)τx∗ − 1)

(er(x∗)τx∗ − 1)

(
er(x∗)τx∗ − 1

)
= uer(x)τx∗ − λ

(er(x)τx∗ − 1)

(er(x∗)τx∗ − 1)

(
λ − v∗

λ − u∗ − 1
)

= uer(x)τx∗ − λ

λ − u∗
(
u∗ − v∗) (er(x)τx∗ − 1)

(er(x∗)τx∗ − 1)

→ u − (
u∗ − v∗) r(x)

r(x∗)
.

(3.5)

Thus if a level jumps, then that jump will be order one. It is clear that, regardless of
balancing death events, to have stable behavior of the levels as λ → ∞, we must
have v∗ < u and r(x) > 0 only finitely often per unit time. Since for a given k, the
probability that v∗ will be less than u is 1 − (λ−u

λ
)k , we need

lim
λ→∞

∫
Ub

(
1 −

(
λ − u

λ

)k(z))
1{r(x,z)>0}μλ

b(dz)

= u lim
λ→∞

1

λ

∫
Ub

k(z)1{r(x,z)>0}μλ
b(dz) < ∞

(3.6)

for each x. If the limit were infinite for some x, then each individual of that type
would instantaneously become a parent and be removed from the population.

3.4. Continuous birth. As an alternative to the birth process described above,
in which levels move by discrete jumps, in this subsection we consider a birth
process in which births are based on individuals and levels move continuously. Our
aim is to obtain a construction of a pure birth process in which an individual of type
x gives birth to k offspring at a rate r(x). For simplicity, we assume that offspring
adopt the type of their parent. In the model with levels, an individual (x,u) ∈ η

gives birth to k offspring at rate r(x,u) = (k + 1)(λ − u)kλ−kr(x). The parent
remains in the population and the offspring are assigned levels independently and
uniformly distributed above the level of the parent. Evidently this will result in
an increase in the proportion of individuals with higher levels and so to preserve
the conditionally uniform distribution of levels, we make them move downwards.
We shall do this by making them evolve according to a differential equation u̇ =
r(x)Gλ

k(u), for an appropriate choice of the function Gλ
k .

At first sight, there is something arbitrary about the choice of the dependence
of branching rate on level. It is essential that λ−1 ∫ λ

0 r(x,u) du = r(x), so that
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when we average out over its level, the expected branching rate of an individual
of type x is indeed r(x). However, in principle, other choices of r(x,u) with this
property would work, provided we change the differential equation driving the
levels. This particular choice has the advantage that it makes calculation of the
averaged generator, and hence identification of Gλ

k , very straightforward.
The generator of the process with levels is of the form

Acb,kf (η) = f (η)
∑

(x,u)∈η

r(x)

[
(k + 1)

λk

×
∫ λ

u
· · ·

∫ λ

u

(
k∏

i=1

g(x, vi) − 1

)
dv1 · · · dvk

+ Gλ
k(u)

∂ug(x,u)

g(x,u)

]
.

(3.7)

For brevity, for the rest of this subsection, we drop the subscript k in the gener-
ator. In order to calculate αAcb, for each x ∈ η, write ηx for η \ x. Then

αAcbf (η) = ∑
x∈η

r(x)f (ηx)

[
1

λ

∫ λ

0
g(x,u)

(k + 1)

λk

×
∫ λ

u
· · ·

∫ λ

u

(
k∏

i=1

g(x, vi) − 1

)
dv1 · · · dvk du

+ 1

λ

∫ λ

0
Gλ

k(u)∂ug(x,u) du

]
.

Now observe that

k + 1

λk+1

∫ λ

0
g(x,u)

∫ λ

u
· · ·

∫ λ

u

k∏
i=1

g(x, vi) dv1 · · · dvk du =
(

1

λ

∫ λ

0
g(x,u) du

)k+1
.

To see this, notice that on the right-hand side we have the result of averaging over
k + 1 independent uniform levels, while on the left we have (k + 1) times the
result of averaging over those levels if we specify that the first level is the smallest,
and by symmetry any of the k + 1 uniform variables is equally likely to be the
smallest. This deals with the first term of the averaged generator. All that remains
of the expression in square brackets is

(3.8)
1

λ

∫ λ

0

(
Gλ

k(u)∂ug(x,u) − (k + 1)(λ − u)k

λk
g(x,u)

)
du.

Now we make a judicious choice of Gλ
k . Suppose that

(3.9) Gλ
k(u) = λ−k(λ − u)k+1 − (λ − u).
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Then, noting that Gλ
k(0) = Gλ

k(λ) = 0, and integrating by parts, we see that (3.8)
reduces to

−1

λ

∫ λ

0
g(x,u) du

and so we obtain

αAcbf (η) = αf (η)
∑
x∈η

r(x)
[
g(x)k − 1

]
,

which is the generator of a branching process, as required.
Now consider what happens as λ → ∞. Since g(x,u) ≡ 1 for u > ug ,

1

λ

∫ λ

u
g(x, v) dv → 1 as λ → ∞,

and so the first term on the right-hand side of (3.7) vanishes, and observing that

Gλ
k(u) = u

(1 − u
λ
)k+1 − (1 − u

λ
)

u
λ

→ −ku,

we obtain

A∞
cbf (η) = −f (η)

∑
(x,u)∈η

r(x)ku
∂ug(x,u)

g(x,u)
.

Assuming λ−1ηλ(· × [0, λ]) → �, we have αf (�) = e− ∫
E h(x)�(dx) and, using

(A.3),

αA∞
cbf (�) = −e− ∫

E h(x)�(dx)
∫
E

r(x)k

∫ ∞
0

u∂ug(x,u) du�(dx)

= e− ∫
E h(x)�(dx)

∫
E

r(x)k

∫ ∞
0

(
g(x,u) − 1

)
du�(dx)

= −e− ∫
E h(x)�(dx)

∫
E

r(x)kh(x)�(dx),

[where to perform the integration by parts we have used that ∂ug(x,u) =
∂u(g(x,u) − 1)] which corresponds to the evolution of � given by

�t(dx) = er(x)kt�0(dx).

3.5. One for one replacement. So far, we have considered separately the births
and deaths of individuals. In some models, it is natural to think of offspring as re-
placing individuals in the population and, thereby, maintaining constant population
size. In this section, we consider three different models of one-for-one replace-
ment. For λ < ∞, we shall suppose that the population size is finite. In the first
model, we specify a number k < |η| of individuals to be replaced. Those indi-
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viduals are then sampled uniformly at random from the population. In the second
model, the probability, r(x), that an individual of type x is replaced is specified.
Either of these models can be modified in such a way that events affect only a sub-
set C ⊂ E and this allows us to replace the requirement that η be finite by a local
condition [e.g., η(C) < ∞]. Both are special cases of a third model in which there
is a probability distribution p(S) over subsets S ⊂ η that determines the subset to
be replaced. We require p(S) to depend only on the types of the members of S and
not on their levels. By focusing on the case in which events happen with intensity
determined by a measure μdr,3 on Udr,3 we can replace p(S), a probability, by
r(S), a rate, giving the intensity for a replacement event involving the individuals
in S.

In all three cases, we can take the levels to be fixed. The parent (x∗, u∗) is taken
to be the individual chosen to be replaced that has the lowest level. We assume that
the types of the new individuals are chosen independently with distribution given
by a transition function q(x∗, dy), but we could allow dependence provided the
new individuals are assigned to the chosen levels uniformly at random.

For the first model, it is natural to take a generator of the form

Adr,1f (η)

=
∫
Udr,1

( |η|
k(z)

)−1 ∑
S⊂η,|S|=k(z)

f (η)

( ∏
(x,u)∈S

∫
g(y,u)q(x∗(S), z, dy)

g(x,u)
− 1

)
× μdr,1(dz),

where x∗(S) = x′ if (x′, u′) ∈ S and u′ = min{u : (x, u) ∈ S}. As usual, Udr,1

parametrizes the events and they occur with intensity μdr,1. The levels are fixed
and the individuals chosen to be replaced “look down,” just as in the simple exam-
ple of Section 1.2, to identify their parental type. Averaging over levels yields

αAdr,1f (η)

=
∫
Udr,1

( |η|
k(z)

)−1 ∑
S⊂η,|S|=k(z)

αf (η)
1

k(z)

∑
x′∈S

(∏
x∈S

∫
g(y)q(x′, z, dy)

g(x)
− 1

)
× μdr,1(dz).

In the second case, let ξx,u be independent random variables with P {ξx,u = 1} =
1 − P {ξx,u = 0} = r(x). Then (x∗, u∗) ∈ η is the parent if u∗ = min{u : ξx,u = 1}.
Let

(3.10) ĝ(x, z, u) =
∫
E

g(y,u)q(x, z, dy).
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Once again we can fix the levels, in which case the generator will take the form

Adr,2f (η)

=
∫
Udr,2

(
E

[ ∏
(x,u)∈η

(
ξx,uĝ

(
x∗, z, u

)+ (1 − ξx,u)g(x,u)
)]− f (η)

)
× μdr,2(dz),

(3.11)

where the expectation is with respect to the ξx,u and x∗ is a function of η and the
{ξx,u}. (More precisely, x∗ is a function of η and the subset S of the individuals for
which ξx,u = 1.) Recall our assumption that there is a ug such that g(x,u) = 1 for
all u > ug . This property is inherited by ĝ. Thus the factor in the product in (3.11)
is 1 if u ≥ ug , and so the expectation in the integral can be written as

H(g, ĝ, η, z)

≡ E

[ ∏
(x,u)∈η,u≤ug

(
ξx,uĝ

(
x∗, z, u

)+ (1 − ξx,u)g(x,u)
)]

= ∑
S⊂η|E×[0,ug ]

E

[ ∏
(x,u)∈S

(ξx,uĝ
(
x∗(S), z, u

)

× ∏
(x,u)/∈S,u≤ug

(1 − ξx,u)g(x,u)

]

= ∑
S⊂η|E×[0,ug ]

∏
(x,u)∈S

(
r(x, z)ĝ

(
x∗(S), z, u

))
× ∏

(x,u)/∈S,u≤ug

(
1 − r(x, z)

)
g(x,u).

(3.12)

Partitioning on the lowest level particle, we see that this expression can also be
written as ∑

(x∗,u∗)∈η

r
(
x∗, z

)
ĝ
(
x∗, z, u∗) ∏

(x,u)∈η,u<u∗

(
1 − r(x, z)

)
g(x,u)

× ∏
(x,u)∈η,u>u∗

(
r(x, z)ĝ

(
x∗, z, u

)+ (
1 − r(x, z)

)
g(x,u)

)
.

(3.13)

It will be useful to write Adr,2 as a sum of two terms,

Adr,2f (η)

= f (η)

∫
Udr,2

[ ∑
(x∗,u∗)∈η|E×[0,ug ]

r(x∗, z)(ĝ(x∗, z, u∗) − g(x∗, u∗))
g(x∗, u∗)
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× ∏
(x,u)∈η|E×[0,ug ],u�=u∗

(
1 − r(x, z)

)
(3.14)

+ ∑
S⊂η|E×[0,ug ],|S|≥2

(∏
(x,u)∈S ĝ(x∗(S), z, u)∏

(x,u)∈S g(x,u)
− 1

) ∏
(x,u)∈S

r(x, z)

× ∏
(x,u)∈η|E×[0,ug ]−S

(
1 − r(x, z)

)]
μdr,2(dz).

We separate the first term, in which only one individual is replaced in the event,
because it looks like the generator for simple, almost independent evolution of the
particle types. We exploit this observation in Section 4.1.

Since

λ−k
∫ λ

0
g
(
u′)(∫ λ

u′
g(u)du

)k−1
du′ = 1

k

(
λ−1

∫ λ

0
g(u)du

)k

(cf. the calculations in Section 3.4) it follows from (3.12) that

αAdr,2f (η) =
∫
Udr,2

[∑
S⊂η

(∏
x∈S

r(x, z)

)(
1

|S|
∑
y∈S

g(y, z)|S|
)

×
( ∏

x∈η−S

(
1 − r(x, z)

)
g(x)

)
− αf (η)

]
μdr,2(dz),

where g(y, z) = λ−1 ∫ λ
0 ĝ(y, z, u) du.

In the third case, in which we specify the rate at which subsets of individuals
are replaced, we can write

Adr,3f (η)

=
∫
Udr,3

∑
S⊂η

r(S, z)f (η)

( ∏
(x,u)∈S

∫
g(y,u)q(x∗(S), z, dy)

g(x,u)
− 1

)
× μdr,3(dz)

(3.15)

and

αAdr,3f (η)

=
∫
Udr,3

∑
S⊂η

r(S, z)αf (η)
1

|S|
∑
x′∈S

(∏
x∈S

∫
g(y)q(x′, z, dy)

g(x)
− 1

)

× μdr,3(dz).

So far we have dealt with finite population models with one-for-one replace-
ment. We now turn our attention to infinite population limits. For the first model,
Adr,1, there are two natural ways to pass to an infinite population limit. In one,
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the rate at which birth events occur remains the same, but the size of the event (by
which we mean the number of individuals replaced) grows with λ, that is,

λ−1kλ(z) → κ(z) < |�| = lim
λ→∞λ−1|ηλ|.

Asymptotically, this model behaves in the same way as Adr,2 in the special case in
which r(x, z) ≡ κ(z)/|�| and so we do not consider it here.

The other possibility is for k(z) to remain fixed, but for μdr,1 to increase with
λ, that is, to have replacement events occur at an increasingly rapid rate (e.g., this
is the approach when we pass from a Moran model to a Fleming–Viot process).

First, we identify the appropriate scaling. Assume that λ−1ηλ(t, ·) ⇒ �(t, dx),
where �(t,E) < ∞. [Of course, unless other factors are acting, �(t,E) is con-
stant in time, but recall that we are thinking of our components as “building blocks”
of population models.] If a discrete birth event z occurs at time t , then conditional
on ηλ(t, · × [0, λ]) and z, the number of individuals selected with levels below a,
where 0 < a < λ, is binomial with parameters k(z) and ηλ(t,E×[0,a])

ηλ(t,E×[0,λ]) = O(λ−1).

Since the probability of selecting two levels below a is O(λ−2), if we are to see
any interaction between levels in the limiting model, we need to scale μdr,1 by
λ2. On the other hand, if we scale μdr,1 by λ2, the rate at which the individual at
a fixed level is selected is of order λ. When this happens, unless it is one of the
(finite rate) events in which more than one level below a is selected, the individual
at the selected level will necessarily be the parent of the event and so will jump to
a new position determined by the transition density q . If the limiting model is to
make sense, we must therefore rescale q in such a way that in the limit, the motion
of a fixed level will be well defined.

To make this more precise, suppose that an event of type z occurs at time t . If
an individual has level u, the probability that they are the parent of the event is(ηλ(t,E×(u,λ])

k(z)−1

)
(ηλ(t,E×[0,λ])

k(z)

) ≈ k(z)

ηλ(t,E × [0, λ]) .

Assume that q depends on λ. Then the motion of a particle at level u due to its be-
ing chosen as a parent is essentially (since we ignore the asymptotically negligible
number of times when a particle with level below u is also chosen) Markov with
generator

B̃λg(x) = λ2

ηλ(t,E × [0, λ])
∫
Udr,1

k(z)
(
g(y) − g(x)

)
qλ(x, z, dy)μdr,1(dz).

We assume that the Markov process with generator

Bλg(x) = λ

∫
Udr,1

k(z)
(
g(y) − g(x)

)
qλ(x, z, dy)μdr,1(dz)

converges in distribution to a Markov process with generator B . Then [up to a time
change which, in the limit, will be 1/�(E)] this Markov process will describe the
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motion of a particle at a fixed level that results from it being selected as parent of
a replacement event. Note that this convergence implies that for each ε > 0,

(3.16)
∫

k(z)1{d(y,x)>ε}qλ(x, z, dy)μdr,1(dz) = O
(
λ−1).

Similarly, we identify the interaction between distinct levels in the limiting pro-
cess. If there are individuals at levels u1 < u2 and an event of type z occurs at time
t , then the probability that u1, u2 are the lowest two levels selected is(ηλ(t,E×(u2,λ])

k(z)−2

)
(ηλ(t,E×[0,λ])

k(z)

) ≈ k(z)(k(z) − 1)

ηλ(t,E × [0, λ])2 = O
(
λ−2).

We chose our rescaling in such a way that events involving two levels below a fixed
level a will occur at a rate O(1), and by (3.16), after the event, asymptotically, both
the parent and the offspring will have the type of the parent immediately before the
event. In this limit, we will never see events involving three or more levels below
a fixed level a.

If the replacement process is the only process affecting the population, then

|�| = �(t,E) = lim
λ→∞

ηλ(t,E × [0, λ])
λ

is constant in time and [recalling that g(x,u) = 1 for u > ug] the limiting model
will have generator

A∞
dr,1f (η)

=
∫
E×[0,∞)

1

|�|f (η)
Bg(x,u)

g(x,u)
η(dx, du) +

∫
Udr,1

k(z)(k(z) − 1)

|�|2

× ∑
(x1,u1),(x2,u2)∈η,u1<u2

f (η)

(
g(x1, u2)

g(x2, u2)
− 1

)
μdr,1(dz)

=
∫
E×[0,∞)

1

|�|f (η)
Bg(x,u)

g(x,u)
η(dx, du)

+
∫
Udr,1

k(z)(k(z) − 1)

|�|2
∑

(x1,u1),(x2,u2)∈η

(
f (η)

g(x1, u1)g(x2, u2)

× [
1{u1<u2}

(
g(x1, u2)g(x1, u1) − g(x2, u2)g(x1, u1)

)])
μdr,1(dz).

Applying (A.3) and (A.5), the averaged generator becomes

αA∞
dr,1f (�)

= e− ∫
E h(x)�(dx)

[
−
∫
E

1

|�|
∫
E

Bh(x)�(dx)
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+
∫
Udr,1

k(z)(k(z) − 1)

2|�|2
∫
E×E

(
h(x1)

2 − h(x1)h(x2)
)
�(dx1)�(dx2)

× μdr,1(dz)

]
.

The dependence of the first term on μdr,1 is absorbed into our definition of B . If
|�| ≡ 1 and k(z) = 2 for all z, then we recognize the generator of a Fleming–Viot
diffusion [see, e.g., Section 1.11 of Etheridge (2000)].

It is elementary to identify the limit of our second model as λ tends to infinity.
Since g(x,u) = 1 for u > ug , the only changes that we “see” are those that affect
ηug = ∑

(x,u)∈η,u≤ug
δ(x,u) and these are determined by the generator when λ = ug ,

so that

(3.17) A∞
dr,2f (η) =

∫
Udr,2

(
H(g, ĝ, η, z) − f (η)

)
μdr,2(dz),

with H given by (3.12). If η is conditionally Poisson with Cox measure �(dx)du,
{ξx,u,z} are independent with P {ξx,u,z = 1} = 1 − P {ξx,u,z = 0} = r(x, z), and

η1 = ∑
(x,u)∈η

ξx,u,zδ(x,u), η2 = ∑
(x,u)∈η

(1 − ξx,u,z)δ(x,u),

then η1 and η2 are conditionally independent given �, η1 and η2 are conditionally
Poisson with Cox measures r(x, z)�(dx)du and (1 − r(x, z))�(dx)du respec-
tively and the cumulative distribution function of the level of the lowest particle
to be replaced is 1 − e−u

∫
r(x,z)�(dx). We now recall that the x coordinates of the

points in η1, ordered according to the u coordinates, are exchangeable with de
Finetti measure

r(x, z)�(dx)∫
E r(y, z)�(dy)

,

and partition on the lowest level particle as in (3.13). Using (A.3), this yields

E
[
H(g, ĝ, η, z)|�]

= e− ∫
E h(x)(1−r(x,z))�(dx)

∫
E

∫ ∞
0

r
(
x∗, z

)
ĝ
(
x∗, z, u

)
e−u

∫
E r(x,z)�(dx)

× e− ∫∞
u (1−ĝ(x∗,z,v))dv

∫
E r(x,z)�(dx)�

(
dx∗)du

= e− ∫
E h(x)(1−r(x,z))�(dx)

∫
E

∫ ∞
0

r
(
x∗, z

)
ĝ
(
x∗, z, u

)
× e− ∫ u

0 ĝ(x∗,z,v)dv
∫
E r(x,z)�(dx)e−ĥ(x∗,z)

∫
E r(x,z)�(dx)�

(
dx∗)du

= e− ∫
E h(x)(1−r(x,z))�(dx)

∫
E

r(x∗, z)∫
E r(x, z)�(dx)

e−ĥ(x∗,z)
∫
E r(x,z)�(dx)�

(
dx∗)

≡ H(h, ĥ,�, z),
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where the factor
∫

r(x, z)�(dx) in the density function of the lowest level has
canceled with the denominator in the de Finetti measure of η1 on the right-hand
side in the first line and to get from the second line to the third we integrated with
respect to u and used that ĝ = 1 for u > ug . Thus

αA∞
dr,2 =

∫
Udr,2

(
H(h, ĥ,�, z) − αf (�)

)
μdr,2(dz).

Evidently, since Adr,1 and Adr,2 are special cases of Adr,3 and their continuous
density limits are quite different, we cannot expect a general result for the con-
tinuous density limit of Adr,3, but a large class of limits should retain the discrete
model form

A∞
dr,3f (η)

= ∑
S⊂η

∫
Udr,3

r(S, z)f (η)

( ∏
(x,u)∈S

∫
g(y,u)q(x∗(S), z, dy)

g(x,u)
− 1

)
× μdr,3(dz),

provided there is a sufficiently large class of functions g satisfying∑
S⊂η

∫
Udr,3

r(S, z)

× ∑
(x,u)∈S

∣∣∣∣∫ (
g(y,u) − g(x,u)

)
q
(
x∗(S), z, dy

)∣∣∣∣μdr,3(dz) < ∞
(3.18)

with 0 ≤ g ≤ 1 and g(x,u) ≡ 1 for u > ug . In Section 4.1, we consider an ex-
ample in which we can center g(y,u) − g(x,u) in order to weaken the condition
in (3.18). The form of the averaged generator is problem dependent, but convex
combinations of αA∞

dr,1 and αA∞
dr,2 can arise.

3.6. Independent thinning. Independent thinning will work in essentially the
same way as the pure death process. However, whereas in the pure death process
the levels grew continuously, here we scale them up by a (type-dependent) fac-
tor at discrete times. Levels which are above level λ after this multiplication are
removed. The generator with finite λ is then of the form

Athf (η) =
∫
Uth

( ∏
(x,u)∈η

g
(
x,uρ(x, z)

)− f (η)

)
μth(dz),

for some ρ(x, z) ≥ 1. Setting ρ(x, z) = 1
1−p(x,z)

, we see that the probability that
ρ(x, z)Ux > λ, for Ux uniformly distributed on [0, λ], is P {Ux > λ/ρ(x, z)} =
p(x, z). Recalling that g(x,u) = 1 for u ≥ λ and integrating out the levels gives

αAthf (η) =
∫
Uth

(∏
x∈η

((
1 − p(x, z)

)
g(x) + p(x, z)

)− αf (η)

)
μth(dz),
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which says that when a thinning event of type z occurs, individuals are indepen-
dently eliminated with (type-dependent) probability p(x, z).

In the continuous population limit, the form of Ath remains unchanged, and the
projected operator becomes

αAthf (�) =
∫
Uth

(
e
− ∫

E
1

ρ(x,z)
h(x)�(dx) − αf (�)

)
μth(dz),

where as usual h(x) = ∫∞
0 (1 − g(x,u)) du and αf (�) = e− ∫

E h(x)�(dx).

3.7. Event based models. Motivated by the model considered in Berestycki,
Etheridge and Hutzenthaler (2009), we combine independent thinning and dis-
crete birth so that both transformations take place at the same time. Event times
and types (t, z) are determined by a Poisson random measure with mean measure
dtμth,db(dz). The value of z determines the number of offspring k(z), the relative
chance r(x, z) that an individual of type x will be the parent, and the parameter
ρ(x, z) that determines the probability

p(x, z) = ρ(x, z) − 1

ρ(x, z)

that an individual of type x is killed. Let

η(r, z) =
∫

r(x, z)η(dx),

and note that for there to be a parent, we must have η(r, z) > 0. We will assume
that the parent is killed, although alternatively, we could interpret the model as
saying the parent jumps to the location of the particle at level v∗.

The form of the generator will be

Aλ
th,dbf (η) =

∫
U

1{η(r,z)>0}
(
Hλ

z (g, η) − f (η)
)
μth,db(dz),

where, for J λ
r given by (3.4), if η(r, z) > 0,

Hλ
z (g, η) = λ−k(z)

∫
[0,λ]k(z)

∏
(x,u)∈η,u �=u∗(η,v∗)

g
(
x,ρ(x, z)J λ

r(·,z)
(
x,u, η, v∗))

×
k(z)∏
i=1

∫
E

g(yi, vi)q
(
x∗(η, v∗), z, dyi

)
dv1 · · · dvk(z).

The first product in the integral accounts for the thinning of the existing population
(after the removal of the parent), and the second product accounts for the births.
Note that (x∗, u∗) is a function of η and v∗, and if an event z occurs at time t and
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ηt−(r, z) > 0, then

ηt = ∑
(x,u)∈ηt−,u�=u∗

1{ρ(x,z)J λ
r(·,z)(x,u,ηt−,v∗)<λ}δ(x,ρ(x,z)J λ

r(·,z)(x,u,ηt−,v∗))

+
k(z)∑
i=1

δ(yi ,vi ).

Averaging gives

αAλ
th,dbf (η) =

∫
U

1{η(r,z)>0}
∑
x∗∈η

r(x∗, z)∫
r(x, z)η(dx)

(
H

λ

z

(
g,η, x∗)− αf (η)

)
× μth,db(dz),

where, recalling that p(x, z) = ρ(x,z)−1
ρ(x,z)

and ηx∗ = η − δx∗ ,

H
λ

z

(
g,η, x∗) = ∏

x∈ηx∗

((
1 − p(x, z)

)
g(x) + p(x, z)

)

×
k(z)∏
i=1

∫
E

g(yi)q
(
x∗, z, dyi

)
.

Note that if k(z)
λ

→ ζ as λ → ∞, then calculating as in Section 3.3,

Hλ
z (g, η)

= λ−k(z)
∫
[0,λ]k(z)

[ ∏
(x,u)∈η,u �=u∗(η,v∗)

g
(
x,ρ(x, z)J λ

r(·,z)
(
x,u, η, v∗))

×
k(z)∏
i=1

∫
E

g(yi, vi)q
(
x∗, z, dyi

)]
dv1 · · · dvk(z)

→
∫ ∞

0

[
ζe−ζv∗

× ∏
(x,u)∈η,u �=u∗(η,v∗)

g

(
x,ρ(x, z)

(
u − 1{u>u∗}

(
u∗ − v∗) r(x, z)

r(x∗, z)

))

×
∫
E

g
(
y, v∗)q(x∗, z, dy

)
× exp

{
−ζ

∫
E

∫ ∞
v∗

(
1 − g(y, v)

)
q
(
x∗, z, dy

)
dv

}]
dv∗

≡ H∞
ζ (g, η).
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Consequently, at least in the simple setting when μλ
th,db(U) < ∞ and the various

parameters are continuous, if we assume that as λ → ∞, for each ϕ ∈ Cb(R×U),∫
U

ϕ

(
k(z)

λ
, z

)
μλ

th,db(dz) →
∫
U

∫ ∞
0

ϕ(ζ, z)μζ (dζ, z)μ∞
th,db(dz),

where μζ (dζ, z) is a probability distribution on [0,∞), then Ath,dbf (η) converges
to

A∞
th,dbf (η) =

∫
U

∫ ∞
0

1{η(r,z)>0}
(
H∞

ζ (g, η) − f (η)
)
μζ (dζ, z)μ∞

th,db(dz).

If
∫

r(x, z)�(dx) > 0, define

β
(
x∗,�

)= r(x∗, z)∫
E r(x, z)�(dx)

and

Hz(g,�) =
∫ ∞

0

∫ ∞
0

[
exp

{
−
∫
E

1

ρ(x, z)
h(x)�(dx)

}
×
∫
E

β
(
x∗,�

)
exp

{
−ζ

∫
E

h(y)q
(
x∗, z, dy

)
dv)

}
�
(
dx∗)]μζ (dζ, z).

The projected generator then becomes

αA∞
th,dbf (�) =

∫
U

1{�(r,z)>0}
(
Hz(g,�) − αf (�)

)
μ∞

th,db(dz).

3.8. Immigration. Immigration can be modeled by simply assigning each new
immigrant a randomly chosen level. This approach gives a generator of the form

Aimf (η) =
∫
Uim

f (η)

(
λ−1

∫ λ

0
g
(
x(z), v

)
dv − 1

)
μim(dz)

=
∫
Uim

f (η)
(
g
(
x(z)

)− 1
)
μim(dz),

which gives

αAimf (η) =
∫
Uim

αf (η)
(
g
(
x(z)

)− 1
)
μim(dz).

Again setting h(x) = ∫∞
0 (1 − g(x,u)) du, replacing μim by λμim, and passing to

the limit as λ → ∞ gives

Aimf (η) = −
∫
Uim

f (η)h
(
x(z)

)
μim(dz),

and integrating out the levels

αAimf (η) = −
∫
Uim

αf (η)h
(
x(z)

)
μim(dz)
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which implies

d

dt

∫
E

h(x)�t(dx) =
∫
Uim

h
(
x(z)

)
μim(dz),

as we would expect.

3.9. Independent and exchangeable motion. Typically, population models as-
sume independent motion or mutation causing individual types to change between
birth/death events. Some models allow common stochastic effects to influence type
changes so that particle types evolve in an exchangeable fashion. In either case,
we assume the existence of a collection of process generators {Bn}, where Bn de-
termines a process with state space En, Bn is exchangeable in the sense that if
(X1, . . . ,Xn) is a solution of the martingale problem for Bn, then any permutation
of the indices (Xσ1, . . . ,Xσn) also gives a solution of the martingale problem for
Bn, and the Bn are consistent in the sense that if (X1, . . . ,Xn+1) is a solution of
the martingale problem for Bn+1, then (X1, . . . ,Xn) is a solution of the martingale
problems for Bn. Of course, if Bn is the generator for n independent particles, each
with generator B1, then the collection {Bn} has the desired properties.

To combine motion with the other possible elements of a model described
above, we need a sufficiently rich class of function g(x,u) such that for each n,
and fixed u1, . . . , un,

∏n
i=1 g(xi, ui) gives a function in the domain of Bn. In the

independent case, this requirement simply means that g(x,u) is in the domain of
B ≡ B1, and

B|η|f (η) = f (η)
∑

(x,u)∈η

Bg(x,u)

g(x,u)
.

For finite λ, if η(E) < ∞, then the motion generator is just given by

B̂f (η) = B|η|
∏

(x,u)∈η

g(x,u).

For λ = ∞, since we assume that g(x,u) ≡ 1 for u ≥ ug , the same formula works
provided η(E × [0, ug]) < ∞.

For models with infinitely many particles with levels below a fixed level, we
can require the existence of a sequence Kk ⊂ E such that

⋃
k Kk = E and η(Kk ×

[0, u0]) < ∞ for each k and u0. Requiring g(x,u) = 1 and B1g(x,u) = 0 for
(x,u) /∈ Kkg × [0, ug] for some kg would give

(3.19) B̂f (η) = Bη(Kk×[0,ug])
∏

(x,u)∈η|Kk×[0,ug ]
g(x,u).

Note that this condition simply places restrictions on the size or direction of jumps
by the motion process.
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For finite λ and η(E) < ∞,

αB̂f (η) = B|η|
∏
x∈η

g(x),

and similarly for (3.19). For λ = ∞, a general derivation for exchangeable but
not independent motion is not clear, but for independent motion, observing that
Bg = B(g − 1) we have

αB̂f (�) = −e− ∫
E h(x)�(dx)

∫
Bh(x)�(dx).

3.10. Selecting a random sample. The various recipes described above allow
one to construct population models in a way that parent–offspring relationships
can be identified knowing the evolution of the state in the model. In particular,
one can select a random “sample” from an appropriately finite region of the type
space (even in the λ = ∞ case) and trace its genealogy. For example, let C ⊂ E

satisfy η(t,C) < ∞ in the λ < ∞ case and �(t,C) < ∞ in the λ = ∞ case. Then
the set of particles with types in C at the n lowest levels is a uniform random
sample of size n drawn from the subpopulation of particles with types in C and
the genealogies of these n particles can be traced by following the evolution of the
levels back in time.

If the levels are constant in time, then as noted in Remark 4.6 and Section 5 of
Donnelly and Kurtz (1999), one can define a family of counting processes and a
system of stochastic equations driven by these counting processes whose solution
gives the desired genealogy. Tracing the genealogy for a model with moving levels
is much less elegant; however, complete genealogical information is present in the
levels and the stochastic inputs of the birth events.

4. Examples. So far, we have largely performed formal calculations, not
proofs. In this section, we illustrate our results in some specific examples and
here, unless otherwise stated, our results are mathematically rigorous. In Sec-
tion 4.1, we present two different approaches to the process known as the spatial
�-Fleming–Viot process (which we shall also define). The first, based on one-
for-one replacement, yields, in the high intensity limit, the process with levels of
Véber and Wakolbinger (2015) (under somewhat weaker conditions). The second,
based on discrete births of Poisson numbers of offspring and death by independent
thinning, corresponds in the prelimit to the particle system studied in Berestycki,
Etheridge and Hutzenthaler (2009). In Section 4.2, we extend this second approach
to discrete birth mechanisms in which the number of offspring is no longer re-
quired to be Poisson. This yields a new class of population models, in which the
replacement mechanism mirrors that of the spatial �-Fleming–Viot process, but
the population intensity can vary with spatial position. In particular, these models
provide one approach to combining ecology and genetics as described in the Intro-
duction. In Section 4.3, we revisit branching processes and the Dawson–Watanabe
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superprocess. In Section 4.4, we use one-for-one replacement, in the special case
in which just two individuals are involved in each event, to recover, in particular,
the lookdown construction of Greven, Limic and Winter (2005) for a spatially in-
teracting Moran model. In Section 4.5, we use the lookdown construction to derive
a stochastic partial differential equation as the limit of rescaled spatially interacting
Moran models of the type discussed in Section 4.4. Finally, in Section 4.6, we give
a lookdown construction for a class of voter models and use the construction to
give a heuristic argument for a result of Müller and Tribe (1995) showing that the
rescaled voter model converges to a solution of the stochastic partial differential
equation obtained in Section 4.5.

4.1. Spatial �-Fleming–Viot process. The spatial �-Fleming–Viot process
was introduced in Etheridge (2008) and rapidly developed by a number of au-
thors [Barton, Etheridge and Véber (2010), Berestycki, Etheridge and Hutzen-
thaler (2009), Véber and Wakolbinger (2015)]. The primary motivation is to model
a spatially distributed population in such a way that the distribution of the popula-
tion is stable in space and one can recover the genealogical trees relating individu-
als in a sample from the population in an analytically tractable way. A survey can
be found in Barton, Etheridge and Véber (2013). The process is driven by spatially
distributed birth/death events in which a significant fraction of the local population
is replaced. The location, spatial extent and “impact” of these events (by which we
mean the proportion of the local population replaced in an event) is determined
by a Poisson random measure, and stability of the population is maintained by
ensuring that the numbers of births and deaths balance.

We now explicitly distinguish between the location of a particle x ∈ R
d and its

type κ ∈ K. Let E = R
d ×K, U= R

d ×[0,1]×[0,∞), and μ = �d ×ν1(w,dζ )×
ν2(dw) where �d is Lebesgue measure on R

d , ν2 is a σ -finite measure on [0,∞)

and ν1 is a transition function from [0,∞) to [0,1].
If C ⊂ R

d is Borel measurable, then |C| = �d(C). If C is a finite or countable
set, then |C| will denote the number of elements in C; which interpretation applies
should be clear in context.

Each point in U specifies a point y ∈ R
d , w ∈ [0,∞) and ζ ∈ [0,1]. The corre-

sponding reproduction event will affect the population in the ball Dy,w ⊆ R
d cen-

tered at y with radius w, and ζ will determine the impact within the ball. The model
is driven by a space-time Poisson random measure on U×[0,∞) with mean mea-
sure μ × �. If a birth/death event occurs at time t corresponding to (y, ζ,w) ∈ U,
an individual located in Dy,w is selected at random to be the “parent,” a fraction ζ

of the individuals in Dy,w are killed and replaced by individuals of the same type
as the parent, with the locations of the new individuals uniformly distributed over
Dy,w .

We will give two constructions of processes following this recipe which differ
substantially for finite λ but, under conditions for which both constructions are
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valid, yield the same measure-valued model in the limit. The first construction
follows ideas of Véber and Wakolbinger (2015).

In order to rigorously define the generators of our processes, we will need to
restrict the domains. In both cases, the domains will be subsets of

Dλ =
{
f (η) = ∏

(x,κ,u)∈η

g(x, κ,u) : 0 ≤ g ≤ 1,

∃ compact Kg ⊂ R
d,0 < ug ≤ λ,

g(x, κ,u) = 1 for (x, u) /∈ Kg × [0, ug)

}
D∞ = ⋃

λ>0

Dλ.

(4.1)

Without loss of generality, we can assume that Kg = D0,ρg for 0 < ρg < ∞.
Consider Adr,2 defined in (3.11). Recall that with this mechanism, for each re-

placement event, we specify the probability r(x) that an individual of type x is
replaced and the parent is taken to be the individual chosen to be replaced that
has the lowest level. For an event corresponding to z = (y, ζ,w), let r(x, z) be
ζ1Dy,w(x) and for (x, κ) ∈ E, the transition function q of Section 3.5 becomes

q
(
x, κ, z, dx′ × dκ ′) = υy,w

(
dx′)δκ

(
dκ ′),

where υy,w is the uniform distribution over the ball Dy,w , that is, the offspring
have the same type as the parent and are independently and uniformly distributed
over the ball. Consequently, ĝ in (3.10) becomes

ĝy,w(κ,u) ≡
∫

g
(
x′, κ, u

)
υy,w

(
dx′).

In addition, recalling that g(x, κ) = λ−1 ∫ λ
0 g(x, κ,u) du, we define

gy,w(κ) ≡
∫

g
(
x′, κ

)
υy,w

(
dx′)

= 1

λ

∫ λ

0
ĝy,w(κ,u) du

=
∫ 1

λ

∫ λ

0
g
(
x′, κ, u

)
duυy,w

(
dx′).

(4.2)

We postpone giving precise conditions on ν1 and ν2 until we have formally derived
the generators.

We define

(4.3) ηy,w = ∑
(x,κ,u)∈η:x∈Dy,w

δ(x,κ,u) and ηg
y,w = ∑

(x,κ,u)∈η:x∈Dy,w,u≤ug

δ(x,κ,u).
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That is, η
g
y,w = η(· ∩ Dy,w × K × [0, ug)) is the restriction of η to Dy,w × K ×

[0, ug). From (3.17) and (3.12), A∞
dr,2 is given by

A∞
dr,2f (η) = f (η)

∫
Rd×[0,1]×[0,∞)

(∑
S⊂η

g
y,w

H(g, ĝ, S, y, ζ,w)∏
(x,κ,u)∈η

g
y,w

g(x, κ,u)
− 1

)
dy

× ν1(w,dζ )ν2(dw),

(4.4)

where

H(g, ĝ, S, y, ζ,w)

= ∏
(x,κ,u)∈S

(
ĝy,w

(
κ∗(S), u

)
ζ
) ∏
(x,κ,u)∈η

g
y,w,(x,κ,u)/∈S

(
(1 − ζ )g(x, κ,u)

)
,

κ∗(S) being the type of the lowest level particle in S. A∞
dr,2 is the generator for

the lookdown construction of Véber and Wakolbinger (2015). Again, for an event
corresponding to (y, ζ,w), a particle in Dy,w is involved in the event with proba-
bility ζ .

The relationship between the martingale problems for finite and infinite λ is
particularly simple in this setting. For finite λ, Aλ

dr,2f (η) = A∞
dr,2f (η) provided

ug ≤ λ. Consequently, any solution of the martingale problem for A∞
dr,2 restricted

to levels in [0, λ] gives a solution of the martingale problem for Aλ
dr,2. In particular,

existence and uniqueness for Aλ
dr,2 for all λ > 0 implies existence and uniqueness

for A∞
dr,2.

Setting ηy,w = η(· ∩ Dy,w ×K), for finite λ,

αAλ
dr,2f (η) = αf (η)

∫
Rd×[0,1]×[0,∞)

(∑
S⊂ηy,w

H(g, ĝ, S, y, ζ,w)∏
(x,κ)∈ηy,w

g(x, κ)
− 1

)
dy

× ν1(w,dζ )ν2(dw),

(4.5)

where, recalling the notation defined in (4.2),

H(g, ĝ, S, y, ζ,w)

= 1

|S|
∑

(x,κ)∈S

(
gy,w(κ)ζ

)|S| ∏
(x,κ)∈ηy,w,(x,κ)/∈S

(
(1 − ζ )g(x, κ)

)
.

(4.6)

Finally, setting h∗
y,w(κ) = ∫∞

0 (1 − ĝy,w(κ,u)) du [recall h(x, κ) = ∫∞
0 (1 −

g(x, κ,u)) du] and

H1
(
h∗

y,w,�,y, ζ,w
)= 1

�(Dy,w ×K)

∫
Dy,w×K

e−ζh∗
y,w(κ)�(Dy,w×K)�(dx × dκ),
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we have

αA∞
dr,2f (�)

= e− ∫
h(x,κ)�(dx,dκ)

×
∫
Rd×[0,1]×[0,∞)

(
H1

(
h∗

y,w,�,y, ζ,w
)
e
ζ
∫
Dy,w×K

h(x,κ)�(dx,dκ)

− 1
)
dyν1(w,dζ )ν2(dw).

(4.7)

Note that if � is a solution of the martingale problem for αA∞
dr,2 and �(0, dx ×

K) is Lebesgue measure, then �(t, dx × K) is Lebesgue measure for all t ≥ 0.
(Consider the generator with h not depending on κ .)

Before establishing conditions under which the construction above is valid, let
us describe an alternative lookdown construction of the spatial �-Fleming–Viot
process employing discrete births (Section 3.3) and independent thinning (Sec-
tion 3.6) as in Section 3.7. With z = (y, ζ,w) as above, the thinning parameter is

(4.8) ρ(x, κ, z) = 1 + ζ

1 − ζ
1Dy,w(x).

As we saw in Section 3.6, this assumption ensures that the probability that an ex-
isting individual (other than the parent) dies is zero outside the ball Dy,w and ζ

within it.
If there is at least one individual in Dy,w (to serve as parent), the discrete birth

event corresponding to z produces a Poisson number of offspring with parameter
λαz conditioned to be positive, where αz = ζ |Dy,w|, r(x, z) = 1Dy,w(x), and

q
(
x, κ, z, dx′, dκ ′) = υy,w

(
dx′)δκ

(
dκ ′).

The finite intensity model is then essentially that considered in Berestycki,
Etheridge and Hutzenthaler (2009), differing only in the assumptions that the par-
ent is selected before the thinning and the offspring distribution is conditioned to
be positive. Note that the definition of r in this construction is different from the
definition in the previous construction. There, r determined the chance of being
involved in the event; here we use it to weight the chance of being a parent. This
distinction becomes important in modelling different forms of natural selection
when we would choose r to depend on type.

As in Section 3.7, but with a slight change of notation, let η(y,w) = η(Dy,w ×
K× [0, λ]) and

Aλ
th,dbf (η) =

∫
U

1{η(y,w)>0}
(
Hλ

z (g, η) − f (η)
)

× (
1 − e−αzλ

)
dyν1(w,dζ )ν2(dw).

(4.9)

We introduce the factor 1 − e−αzλ in the event measure, and then condition on
there being at least one offspring. If η(Dy,w × K × [0, λ]) = η(y,w) �= 0, we
obtain an expression for Hλ

z (g, η) by partitioning on the lowest level selected for
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the offspring. Since the levels {vi} selected for the offspring are the jump times in
[0, λ] of a Poisson process with intensity αz, this yields

Hλ
z (g, η)

= ∏
(x,κ,u)∈η,x /∈Dy,w

g(x, κ,u)

× 1

1 − e−αzλ

∫ λ

0

[
αze

−αzv
∗
ĝy,w

(
κ∗, v∗)e−αz

∫ λ
v∗ (1−ĝy,w(κ∗,v)) dv

× ∏
(x,κ,u)∈η,x∈Dy,w,u�=u∗

g

(
x, κ,

1

1 − ζ
J λ

y,w

(
x,u, η, v∗))]dv∗,

(4.10)

where (x∗, κ∗, u∗) is the point in η satisfying x∗ ∈ Dy,w and

u∗ = argmax
{

λ − u

λ − v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≥ v∗
}

∪
{

u

v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≤ v∗
}
,

and J λ
y,w(x,u, η, v∗) is obtained as in (3.4) with r = 1Dy,w . Recall that we thin the

existing population after we select the parent, and the thinning is accomplished by
multiplying J λ

y,w by ρ defined in (4.8).
Let η|Dy,w

denote η restricted to Dy,w × K. Since conditional on η and
v∗, (x∗, κ∗) is selected uniformly at random from η|Dy,w

and, for u �= u∗ (see
Lemma 3.1), the J λ

y,w(x,u, η, v∗) are independent and uniform over [0, λ], parti-
tioning on the level of the lowest offspring, define

Hλ
z (g, η)

= 1

|η|Dy,w
|

∑
(x∗,κ∗)∈η|Dy,w

∏
(x,κ)∈η|Dy,w

,(x,κ) �=(x∗,κ∗)

(
(1 − ζ )g(x, κ) + ζ

)

× 1

1 − e−λαz

∫ λ

0
αze

−αzv
∗
ĝy,w

(
κ∗, v∗)e−αz

∫ λ
v∗ (1−ĝy,w(κ∗,v))dvdv∗

= 1

|η|Dy,w||
∑

(x∗,κ∗)∈η|Dy,w

∏
(x,κ)∈η|Dy,w

,(x,κ) �=(x∗,κ∗)

(
(1 − ζ )g(x, κ) + ζ

)

× 1

1 − e−λαz

(
e−αz

∫ λ
0 (1−ĝy,w(κ∗,v))dv − e−λαz

)
= 1

|η|Dy,w
|

∑
(x∗,κ∗)∈η|Dy,w

∏
(x,κ)∈η|Dy,w

,(x,κ) �=(x∗,κ∗)

(
(1 − ζ )g(x, κ) + ζ

)

× 1

1 − e−λαz

(
e−ζ |Dy,w|h∗

y,w(κ∗) − e−αzλ
)
,
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where, as before, h∗
y,w(κ) = ∫∞

0 (1 − ĝy,w(κ,u)) du. To understand this quantity,
recall first that in our discrete births model, the parent is eliminated from the pop-
ulation. Next, for points within Dy,w , they survive with probability (1 − ζ ), other-
wise they are removed (giving the product on the right-hand side of the first line).
The final term corresponds to the offspring [recalling the notation gy,w(κ) from
(4.2) and that we have conditioned on there being at least one offspring]. Then

αAλ
th,dbf (η) = αf (η)

∫
U

1{η(y,w)>0}
( Hλ

z (g, η)∏
(x,κ)∈η|Dy,w

g(x, κ)
− 1

)

× (
1 − e−αz

)
dyν1(w,dζ )ν2(dw).

Note that αAλ
th,db constructed here is not the same as αAλ

dr,2 given in (4.5).
Here, at each birth/death event, existing particles are randomly killed and an in-
dependent number of new particles are created while in the previous construction,
the number of births equaled the number of deaths. However, taking λ → ∞, by
(3.5),

(4.11) A∞
th,dbf (η) =

∫
U

1{η(y,w)>0}
(
Hz(g, η) − f (η)

)
dyν1(w,dζ )ν2(dw),

with

Hz(g, η) = ∏
(x,κ,u)∈η,x /∈Dy,w

g(x, κ,u)

×
∫ ∞

0

[
αze

−αzv
∗
ĝy,w

(
κ∗, v∗)e−αz

∫∞
v∗ (1−ĝy,w(κ∗,v)) dv

× ∏
(x,κ,u)∈η,x∈Dy,w,u>u∗

g

(
x, κ,

1

1 − ζ

(
u − u∗ + v∗))

× ∏
(x,κ,u)∈η,x∈Dy,w,u<u∗

g

(
x, κ,

1

1 − ζ
u

)]
dv∗.

Just as in Lemma 3.1, [and using (3.5)], it is easy to see that η∗ satisfying∫
g dη∗ = ∑

(x,κ,u)∈η,x∈Dy,w,u>u∗
g

(
x, κ,

1

1 − ζ

(
u − u∗ + v∗))

+ ∑
(x,κ,u)∈η,x∈Dy,w,u<u∗

g

(
x, κ,

1

1 − ζ
u

)
is conditionally Poisson with Cox measure (1 − ζ )1Dy,w(x)�(dx, dκ) and recall-
ing the definition of h∗

y,w(κ) from just below equation (4.6) an integration by parts
gives ∫ ∞

0
αze

−αzv
∗
ĝy,w

(
κ∗, v∗)e−αz

∫∞
v∗ (1−ĝy,w(κ∗,v)) dv dv∗ = e−αzh

∗
y,w(κ∗).
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Averaging (4.11) gives

αA∞
th,dbf (�) = e

− ∫
Rd×K

h(x,κ)�(dx,dκ)

×
∫
U

(
H2

(
h∗

y,w,�, z
)
e
ζ
∫
Dy,w×K

h(x,κ)�(dx,dκ) − 1
)
dy

× ν1(w,dζ )ν2(dw),

where

H2
(
h∗

y,w,�, z
) = 1

�(Dy,w ×K)

∫
Dy,w×K

e−ζ |Dyw|h∗
y,w(κ)�(dx × dκ),

[defined to be 1 if �(Dy,w × K) = 0] which, in general, differs from H1. How-
ever, if � is a solution of the martingale problem for αA∞

th,db with �(0, dx × K)

Lebesgue measure, then �(t, dx × K) is Lebesgue measure for all t ≥ 0 and
H2(h

∗
y,w,�, z) = H1(h

∗
y,w,�, z). Consequently, in this case, � is also a solution

of the martingale problem for αA∞
dr,2 in the previous construction.

Our calculations so far in this subsection have been entirely formal. We now turn
to actually constructing the processes that correspond to the generators described
above.

4.1.1. First construction of spatial �-Fleming–Viot with levels. The process
corresponding to A∞

dr,2 appears already in Véber and Wakolbinger (2015), but the
strategy of our construction, based on writing down stochastic equations for the
type of the particle at the ith level for each i, is somewhat different, and we obtain
our process under somewhat weaker conditions. In particular, for existence of our
construction, we require

(4.12)
∫
[0,1]×(1,∞)

ζwdν1(w,dζ )ν2(dw) < ∞

and

(4.13)

⎧⎪⎪⎨⎪⎪⎩
∫
[0,1]×[0,1]

ζ |w|2ν1(w,dζ )ν2(dw) < ∞ if d = 1,∫
[0,1]×[0,1]

ζ |w|2+dν1(w,dζ )ν2(dw) < ∞ if d ≥ 2,

while Véber and Wakolbinger (2015) assume

(4.14)
∫
[0,1]×(0,∞)

ζwdν1(w,dζ )ν2(dw) < ∞.

We should point out, however, that up to now, we do not have a proof of uniqueness
for the system of stochastic equations under the weaker conditions, except in the
case d = 1 where uniqueness is proved in Zheng and Xiong (2017). The solution
is unique under (4.14).
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To rigorously cover the more general conditions, we need to be more careful in
the description of the generators, which for simplicity we will call Aλ and A∞. In
particular, we appeal to the construction in Appendix A.3. With reference to (4.1),
we restrict the domain to

D
(
A∞) =

{
f (η) = ∏

(x,κ,u)∈η

g(x, κ,u) ∈ D∞ : g(·, κ, u) ∈ C2(
R

d)}.

To avoid additional complication of notation, we will also assume that for each
k = 1,2, . . . ,

(4.15) ν2(2−k,2k) < ∞.

With the results of Appendix A.3 in mind, define �0 = ∅ and for k = 1,2, . . . ,

(4.16) �k = D0,k × [0,1] × [
2−k,2k].

Set

Bkf (η) =
∫
�k−�k−1

f (η)

(∑
S⊂η

g
y,w

H(g, ĝ, S, y, ζ,w)∏
(x,κ,u)∈η

g
y,w

g(x, κ,u)
− 1

)
dy

× ν1(w,dζ )ν2(dw),

where as before

H(g, ĝ, S, y, ζ,w)

= ∏
(x,κ,u)∈S

(
ĝy,w

(
κ∗(S), u

)
ζ
) ∏
(x,κ,u)∈η

g
y,w,(x,κ,u)/∈S

(
(1 − ζ )g(x, κ,u)

)
.

Note that, writing vd for the volume of the unit ball, λk in (A.13) is

λk = vdkd
∫ 2k

2−k
ν1(w, [0,1])ν2(dw) − vd(k − 1)d

×
∫ 2k−1

2−(k−1)
ν1(w, [0,1])ν2(dw).

(4.17)

The definition of Hk is somewhat more complicated than the form used in Ap-
pendix A.3, but arguments used there carry over immediately. Let Uk = (�k −
�k−1) × ([0,1] × D0,1)

η, and

νk(dy, dζ, dw, . . . , dzu, dvu, . . .)

= 1

λk

dyν1(w,dζ )ν2(dw)
∏

(x,κ,u)∈η

dzuυ0,1(dvu),

that is, for each k, we associate a pair of random variables (Zk,u,Vk,u) with each
element of η, where Zk,u is uniformly distributed on [0,1] and Vk,u is uniformly
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distributed on D0,1. We can index these random variables by u since in our model
the levels u will be distinct. Then

Hk

(
η, y, ζ,w, (z, v)η

)
= ∑

(x,κ,u)∈η

((
1 − 1Dy,w(x)1[0,ζ ](z)

)
δ(x,κ,u)

+ 1Dy,w(x)1[0,ζ ](z)δ(y+wv,κu∗ ,u)

)
,

(4.18)

where u∗ = min{u : (x, κ,u) ∈ η, x ∈ Dy,w, zu ≤ ζ }. Note that if V is uniformly
distributed on D0,1, then y + wV is uniformly distributed on Dy,w .

To verify Condition A.5, we split �k , setting

�k = �1
k ∪ �2

k ≡ D0,k × [0,1] × [
2−k,1

]∪ D0,k × [0,1] × (
1,2k],

�∞ = �1∞ ∪ �2∞ ≡ R
d × [0,1] × (0,1] ∪R

d × [0,1] × (1,∞),

and for i = 1,2, define

Bi
kf (η) =

∫
�i

k−�i
k−1

f (η)

(∑
S⊂η

g
y,w

H(g, ĝ, S, y, ζ,w)∏
(x,κ,u)∈η

g
y,w

g(x, κ,u)
−1

)
dyν1(w,dζ )ν2(dw).

Recall the definition of η
g
y,w from (4.3). For i = 2, as in (3.11), let {ξζ

x,κ,u} be
independent with P {ξζ

x,κ,u = 1} = 1 − P {ξζ
x,κ,u = 0} = ζ . Then∣∣∣∣∣

∞∑
k=m+1

B2
k f (η)

∣∣∣∣∣
=

∣∣∣∣∫
�2∞−�2

m

∏
(x,κ,u)∈η−η

g
y,w

g(x, κ,u)

×
(
E

[ ∏
(x,κ,u)∈η

g
y,w

(
ξζ
x,κ,uĝy,w

(
κ∗, u

)+ (
1 − ξζ

x,κ,u

)
g(x, κ,u)

)]

− f
(
ηg

y,w

))
dyν1(w,dζ )ν2(dw)

∣∣∣∣
≤
∫
�2∞−�2

m

∑
(x,κ,u)∈η

g
y,w

E
[
ξζ
x,κ,u

∣∣ĝy,w

(
κ∗, u

)− 1
∣∣]dyν1(w,dζ )ν2(dw)

+
∫
�2∞−�2

m

∑
(x,κ,u)∈η

g
y,w∩D0,ρg ×K×[0,ug)

E
[
ξζ
x,κ,u

∣∣1 − g(x, κ,u)
∣∣]dy

× ν1(w,dζ )ν2(dw)
(4.19)

≤
∫
�2∞

∣∣ηg
y,w

∣∣ |D0,ρg ∩ Dy,w|
|Dy,w| ζdyν1(w,dζ )ν2(dw)
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+
∫
�2∞

η
(
D0,ρg ×K× [0, ug)

)
× 1{Dy,w∩D0,ρg �=∅}ζ dyν1(w,dζ )ν2(dw)

≤ |D0,ρg |
∫
[0,1]×(1,∞)

|ηg
y,w|

|Dy,w|
× 1{Dy,w∩D0,ρg �=∅}ζν1(w,dζ )ν2(dw)

+ η
(
D0,ρg ×K× [0, ug)

) ∫
[0,1]×(1,∞)

vd(ρg + w)d

× ζν1(w,dζ )ν2(dw),

where to obtain the first inequality we have used the identity

m∏
k=1

ak −
m∏

k=1

bk =
m∑

k=1

( ∏
1≤l<k

al

)
(ak − bk)

∏
k<l≤m

bl,

observing that, in our case, all factors are less than or equal to one and so we can
estimate the right-hand side by

∑m
k=1 |ak − bk|, and the differences are

ξζ
x,κ,uĝy,w

(
κ∗, u

)+ (
1 − ξζ

x,κ,u

)
g(x, κ,u)) − g(x, κ,u)

= ξx,κ,u

(
ĝy,w

(
κ∗, u

)− g(x, κ,u)
)

= ξζ
x,κ,u

(
ĝy,w

(
κ∗, u

)− 1
)

+ ξζ
x,κ,u

(
1 − g(x, κ,u)

)
.

Recalling that g vanishes outside D0,ρg , in the second inequality we have then
used that for u < ug ,

(4.20)
∣∣1 − ĝy,w(κ,u)

∣∣ ≤ |D0,ρg ∩ Dy,w|
|Dy,w| .

The sums in the two integrals are over the (x, κ,u) for which the term is nonzero.
If there exists 0 < c < ∞ such that E[η(Dy,w) × K × [0, r])] ≤ cr|Dy,w| for all
y, w, r , as would be the case if η(dx ×K× du) were a Poisson random measure
with Lebesgue mean measure, then the expectation of the right side of (4.19) is
bounded by

c|D0,ρg |(1 + ug)

∫
[0,1]×(1,∞)

vd(ρg + w)dζ dyν1(w,dζ )ν2(dw),

which is finite under (4.12).
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If m > ρg + 1, then

m∑
k=1

B1
k f (η)

=
∫
�1

m

f (η)

(∑
S⊂η

g
y,w

H(g, ĝ, S, y, ζ,w)∏
(x,κ,u)∈η

g
y,w

g(x, κ,u)
− 1

)
dyν1(w,dζ )ν2(dw)

=
∫
�1

m

f (η)
∑

S⊂η
g
y,w

∫
D

|S|
y,w

(∏
(x,κ,u)∈S g(xu, κ

∗(S), u)∏
(x,κ,u)∈S g(x, κ,u)

− 1
)∏

υy,w(dxu)

× ζ |S|(1 − ζ )|η
g
y,w|−|S| dyν1(w,dζ )ν2(dw)

=
∫
�1

m

f (η)

( ∑
(x∗,κ∗,u∗)∈η

g
y,w

∫
Dy,w

[
g(xu∗, κ∗, u∗)
g(x∗, κ∗, u∗)

− 1

− (xu∗ − x∗) · ∇g(x∗, κ∗, u∗)
g(x∗, κ∗, u∗)

]
υy,w(dxu∗)

)
× ζ(1 − ζ )|η

g
y,w|−1 dyν1(w,dζ )ν2(dw)

+
∫
�1

m

f (η)
∑

S⊂η
g
y,w,|S|≥2

∫
D

|S|
y,w

(∏
(x,κ,u)∈S g(xu, κ

∗(S), u)∏
(x,κ,u)∈S g(x, κ,u)

− 1
)

×∏
υy,w(dxu)ζ

|S|(1 − ζ )|η
g
y,w|−|S| dyν1(w,dζ )ν2(dw),

where in the first term on the right, we are summing over S ⊂ η
g
y,w with |S| = 1

and in the second term, we are summing over S ⊂ η
g
y,w with |S| ≥ 2. If we assume

that m > ρg + 1, then since in the integral over �1
m we have w < 1, for each x∗ for

which ∇g(x∗, κ∗, u∗) is nontrivial we have

(4.21)
∫
D0,m×[2−m,1]

1Dy,w

(
x∗) ∫

Dy,w

(
x′ − x∗)υy,w

(
dx′)dyν2(dw) = 0,

and so including the gradient term has no effect. Also, observe that the ∇g term
plays the same role here as it does in the generator of a Lévy process (in fact, the
location of the particle at a fixed level u is a Lévy process).

Define

Cy,wg(x, κ,u) =
∫
Dy,w

(
g
(
x′, κ, u

)− g(x, κ,u)

− (
x′ − x

) · ∇g(s, κ, u)
)
υy,w

(
dx′).(4.22)
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Then, for m > ρg + 1,∣∣∣∣∣
∞∑

k=m+1

B1
k f (η)

∣∣∣∣∣
≤
∫
�1∞−�1

m

∑
S⊂η

g
y,w,|S|≥2

∣∣∣∣ ∏
(x,κ,u)∈S

ĝy,w

(
κ∗(S), u

)− ∏
(x,κ,u)∈S

g(x, κ,u)

∣∣∣∣
× ζ |S|(1 − ζ )|η

g
y,w|−|S| dyν1(w,dζ )ν2(dw)

+
∫
�1∞−�1

m

∑
(x∗,κ∗,u∗)∈η

g
y,w

∣∣Cy,wg
(
x∗, κ∗, u∗)∣∣

× ζ(1 − ζ )|η
g
y,w|−1 dyν1(w,dζ )ν2(dw)

≤
∫
�1∞−�1

m

(
1 − (1 − ζ )|η

g
y,w| − ∣∣ηg

y,w

∣∣ζ(1 − ζ )|η
g
y,w|−1)

× 1{D0,ρg ∩Dy,w �=∅} dyν1(w,dζ )ν2(dw)

+
∫
�1∞−�1

m

∥∥∂2g
∥∥∣∣ηg

y,w

∣∣w2ζ1{D0,ρg ∩Dy,w �=∅} dyν1(w,dζ )ν2(dw)

≤
∫
�1∞

∣∣ηg
y,w

∣∣(∣∣ηg
y,w

∣∣− 1
)
1{D0,ρg ∩Dy,w �=∅}ζ 2 dyν1(w,dζ )ν2(dw)

+
∫
�1∞

∥∥∂2g
∥∥∣∣ηg

y,w

∣∣w2ζ1{D0,ρg ∩Dy,w �=∅} dyν1(w,dζ )ν2(dw).

We are primarily interested in solutions {ηt } of the martingale problem for A∞
such that at each time t , ηt (· × K × ·) is a Poisson point process on R

d × [0,∞)

with mean measure �d+1. Consequently, if, as in the discussion of
∑

B2
k , we re-

quire that

(4.23) E
[
η
(
Dy,w ×K× [0, r])] ≤ cr|Dy,w| for all y ∈ R

d,w > 0,

and in addition require

E
[
η
(
Dy,w ×K× [0, r])(η(Dy,w ×K× [0, r])− 1

)]
≤ cr2|Dy,w|2 for all 0 < w ≤ 1,

(4.24)

the solution of primary interest will meet these requirements. Under these assump-
tions,

E

[∣∣∣∣∣
∞∑

k=m+1

B1
k f (η)

∣∣∣∣∣
]

≤ cu2
gvd(ρg + 1)d

∫
[0,1]×[0,1]

v2
dζ 2w2dν1(w,dζ )ν2(dw)
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+ ∥∥∂2g
∥∥ug(ρg + 1)d

∫
[0,1]×[0,1]

vdwd+2

× ζν1(w,dζ )ν2(dw).

Note that by (4.12) and (4.13), the right-hand side is finite. Comparing the two
terms, for d = 1, the first term dominates, while for d ≥ 2, the second term domi-
nates [explaining the need for alternative conditions in (4.13)].

From this point on, our approach is reminiscent of that in Section 3.1. For l =
1,2, . . . , define ηl

y,w = η(· ∩ Dy,w ×K× [0, l)). Set

ψl(η) = η
(
D0,l ×K× [0, l]) ∫

[0,1]×(1,∞)
vd(l + w)dζν1(w,dζ )ν2(dw)

+ vdld
∫
Rd×[0,1]×(1,∞)

|ηl
y,w|

vdwd
1{D0,l∩Dy,w �=∅}ζ dyν1(w,dζ )ν2(dw)

+
∫
Rd×[0,1]×[0,1]

∣∣ηl
y,w

∣∣(∣∣ηl
y,w

∣∣− 1
)
1{D0,l∩Dy,w �=∅} dyν1(w,dζ )ν2(dw)

+ l

∫
Rd×[0,1]×[0,1]

∣∣ηl
y,w

∣∣w21{D0,l∩Dy,w �=∅}ζ dyν1(w,dζ )ν2(dw).

Select δl > 0 so that if (4.23) and (4.24) are satisfied, then
∑

l δlE[ψl(ηt )] < ∞,
and define

ψ(η) = 1 +∑
l

δlψl(η).

Then for each g such that f (η) = ∏
(x,κ,u)∈η g(x, κ,u) ∈ D(A∞), there exists l

such that ρg ≤ l, ug ≤ l and ‖∂2g‖ ≤ l, and hence for m ≥ 0,∣∣∣∣∣
∞∑

k=m+1

Bk

∣∣∣∣∣ ≤ 1

δl

ψ(η).

Consequently, we can take cf in Theorem A.2 and Condition A.5 to be δ−1
l and

mf in Condition A.5 to be [ρg + 2]. We have the following.

THEOREM 4.1. Assume that (4.12) and (4.13) hold and that η is a solution of
the martingale problem for A∞

dr,2 given by (4.4) satisfying (4.23) and (4.24). Then
with the Hk given by (4.18) and λk given by (4.17), the conclusion of Theorem A.6
holds.

Let � be a solution of the martingale problem for αA∞
dr.2 given by (4.7) satisfy-

ing

E

[∫ t

0
E
[
ψ(ηs)|�(s)

]
ds

]
< ∞,
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for all t > 0, where for each s, ηs is a conditionally Poisson process with Cox mea-
sure �(s) × �. Then � can be obtained from a solution of the martingale problem
for A∞

dr,2. In particular, the conclusion holds for any solution with �(0, dx × K)

equal to Lebesgue measure.

REMARK 4.2. With the above formulation of the generator, for finite λ,

αAλ
dr,2f (η) = αf (η)

∫
Rd×[0,1]×[0,∞)

∑
(x,κ)∈ηy,w

Cy,wg(x, κ)

g(x, κ)

× ζ(1 − ζ )|ηy,w|−1 dyν1(w,dζ )ν2(dw) + αf (η)

×
∫
Rd×[0,1]×[0,∞)

(∑
S⊂ηy,w,|S|≥2 H(g, ĝ, S, y, ζ,w)∏

(x,κ)∈ηy,w
g(x, κ)

− 1
)

dy

× ν1(w,dζ )ν2(dw),

where H is as in (4.6) for |S| ≥ 2.
For λ = ∞, αA∞

dr,2 is as in (4.7), that is,

αA∞
dr,2f (�)

= e− ∫
h(x,κ)�(dx,dκ)

×
∫
Rd×[0,1]×[0,∞)

(
H1

(
h∗

y,w,�,y, ζ,w
)
e
ζ
∫
Dy,w×K

h(x,κ)�(dx,dκ) − 1
)
dy

× ν1(w,dζ )ν2(dw),

where h∗
y,w(κ) = ∫∞

0 (1 − ĝy,w(κ,u)) du.

4.1.2. Stochastic equations for locations and types. Recall

Hk

(
η, y, ζ,w, (z, v)η

)
= ∑

(x,κ,u)∈η

((
1 − 1Dy,w(x)1[0,ζ ](z)

)
δ(x,κ,u)

+ 1Dy,w(x)1[0,ζ ](z)δ(y+wv,κu∗ ,u)

)
.

Write

η(t) = ∑
δ(Xu(t),κu(t),u).

Under the conditions of Theorem 4.1, setting

Hk(s−) = Hk

(
η(s−), Yk(s−), ζk(s−),Wk(s−),

{(
Zk,u(s−),Vk,u(s−)

)})
we have

f
(
η(t)

) = f
(
η(0)

)+ lim
m→∞

m∑
k=1

∫ t

0

(
f
(
Hk(s−)

)− f
(
η(s−)

))
dNk(s),
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where, for each k, Nk is a Poisson process with parameter λk (as defined in
Theorem 4.1) and at each jump τ of Nk , if Xu(τ−) ∈ DYk(τ−),Wk(τ−), then
(Zk,u(τ−),Vk,u(τ−)) is replaced by an independent pair of random variables
(Zk,u(τ ),Vk,u(τ )) ∈ [0,1] × D0,1 with distribution dz × υ0,1(dv). Consequently,
the location of the particle with level u will satisfy

Xu(t) = Xu(0)

+ lim
m→∞

m∑
k=1

∫ t

0
1DYk(s−),Wk(s−)

(
Xu(s−)

)
1[0,ζk(s−)]

(
Zk,u(s−)

)
× (

Yk(s−) + Wk(s−)Vk,u(s−) − Xu(s−)
)
dNk(s).

(4.25)

Note that ξ0 defined by∫
[0,t]×Rd×[0,1]×[0,∞)

f (y, ζ,w)ξ0(ds, dy, dζ, dw)

=
∞∑

k=1

∫ t

0
f
(
Yk(s−), ζk(s−),Wk(s−)

)
dNk(s)

is a Poisson random measure with mean measure dsdyν1(w,dζ )ν2(dw), and ξu

defined by∫
[0,t]×{0,1}×D0,1×Rd×[0,1]×[0,∞)

f (θ, v, y, ζ,w)ξu(ds, dθ, dv, dy, dζ, dw)

=
∞∑

k=1

∫ t

0
f
(
1[0,ζk(s−)]

(
Zk,u(s−)

)
,Vk,u(s−),

Yk(s−), ζk(s−),Wk(s−)
)
dNk(s)

is a Poisson random measure with mean measure

ds
(
(1 − ζ )δ0(θ) + ζ δ1(θ)

)
υ0,1(dv) dyν1(w,dζ )ν2(dw).

Then letting z = (θ, v, y, ζ,w), so ξu(ds, dθ, dv, dy, dζ, dw) = ξu(ds, dz), (4.25)
becomes

Xu(t) = Xu(0)

+ lim
k→∞

∫
[0,t]×{0,1}×D0,1×�k

1Dy,w

(
Xu(s−)

)
× θ

(
y + wv − Xu(s−)

)
ξu(ds, dz)

= Xu(0) +
∫
[0,t]×{0,1}×D0,1×Rd×[0,1]×[0,∞)

1Dy,w

(
Xu(s−)

)
× θ

(
y + wv − Xu(s−)

)̃
ξu(ds, dz),

(4.26)
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where ξ̃u is ξu centered by its mean measure. The centering has no effect on the
right-hand side of the first equality once k is large enough that Xu(s) ∈ D0,k−1 for
0 ≤ s ≤ t . In particular, if Xu(s) ∈ D0,k−1,∫

{0,1}×D0,1×D0,k×[0,1]×[2−k,1]
1Dy,w

(
Xu(s)

)
θ
(
y + wv − Xu(s)

)
× (

(1 − ζ )δ0(θ) + ζ δ1(θ)
)
υ0,1(dv) dyν1(w,dζ )ν2(dw)

=
∫
D0,k×[0,1]×[0,1]

1D0,w

(
Xu(s) − y

)
ζ
(
y − Xu(s)

)
dyν1(w,dζ )ν2(dw)

=
∫
Rd×[0,1]×[0,1]

1D0,w
(y)ζy dyν1(w,dζ )ν2(dw)

= 0,

where in the first equality we have used that v is uniformly distributed on D0,1
and so has mean zero. Furthermore, (4.12) and (4.13) imply the existence of the
stochastic integrals in the limiting equation.

Set Ry,w,v(x) = (y +wv −x)(y +wv −x)T . Assuming existence of a solution,
the centered integral in (4.26) is a square integrable martingale Mu with covariation
matrix

[Mu]t =
∫
[0,t]×{0,1}×D0,1×Rd×[0,1]×[0,1]

1Dy,w

(
Xu(s−)

)
θRy,w,v

(
Xu(s−)

)
× ξu(ds, dθ, dv, dy, dζ, dw)

and, by translation invariance,

E
[[Mu]t ] = t

∫ 1

0

∫ 1

0

∫
D0,w

∫
D0,1

ζ(y + wv)(y + wv)T

× υ0,1(dv) dyν1(w,dζ )ν2(dw)

= t

∫ 1

0

∫ 1

0

∫
D0,w

ζ
(
yyT + |w|2cdI

)
dyν1(w,dζ )ν2(dw)

= tCd

∫ 1

0

∫ 1

0
ζ |w|2+dν1(w,dζ )ν2(dw)I,

for appropriate choices of cd and Cd , which is finite by (4.13).

LEMMA 4.3. Assume (4.12) and (4.13). Then weak (distributional) existence
holds for the system (4.26). If, in addition, (4.14) holds, then strong uniqueness
(and hence strong existence) holds.

REMARK 4.4. Weak uniqueness (uniqueness in distribution) for a single Xu

follows by uniqueness of the corresponding martingale problem (Xu is a Lévy
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process). Unfortunately, weak uniqueness for a single Xu does not imply weak
uniqueness for the system. If we consider the joint distribution of Xu and Xu′ ,
weak uniqueness only implies uniqueness of the marginal distributions. Strong
existence means that Xu can be written as a function of the stochastic inputs, and
strong uniqueness implies there is only one such function (up to modification on
events of probability zero). Strong uniqueness for a single Xu would give strong
uniqueness for the system. In the case of d = 1, strong uniqueness is proved in
Zheng and Xiong (2017) under the more general conditions (4.12) and (4.13)

PROOF. It is enough to consider an arbitrary but finite subsystem {Xui
,1 ≤

i ≤ m}. With reference to (4.22), let f (x) = ∏m
i=1 g(xi), g ∈ C2(Rd), 0 ≤ g ≤ 1,

g(x) = 1 for x outside D0,ρg , and for S ⊂ {i : xi ∈ Dy,w,1 ≤ i ≤ m}, let fS(x) =∏
i∈S g(xi) and

B |S|
y,wfS(x) =

∫
D

|S|
y,w

(∏
i∈S

g
(
x′
i

)− ∏
i∈S

g(xi)

− 1{w≤1}fS(x)
∑
i∈S

(x′
i − xi) · ∇g(xi)

g(xi)

)∏
i∈S

υy,w

(
dx′

i

)
.

(4.27)

Then setting Sy,w(x) = {i : xi ∈ Dy,w}, the generator for the subsystem becomes

Amf (x) = f (x)

∫
Rd×[0,1]×[0,∞)

∑
S⊂Sy,w(x)

B
|S|
y,wfS(x)∏
i∈S g(xi))

× ζ |S|(1 − ζ )|Sy,w(x)|−|S| dyν1(w,dζ )ν2(dw).

(4.28)

Note that Amf (x) is a continuous function of x.
Existence of solutions of the martingale problem for (4.28) follows by approxi-

mation. To obtain an approximation Xε = (Xε
1, . . . ,X

ε
m), consider the system ob-

tained by replacing ν2 by ν2
ε given by ν2

ε (C) = ν2(C ∩ [ε,∞)). The generator
Am,ε is then a bounded operator (the gradient term integrates to zero), and exis-
tence and uniqueness for the martingale problem is immediate. For each i, Xε

i is a
Lévy process with Lévy measure

νε(C) =
∫
Rd×[0,1]×[ε,∞)

∫
Dy,w

1C

(
x′ − x

)
1Dy,w(x)υy,w

(
dx′)

× ζ dyν1(w,dζ )ν2(dw)

=
∫
Rd×[0,1]×[ε,∞)

∫
D0,w

1C

(
x′ + y − x

)
1D0,w

(x − y)υ0,w

(
dx′)

× ζ dyν1(w,dζ )ν2(dw)

=
∫
Rd×[0,1]×[ε,∞)

∫
D0,w

1C

(
x′ − z

)
1D0,w

(z)υ0,w

(
dx′)

× ζ dzν1(w,dζ )ν2(dw),
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and convergence in distribution of {Xε
i } follows from convergence of the Lévy

measures. Convergence for each component implies relative compactness of {Xε}
at least in DRd [0,∞) × · · · × DRd [0,∞) [Ethier and Kurtz (1986), Proposi-
tion 3.2.4], if not in D(Rd )m[0,∞). For a convergent subsequence, convergence
in the product topology still implies convergence of the integrals∫ t

0
Am,εf

(
Xε(s)

)
ds ⇒

∫ t

0
Amf

(
X(s)

)
ds,

which in turn ensures that the limit is a solution of the martingale problem for Am.
The fact that the limit is a weak solution of the stochastic differential equation
follows by Theorem 2.3 of Kurtz (2011).

If (4.14) holds, then a solution of (4.26) jumps only finitely often in a finite time
interval, that is, {(s, z) ∈ ξu : s ≤ t,Xu(s−) ∈ Dy,w, θ = 1} is finite for each t > 0.
Consequently, the equation is uniquely solved by moving from one such (s, z) to
the next, and this solution depends only on the stochastic inputs, that is, it is a
strong solution. �

We still need to consider the evolution of the type of each particle. Note that the
particle with index u changes type only if it is involved in a birth/death event with
a particle having a lower level. The number of times that particle u1 and particle
u2 are involved in the same birth/death event up to time t can be written as

Nu1u2(t)

=
∫
[0,t]×Rd×[0,1]×[0,∞)

1Dy,w

(
Xu2(s−)

)
1Dy,w

(
Xu1(s−)

)
θu1(s)θu2(s)

× ξ0(ds, dy, dζ, dw)

and since θu1 and θu2 are conditionally independent given ξ0,

E
[
Nu1u2(t)

] =
∫
[0,t]×Rd×[0,1]×[0,∞)

E
[
1Dy,w

(
Xu2(s)

)
1Dy,w

(
Xu1(s)

)]
× ζ 2 ds dyν1(w,dζ )ν2(dw).

Let C ⊂ R
d be bounded and u > 0, and let NC,u(t) be the number of times by time

t that two particles with levels below u and locations in C are involved in the same
birth/death event. Then, assuming (4.23) and (4.24),

E
[
NC,u(t)

]
=

∫
[0,t]×Rd×[0,1]×[0,∞)

E

[ ∑
u1<u2≤u

1C

(
Xu1(s)

)
1C

(
Xu2(s)

)
× 1Dy,w

(
Xu2(s)

)
1Dy,w

(
Xu1(s)

)]
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× ζ 2 ds dyν1(w,dζ )ν2(dw)

=
∫
[0,t]×Rd×[0,1]×[0,∞)

E

[(
η(s,Dy,w ∩ C × [0, u])

2

)]

× ζ 2 ds dyν1(w,dζ )ν2(dw)

≤
∫
[0,t]×Rd×[0,1]×[0,∞)

u2|Dy,w ∩ C|2ζ 2 ds dyν1(w,dζ )ν2(dw)

≤ u2
∫
[0,t]×Rd×[0,1]×[0,∞)

(
v2
dw2d ∧ |C|2)ζ 2 ds dyν1(w,dζ )ν2(dw)

< ∞.

It follows that no single particle will change type more than finitely often by time t .
It is now straightforward to write down an equation for the way in which indi-

viduals’ types change with time. For u1 < u2, define

Lu1u2(t) = #
{
s ≤ t : Nu1u2(s) − Nu1u2(s−) = 1,

Nu3u2(s) − Nu3u2(s−) = 0,∀u3 < u1
}
.

Then, writing κu for the type of the individual with level u,

(4.29) κu2(t) = κu2(0) + ∑
u1<u2

∫ t

0

(
κu1(s−) − κu2(s−)

)
dLu1u2(s).

As in Section 5 of Donnelly and Kurtz (1999), the genealogy of the particles
alive at time t is determined by the Lu1u2 . In particular, the index of the ancestor
at time r < t of the particle at level u2 at time t satisfies

(4.30) Ju2(t, r) = u2 − ∑
u3<u1≤u2

∫ t

r
(u11{Ju2 (t,s)=u1} − u3) dLu3u1(s).

Since the lookdown construction for the discrete population model is simply the re-
striction of the lookdown construction of the infinite density population model, the
genealogies of the discrete model converge to those of the infinite density model.
To be precise, we have the following.

THEOREM 4.5. For any solution of the infinite system (4.26) (regardless of the
uniqueness question), the counting processes Nu1u2 and Lu1u2 , the type processes
κu, and the ancestral index Ju are uniquely determined, and the genealogies of the
λ < ∞ model converge to those of the λ = ∞ model.

REMARK 4.6. As noted in Section 3.10, one can model the selection of a
random sample of size n from a region C satisfying 0 < �(t,C ×K) < ∞ simply
by selecting the particles located in C with the n lowest levels. The genealogy of
the sample can then be obtained using equation (4.30).



1878 A. M. ETHERIDGE AND T. G. KURTZ

4.1.3. Second construction of spatial �-Fleming–Viot with levels. The par-
ticle dynamics for Aλ

dr,2 given by (4.26) and (4.29) are very different from the
particle dynamics that are natural for Aλ

th,db defined in (4.9). The event measures
μ(dz) ≡ dyν1(w,dζ )ν2(dw) are of the same form, but what happens at each event
z = (y, ζ,w) is very different. In particular, for a birth/death event in the ball Dy,w ,
the total population size in Dy,w does not change for Aλ

dr,2, but typically it will
change for Aλ

th,db. As will become apparent when we analyze the behavior of the
levels, we will need to assume stronger conditions on the event measures than were
used in the previous construction.

With Dλ defined in (4.1), we take the domain of Aλ ≡ Aλ
th,db to be{

f (η) = ∏
(x,κ,u)∈η

g(x, κ,u) ∈ Dλ : g(·, κ, ·) ∈ C2,

‖∂ug‖ ≡ sup
x,κ,u

∣∣∂ug(x, κ,u)
∣∣< ∞

}
,

and D(A∞) = ⋃
λD(Aλ). In a birth/death event determined by z = (y, ζ,w), the

parent is killed and, with probability 1, for λ < ∞ all other particles in the event
region Dy,w will change levels and for λ = ∞, all particles with levels above that
of the parent will change levels.

For finite λ, v∗ has density (1−e−λαz)−1αze
−αzv on [0, λ], where αz = ζ |Dy,w|.

Let u∗
1 = min{u : u > v∗, (x, κ,u) ∈ η|Dy,w} and u∗

2 = max{u : u < v∗, (x, κ,u) ∈
η|Dy,w} and define

τ ∗
1 = log

λ − v∗

λ − u∗
1
, τ ∗

2 = log
λ

u∗
2

and τ ∗ = τ ∗
1 ∧ τ ∗

2 .

Setting

u∗ = u∗
11{τ∗

1 <τ∗
2 } + u∗

21{τ∗
1 >τ∗

2 },

for (x, κ,u) ∈ η|Dy,w , we have

(4.31) J λ
y,w

(
x,u, η, v∗) = 1{u>v∗}

(
ueτ∗ − λ

(
eτ∗ − 1

))+ 1{u<v∗}ueτ∗
,

and for λ = ∞,

(4.32) J∞
y,w

(
x,u, η, v∗) = u − 1[v∗,∞)(u)

(
u∗ − v∗).

If (x, κ,u) ∈ η|Dy,w is not the parent, that is, u �= u∗, then (x, κ,u) jumps to

(x, κ,
J λ

y,w(x,u,η,v∗)
1−ζ

).
For reasons that will become clear below, we also require the stronger condition

(4.14), that is,

(4.33)
∫
(0,∞)×[0,1]

ζwdν1(w,dζ )ν2(dw) < ∞.



GENEALOGICAL CONSTRUCTIONS 1879

Recall (4.20), and note that at an event z = (y, ζ,w), the expected number of
new particles with level below ug is bounded by

1

1 − e−λαz
ζ |Dy,w|ug.

Setting U= R
d ×[0,1]×[0,∞) and assuming (4.15), define �k as in (4.16). With

reference to Appendix A.3, define

Bλ
k f (η) =

∫
�k−�k−1

(
Hλ

z (g, η) − f (η)
)(

1 − e−λαz
)
dyν1(w,dζ )ν2(dw),

where Hλ
z (g, η) is defined in (4.10). Note that u∗ and κ∗ are determined by v∗ and

ηy,w . Then∣∣Bλ
k f (η)

∣∣
≤
∫
�k−�k−1

∣∣Hλ
z (g, η) − f (η)

∣∣(1 − e−αzλ
)
dyν1(w,dζ )ν2(dw)

≤
∫
�k−�k−1

∫ λ

0
αz

× e−αzv
∗(

1 − ĝy,w

(
κ∗, v∗)e−αz

∫ λ
v∗ (1−ĝy,w(κ∗,v)) dv)dv∗μ(dz)

+
∫
�k−�k−1

∫ λ

0
αz

× e−αzv
∗
∣∣∣∣ ∏
(x,κ,u)∈η,x∈Dy,w,u�=u∗

g

(
x, κ,

1

1 − ζ
J λ

y,w

(
x,u, η, v∗))

− ∏
(x,κ,u)∈η,x∈Dy,w

g(x, κ,u)

∣∣∣∣dv∗μ(dz).

(4.34)

Note that the integrand in the first term on the right is zero if v∗ ≥ ug and

ĝy,w

(
κ∗, v

) ≥ 1 − |Dy,w ∩ D0,ρg |
|Dy,w| ≡ ĝ

y,w
.

Then, bounding the two terms on the right of (4.34),∣∣Bλ
k f (η)

∣∣ ≤ ∫
�k−�k−1

∫ ug

0
αze

−αzv
∗(

1 − ĝ
y,w

e
−αz(ug−v∗)(1−ĝ

y,w
))

dv∗μ(dz)

+
∫
�k−�k−1

(
1 − e−αzλ

)
η(Dy,w ∩ D0,ρg ×K)μ(dz)

≤
∫
�k−�k−1

(
(1 − ĝ

y,w
)
(
1 − e−αzug

)



1880 A. M. ETHERIDGE AND T. G. KURTZ

+
∫ ug

0
αze

−αzv
∗
ĝ

y,w

(
1 − e

−αz(ug−v∗)(1−ĝ
y,w

))
dv∗

)
μ(dz)

+
∫
�k−�k−1

(
1 − e−αzλ

)
η(Dy,w ∩ D0,ρg ×K)μ(dz)

≤
∫
�k−�k−1

2αzug(1 − ĝ
y,w

)μ(dz)

+
∫
�k−�k−1

(
1 − e−αzλ

)
η(Dy,w ∩ D0,ρg ×K)μ(dz)

≤
∫
�k−�k−1

2ugζ |Dy,w| |Dy,w ∩ D0,ρg |
|Dy,w| μ(dz)

+
∫
�k−�k−1

ζ |Dy,w|λη(Dy,w ∩ D0,ρg ×K)μ(dz).

The construction of the ψ needed to apply Theorem A.2 and Theorem A.6 is
similar to the construction in the previous section. Bounding the parameters in the
estimates above that depend on g by a positive integer l, we have

∞∑
k=1

∣∣Bλ
k f (η)

∣∣ ≤ ∫
[0,1]×[0,∞)

2vdζ l(w ∧ l)dν1(w,dζ )ν2(dw)

+
∫
U

ζ |Dy,w|λη(Dy,w ∩ D0,l ×K)μ(dz)

≡ ψl(η),

(4.35)

provided ug and ρg are less than l.
We are primarily interested in solutions of the martingale problem for which

η(· ×K× ·) will be dominated by a Poisson random measure on R
d × [0, λ] with

Lebesgue mean measure, so restricting our attention to solutions of the martingale
problem satisfying

(4.36) E
[
η(Dy,w ×K)

] ≤ c|Dy,w| = cvdwd,

we have

E
[
ψl(η)

] ≤
∫
[0,1]×[0,∞)

(
vdζ l(w ∧ l)d + cλv2

dζwd(w ∧ l)d
)
ν1(w,dζ )ν2(dw),

which is finite under (4.33). Then, as before, we set ψ(η) = 1 + ∑∞
l=1 δlψl(η),

where we select δl > 0 satisfying
∞∑
l=1

δl

∫
[0,1]×[0,∞)

(
vdζ l(w ∧ l)d + cλv2

dζwd(w ∧ l)d
)
ν1(w,dζ )ν2(dw) < ∞.

The λ = ∞ case takes a little more care. Note that we exploit the fact that if
u < v∗ and x ∈ Dy,w , then

J∞
y,w

(
x,u, η, v∗) = u,
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so after a birth-death event, the new level is 1
1−ζ

u. Let

U1 =
{
(y, ζ,w) ∈ U : ζ ≤ 1

2

}
and U2 =

{
(y, ζ,w) ∈ U : ζ >

1

2

}
.∣∣Bkf (η)

∣∣
≤
∫
�k−�k−1

∣∣Hz(g, η) − f (η)
∣∣dyν1(w,dζ )ν2(dw)

≤
∫
�k−�k−1

∫ ∞
0

αz

× e−αzv
∗(

1 − ĝy,w

(
κ∗, v∗)e−αz

∫∞
v∗ (1−ĝy,w(κ∗,v)) dv)dv∗μ(dz)

+
∫
�k−�k−1

∫ ∞
0

αz

× e−αzv
∗
∣∣∣∣ ∏
(x,κ,u)∈η,x∈Dy,w,u�=u∗

g

(
x, κ,

1

1 − ζ
J∞

y,w

(
x,u, η, v∗))

− ∏
(x,κ,u)∈η,x∈Dy,w

g(x, κ,u)

∣∣∣∣dv∗μ(dz)

≤
∫
�k−�k−1

2ugζ |Dy,w| |Dy,w ∩ D0,ρg |
|Dy,w| μ(dz)

+
∫
(�k−�k−1)

∫ ug

0
αz

× e−αzv
∗
η
(
Dy,w ∩ D0,ρg ×K×[

0, ug + u∗
1 − v∗))dv∗μ(dz)

+
∫
(�k−�k−1)∩U1

e−αzug

× η
(
Dy,w ∩ D0,ρg ×K× [0, ug])‖∂ug‖ ζ

1 − ζ
ugμ(dz)

+
∫
(�k−�k−1)∩U2

e−αzug

× η
(
Dy,w ∩ D0,ρg ×K× [0, ug])μ(dz).

(4.37)

The first term corresponds to offspring of the event, the second accounts for the
change in levels of individuals already present in the population in the case v∗ <

ug and the final two terms to the corresponding changes when v∗ > ug . As in
Section 4.1.1, we are bounding the difference of two products in which all the
factors are less than or equal to one, by a sum of differences of factors.
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As before, for ug , ‖∂ug‖, and ρg less than l,

∞∑
k=1

∣∣Bkf (η)
∣∣ ≤ ∫

U

2lζ |Dy,w| |Dy,w ∩ D0,l|
|Dy,w| μ(dz)

+
∫
U

∫ l

0
αze

−αzv
∗

× η
(
Dy,w ∩ D0,l ×K× [

0, l + u∗
1 − v∗))dv∗μ(dz)

+
∫
U1

e−αzlη
(
Dy,w ∩ D0,l ×K× [0, l]) ζ

1 − ζ
l2μ(dz)

+
∫
U2

e−αzlη
(
Dy,w ∩ D0,l ×K× [0, l])μ(dz)

≡ ψl(η).

Note that in the second term on the right, v∗ ≤ l, and u∗
1 − v∗ < u∗

1 ≤ 2l, if
η(Dy,w ×K× (l,2l]) > 0. In general, we have

η
(
Dy,w ∩ D0,l ×K× [

0, l + u∗
1 − v∗))

≤ η
(
Dy,w ∩ D0,l ×K× [0,3l

)
)

+
∞∑

k=2

1{η(Dy,w×K×(l,kl])=0,η(Dy,w×K×(kl,(k+1)l])>0}

× η
(
Dy,w ∩ D0,l ×K× (

(k + 1)l, (k + 2)l
))

,

and assuming η is conditionally Poisson with Cox measure �(dx, dκ) du, the con-
ditional independence of η on disjoint sets gives

E
[
η
(
Dy,w ∩ D0,l ×K× [

0, l + u∗
1 − v∗))]

≤ E
[
�(Dy,w ∩ D0,l ×K)

]
3l

+
∞∑

k=2

E
[
e−�(Dy,w×K)(k−1)l(1 − e−�(Dy,w×K)l)�(Dy,w ∩ D0,l ×K)

]
2l

≤ 5lE
[
�(Dy,w ∩ D0,l ×K)

]
.

Consequently, if there exists c > 0 such that

(4.38) E
[
�(Dy,w ×K)

] ≤ c|Dy,w|,
then E[ψl(η)] < ∞, and the conclusions of Theorem A.2 and Theorem A.6 hold.

For solutions of the martingale problem for Aλ
th,db or A∞

th,db, the initial level
of each particle will be distinct, and we will index particles by their initial level.
Each particle has birth time bu, which we will take to be 0 for the particles in the
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population at time 0, and an initial location xu = Xu(bu) and a type κu which do
not change with time.

Let N = N (Rd × [0,∞)) be the space of counting measures on R
d × [0,∞).

The evolution of the process is determined by a Poisson random measure ξ on
[0,∞) ×N ×R

d × [0,1] × [0,∞) with mean measure

dsν3(y, ζ,w,dγ )dyν1(w,dζ )ν2(dw),

where ν3(y, ζ,w,dγ ) is the distribution of the Poisson random measure on R
d ×

[0,∞) with mean measure

ζ1Dy,w(x) dx dv = ζ |Dy,w|υy,w(dx) dv.

Note that a “point” in ξ is of the form β = (s, {(xk, vk), k ≥ 1}, y, ζ,w), where we
will assume that the {(xk, vk)} are indexed in increasing order of the vk . Then, the
birth times, locations and levels of “new” particles are given by

B = ⋃
β∈ξ

{
(s, xk, vk), k ≥ 1, vk < λ

}
.

Then v∗ ≡ v(β) = v1 and x(β) = x1, and(
x∗, κ∗, u∗) ≡ (

x∗(β, η), κ∗(β, η), u∗(β, η)
)

is the point in η satisfying x∗ ∈ Dy,w and

u∗ = argmax
{

λ − u

λ − v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≥ v∗
}

∪
{

u

v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≤ v∗
}
.

Set G =N ×R
d × [0,1] × [0,∞). By Theorem A.6, we have the following.

THEOREM 4.7. For 0 < λ ≤ ∞, any solution of the martingale problem for
Aλ = Aλ

th,db given in (4.9) that satisfies

E

[∫ t

0
ψ
(
η(s)

)
ds

]
< ∞ for all t ≥ 0,

can be obtained as a solution of the stochastic equation

f
(
η(t)

) = f
(
η(0)

)
+
∫
[0,t]×G

[
f (η(s−))

f (ηy,w(s−))

∏
(x,u)∈γ (β)

g
(
x, κ∗(β,η(s−)

)
, u

)

× ∏
(x,κ,u)∈ηy,w(s−),u�=u∗(β,η(s−))

g

(
x, κ,

J λ
y,w(x,u, η(s−), v(β))

1 − ζ

)

− f
(
η(s−)

)]
1{v(β)<λ}ξ(ds, dβ).
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To construct a more useful system of equations, if (x, κ,u) ≡ (xu, κu, u) ∈ η(0),
the level evolves by

Uu(t) = u +
∫
(0,t]×G

1Dy,w(xu)

×
(J λ

y,w(xu,Uu(s−), η(s−), v(β))

1 − ζ
− Uu(s−)

)
× 1{v(β)<λ}ξ(ds, dβ),

(4.39)

and the particle dies at time

(4.40) du = inf
{
t > 0 : Uu(t) > λ or Uu(t−) = u∗(β,η(t−)

)
, (t, β) ∈ ξ

}
.

If there is a birth/death event at time s,

(s, β) = (
s,
{
(xk, vk), k ≥ 1

}
, y, ζ,w

) ∈ ξ,

then for u = vk , we set xu = xk and bu = s. The levels for the new particles satisfy

Uu(t) = u +
∫
(bu,t]×G

1Dy,w(xu)

×
(J λ

y,w(xu,Uu(s−), η(s−), v(β))

1 − ζ
− Uu(s−)

)
× 1{v(β)<λ}ξ(ds, dβ),

(4.41)

for t ≥ bu, and the type is given by κu = κ∗(β, η(s−)). Again, the particle dies at
time du given by (4.40), so

η(t) = ∑
1[bu,du)(t)δ(xu,κu,Uu(t)).

With reference to (3.5), passing to the limit as λ → ∞, the equations become

Uu(t)

= u +
∫
(bu,t]×G

1Dy,w(xu)

[
Uu(s−) − 1{Uu(s−)≥v(β)}(u∗(β, η(s−)) − v(β))

1 − ζ

− Uu(s−)

]
ξ(ds, dβ),

for t ≥ bu, and defining

(4.42) τu = lim
k→∞ inf

{
t : Uu(t) > k

}
,

the particle dies at time

(4.43) du = τu ∧ inf
{
t > 0 : Uu(t−) = u∗(β,η(t−)

)
, (t, β) ∈ ξ

}
.
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Since the downward jumps in Uu, when they occur, will typically be O(1), we
can only allow finitely many per unit time. Conditional on Uu, the intensity of
downward jumps is∫ ∞

0

∫ 1

0
vdwd(1 − e−ζvdwdUu(t))ν1(w,dζ )ν2(dw),

which is finite by (4.33). (Recall that vd is the volume of the unit ball.) The cumu-
lative effect of the upward jumps on logUu is bounded by

−
∫
Gt

1Dy,w(xu) log(1 − ζ )ξ(ds, dβ),

which has expectation

−
∫ t

0

∫ ∞
0

∫ 1

0
vdwd log(1 − ζ )ν1(w,dζ )ν2(dw),

which is again finite by (4.33), that is, assuming (4.33), τu defined in (4.42) is
infinite.

We are going to prove existence by a tightness and weak convergence argument,
so we need to view ξ as a random variable in an appropriate metric space. Let
ϕ ∈ Cb([0,∞) × R

d) be strictly positive and satisfy
∫
Rd

∫∞
0 ϕ(s, y) ds dy < ∞.

Let M be the space of measures on S = [0,∞) × N × R
d × [0,1] × [0,∞) and

define convergence in M by the requirement that μn → μ if and only if∫
S

ϕ(s, y)f (s, γ, y, ζ,w)μn(ds, dγ, dy, dζ, dw)

→
∫
S

ϕ(s, y)f (s, γ, y, ζ,w)μ(ds, dγ, dy, dζ, dw),

for all f ∈ Cb(S). Then M is metrizable and complete.

THEOREM 4.8. For λ < ∞, assume that with probability one, ηλ(0,K ×K) <

∞ for every compact K ⊂ R
d and that conditioned on ηλ(0), the levels in ηλ(0)

are independent and uniform on [0, λ]. Then existence holds for the solution of the
system of stochastic equations (4.39) and (4.41), and hence for the corresponding
martingale problem.

For λ = ∞, assume that η(0) is conditionally Poisson with Cox measure �(0)×
� on Rd and supy∈Rd E[�(0,Dy,1 ×K)] < ∞. For λ < ∞, let Uλ be a solution of
the system (4.39) and (4.41) with ηλ(0) the restriction of η(0) to u ∈ [0, λ]. Then
{(Uλ, ξ)} is relatively compact in DR[0,∞)∞×M and any limit point is a solution
for the system with λ = ∞. Consequently, existence holds for the λ = ∞ system
of stochastic equations, and hence for the corresponding martingale problem, and
along the convergent subsequence, the genealogies corresponding to Uλ converge
to the genealogies of the limit.
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PROOF. Assume λ < ∞. There are only countably many particles that ever
live, and the levels must satisfy the countable system of equations

Uu(t) = u +
∫
(bu,t]×G

1Dy,w(xu)

[J λ
y,w(xu,Uu(s−), η(s−), v(β))

1 − ζ
− Uu(s−)

]
× 1{v(β)<λ}ξ(ds, dβ),

including the initial particles with bu = 0.
Let Uε

u satisfy

Uε
u(t)

= u +
∫
(bu,t]×G

1Dy,w(xu)

[J λ
y,w(xu,U

ε
u(s−), ηε([s/ε]ε), v(β))

1 − ζ
− Uε

u(s−)

]
× 1{v(β)<λ}ξ(ds, dβ).

With probability one, no jump in ξ occurs at times of the form [s/ε]ε, and it
follows that Uε is uniquely determined. On any bounded time interval, each par-
ticle is involved in only finitely many events, that is, Uε

u jumps only finitely of-
ten, and the jumps are bounded. Consequently, {(Uε, ξ)} is relatively compact in
DR[0,∞)∞ × M in the sense of convergence in distribution. Selecting a con-
vergent subsequence with limit (U, ξ), the only issue is the continuity of J λ

y,w .
Suppose (β, t) ∈ ξ . Then since J λ

y,w only depends on finitely many of the Uu,
and, with probability one, no particle locations are on the boundary of Dy,w , the
necessary continuity will be satisfied if Uu1(t−) �= Uu2(t−) for all u1 and u2 with
xu1, xu2 ∈ Dy,w and there are no ties in the determination of u∗(β, η). But the first
requirement holds since Uu1(t−) and Uu2(t−) will be independent and uniform
and the second holds since v(β) will be independent of U(t−).

Essentially the same argument works for the relative compactness of {(Uλ, ξ)}
and taking a convergent subsequence, we obtain existence for λ = ∞ and conver-
gence of the genealogies. �

REMARK 4.9. At this point, we do not have a uniqueness result for the martin-
gale problem or the stochastic equations. This question will be pursued elsewhere.

4.2. Spatial �-Fleming–Viot process with general offspring distribution. In
the discrete birth/independent thinning model described in the previous section,
the offspring distribution was Poisson and the model was constructed so that for
λ = ∞, the locations and levels of the particles form a spatial Poisson process
that is stationary in time. We now drop the Poisson assumption and allow an off-
spring distribution restricted only by the requirement that the expected number of
offspring for an event z = (y, ζ,w) in the ball Dy,w with thinning probability ζ is

∞∑
k=0

kp(k, z) = λζ |Dy,w|.
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To avoid the uniqueness problem mentioned in Remark 4.9, we replace R
d

by a torus T. Taking U = T × [0,1] × [0,∞) and setting μ(dy, dζ, dw) =
dyν1(w,dζ )ν2(dw), we assume μ(U) < ∞ and define

Aλf (η) =
∫
U

∞∑
k=1

p(k, z)
(
Hλ

k,z(g, η) − f (η)
)
dyν1(w,dζ )ν2(dw),

where as before, if η(Dy,w ×K) = 0, Hλ
k,z(g, η) = f (η), and if η(Dy,w ×K) �= 0,

Hλ
k,z(g, η)

= ∏
(x,κ,u)∈η,x /∈Dy,w

g(x, κ,u)

×
∫ λ

0

[
k

λ

(
1 − v∗

λ

)k−1
ĝy,w

(
κ∗, v∗)( 1

λ − v∗
∫ λ

v∗
ĝy,w

(
κ∗, v

)
dv

)k−1

× ∏
(x,κ,u)∈η,x∈Dy,w,u�=u∗

g

(
x, κ,

1

1 − ζ
J λ

y,w

(
x,u, η, v∗))]dv∗,

where as before ĝy,w(κ,u) ≡ ∫
g(x′, κ, u)υy,w(dx′).

Again, (x∗, κ∗, u∗) is the point in η satisfying x∗ ∈ Dy,w and

u∗ = argmax
{

λ − u

λ − v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≥ v∗
}

∪
{

u

v∗ : (x, κ,u) ∈ η, x ∈ Dy,w,u ≥ v∗
}
,

and J λ
y,w(x,u, η, v∗) is obtained as in (4.31).

Recalling that gy,w(κ) = λ−1 ∫ λ
0
∫

g(x, κ,u)υy,w(dx) du and averaging, we de-
fine

Hλ
k,z(g, η) = 1

|η|Dy,w
|

∑
(x∗,κ∗)∈η|Dy,w

gy,w

(
κ∗)k 1

g(x∗, κ∗)

× ∏
(x,κ)∈η|Dy,w

,(x,κ) �=(x∗,κ∗)

(
(1 − ζ ) + ζ

1

g(x, κ)

)

and obtain

αAλf (η) = αf (η)

∫
U

∞∑
k=1

p(k, z)
(
Hλ

k,z(g, η) − 1
)
dyν1(w,dζ )ν2(dw).

To obtain a limit as λ → ∞, for each z, let μ(dq, z) be a probability distribution
on [0,∞) satisfying ∫ ∞

0
qμ(dq, z) = αz ≡ ζ |Dy,w|,
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and assume that as λ → ∞, for each ϕ ∈ Cb(R),∑
k

ϕ

(
k

λ

)
pλ(k, z) →

∫ ∞
0

ϕ(q)μ(dq, z).

These conditions imply

∑
k

pλ(k, z)

∫ λ

0

k

λ

(
1 − v∗

λ

)λ k−1
λ

f
(
v∗)dv∗

→
∫ ∞

0

∫ ∞
0

qe−qv∗
f
(
v∗)dv∗μ(dq, z).

Observing that k
λ

→ q implies(
1

λ − v∗
∫ λ

v∗
ĝy,w

(
κ∗, 1

1 − ζ
v

)
dv

)k−1
→ exp

{
−q

∫ ∞
v∗

(
1 − ĝy,w

(
κ∗, v

)
dv

)}
= exp

{−q(ĥy,w

(
κ∗, v∗)},

where ĥy,w(κ,u) = ∫∞
u (1 − ĝy,w(κ, v)) dv, it follows that

∑
k pλ(k, z)Hλ

k,z(g, η)

converges to

Hz(g, η) = ∏
(x,κ,u)∈η,x /∈Dy,w

g(x, κ,u)

×
∫ ∞

0

∫ ∞
0

[
qe−qv∗

ĝy,w

(
κ∗, v∗) exp

{−q(1 − ζ )ĥy,w

(
κ∗, v∗)}

× ∏
(x,κ,u)∈η,x∈Dy,w,u>u∗

g(x, κ,
1

1 − ζ

(
u − (

u∗ − v∗))

× ∏
(x,κ,u)∈η,x∈Dy,w,u<u∗

g

(
x, κ,

1

1 − ζ
u

)]
dv∗μ(dq, z)

and

(4.44) A∞f (η) =
∫
U

(
Hz(g, η) − f (η)

)
dyν1(w,dζ )ν2(dw).

As before, setting h∗
y,w(κ) = ∫∞

0 (1 − ĝy,w(κ,u)) du and

H3
(
h∗

y,w, q,�,y, ζ,w
)= 1

�(Dy,w ×K)

∫
Dy,w×K

e−q(1−ζ )h∗
y,w(κ)�(dx × dκ),

for f (�) = e− ∫
h(x,κ)�(dx,dκ), we have

αA∞f (�) = e− ∫
h(x,κ)�(dx,dκ)

×
∫
[0,∞)×Rd×[0,1]×[0,∞)

[
H3

(
h∗

y,w, q,�,y, ζ,w
)
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× e
ζ
∫
Dy,w×K

h(x,κ)�(dx,dκ) − 1
]

× μ(dq, z) dyν1(w,dζ )ν2(dw).

Since we are assuming that μ(U) < ∞, the martingale problems for the Aλ and
A∞ are well-posed, and we have the following.

THEOREM 4.10. If ηλ, 0 < λ < ∞, is a solution of the martingale problems
for Aλ, and ηλ(0) ⇒ η(0), then ηλ converges in distribution to the unique solution
of the martingale problem for A∞ with initial distribution the distribution of η(0).

If μ(dq, z) is degenerate for every z, that is, μ(dq, z) = δαz , then (4.44) is
the same as (4.11). Of course, if {pλ(k, z)} is the Poisson distribution with mean
λζ |Dy,w|, then degeneracy holds. However, we can also construct nondegenerate
examples, for example, by choosing a geometric offspring distribution, in which
case μ(dq, z) is exponential.

For λ < ∞, let N λ be the collection of counting measures on T × [0,∞) and
let ξλ be a Poisson random measure on [0,∞) × N λ × T × [0,1] × [0,∞) with
mean measure

dsν3({p(k, z)
}
, y,w,dγ

)
dyν1(w,dζ )ν2(dw),

where ν3({p(k, z)}, y,w,dγ ) is the probability distribution on N λ of the point
process

K∑
i=1

δ(Xi,Vi),

where K is integer-valued with distribution {p(k, z)} and the (Xi,Vi) are indepen-
dent and uniformly distributed over Dy,w × [0, λ].

For λ = ∞, let ξ be a Poisson random measure on [0,∞) ×N × [0,∞) ×T×
[0,1] × [0,∞) with mean measure

dsν3(q, y,w,dγ )μ(dq, z) dyν1(w,dζ )ν2(dw),

where ν3(q, y,w,dγ ) is the probability distribution of the Poisson random mea-
sure on T× [0,∞) with mean measure

q1Dy,w(x) dx dv = q|Dy,w|υy,w(dx) dv.

Under our boundedness assumption, we can take ψ ≡ 1 in Theorem A.2 and in
Theorem A.6. The form of the stochastic equation is the same as in the previous
section.

Set Gλ = N λ ×T× [0,1] × [0,∞).
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LEMMA 4.11. Any solution of the martingale problem for Aλ can be obtained
as a solution of the stochastic equation

f
(
η(t)

) = f
(
η(0)

)
+
∫
[0,t]×Gλ

(
f (η(s−))

f (ηy,w(s−))

∏
(x,u)∈γ (β)

g

(
x, κ∗(β,η(s−), u

)

× ∏
(x,κ,u)∈η(s−),u�=u∗(η(s−),v∗(β))

g

(
x, κ,

J λ
y,w(x,u, η(s−), v∗)

1 − ζ

)

− f
(
η(s−)

))
ξλ(ds, dβ).

For λ = ∞, the equation is the same with Gλ replaced by G, ξλ replaced by ξ and
J λ

y,w replaced by J∞
y,w .

As before, the level processes satisfy

Uu(t) = u +
∫
(bu,t]×G

1Dy,w(xu)

(J λ
y,w(xu,Uu(s−), η(s−), v(β))

1 − ζ

− Uu(s−)

)
ξλ(ds, dβ),

(4.45)

where bu = 0 if (x, κ,u) ∈ ηλ(0), and the death time of a particle satisfies

(4.46) du = inf
{
t > 0 : Uu(t) > λ or Uu(t−) = u∗(β,η(t−)

)
, (t, β) ∈ ξ

}
.

Passing to the λ = ∞ limit, we can derive the equation for the population dis-
tribution. Let �(t, dx, dκ) du be the Cox measure for η(t). Define

P(t,C) = �(t,C ×K), C ∈ B(T).

If P(0, dx) = P(0, x) dx, that is, P(0, ·) is absolutely continuous with respect to
Lebesgue measure, then since locations of new points are uniformly distributed
over disks, P(t, dx) = P(t, x) dx for all t ≥ 0. Since T×K is a complete, separa-
ble metric space, we can write

�(t, dx, dκ) = P(t, x)�x(t, dκ) dx,

where �x(t, ·) ∈ P(K).

THEOREM 4.12. For λ = ∞, if η(0) = ∑
(x,κ,u)∈η(0) δ(x,κ,u) is condition-

ally Poisson with Cox measure �(0, dx, dκ) du = P(0, x)�x(0, dκ) dx du, then
η(t) is conditionally Poisson with Cox measure �(t, dx, dκ) du, �(t, dx, dκ) =
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P(t, x)�x(t, dκ) dx, where �x(t,K) ≡ 1. Then (dropping the γ coordinate from
ξ ),

P(t, x) = P(0, x) +
∫
[0,t]×[0,∞)×T×[0,1]×[0,∞)

(
q

|Dy,w| − ζP (s−, x)

)
× 1Dy,w(x)ξ(ds, dq, dy, dζ, dw).

REMARK 4.13. Note that in the degenerate case, q ≡ αz = ζ |Dy,w|, and
P(t, x) ≡ 1 is a solution of this equation.

To write an equation including �x , we need to enrich ξ so that each point in-
cludes a coordinate that is independent and uniformly distributed over [0,1], that
is, for Ĝ = [0,1] × [0,∞) ×T× [0,1] × [0,∞), we let ξ be the Poisson random
measure on [0,∞) × Ĝ with mean measure

ds drμ(dq, z) dyν1(w,dζ )ν2(dw).

Let K : [0,1] × P(K) → K be a measurable function such that if R is uniformly
distributed over [0,1] and ρ ∈ P(K), then K(R,ρ) has distribution ρ. Note that
if an event z = (y, ζ,w) occurs at time t , then the distribution of the type of the
parent will be ∫

Dy,w

�x′(t−, ·)υy,w

(
dx′).

THEOREM 4.14. For ϕ ∈ Cc(T×K),〈
�(t), ϕ

〉 = 〈
�(0), ϕ

〉
+
∫
[0,t]×Ĝ

[
q

∫
Dy,w

ϕ

(
x,K

(
r,

∫
Dy,w

�x′(s−, ·)υy,w

(
dx′)))υy,w(dx)

− ζ
〈
�(s−),1Dy,wϕ

〉]
ξ(ds, dr, dq, dy, dζ, dw).

REMARK 4.15. The above construction is more than complicated enough at
least for a first reading, but still keep in mind that the parameters of the this
model, as well as other kinds of population models, could be taken to be func-
tions of η for λ < ∞ or � for λ = ∞. For example, μ(dq, z) could be replaced
by μ(dq, z,�(t)), or in a genealogical construction of the model introduced by
Bolker and Pacala (1999), the death rate would be d0(x, η) = ∫

d(x − y)η(dy).
Equally, we could consider frequency dependent selection, in which the strength
of selection in favour of a particular genetic type at a specific location depends on
the current frequency of types there. For example, Forien and Penington (2017)
consider the spatial �-Fleming–Viot model for a haploid population with general
frequency dependent selection. Variations like this lead to a rich class of models in
which we can combine the forces of ecology and genetics.
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4.3. Branching processes. Next, we recover a lookdown construction for the
Dawson–Watanabe superprocess. Let Acb,k be given by (3.7), and let Apd,k be the
pure death generator with d0(x) = r(x)k. Let Dλ be defined as in (4.1) with R

d

replaced by E, and let D(Aλ) = {f ∈ Dλ : ∂ug is continuous}. Then, recalling the
definition of Gλ

k(u) from (3.9),

Aλf (η)

= λ
(
Acb,kf (η) + Apd,kf (η)

)
= f (η)

∑
(x,u)∈η

λr(x)

[
(k + 1)

λk

∫ λ

u
· · ·

∫ λ

u

(
k∏

i=1

g(x, vi) − 1

)
dv1 · · · dvk

+ (
Gλ

k(u) + ku
)∂ug(x,u)

g(x,u)

]

→ f (η)
∑

(x,u)∈η

r(x)(k + 1)k

(∫ ∞
u

(
g(x, v) − 1

)
dv + 1

2
u2 ∂ug(x,u)

g(x,u)

)
= A∞f (η)

and

αA∞f (�) = e− ∫
E h(x)�(dx)

∫
E

r(x)
k(k + 1)

2
h2(x)�(dx),

which is the generator of a Dawson–Watanabe process without any spatial motion
[see Section 1.5 of Etheridge (2000) or Section 3.4 of Kurtz and Rodrigues (2011)].
Note that for finite λ, each birth event produces k offspring.

For more general offspring distribution, one can take

Aλf (η) = λ

∫
U

(
Acb,k(z)f (η) + Apd,k(z)f (η)

)
μ(dz)

= f (η)

∫
U

∑
(x,u)∈η

λr(x, z)

[
(k(z) + 1)

λk(z)

×
∫ λ

u
· · ·

∫ λ

u

(
k(z)∏
i=1

g(x, vi) − 1

)
dv1 · · · dvk(z)

+ (
Gλ

k(z)(u) + k(z)u
)∂ug(x,u)

g(x,u)

]
μ(dz)

→ f (η)

∫
U

∑
(x,u)∈η

r(x, z)
(
k(z) + 1

)
k(z)

×
(∫ ∞

u

(
g(x, v) − 1

)
dv + 1

2
u2 ∂ug(x,u)

g(x,u)

)
μ(dz)

= A∞f (η),
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assuming supx∈E

∫
U

r(x, z)(k(z) + 1)k(z)μ(dz) < ∞. We can take ψ in Theo-
rem A.2 to be of the form

∑
l δlη(Kl × [0, l]) for appropriately selected δl .

This construction is a special case of the results in Kurtz and Rodrigues (2011)
which considers more general offspring distributions (e.g., offspring distributions
without second moments), and other variants of branching processes including
random environments and processes conditioned on extinction and nonextinction.

4.4. Spatially interacting Moran model. Consider Adr,3, as defined in Sec-
tion 3.5, in the special case in which the sum is over all subsets with |S| = 2.
In other words, each replacement event involves just two individuals. Specifi-
cally, we take r(S, z) = r(x, x′) for S = {x, x′}. We include independent mo-
tion with generator B ⊂ Cb(E) × Cb(E), set q(x, z, dy) = δx(dy), and assume
r(x, x′) = r(x′, x). (Note that this symmetry is needed for αAf to be a generator
applied to αf .) The generator becomes

Af (η) = f (η)
∑

(x,u)∈η

Bg(x,u)

g(x,u)

+ f (η)
∑

(x,u) �=(x′,u′)∈η

r
(
x, x′)1{u′<u}

(
g(x′, u)

g(x,u)
− 1

)(4.47)

for

f ∈ D(A) = {
f ∈ Dλ : g ∈ D(B)

}
and

αAf (η) = αf (η)
∑
x∈η

Bg(x)

g(x)

+ αf (η)
∑

{x,x′}⊂η

r
(
x, x′)(1

2

g(x′)
g(x)

+ 1

2

g(x)

g(x′)
− 1

)
,

(4.48)

that is, at rate r(x, x′) one of the pair is killed and replaced by a copy of the other.
Since either particles move or a particle of one type is replaced by a particle

of another type, if the initial number of particles is finite then, as in the classical
Moran model, the total number of particles is preserved. Consequently, if r(x, x′)
is bounded, we can apply Theorem A.2 with ψ(η) = 1 + |η|2. If the number of
particles is infinite, the following condition is useful.

CONDITION 4.16. Let K = {K1,K2, . . .}, Kk ⊂ E. For each f ∈ D(A),
f (η) = ∏

(x,u)∈η g(x,u), there exists Kg ∈ K such that g(x,u) = 1 and Bg(x,u) =
0 for all x /∈ Kg and r(x, x′) = 0 for x /∈ Kg and x′ in the support of 1 − g.
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LEMMA 4.17. Assume Condition 4.16. Then for each f ∈ D(A), there exists
cf such that ∣∣Af (η)

∣∣ ≤ cf

(
η(Kg) +

∫
Kg×Kg

r
(
x, x′)η(dx)η

(
dx′)).

Then for δk > 0, k = 1,2, . . . , ψ of the form

ψ(η) = ∑
k

δk

(
η(Kk) +

∫
Kk×Kk

r
(
x, x′)η(dx)η

(
dx′))

satisfies (A.7).

REMARK 4.18. Of course, to apply Theorem A.2 one must verify that

(4.49)
∫ t

0
E
[
ψ̃
(
η(s)

)]
ds < ∞, t ≥ 0

for the solution of interest. For example, in the spatially interacting Moran model
in Greven, Limic and Winter (2005), particles have a location and type [(x, κ) ∈
E = G ×K rather than x] for a countable set G,

r
(
(x, κ),

(
x′, κ ′)) = γ 1{x=x′},

the locations evolve independently according to a Markov chain with transition
intensities q(x, y), that is,

Bg(x, κ) = ∑
y∈G

q(x, y)
(
g(y, κ) − g(x, κ)

)+ Cg(x, κ),

where C is a mutation operator that acts only on the type. The location Markov
chain is assumed to satisfy estimates that imply E[η(t, {x} ×K)2] < ∞ provided
η(0) satisfies specified conditions. Consequently, if we take Kk = Gk ×K for finite
subsets Gk , we can select δk so that (4.49) is satisfied.

Note that λ does not appear in the formula for the generator (4.47). Conse-
quently, the same formula gives the limiting generator as λ → ∞, and with refer-
ence to (A.5),

αA∞f (�)

= e− ∫
E h(x)�(dx)

[
−
∫
E

Bh(x)�(dx)

+
∫
E×E

r
(
x, x′)(1

2
h2(x) + 1

2
h2(x′)− h

(
x′)h(x)

)
�(dx)�

(
dx′)].

For λ = ∞, if the number of particles below any level is finite, we can take
ψ(η) = ∑∞

l=1 δl(1 + η(E × [0, l])2). If the number of particles below a level is
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infinite, then ψ of the form

ψ(η) = ∑
k,l

δk,l

(
η
(
Kk × [0, l])

+
∫
Kk×[0,l]×Kk×[0,l]

r
(
x, x′)η(dx, du)η

(
dx′, du′))

meets the requirements of Theorem A.2.
For the limiting process, one can also see that mass is preserved directly from

the limiting generator. Suppose � is a solution of the martingale problem with
�(0,E) < ∞. Take h(x) ≡ c > 0, and observe that e−c�(t,E) is a martingale. But,
in general, if M and M2 are both martingales, then M must be constant, so consider
e−c�(t,E) and e−2c�(t,E).

If r(x, x′) ≡ γ and �(0,E) = 1, then � is a neutral Fleming–Viot pro-
cess. Since the set of levels is fixed, in this case, the lookdown construction is
equivalent to the construction given in Donnelly and Kurtz (1996). If as above,
r((x, κ), (x′, κ ′)) = γ 1{x=x′}, then the lookdown construction for λ = ∞ is just
the lookdown construction for the interacting Fisher–Wright diffusions discussed
in Greven, Limic and Winter (2005).

4.5. A stochastic partial differential equation. Consider a spatially interact-
ing Moran model with both location x ∈ λ−1

Z and type κ ∈ K. Assume that the
particle locations follow a simple symmetric random walk, and for simplicity, as-
sume that the types of the particles do not change. Killing and replacement of the
previous section now takes place locally at each site. The generator then becomes

Af (η) = f (η)
∑

(x,κ,u)∈η

λ2 g(x + λ−1, κ, u) + g(x − λ−1, κ, u) − 2g(x, κ,u)

2g(x, κ,u)

+ f (η)
∑

(x,κ,u) �=(x′,κ ′,u′)∈η

λ1{x=x′}1{u′<u}
(

g(x, κ ′, u)

g(x, κ,u)
− 1

)
.

Note that particles move independently, so that the number of particles at a site
will fluctuate; however, if the initial site occupancies are i.i.d. Poisson, then they
will remain i.i.d. Poisson. The averaged generator becomes

αAf (η) = αf (η)
∑

(x,κ)∈η

λ2 g(x + λ−1, κ) + g(x − λ−1, κ) − 2g(x, κ)

2g(x, κ)

+ αf (η)
∑

(x,κ) �=(x′,κ ′)∈η

λ

2
1{x=x′}

(
g(x, κ ′)
g(x, κ)

− 1
)

[cf. (4.47) and (4.48)].
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Let (Xλ
u(t), κu(t)) denote the position and type of a particle at level u, Assume

that {(Xλ
u(0), κu(0), u)} determines a conditionally Poisson random measure with

Cox measure λ−1 × �λ(dx) × ν0(x, dκ) × du on (λ−1
Z × K × [0, λ]), where �λ

is counting measure on λ−1
Z and ν0 is a random mapping ν0 : x ∈ R→ ν0(x, ·) ∈

P(K). Note that as λ → ∞, the {Xλ
u − Xλ

u(0)} converge to independent standard
Brownian motions {Wu}.

For u′ < u, let Lλ
u′u(t) be the number of times by time t that there has been a

“lookdown” from u to u′. Then Lλ
u′u is a counting process with integrated intensity

�λ
u′u(t) = λ

∫ t

0
1{Xλ

u(s)=Xλ
u′ (s)} ds,

and we can write

Lu′u(t) = Yu′u
(
�λ

u′u(t)
)
,

where the Yu′u are independent unit Poisson processes and are independent of
Xλ

u′u(t) ≡ Xλ
u′(t) − Xλ

u(t). To identify the limit of �λ
u′u as λ → ∞, define

Nλ
u′u(t) = #

{
s ≤ t : Xλ

u′u(s−) = 0,Xλ
u′u(s) �= 0

}
.

Then Nλ
u′u is a counting process with intensity λ21{Xλ

u′u(t)=0}. Define

Ñλ
u′u(t) = Nλ

u′u(t) −
∫ t

0
λ21{Xλ

u′u(s)=0} ds.

Then ∣∣Xλ
u′u(t)

∣∣ = ∣∣Xλ
u′u(0)

∣∣+ ∫ t

0
sign

(
Xλ

u′u(s−)
)
dXλ

u′u(s) + 1

λ
Ñλ

u′u(t)

+ λ

∫ t

0
1{Xλ

u′u(s)=0} ds.

Since Xλ
u′u ⇒ Xu′u = Xu′ −Xu and λ−1Ñλ

u′u ⇒ 0, it follows that Xλ
u′u and �λ

u′u =
λ
∫ t

0 1{Xλ
u′u(s)=0} ds converge to Xu′u and �u′u, respectively, satisfying Tanaka’s

formula

(4.50)
∣∣Xu′u(t)

∣∣ = ∣∣Xu′u(0)
∣∣+ ∫ t

0
sign

(
Xu′u(s−)

)
dXu′u(s) + �u′u(t).

An application of Itô’s formula gives

(4.51) �u′u(t) = lim
ε→0

1

ε

∫ t

0
1(−ε,ε)

(
Xu′(s) − Xu(s)

)
ds.

To summarize, {(Xu(0), κu(0), u)} determines a conditionally Poisson random
measure with Cox measure dx × ν0(x, dκ) × du and Xu(t) = Xu(0) + Wu(t),
where the Wu are independent, standard Brownian motions. Lu′u is determined by
(4.50) and

Lu′u(t) = Yu′u
(
�u′u(t)

)
,
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where the Yu′u are independent unit Poisson processes that are independent of
{(Xu(0), κu, u)} and {Wu}. The particle types satisfy

κu(t) = κu(0) + ∑
u′<u

∫ t

0

(
κu′(s−) − κu(s−)

)
dLu′u(s).

Then {(Xu(t), κu(t), u)} determines a conditionally Poisson random measure
with Cox measure

�t(dx, dκ) × du = dx × νt (x, dκ) × du.

For details and related results, see Buhr (2002). In particular, for ϕ(x, κ) bounded,
C2 in x, and having compact support in x,

Mϕ(t) = 〈�t,ϕ〉 −
∫ t

0

〈
�s,

1

2
∂2
xϕ

〉
ds

is a {F�
t }-martingale with quadratic variation

[Mϕ]t =
∫ t

0

∫
R

∫
K×K

(
ϕ
(
x, κ ′)− ϕ(x, κ)

)2
νs

(
x, dκ ′)νs(x, dκ) dx ds,

identifying � as a solution of a martingale problem.
Suppose K = {0,1} and νs(x) ≡ νs(x, {1}). Then taking ϕ(x, κ) = κψ(x),

Mψ(t) =
∫
R

ψ(x)νt (x) dx −
∫ t

0

∫
R

1

2
ψ ′′(x)νs(x) dx ds

is a martingale with quadratic variation

[Mψ ]t =
∫ t

0

∫
R

2ψ2(x)νs(x)
(
1 − νs(x)

)
dx ds,

which implies νt is a weak solution of the stochastic partial differential equation∫
R

ψ(x)νt (x) dx =
∫
R

ψ(x)ν0(x) dx +
∫ t

0

∫
R

1

2
ψ ′′(x)νs(x) dx ds

+
∫
[0,t]×R

ψ(x)
√

2νs(x)(1 − νs(x)W(ds, dx),

(4.52)

where W is Gaussian white noise on [0,∞)×R with E[W(A)W(B)] = �(A∩B)

for Lebesgue measure � on [0,∞) ×R.

4.6. Voter model. The stochastic partial differential equation (4.52) is a spe-
cial case of the equation that arises as the limit of rescaled voter models in the
work of Müller and Tribe (1995). To see the relationship of their work to our cur-
rent approach, we give a construction of a class of voter models.



1898 A. M. ETHERIDGE AND T. G. KURTZ

Let E = Z×K, where Z is the space of locations and K the space of types. We
assume that there is one particle at each location, and consider

Adr,3f (η) = f (η)
∑
i �=j

r
(|xi − xj |)1{ui<uj }

×
(

g(xi, κi, ui)g(xj , κi, uj ) + g(xi, κi, uj )g(xj , κi, ui)

2g(xi, κi, ui)g(xj , κj , uj )
− 1

)
,

where

σ 2 ≡ 1

2

∑
l

l2r(l) < ∞.

Then

αAdr,3f (η) = αf (η)
∑
i<j

r
(|xi − xj |)(1

2

g(xj , κi)

g(xj , κj )
+ 1

2

g(xi, κj )

g(xi, κi)
− 1

)
which is the generator for a voter model. Particle motion involves two particles
exchanging places, so in this model, the occupancy at each site is preserved.

Note that the collection of levels does not change, and the location of the particle
associated with level u will satisfy a stochastic equation of the form

Xu(t) = Xu(0)

+∑
k<l

∫
[0,t]×{0,1}

θ
(
1{Xu(s−)=l}(k − l) + 1{Xu(s−)=k}(l − k)

)
ξkl(ds, dθ),

where the ξkl are independent Poisson random measures with mean measures

r
(|k − l|)(1

2
δ1(dθ) + 1

2
δ0(dθ)

)
ds.

For k > l, assume ξkl ≡ ξlk . Let Ul(t) and K̂l(t) denote the level and type of the
particle with location l. Then the type for the particle with level u satisfies

Ku(t) = Ku(0)

+∑
l �=k

∫
[0,t]×{0,1}

1{Ul(s−)<u}1{Xu(s−)=k}
(
K̂l(s−) − Ku(s−)

)
ξkl(ds, dθ).

Now, as λ → ∞, assume that {(λ−1Xu(0),Ku(0), u)} converges to a condition-
ally Poisson point process on R×K×[0,∞) with Cox measure dx ×ν0(x, dκ)×
du. Set Xλ

u(t) = 1
λ
Xu(λ

2t) and Kλ
u(t) = Ku(λ

2t). Then Xλ
u is a martingale with

quadratic variation[
Xλ

u

]
t = ∑

k<l

1

λ2

∫
[0,λ2t]×{0,1}

θ
(
1{Xu(s−)=l}(k− l)2 +1{Xu(s−)=k}(l−k)2)ξkl(ds, dθ)
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and [
Xλ

u

]
t → 1

2

∑
k<l

(k − l)2r
(|k − l|)t = σ 2t.

In addition, for u �= u′, [
Xλ

u,Xλ
u′
]
t → 0,

so the Xλ
u converge to a collection of independent Brownian motions Xu.

For u′ < u, let

Nλ
u′,u(t) = ∑

l �=k

∫
[0,λ2t]×{0,1}

1{Xu′ (s−)=l}1{Xu(s−)=k}ξkl(ds, dθ).

Then Nλ
u′,u is a counting process with integrated intensity∫ t

0
λ2r

(
λ
∣∣Xλ

u′(s) − Xλ
u(s)

∣∣)ds.

Under appropriate time-scaling conditions, this integral should converge to a con-
stant times the intersection local time given in (4.51). Then, up to changes in pa-
rameters, the limit of the lookdown construction would be the same as in Sec-
tion 4.5.

APPENDIX

A.1. Poisson identities.

LEMMA A.1. If ξ is a Poisson random measure on S with σ -finite mean mea-
sure ν and f ∈ L1(ν), then

E
[
e
∫
S f (z)ξ(dz)] = e

∫
S(ef −1) dν,(A.1)

E

[∫
S
f (z)ξ(dz)

]
=

∫
S
f dν, Var

(∫
S
f (z)ξ(dz)

)
=

∫
S
f 2 dν,(A.2)

allowing ∞ = ∞.
Letting ξ =∑

i δZi
, for g ≥ 0 with logg ∈ L1(ν),

E

[∏
i

g(Zi)

]
= e

∫
S(g−1) dν.

Similarly, if hg,g − 1 ∈ L1(ν), then

E

[∑
j

h(Zj )
∏
i

g(Zi)

]
=

∫
S
hg dνe

∫
S(g−1) dν,(A.3)

E

[∑
i �=j

h(Zi)h(Zj )
∏
k

g(Zk)

]
=

(∫
S
hg dν

)2
e
∫
S(g−1) dν,(A.4)
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and more generally, if ν has no atoms and r ∈ M(S × S), r ≥ 0,

(A.5) E

[∑
i �=j

r(Zi,Zj )
∏

k �=i,j

g(Zk)

]
=

∫
S×S

r(x, y)ν(dx)ν(dy)e
∫
(g−1) dν,

allowing ∞ = ∞.

PROOF. The independence properties of ξ imply (A.1) and (A.2) for simple
functions. The general case follows by approximation.

To prove (A.5), it is enough to consider a finite measure ν and bounded con-
tinuous r and g and extend by approximation. Let {Bn

k } be a partition of S with
diam(Bn

k ) ≤ n−1, and let xn
k ∈ Bn

k . Define

ξn = ∑
k

δxn
k
1{ξ(Bn

k )>0}.

Then ξn → ξ in the sense that
∫

f dξn → ∫
f dξ for every bounded continuous f ,

and ∑
i �=j

r
(
xn
i , xn

j

)
1{ξ(Bn

i )>0}1{ξ(Bn
j )>0}

∏
k �=i,j

(
g
(
xn
k

)
1{ξ(Bn

k )>0} + 1{ξ(Bn
k )=0}

)
→ ∑

i �=j

r(Zi,Zj )
∏

k �=i,j

g(Zk).

By independence, the expectation of the left-hand side is∑
i �=j

r
(
xn
i , xn

j

)(
1 − e−ν(Bn

i ))(1 − e
−ν(Bn

j )) ∏
k �=i,j

(
g
(
xn
k

)(
1 − e−ν(Bn

k ))+ e−ν(Bn
k ))

≈ ∑
i �=j

r
(
xn
i , xn

j

)
ν
(
Bn

i

)
ν
(
Bn

j

)
exp

{ ∑
k �=i,j

(
g
(
xn
k

)− 1
)
ν
(
Bn

k

)}

→
∫
S×S

r(x, y)ν(dx)ν(dy)e
∫
(g−1) dν,

where the convergence follows from the assumed continuity of r and g and the
fact that

∑
i ν(Bn

i )2 → 0.
The other identities follow in a similar manner. Note that the integrability of

the random variables in the expectations above can be verified by replacing g by
(g ∨ (−a))∧ a1A + 1Ac and h by (h∨ (−a))∧ a1A for 0 < a < ∞ and ν(A) < ∞
and passing to the limit as a → ∞ and A ↗ E. �

A.2. Markov mapping theorem. The following theorem [extending Corol-
lary 3.5 from Kurtz (1998)] plays an essential role in justifying the particle rep-
resentations and can also be used to prove uniqueness for the corresponding
measure-valued processes. Let (S, d) and (S0, d0) be complete, separable met-
ric spaces, B(S) ⊂ M(S) be the Banach space of bounded measurable func-
tions on S, with ‖f ‖ = supx∈S |f (x)|, and Cb(S) ⊂ B(S) be the subspace of
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bounded continuous functions. An operator A ⊂ B(S) × B(S) is dissipative if
‖f1 − f2 − ε(g1 − g2)‖ ≥ ‖f1 − f2‖ for all (f1, g1), (f2, g2) ∈ A and ε > 0;
A is a pre-generator if A is dissipative and there are sequences of functions
μn : S → P(S) and λn : S → [0,∞) such that for each (f, g) ∈ A

(A.6) g(x) = lim
n→∞λn(x)

∫
S

(
f (y) − f (x)

)
μn(x, dy)

for each x ∈ S. A is countably determined if there exists a countable subset {gk} ⊂
D(A) ∩ C(S) such that every solution of the martingale problem for {(gk,Agk)}
is a solution of the martingale problem for A [e.g., A is countably determined if
it is graph separable in the sense that there exists {(gk, hk)} ⊂ A ∩ C(S) × B(S)

such that A is contained in the bounded pointwise closure of {(gk, hk)}]. These
conditions are satisfied by essentially all operators A that might reasonably be
thought to be generators of Markov processes. Note that A is graph separable if
A ⊂ L × L, where L ⊂ B(S) is separable in the sup norm topology, for example,
if S is locally compact and L is the space of continuous functions vanishing at
infinity.

A collection of functions D ⊂ C(S) is separating if ν,μ ∈ P(S) and
∫
S f dν =∫

S f dμ for all f ∈ D imply μ = ν.
For a S0-valued, measurable process Y , F̂Y

t will denote the completion of the
σ -algebra σ(Y (0),

∫ r
0 h(Y (s)) ds, r ≤ t, h ∈ B(S0)). For almost every t , Y(t) will

be F̂Y
t -measurable, but in general, F̂Y

t does not contain FY
t = σ(Y (s) : s ≤ t). Let

TY = {t : Y(t) is F̂Y
t measurable}. If Y is càdlàg and has no fixed points of dis-

continuity [i.e., for every t , Y(t) = Y(t−) a.s.], then TY = [0,∞). Let DS[0,∞)

denote the space of càdlàg, S-valued functions with the Skorohod topology, and
MS[0,∞) denotes the space of Borel measurable functions, x : [0,∞) → S, topol-
ogized by convergence in Lebesgue measure.

THEOREM A.2. Let (S, d) and (S0, d0) be complete, separable metric spaces.
Let A ⊂ C(S)×C(S) and ψ ∈ C(S), ψ ≥ 1. Suppose that for each f ∈D(A) there
exists cf > 0 such that

(A.7)
∣∣Af (x)

∣∣ ≤ cf ψ(x), x ∈ A,

and define A0f (x) = Af (x)/ψ(x).
Suppose that A0 is a countably determined pre-generator, and suppose that

D(A) = D(A0) is closed under multiplication and is separating. Let γ : S → S0
be Borel measurable, and let α be a transition function from S0 into S [y ∈ S0 →
α(y, ·) ∈ P(S) is Borel measurable] satisfying

∫
h ◦ γ (z)α(y, dz) = h(y), y ∈ S0,

h ∈ B(S0), that is, α(y, γ −1(y)) = 1. Assume that ψ̃(y) ≡ ∫
S ψ(z)α(y, dz) < ∞

for each y ∈ S0 and define

C =
{(∫

S
f (z)α(·, dz),

∫
S
Af (z)α(·, dz)

)
: f ∈D(A)

}
.

Let μ0 ∈ P(S0), and define ν0 = ∫
α(y, ·)μ0(dy).
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(a) If Ỹ satisfies
∫ t

0 E[ψ̃(Ỹ (s))]ds < ∞ for all t ≥ 0 and Ỹ is a solution of
the martingale problem for (C,μ0), then there exists a solution X of the martin-
gale problem for (A, ν0) such that Ỹ has the same distribution on MS0[0,∞) as
Y = γ ◦ X. If Y and Ỹ are càdlàg, then Y and Ỹ have the same distribution on
DS0[0,∞).

(b) For t ∈ TY ,

(A.8) P
{
X(t) ∈ �|F̂Y

t

} = α
(
Y (t),�

)
, � ∈ B(S).

(c) If, in addition, uniqueness holds for the martingale problem for (A, ν0),
then uniqueness holds for the MS0[0,∞)-martingale problem for (C,μ0). If Ỹ has
sample paths in DS0[0,∞), then uniqueness holds for the DS0[0,∞)-martingale
problem for (C,μ0).

(d) If uniqueness holds for the martingale problem for (A, ν0), then Y restricted
to TY is a Markov process.

REMARK A.3. Theorem A.2 can be extended to cover a large class of genera-
tors whose range contains discontinuous functions [see Kurtz (1998), Corollary 3.5
and Theorem 2.7]. In particular, suppose A1, . . . ,Am satisfy the conditions of The-
orem A.2 for a common domain D = D(A1) = · · · = D(Am) and β1, . . . , βm are
nonnegative functions in B(S). Then the conclusions of Theorem A.2 hold for

Af = β1A1f + · · · + βmAmf.

By (A.8), X and Y are “intertwined” in the sense of Rogers and Pitman (1981).

PROOF. Theorem 3.2 of Kurtz (1998) can be extended to operators satisfying
(A.7) by applying Corollary 1.12 of Kurtz and Stockbridge (2001) (with the oper-
ator B in that corollary set equal zero) in place of Theorem 2.6 of Kurtz (1998).
Alternatively, see Corollary 3.2 of Kurtz and Nappo (2011). �

A.3. Stochastic equations for processes built from bounded generators.
We are primarily interested in generators of the form

(A.9) Af (x) =
∫
U

(
Pzf (x) − f (x)

)
μ(dz),

where for each z ∈ U, Pz is a transition operator on a complete, separable met-
ric space E, appropriately measurable as a function of z ∈ U and μ is a σ -finite
measure on U. To illustrate the type of stochastic equation we have in mind, let

A0f (x) = λ0

∫
E

(
f (y) − f (x)

)
η(x, dy),

where 0 < λ0 < ∞ and η is a transition function on E. We can always find
a probability measure ν0 on a measurable space U0 and a measurable function
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H0(x, u) : E × U0 → E satisfying η(x,C) = ∫
U0

1C(H0(x,u))ν(du), C ∈ B(E),
so that

λ0

∫
E

(
f (y) − f (x)

)
η(x, dy) = λ0

∫
U0

(
f
(
H0(x, u)

)− f (x)
)
ν0(du).

See, for example, the construction in Blackwell and Dubins (1983).
If N is a Poisson process with parameter λ0, U0,U1, . . . are independent U0-

valued random variables with distribution ν0, and X(0) is an E-valued random
variable, N , {Ui}, and X(0) independent, then there is a unique, E-valued process
X satisfying

(A.10) f
(
X(t)

) = f
(
X(0)

)+
∫ t

0
(f

(
H0

(
X(s−),UN(s−)

))− f
(
X(s−)

)
dN(s),

for all f ∈ B(E), and X will be a solution of the martingale problem for A0. Since
in this case, A0 is a bounded operator and the martingale problem is well-posed, it
follows that the martingale problem and the stochastic equation are equivalent in
the sense that every solution of the stochastic equation is a solution of the martin-
gale problem and every solution of the martingale problem is a weak solution of
the stochastic equation.

In general, we are interested in situations where uniqueness is not necessarily
known for either the martingale problem or the stochastic equation, but we still
want to know that the two are equivalent. We will obtain our result by application
of the Markov mapping theorem using arguments similar to those used in Kurtz
(2011). Let us illustrate these arguments by proving what we already know regard-
ing the martingale problem for A0 and (A.10).

Let B̂0 be the generator for a process in S = E ×U0 × {−1,1} given by

B̂0f̂ (x, u, θ) = λ0

∫
U0

(
f̂
(
H0(x, u), u′,−θ

)− f̂ (x, u, θ)
)
ν0
(
du′), f̂ ∈ B(S),

and setting

f (x) = 1

2

∫
U0

f̂0(x, u,1)ν0(du) + 1

2

∫
U0

f̂0(x, u,−1)ν0(du),

observe that

A0f (x) = 1

2

∫
U0

B̂0f̂ (x, u,1)ν0(du) + 1

2

∫
U0

B̂0f̂ (x, u,−1)ν0(du).

The Markov mapping theorem implies that if X̂ is a solution of the martingale
problem for A0, there exists a solution Z = (X,U,�) of the martingale problem
for B̂0 such that X has the same distribution as X̂.

Let N(t) be the counting process satisfying �(t) = �(0)(−1)N(t). Note that
setting f̂ (x, u, θ) = θ ,

Mθ(t) = �(t) −
∫ t

0
B̂0f

(
Z(s)

)
ds = �(t) + 2

∫ t

0
λ0�(s)ds
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is a martingale and

N(t) = −1

2

∫ t

0
�(s−) d�(s) = −1

2

∫ t

0
�(s−) dMθ(s) + λ0t.

Consequently, N(t) − λ0t is a martingale, and hence N is a Poisson process with
intensity λ0.

LEMMA A.4. For any bounded function f on E,

(A.11) f
(
X(t)

) = f
(
X(0)

)+
∫ t

0
(f

(
H0

(
X
(
s−,U(s−)

))− f
(
X(s−)

))
dN(s).

PROOF. To see that this identity holds, let

Mf (t) = f
(
X(t)

)− f
(
X(0)

)−
∫ t

0
B̂0f

(
X(s),U(s),�(s)

)
ds.

We have the following Meyer processes [see Lemma 5.1 of Kurtz (2011)]:

〈Mf 〉t =
∫ t

0
(λ0(f

2(H0
(
X(s),U(s)

)− f 2(X(s)
)

− 2f
(
X(s)

)
λ0
(
f
(
H0

(
X(s),U(s)

))− f
(
X(s)

))
ds

=
∫ t

0
λ0
(
f
(
H0

(
X(s),U(s)

))− f
(
X(s)

))2
ds,

〈Mf ,Mθ 〉t =
∫ t

0

[
λ0
(
f
(
H0

(
X(s),U(s)

))
(−1)�(s) − f

(
X(s)

)
�(s)

)
+ 2λ0f

(
X(s)

)
�(s) − �(s)λ0(f

(
H0

(
X(s),U(s)

)− f
(
X(s)

))]
ds

= −
∫ t

0
2�(s)λ0(f

(
H0

(
X(s),U(s)

)− f
(
X(s)

))
ds,

〈Mθ 〉t =
∫ t

0
2�(s)2λ0(s)�(s) = 4λ0t.

Then

M(t) = f
(
X(t)

)− f
(
X(0)

)
−
∫ t

0

(
f
(
H0

(
X(s−),U(s−)

))− f
(
X(s−)

))
dN(s)

= Mf (t) + 1

2

∫ t

0

(
f
(
H0

(
X(s−),U(s−)

))− f
(
X(s−)

))
�(s−) dMθ(s)
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is a martingale and

〈M〉 = 〈Mf 〉 +
∫ t

0

(
f
(
H0

(
X(s−),U(s−)

))− f
(
X(s−)

))
�(s−) d〈Mf ,Mθ 〉

+ 1

4

∫ t

0

(
f
(
H0

(
X(s),U(s)

))− f
(
X(s)

))2
d〈Mθ 〉s

= 0,

so M = 0 and (A.11) holds. �

We now assume that μ is in (A.9) is infinite, but σ -finite. Writing U= ⋃∞
k=1 Uk

as a disjoint union of sets of finite measure, we can write

(A.12) Af (x) =
∞∑

k=1

∫
Uk

(
Pzf (x) − f (x)

)
μ(dz) ≡

∞∑
k=1

Bkf (x),

where each Bk is a bounded generator, and hence can be written as

Bkf (x) = λk

∫
E

(
f (y) − f (x)

)
ηk(x, dy)

= λk

∫
Uk

(
f
(
Hk(x,u)

)− f (x)
)
νk(du),

(A.13)

for λk = μ(Uk), and some Hk : E × Uk → E and νk ∈ P(Uk). We are implicitly
assuming that Uk is rich enough to support a measure νk for which the desired Hk

will exist. One can always replace U by U× [0,1] and μ by μ × �.
To be specific, we will simply assume that Bk is given by the right-hand side of

(A.13). To make the definition of A as the sum of the Bk precise, let D ⊂ Cb(E),
and assume the following conditions.

CONDITION A.5. (a) D is closed under multiplication and separates points
in E.

(b) For each f ∈ D,

Af (x) ≡ lim
m→∞

m∑
k=1

Bkf (x)

exists pointwise in E.
(c) There exists ψ ∈ M(E) such that ψ ≥ 1 and for each f ∈ D, there exists cf

and mf such that for m ≥ mf ,∣∣∣∣∣
∞∑

k=m+1

Bkf (x)

∣∣∣∣∣ ≡
∣∣∣∣∣Af (x) −

m∑
k=1

Bkf (x)

∣∣∣∣∣ ≤ cf ψ(x), x ∈ E.
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Let Em = E ×U1 × · · · ×Um × {−1,1}m,

D(Âm) =
{
f̂ (x, u, θ) = f (x)

m∏
k=1

gk(uk, θk) :

f ∈ D, gk ∈ Cb

(
Uk × {−1,1}),1 ≤ k ≤ m

}
,

and define a generator Âm for a process in Em by

Âmf̂ (x,u1, . . . , um, θ1, . . . , θm)

=
m∑

k=1

λk

∫
Uk

(
f̂
(
Hk(x,uk), ηk

(
u|u′

k

)
, ηk(θ | − θk)

)− f̂ (x, u, θ)
)
νk

(
du′

k

)

+
m∏

k=1

g(uk, θk)

∞∑
l=m+1

Blf (x),

where for an arbitrary set S, for z ∈ S∞ and z′
k ∈ S, ηk(z|z′

k) is the element of S∞
obtained from z by replacing zk by z′

k . If X̂ is a solution of the martingale problem
for A satisfying

E

[∫ t

0
ψ
(
X̂(s)

)
ds

]
< ∞, t ≥ 0,

the Markov mapping theorem implies that for each m, there exists a solution
(X(m),U(m),�(m)) of the martingale problem for Âm such that X(m) and X̂ have
the same distribution. By induction, the sequence of processes can be constructed
so that the restriction of (X(m+1),U(m+1),�(m+1)) to Em has the same distribu-
tion as (X(m),U(m),�(m)), and it follows that there exists a process (X,U,�) in
E= E ×U1 ×U2 × · · · × {−1,1}∞ so that the restriction of (X,U,�) to Em has
the same distribution as (X(m),U(m),�(m)).

Consequently,

M̂m
f (t) = f

(
X(t)

)− f
(
X(0)

)
−

m∑
k=1

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
dNk(s)

−
∫ t

0

∑
k≥m+1

Bkf
(
X(s)

)
ds

= f
(
X(t)

)− f
(
X(0)

)
−

m∑
k=1

∫ t

0
λk

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
ds
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−
∫ t

0

∑
k≥m+1

Bkf
(
X(s)

)
ds

−
m∑

k=1

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
dÑk(s)

= Mm
f (t)

+
m∑

k=1

1

2

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
�k(s−) dMθk

(s)

is a {Fm
t }-martingale for Fm

t = σ(X̂(s),U1(s), . . . ,Um(s),�1(s), . . . ,�m(s) :
s ≤ t).

Note that〈
Mm

f

〉 = m∑
k=1

∫ t

0
λk

(
f 2(Hk

(
X(s),Uk(s)

))− f 2(X(s)
)

− 2f
(
X(s)

)
λk

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

)))
ds

+
∫ t

0

∑
k≥m+1

(
Bkf

2(X(s)
)− 2f

(
X(s)

)
Bkf

(
X(s)

))
ds,

〈Mθk
〉t = 4λkt

and 〈
Mm

f ,Mθk

〉 = ∫ t

0

( ∑
1≤l �=k≤m

�k(s)λl

(
f
(
Hl

(
X(s),Ul(s)

))− f
(
X(s)

))
− λk�k(s)

(
f
(
Hk

(
X(s),U(s)

))+ f
(
X(s)

))
+ �k(s)

∑
l≥m+1

Blf
(
X(s)

)− �k(s)
∑

l≥m+1

Blf
(
X(s)

)

− �k(s)

m∑
l=1

λl

(
f
(
Hl

(
X(s),Ul(s)

))− f
(
X(s)

)
+ 2λk�k(s)f

(
X(s)

)))
ds

= −
∫ t

0
2λk�k(s)

(
f
(
Hk

(
X(s),Uk(s)

))− f
(
X(s)

))
ds.

Consequently,〈
M̂m

f

〉
t = 〈

Mm
f

〉
t +

m∑
k=1

∫ t

0

(
f
(
Hk

(
X(s),Uk(s)

))
− f

(
X(s)

))
�k(s) d

〈
Mm

f ,Mθk

〉
s
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+
m∑

k=1

∫ t

0

1

4

(
f
(
Hk

(
X(s),Uk(s)

))− f
(
X(s)

))2
d〈Mθk

〉s

=
∫ t

0

(
m∑

k=1

λk

(
f 2(Hk

(
X(s),Uk(s)

))− f 2(X(s)
))

− 2f
(
X(s)

) m∑
k=1

λk

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

)))
ds

+ ∑
k≥m+1

(
Bkf

2(X(s)
)− 2f

(
X(s)

)
Bkf

(
X(s)

))

− 2
m∑

k=1

λk

(
f
(
Hk

(
X(s),Uk(s)

))− f
(
X(s)

))2

+
m∑

k=1

λk

(
f
(
Hk

(
X(s),Uk(s)

))− f
(
X(s)

))2
) ds

=
∫ t

0

∑
k≥m+1

(
Bkf

2(X(s)
)− 2f

(
X(s)

)
Bkf

(
X(s)

))
.

THEOREM A.6. Let {Bk} be a sequence of bounded generators of the form
(A.13), and assume that Condition A.5 holds. Suppose that X̂ is a solution of the
martingale problem for A satisfying

E

[∫ t

0
ψ
(
X̂(s)

)
ds

]
< ∞, t ≥ 0.

Then, for each f ∈ D,

f
(
X(t)

) = f
(
X(0)

)
+

∞∑
k=1

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
dNk(s),

in the sense that, for each T ≥ 0,

lim
m→∞ sup

t≤T

∣∣∣∣∣f (
X(t)

)− f
(
X(0)

)
−

m∑
k=1

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
dNk(s)

∣∣∣∣∣ = 0

in probability.
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PROOF. Since 〈M̂m
f 〉t → 0, it follows that supt≤T |M̂m

f (t)| → 0, and since

M̂m
f (t) = f

(
X(t)

)− f
(
X(0)

)
−

m∑
k=1

∫ t

0

(
f
(
Hk

(
X(s−),Uk(s−)

))− f
(
X(s−)

))
dNk(s)

−
∫ t

0

∑
k≥m+1

Bkf
(
X(s)

)
ds

and the last term goes to zero, the lemma follows. �
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