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BERRY–ESSEEN BOUNDS OF NORMAL AND NONNORMAL
APPROXIMATION FOR UNBOUNDED EXCHANGEABLE PAIRS1

BY QI-MAN SHAO AND ZHUO-SONG ZHANG

Chinese University of Hong Kong

An exchangeable pair approach is commonly taken in the normal and
nonnormal approximation using Stein’s method. It has been successfully
used to identify the limiting distribution and provide an error of approxima-
tion. However, when the difference of the exchangeable pair is not bounded
by a small deterministic constant, the error bound is often not optimal. In
this paper, using the exchangeable pair approach of Stein’s method, a new
Berry–Esseen bound for an arbitrary random variable is established without
a bound on the difference of the exchangeable pair. An optimal convergence
rate for normal and nonnormal approximation is achieved when the result is
applied to various examples including the quadratic forms, general Curie–
Weiss model, mean field Heisenberg model and colored graph model.

1. Introduction. Let Wn be a sequence of random variables under study. Us-
ing the exchangeable pair approach of Stein’s method, Chatterjee and Shao [10]
and Shao and Zhang [27], provided a concrete tool to identify the limiting distri-
bution of Wn as well as the L1 bound (the Wasserstein distance) of the approxi-
mation. Our aim in this paper is to establish the Berry–Esseen-type bound for the
approximation.

Write W = Wn and let (W,W ′) be an exchangeable pair, that is, (W,W ′) and
(W ′,W) have the same joint distribution. Put � = W − W ′. For the normal ap-
proximation, assume that

E(� | W) = λ(W + R).

Then, by Stein [28] (see also Proposition 2.4 in Chen, Goldstein and Shao [12]),
for any absolutely continuous function h with ‖h′‖ < ∞,

∣∣Eh(W) − Eh(Z)
∣∣ ≤ 2

∥∥h′∥∥(
E

∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + 1

λ
E|�|3 + E|R|

)
.
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Here and in the sequel, Z denotes the standard normal random variable. For the
Berry–Esseen bound, we have

(1.1) sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣ ≤ E

∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E|R| +

(
E|�|3

λ

)1/2
,

where � is the standard normal distribution function. If in addition |�| ≤ δ for
some constant δ, then by Rinott and Rotar [24] (see also Shao and Su [25]),

(1.2) sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣ ≤ E

∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E|R| + 1.5δ + δ3/λ.

It is known that (1.1) usually fails to provide an optimal bound. Similarly, the
bound in (1.2) may not be optimal unless δ is small enough. Hence, it would be
interesting to seek an optimal Berry–Esseen bound for an unbounded �. To this
end, Chen and Shao [13] established the following Berry–Esseen bound:

sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣

≤ E|R| + 1

4λ
E

(|W | + 1
)∣∣�3∣∣

+ (
1 + τ 2)(

4(1 + τ)λ1/2 + 6E
∣∣∣∣ 1

2λ
E

(
�2 | W ) − 1

∣∣∣∣
+ 2

E[�]E
∣∣� − E[�]∣∣),

(1.3)

where � is any random variable such that � ≥ E(�4 | W) and τ = √
E(�)/λ.

They obtained an optimal Berry–Esseen bound when the result was applied to an
independence test by sums of squared sample correlation functions. However, (1.3)
is still too complicated in general.

For the nonnormal approximation, Chatterjee and Shao [10] developed similar
results for both the L1 bound and Berry–Esseen bound.

The exchangeable pair approach of Stein’s method has been widely used in the
literature. For example, Chatterjee and Meckes [9], Reinert and Röllin [22] and
Meckes [21] established the L1 bounds for multivariate normal approximation,
and Chatterjee [4] and Chatterjee and Dey [7] obtained the concentration inequal-
ities. We refer to Chen, Goldstein and Shao [12] and Chatterjee [6] for recent
developments on Stein’s method.

In this paper, we establish a new Berry–Esseen-type bound for normal and non-
normal approximation via exchangeable pairs. The bound is as simple as

E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E

∣∣E(
�|�| | W )∣∣ + E|R|,

which yields an optimal bound in many applications.
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The paper is organized as follows. The main results are presented in Section 2.
Section 3 gives applications to the quadratic forms, general Curie–Weiss model,
mean field Heisenberg model and colored graph model. The proof of the main re-
sults is given in Section 4. Other proofs of applications are postponed to Section 5.

2. Main results. In this section, we establish Berry–Esseen bounds for nor-
mal and nonnormal approximation via the exchangeable pair approach without the
boundedness assumption.

2.1. Normal approximation. We first present a new Berry–Esseen bound for
normal approximation, which is a refinement of (1.1), (1.2) and (1.3).

THEOREM 2.1. Let (W,W ′) be an exchangeable pair satisfying

E(� | W) = λ(W + R),(2.1)

for some constant λ ∈ (0,1) and random variable R, where � = W − W ′. Then

sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣

≤ E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E|R| + 1

λ
E

∣∣E(
��∗ | W )∣∣,

where �∗ := �∗(W,W ′) is any random variable satisfying �∗(W,W ′) = �∗(W ′,
W) and �∗ ≥ |�|.

The following two corollaries may be useful.

COROLLARY 2.1. If |�| ≤ δ and E|W | ≤ 2, then

sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣ ≤ E

∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E|R| + 3δ.

Notice that the term δ3/λ in (1.2) does not appear in the preceding corollary.
One can check that under |�| ≤ δ,

min
(

1,E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + δ

)
≤ 2 min

(
1,E

∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + δ3/λ

)
.

Hence, Corollary 2.1 is an improvement of (1.2) at the cost of assuming E|W | ≤ 2,
which is easily satisfied.

It follows from the Cauchy inequality that for any a > 0,

|�| ≤ a/2 + �2/(2a).

Thus, we can choose �∗ = a/2 +�2/(2a) with a proper constant a and obtain the
following corollary.
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COROLLARY 2.2. Assume that E|W | ≤ 2. Then, under the condition of Theo-
rem 2.1,

sup
z∈R

∣∣P(W ≤ z) − �(z)
∣∣

≤ E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + E|R| + 2

√
E|E(�3 | W)|

λ
.

Clearly, E|E(�3 | W)| ≤ E|�|3. Hence, Corollary 2.2 improves (1.1). In fact,
Corollary 2.2 could yield an optimal bound while (1.1) may not.

2.2. Nonnormal approximation. In this subsection, we focus on the Berry–
Esseen bound for nonnormal approximation.

Let W be a random variable satisfying P(a < W < b) = 1 where −∞ ≤ a <

b ≤ ∞. Let (W,W ′) be an exchangeable pair satisfying

E
(
W − W ′ | W ) = λ

(
g(W) + R

)
,(2.2)

where g is a measurable function with domain (a, b), λ ∈ (0,1) and R is a random
variable.

Assume that g satisfies the following conditions:

(A1) g is nondecreasing, and there exists w0 ∈ (a, b) such that (w−w0)g(w) ≥
0 for w ∈ (a, b);

(A2) g′ is continuous and 2(g′(w))2 − g(w)g′′(w) ≥ 0 for all w ∈ (a, b); and
(A3) limy↓a g(y)p(y) = limy↑b g(y)p(y) = 0, where

(2.3) p(y) = c1e
−G(y), G(y) =

∫ y

w0

g(t) dt,

and c1 is the constant so that
∫ b
a p(y) dy = 1.

Let Y be a random variable with the probability density function (p.d.f.) p(y), and
let � = W − W ′.

THEOREM 2.2. We have

sup
z∈R

∣∣P(W ≤ z) − P(Y ≤ z)
∣∣

≤ E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + 1

λ
E

∣∣E(
��∗ | W )∣∣ + 1

c1
E|R|,

(2.4)

where �∗ := �∗(W,W ′) is any random variable satisfying �∗(W,W ′) = �∗(W ′,
W) and �∗ ≥ |�|.

To make the bound meaningful, one should choose λ ∼ (1/2)E(�2). It is easy
to see that g(w) = w satisfies conditions (A1)–(A3). More generally, (A1)–(A3)
are also satisfied for g(w) = w2k−1, where k ≥ 1 is an integer.
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3. Applications. In this section, we give some applications for our main re-
sult.

3.1. Quadratic forms. We first consider a classical example as a simple ap-
plication. Suppose X1,X2, . . . are i.i.d. random varaibles with a zero mean, unit
variance and a finite fourth moment. Let A = {aij }ni,j=1 be a real symmetric ma-
trix and let Wn = ∑

1≤i 
=j≤n aijXiXj . The central limit theorem for Wn has been
extensively discussed in the literature. For example, de Jong [14] used U -statistics
and proved a central limit theorem for Wn when

σ−4
n Tr

(
A4) → 0 and σ−2

n max
1≤i≤n

∑
1≤j≤n

a2
ij → 0,

where σ 2
n = 2 Tr(A2) = Var(Wn). An L1 bound was given by Chatterjee [5] while

Götze and Tikhomirov [19] gave a Kolmogorov distance with a convergence rate
λ1/σn, where λ1 the largest absolute eigenvalue of A.

Here, we apply Theorem 2.1 and obtain the following result.

THEOREM 3.1. Let X1,X2, . . . be i.i.d. random variables with a zero mean,
unit variance and a finite fourth moment. Let A = (aij )

n
i,j=1 be a real sym-

metric matrix with aii = 0 for all 1 ≤ i ≤ n and σ 2
n = 2

∑n
i=1

∑n
j=1 a2

ij . Put

Wn = 1
σn

∑
i 
=j aijXiXj . Then

sup
x∈R

∣∣P(Wn ≤ x) − �(x)
∣∣

≤ CEX4
1

σ 2
n

(√√√√∑
i

(∑
j

a2
ij

)2
+

√√√√∑
i,j

(∑
k

aikajk

)2)
,

(3.1)

where C is an absolute constant.

It is easy to check that

∑
i,j

(∑
k

aikajk

)2
= Tr

(
A4)

and

∑
i

(∑
j

a2
ij

)2
≤ max

1≤i≤n

∑
j

a2
ij σ

2
n ≤ λ2

1σ
2
n ,

which means that the first term in (3.1) is less than the bound λ1/σn given in The-
orem 1 of Götze and Tikhomirov [19]. However, comparing it with the L1 bound
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given in Chatterjee [5], we conjecture that the bound in (3.1) can be improved to

sup
x∈R

∣∣P(Wn ≤ x) − �(x)
∣∣ ≤ C

(
1

σ 4
n

∑
i

(∑
j

a2
ij

)2
+ 1

σ 2
n

√√√√∑
i,j

(∑
k

aikajk

)2)
.

3.2. General Curie–Weiss model. The Curie–Weiss model has been exten-
sively discussed in the statistical physics field. The asymptotic behavior for the
Curie–Weiss model was studied by Ellis and Newman [15–17]. Recently, Stein’s
method has been used to obtain the convergence rate of the Curie–Weiss model.
For example, Chatterjee and Shao [10] used exchangeable pairs to get a Berry–
Esseen bound at the critical temperature of the simplest Curie–Weiss model, where
the magnetization was valued on {−1,1} with equal probability; and Chen, Fang
and Shao [11] and Shao, Zhang and Zhang [26] established the Cramér type mod-
erate deviation result for noncritical and critical temperature, respectively. More
generally, when the magnetization was distributed as a measure ρ with a finite
support, Chatterjee and Dey [7] obtained an exponential probability inequality. In
this subsection, we apply Theorem 2.1 to establish a Berry–Esseen bound for the
general Curie–Weiss model.

Let ρ be a probability measure satisfying∫ ∞
−∞

x dρ(x) = 0 and
∫ ∞
−∞

x2 dρ(x) = 1.(3.2)

ρ is said to be type k (an integer) with strength λρ if∫ ∞
−∞

xj d�(x) −
∫ ∞
−∞

xj dρ(x) =
{

0 for j = 0,1, . . . ,2k − 1,

λρ > 0 for j = 2k,

where �(x) is the standard normal distribution function.
We define the Curie–Weiss model as follows. For a given measure ρ, let

(X1, . . . ,Xn) have the joint p.d.f.

dPn,β(x) = 1

Zn

exp
(

β(x1 + · · · + xn)
2

2n

) n∏
i=1

dρ(xi),(3.3)

where x = (x1, . . . , xn), 0 < β ≤ 1 and Zn is the normalizing constant.
Let ξ be a random variable with probability measure ρ. Moreover, assume that

(i) for 0 < β < 1, there exists a constant b > β such that

Eetξ ≤ e
t2
2b for − ∞ < t < ∞;(3.4)

(ii) for β = 1, there exist constants b0 > 0, b1 > 0 and b2 > 1 such that

Eetξ ≤
⎧⎪⎨
⎪⎩

exp
(
t2/2 − b1t

2k), |t | ≤ b0,

exp
(

t2

2b2

)
, |t | > b0.

(3.5)
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Let Sn = X1 + · · · + Xn. Ellis and Newman [16], [17] showed that:

(i) if 0 < β < 1, then n−1/2Sn converges to a normal distribution N (0, (1 −
β)−1); and

(ii) if β = 1, and ρ is of type k, then n−1+ 1
2k Sn converges to a nonnormal dis-

tribution with p.d.f.

p(y) = c1e
−c2y

2k

,

where c2 > 0 and c1 is the normalizing constant.

The following theorem provides the rate of convergence.

THEOREM 3.2. Let (X1, . . . ,Xn) follow the joint p.d.f. (3.3), where ρ satisfies
(3.2):

(i) If 0 < β < 1 and (3.4) is satisfied, then for Wn = n−1/2Sn, we have

sup
z∈R

∣∣P(Wn ≤ z) − P(Y1 ≤ z)
∣∣ ≤ Cn−1/2,(3.6)

where Y1 ∼ N (0, 1
1−β

) and C is a constant depending on b and β .

(ii) If β = 1, ρ is of type k and (3.5) is satisfied, then for Wn = n−1+ 1
2k Sn, we

have

sup
z∈R

∣∣P(Wn ≤ z) − P(Yk ≤ z)
∣∣ ≤ Cn− 1

2k ,(3.7)

where C is a constant depending on b0, b1, b2 and k; the density function of Yk is
given by

p(y) = c1e
−c2y

2k

, c2 = H(2k)(0)

(2k)! ;

and c1 is the normalizing constant and H(s) = s2/2 − ln(
∫ ∞
−∞ exp(sx) dρ(x)).

3.3. Mean field Heisenberg model. The Heisenberg model is a statistical
model for the phenomena of ferromagnetism and antiferromagnetism in the study
of magnetism theory.

Let Gn be a finite complete graph with n vertices. At each site of the graph
is a spin in S

2, so the state space is �n = (S2)n with Pn the n-fold product of
the uniform probability measure on S

2. The mean field Hamiltonian energy of the
Heisenberg model Hn : �n �→R is

Hn(σ) = − 1

2n

∑
1≤i,j≤n

〈σi, σj 〉,
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where 〈·, ·〉 is the inner product in R
3. The Gibbs measure Pn,β is given by the

density function

dPn,β = 1

Zn,β

exp
(

β

2n

∑
1≤i,j≤n

〈σi, σj 〉
)

= 1

Zn,β

exp
(−βHn(σ)

)
,

where Zn,β = ∫
�n

exp(−βHn(σ)) dPn.
Consider the random variable

Wn = √
n

(
β2

n2κ2

∣∣∣∣∣
n∑

j=1

σj

∣∣∣∣∣
2

− 1

)
,(3.8)

where | · | is the Euclidean norm in R
3 and κ is the solution to the equation

x/β = (
coth(x) − 1/x

)
.(3.9)

Let ψ(x) = coth(x) − 1/x and

B2 = 4β2

(1 − βψ ′(κ))κ2

(
1

κ2 − 1

sinh2(κ)

)
.(3.10)

Kirkpatrick and Meckes [20] showed that when β > 3, Wn/B converges to a stan-
dard normal distribution with an L1 bound O(log(n)n−1/4). They also showed that
when β = 3, the random variable Tn = c3n

−3/2|∑j σj |2, where c3 is a constant
such that the variance of Tn is 1, converges in distribution to Y with the density
function

p(y) =
{
Cy5e−3y2/(5c3), y ≥ 0,

0, y < 0,

where C is the normalizing constant.
The following theorem gives a Berry–Esseen bound for the case β > 3. The

case β = 3 will be studied in another paper.

THEOREM 3.3. Let Wn be the random variable defined as in (3.8) and B as
in (3.10) with β > 3. Then we have

sup
z∈R

∣∣P(Wn/B ≤ z) − �(z)
∣∣ ≤ cβn−1/2,(3.11)

where cβ is a constant depending on β .

3.4. Counting monochromatic edges in uniformly colored graphs. The study
of monochromatic and heterochromatic subgraphs of an edge-colored graph dates
back to the 1960s, and the last two decades has witnessed a significant development
in the study of normal and Poisson approximation.



BERRY–ESSEEN BOUNDS FOR EXCHANGEABLE PAIRS 69

Barbour, Holst and Janson [2] used Stein’s method to show that the number
of monochromatic edges for the complete graph converges to a Poisson distribu-
tion. Arratia, Goldstein and Gordon [1] applied Stein’s method to prove a Poisson
approximation theorem for the number of monochromatic cliques in a uniform
coloring of the complete graph. We refer to Chatterjee, Diaconis and Meckes [8]
and Cerquetti and Fortini [3] for other related results.

In this subsection, we consider normal approximation for the counting of
monochromatic edges in uniformly colored graphs. Let G = {V (G),E(G)} be
a simple undirected graph, where V (G) = {v1, . . . , vn} is the vertex set and E(G)

is the edge set. For 1 ≤ i ≤ n, let

Ai = {
1 ≤ j ≤ n, j 
= i, (vi, vj ) ∈ E(G)

}
be the neighborhood of index i and di = #(Ai) be the number of edges connected
to vi . Denote the total number of edges in G by mn, which is equal to

∑n
i=1 di/2.

Each vertex is colored independently and uniformly with cn ≥ 2 colors, denoted
by ξi the color of vi . Let Yn be the number of monochromatic edges in Gn. Rinott
and Rotar [23] proved the central limit theorem for Yn while Fang [18] obtained
the Wasserstein distance with an order of

√
cn/mn +c

−1/2
n . The following theorem

provides a Berry–Esseen bound.

THEOREM 3.4. Let

Wn = 1

2

n∑
i=1

∑
j∈Ai

1{ξi=ξj } − 1
cn√

mn

cn
(1 − 1

cn
)
.

Then

sup
z∈R

∣∣P(Wn ∈ z) − �(z)
∣∣ ≤ C

(√
1/cn +

√
d∗
n/mn + √

cn/mn

)
,

where C is an absolute constant and d∗
n = max{di,1 ≤ i ≤ n}.

4. Proof of main results. As the normal approximation is a special case of the
nonnormal approximation, we prove Theorem 2.2 only. The only difference for the
normal approximation is that the Stein’s solution can be bounded by 1 instead of√

2π .
Let Y be the random variable with the p.d.f. p(y) defined in (2.3). For a given

z, let f := fz be the solution to the following Stein equation:

(4.1) f ′(w) − g(w)f (w) = 1{w≤z} − F(z), z ∈ (a, b),

where F is the distribution function of Y . It is known (see, e.g., Chatterjee and
Shao [10]) that

(4.2) fz(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(w)(1 − F(z))

p(w)
, w ≤ z,

F (z)(1 − F(w))

p(w)
, w > z.

We first prove some basic properties of fz.
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LEMMA 4.1. Suppose that conditions (A1)–(A3) are satisfied. Then

0 ≤ fz(w) ≤ 1/c1,(4.3) ∥∥f ′
z

∥∥ ≤ 1,(4.4)

‖gfz‖ ≤ 1(4.5)

and

g(w)fz(w) is nondecreasing.(4.6)

We remark that when g(w) = w, that is, for the normal approximation, it is
known that 0 ≤ fz(w) ≤ 1 (see, e.g., Lemma 2.3 in Chen, Goldstein and Shao
[12]).

PROOF. Without loss of generality, we assume that a < 0 < b and w0 = 0;
thus, p(0) = c1. For w ≤ z, define Hz(w) = F(w)(1−F(z))−p(w)/c1. To prove
(4.3), noting that fz(w) ≥ 0, it suffices to show that supa<w<b Hz(w) ≤ 0. As g(w)

is nondecreasing, by the fact that H ′
z(w) = p(w)(1 − F(z) + g(w)/c1),

sup
a<w≤z

Hz(w) = max
{
Hz(a),Hz(z)

}
.

Clearly, Hz(a) = −p(a)/c1 ≤ 0. Now we prove supa<z<b Hz(z) ≤ 0. If z ≤ 0,
define H1(z) = F(z) − p(z)/c1, and thus H ′

1(z) = p(z)(1 + g(z)/c1). Note that
g(z) ≤ 0 and g(·) is nondecreasing, then,

sup
a<z≤0

Hz(z) ≤ sup
a<z≤0

H1(z) ≤ max
{
H1(a),H1(0)

} ≤ 0.

Using a similar argument, we also have sup0≤z<b Hz(z) ≤ 0. Therefore,
supa<z<b Hz(z) ≤ 0. This proves supa<w≤z fz(w) ≤ 1/c1. Similarly, we have
supz<w<b fz(w) ≤ 1/c1.

A similar argument can be made for w > z. This completes the proof of (4.3).
We next show that gfz is nondecreasing. For w ≤ z, by (4.2),

g(w)fz(w) = g(w)F (w)(1 − F(z))

p(w)
,

and thus,(
g(w)fz(w)

)′ = (
1 − F(z)

)(
g(w) + (

g′(w) + g2(w)
)
F(w)/p(w)

)
.

Let τ(w) = g(w)e−G(w)

g′(w)+g2(w)
. Then, by (A2),

−τ ′(w)eG(w) = 1 −
(

2(g′(w))2 − g′′(w)g(w)

(g′(w) + g2(w))2

)
≤ 1.

Hence,

e−G(w) + τ ′(w) ≥ 0



BERRY–ESSEEN BOUNDS FOR EXCHANGEABLE PAIRS 71

and

0 ≤
∫ w

a

(
τ ′(t) + e−G(t))dt = τ(w) + 1

c1
F(w) − lim

y↓a
τ (y).

By condition (A3), limy↓a τ (y) = 0, and hence τ(w) + 1
c1

F(w) ≥ 0. This proves
that (g(w)fz(w))′ ≥ 0 or g(w)fz(w) is nondecreasing for w ≤ z. Similarly, one
can prove that g(w)fz(w) is nondecreasing for w ≥ z. This proves (4.6).

To prove (4.5), by (A1), we have for w ≥ max(z,0),

g(w)fz(w) = F(z)g(w)
∫ b
w p(t) dt

p(w)

≤ F(z)
∫ b
w e−G(t)g(t) dt

e−G(w)
≤ F(z).

Similarly, we have g(w)fz(w) ≥ −(1 −F(z)) for w ≤ min(0, z). Combining with
(4.6) yields

(4.7) F(z) − 1 ≤ g(w)fz(w) ≤ F(z)

for all w. This proves (4.5).
Inequality (4.4) follows immediately from (4.1) and (4.7). �

PROOF OF THEOREM 2.2. Let f = fz be the solution to the Stein equation
(4.1). Since (W,W ′) is an exchangeable pair, by (2.2), we have

0 = E
((

W − W ′)(f (W) + f
(
W ′)))

= 2E
((

W − W ′)f (W)
) − E

((
W − W ′)(f (W) − f

(
W ′)))

= 2λE
(
g(W)f (W)

) + 2λE
(
Rf (W)

) − E
(
�

∫ 0

−�
f ′(W + t) dt

)
,

and hence,

E
(
g(W)f (W)

) = 1

2λ
E

(
�

∫ 0

−�
f ′(W + t) dt

)
− E

(
Rf (W)

)
.

Thus,

E
(
f ′(W) − g(W)f (W)

)
= E

(
f ′(W)

(
1 − 1

2λ
E

(
�2 | W )))

− 1

2λ
E

(
�

∫ 0

−�

(
f ′(W + t) − f ′(W)

)
dt

)
+ E

(
Rf (W)

)
.
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By (4.1), (4.3) and (4.4),∣∣P(W ≤ z) − P(Y ≤ z)
∣∣ = ∣∣E(

f ′(W) − g(W)f (W)
)∣∣

≤ |I1| + 2E
∣∣∣∣1 − 1

2λ
E

(
�2 | W )∣∣∣∣ + 1

c1
E|R|,(4.8)

where

I1 = 1

2λ
E

(
�

∫ 0

−�

(
f ′(W + t) − f ′(W)

)
dt

)
.

Recalling that f is the solution to (4.1), we have

I1 = 1

2λ
E

(
�

∫ 0

−�

(
g(W + t)f (W + t) − g(W)f (W)

)
dt

)

+ 1

2λ
E

(
�

∫ 0

−�
(1{W+t≤z} − 1{W≤z}) dt

)
.

(4.9)

Noting that g(w)f (w) is nondecreasing by Lemma 4.1 and that the indicator func-
tion 1{w≤z} is nonincreasing, we have

0 ≥
∫ 0

−�

(
g(W + t)f (W + t) − g(W)f (W)

)
dt

≥ −�
(
g(W)f (W) − g(W − �)f (W − �)

)
and

0 ≤
∫ 0

−�
(1{W+t≤z} − 1{W≤z}) dt ≤ �(1{W−�≤z} − 1{W≤z}).

Therefore,

I1 ≤ 1

2λ
E

(−�1{�<0}�
(
g(W)f (W) − g(W − �)f (W − �)

))

+ 1

2λ
E

(
�1{�>0}�(1{W−�≤z} − 1{W≤z})

)
.

(4.10)

Thus, for any �∗ = �∗(W,W ′) = �∗(W ′,W) ≥ |�|,
1

2λ
E

(−�1{�<0}�
(
g(W)f (W) − g(W − �)f (W − �)

))

≤ 1

2λ
E

(
�∗1{�<0}�

(
g(W)f (W) − g

(
W ′)f (

W ′)))

= 1

2λ
E

(
�∗�(1{�<0} + 1{�>0})g(W)f (W)

)
(4.11)

= 1

2λ
E

(
��∗g(W)f (W)

)

≤ 1

2λ
E

∣∣E(
��∗ | W )∣∣,
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where E(�∗�1{�<0}g(W ′)f (W ′)) = −E(�∗�1{�>0}g(W)f (W)) because of the
exchangeability of W and W ′ and |g(w)f (w)| ≤ 1 for all w ∈ R. Similarly, we
have

(4.12)
1

2λ
E(�1{�>0}�(1{W−�≤z} − 1{W≤z}) ≤ 1

2λ
E

∣∣E(
��∗ | W )∣∣.

Combining (4.10), (4.11) and (4.12) yields

(4.13) I1 ≤ 1

λ
E

∣∣E(
��∗ | W )∣∣.

Following the same argument, we also have

(4.14) I1 ≥ −1

λ
E

∣∣E(
��∗ | W )∣∣.

This proves (2.4), by (4.8), (4.13) and (4.14). �

5. Proofs of Theorems 3.1–3.4. In this section, we give proofs for the theo-
rems in Section 3. The construction of an exchangeable pair is described as fol-
lows.

Let η1, . . . , ηn be a sequence of random variables and W = h(η1, . . . , ηn). For
each 1 ≤ i ≤ n, let η′

i have the conditional distribution of ηi given {ηj ,1 ≤ j ≤
n, j 
= i}, also, η′

i is conditionally independent of ηi given {ηj ,1 ≤ j ≤ n, j 
= i}.
Let I be a random index uniformly distributed over {1, . . . , n} independent of
{ηi, η

′
i ,1 ≤ i ≤ n}. Set

W ′ = h
(
η1, . . . , ηI−1, η

′
I , ηI+1, . . . , ηn

)
.

Then (W,W ′) is an exchangeable pair. In particular, when ηi , 1 ≤ i ≤ n are in-
dependent, one can let {η′

i ,1 ≤ i ≤ n} be an independent copy of {ηi,1 ≤ i ≤ n}.
This sampling procedure is also called the Gibbs’ sampler.

5.1. Proof of Theorem 3.1. Let X = σ(X1, . . . ,Xn), and (X′
1,X

′
2, . . . ,X

′
n)

be an independent copy of (X1,X2, . . . ,Xn). Let I be a random index uni-
formly distributed over {1, . . . , n} independent of any other random variable. Write
Wn = h(X1, . . . ,Xn) and define W ′

n = h(X1, . . . ,X
′
I , . . . ,Xn). Then (Wn,W

′
n) is

an exchangeable pair. It is easy to see that

� = Wn − W ′
n = 2

σn

∑
j 
=I

ajIXj

(
XI − X′

I

)

and

E(� | X ) = 2

σn

n∑
i=1

∑
j 
=i

E
(
ajiXj

(
Xi − X′

i

) | X )

= 2

n
Wn.
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As such, condition (2.1) holds with λ = 2/n and R = 0. Also,

E
(
�2 | X ) = 4

nσ 2
n

n∑
i=1

E
((∑

j 
=i

ajiXj

(
Xi − X′

i

))2 ∣∣∣ X

)

= 4

nσ 2
n

n∑
i=1

(
X2

i + 1
)( n∑

j=1

aijXj

)2

and

1

2λ
E

(
�2 | X ) = 1

σ 2
n

n∑
i=1

(
X2

i + 1
)( n∑

j=1

aijXj

)2

.

Note that by the assumptions σ 2
n = 2

∑
i,j a2

ij and aii = 0,

E
(

1

2λ
E

(
�2 | X )) = 1.

Then

E
∣∣∣∣1 − 1

2λ
E

(
�2 | Wn

)∣∣∣∣2 ≤ Var

(
1

σ 2
n

n∑
i=1

(
X2

i + 1
)( n∑

j=1

aijXj

)2)
.

Observe that

Var

(
n∑

i=1

(
X2

i + 1
)( n∑

j=1

aijXj

)2)

=
n∑

i=1

Var

((
X2

i + 1
)( n∑

j=1

aijXj

)2)
(5.1)

+ ∑
i 
=i′

Cov

((
X2

i + 1
)( n∑

j=1

aijXj

)2

,
(
X2

i′ + 1
)( n∑

k=1

ai′kXk

)2)
.

For the first term, recalling that aii = 0 for all 1 ≤ i ≤ n, we have
n∑

i=1

Var

((
X2

i + 1
)( n∑

j=1

aijXj

)2)

≤
n∑

i=1

E
(
X2

i + 1
)2E

(
n∑

j=1

aijXj

)4

(5.2)

≤ C

n∑
i=1

(
E

(
X4

1
) + 1

)
E

(
X4

1
)( n∑

j=1

a4
ij +

(
n∑

j=1

a2
ij

)2)

≤ C
(
E

(
X4

1
))2

n∑
i=1

(
n∑

j=1

a2
ij

)2

,
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where C is an absolute constant. To bound the second term of (5.1), for any i 
= k,
define

Mi = (
X2

i + 1
)( n∑

j=1

aijXj

)2

,

M
(k)
i = (

X2
i + 1

)( n∑
j 
=k

aijXj

)2

.

For the second term of (5.1), for any i 
= i ′, we have

Cov

((
X2

i + 1
)( n∑

j=1

aijXj

)2

,
(
X2

i′ + 1
)( n∑

k=1

ai′kXk

)2)

= Cov(Mi,Mi′)
(5.3)

= Cov
(
M

(i′)
i ,Mi′

) + Cov
(
Mi,M

(i)
i′

)
− Cov

(
M

(i′)
i ,M

(i)
i′

) + Cov
(
Mi − M

(i′)
i ,Mi′ − M

(i)
i′

)
.

Given Fii′ := σ {Xj, j 
= i, i′}, random variables M
(i′)
i and M

(i)
i′ are indepen-

dent. Thus,

Cov
(
M

(i′)
i ,M

(i)
i′

)

= Cov

(
E

((
X2

i + 1
)( n∑

j 
=i′
aijXj

)2 ∣∣∣ Fii′

)
,

E

((
X2

i′ + 1
)( n∑

k 
=i

ai′jXk

)2 ∣∣∣ Fii′

))

= 4 Cov

((
n∑

j 
=i′
aijXj

)2

,

(
n∑

k 
=i

ai′kXk

)2)

≤ C

n∑
j=1

a2
ij a

2
i′j E

(
X4

1
) + C

(
n∑

k=1

aikai′k

)2

.

Similar arguments hold for other terms of (5.3). Hence,

∑
i 
=i′

Cov

((
X2

i + 1
)( n∑

j=1

aijXj

)2

,
(
X2

i′ + 1
)( n∑

k=1

ai′kXk

)2)

≤ CE
(
X4

1
)2

(
n∑

i=1

(
n∑

j=1

a2
ij

)2

+ ∑
1≤i,j≤n

(
n∑

k=1

aikajk

)2)
.

(5.4)
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It follows from (5.1), (5.2) and (5.4) that

E
∣∣∣∣1 − 1

2λ
E

(
�2 | Wn

)∣∣∣∣
≤ Cσ−2

n E
(
X4

1
)(√√√√∑

i

(∑
j

a2
ij

)2
+

√√√√∑
i,j

(∑
k

aikajk

)2).(5.5)

Finally, it is sufficient to estimate the bound of E|E(�|�| | Wn)|/λ. In fact,

1

λ
E

(
�|�| | X )

= 2

σ 2
n

n∑
i=1

E
((∑

j

aijXj

(
Xi − X′

i

))∣∣∣∣∑
j

aijXj

(
Xi − X′

i

)∣∣∣∣ ∣∣∣ X

)

= 2

σ 2
n

n∑
i=1

(∑
j

aijXj

)∣∣∣∣∑
j

aijXj

∣∣∣∣Bi,

where Bi = E((Xi − X′
i)|Xi − X′

i | | Xi).
For i 
= i′, define

Ki =
(∑

j

aijXj

)∣∣∣∣∑
j

aijXj

∣∣∣∣Bi,

K
(i′)
i =

(∑
j 
=i′

aijXj

)∣∣∣∣∑
j 
=i′

aijXj

∣∣∣∣Bi

and thus,

Var
(
(1/λ)E

(
�|�| | X )) = 4

σ 4
n

n∑
i=1

Var(Ki) + 4

σ 4
n

∑
i 
=i′

Cov(Ki,Ki′).

Similar to (5.2), we have

n∑
i=1

Var(Ki) ≤ C
(
E

(
X4

1
))2

n∑
i=1

(
n∑

j=1

a2
ij

)2

.

Recalling the definition of Fii′ , given that Fii′ , we have K
(i′)
i and K

(i)
i′ are

conditionally independent, and thus

Cov
(
K

(i′)
i ,K

(i)
i′ | Fii′

) = 0.

Moreover,

E
(
K

(i′)
i | Fii′

) =
(∑

j 
=i′
aij

)∣∣∣∣∑
j 
=i′

aijXj

∣∣∣∣E(Bi) = 0
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because E(Bi) = 0. This proves Cov(K
(i′)
i ,K

(i)
i′ ) = 0. Similarly, we have

Cov(K
(i′)
i ,Ki′) = 0 and Cov(Ki,K

(i)
i′ ) = 0. Therefore,∣∣Cov(Ki,Ki′)

∣∣ = E
∣∣(Ki − K

(i′)
i

)(
Ki′ − K

(i)
i′

)∣∣
≤ 1

2
E

(
Ki − K

(i′)
i

)2 + 1

2
E

(
Ki′ − K

(i)
i′

)2
.

Observe that ∣∣Ki − K
(i′)
i

∣∣ ≤ |Bi |
(

2
∣∣∣∣aii′Xi′

∑
j 
=i′

aijXj

∣∣∣∣ + a2
ii′X

2
i′
)
,

thus,

E
(
Ki − K

(i′)
i

)2 ≤ CE(Bi)
2
(
a2
ii′

∑
j

a2
ij + a4

ii′E
(
X4

1
))

≤ C
(
E

(
X4

1
))2

(
a2
ii′

∑
j

a2
ij + a4

ii′
)
.

A similar result is true for E(Ki′ − K
(i)
i′ )2. Combining the inequalities, we have

Var
(
E

(
�|�| | X )

/λ
) ≤ Cσ−4

n

(
E

(
X4

1
))2

n∑
i=1

(
n∑

j=1

a2
ij

)2

.

By the Cauchy inequality, we have
1

λ
E

∣∣E(
�|�| | Wn

)∣∣

≤ Cσ−2
n E

(
X4

1
)(√√√√∑

i

(∑
j

a2
ij

)2
+

√√√√∑
i,j

(∑
k

aikajk

)2)
.

(5.6)

This completes the proof of Theorem 3.1 by (5.5) and (5.6).

5.2. Proof of Theorem 3.2. Recall that Sn = ∑n
i=1 Xi . Let X = σ(X1, . . . ,

Xn). We first construct an exchangeable pair (Sn, S
′
n) as follows. For each 1 ≤

i ≤ n, given {Xj, j 
= i}, let X′
i be conditionally independent of Xi with the same

conditional distribution of Xi . Let I be a random index uniformly distributed over
{1, . . . , n} independent of any other random variable. Define S′

n = Sn − XI + X′
I ;

then (Sn, S
′
n) is an exchangeable pair.

The proof of Theorem 3.2 is based on the following propositions. Let X̄ = Sn/n.

PROPOSITION 5.1. Under the assumptions in Theorem 3.2, for β = 1, we
have

E
(
Sn − S′

n | X ) = H(2k)(0)

(2k − 1)!X̄
2k−1 + R1,(5.7)

where E|R1| ≤ Cn−1 with the constant C depending only on b0, b1, b3 and k.
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For 0 < β < 1, we have

E
(
Sn − S′

n | X ) = (1 − β)X̄ + R2,(5.8)

where E|R2| ≤ Cn−1 and C depends only on β and b.

PROPOSITION 5.2. Under the assumptions in Theorem 3.2, we have

E
∣∣E((

Sn − S′
n

)2 | X ) − 2
∣∣ ≤ Cn−1/2 for 0 < β < 1,(5.9)

and

E
∣∣E((

Sn − S′
n

)2 | X ) − 2
∣∣ ≤ Cn−1/2k for β = 1.(5.10)

PROPOSITION 5.3. Under the assumptions in Theorem 3.2, we have for 0 <

β ≤ 1,

E
∣∣E((

Sn − S′
n

)∣∣Sn − S′
n

∣∣ | X )∣∣ ≤ Cn−1/2.(5.11)

We now continue to prove Theorem 3.2.

(i) When 0 < β < 1, define Wn = Sn/
√

n and W ′
n = S′

n/
√

n. Then (Wn,W
′
n)

is an exchangeable pair, and by (5.8) in Proposition 5.1, we have

E
(
Wn − W ′

n | Wn

) = 1

n

(
(1 − β)Wn + √

nR2
)
,

where E|R2| ≤ Cn−1.
Moreover, taking λ = 1/n, by (5.9) and (5.11), we have

E
∣∣∣∣1 − 1

2λ
E

((
Wn − W ′

n

)2 | Wn

)∣∣∣∣ ≤ Cn−1/2

and

E
∣∣∣∣ 1

2λ
E

((
Wn − W ′

n

)∣∣Wn − W ′
n

∣∣ | Wn

)∣∣∣∣ ≤ Cn−1/2

for some constant C. This proves (3.6) by Theorem 2.2 with g(w) = (1 − β)w.

(ii) When β = 1, define Wn = n−1+ 1
2k Sn and W ′

n = n−1+ 1
2k S′

n. Then (Wn,W
′
n)

is an exchangeable pair, and by (5.7),

E
(
Wn − W ′

n | Wn

) = n−2+1/k

(
H 2k(0)

(2k − 1)!W
2k−1
n + n−1+ 1

2k R1

)
,

where n−1+ 1
2k E|R1| ≤ Cn− 1

2k . Taking λ = n−2+1/k and by (5.10) and (5.11), we
have

E
∣∣∣∣1 − 1

2λ
E

((
Wn − W ′

n

)2 | Wn

)∣∣∣∣ ≤ Cn− 1
2k
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and

E
∣∣∣∣ 1

2λ
E

((
Wn − W ′

n

)∣∣Wn − W ′
n

∣∣ | Wn

)∣∣∣∣ ≤ Cn−1/2.

This completes the proof of (3.7) by Theorem 2.2 with g(w) = H 2k(0)
(2k−1)!w

2k−1.

To prove Propositions 5.1 to 5.3, we need to prove some preliminary lemmas.
In what follows, we let ξ, ξ1, ξ2, . . . be independent and identically distributed

random variables with probability measure ρ satisfying (3.2), and (3.4) or (3.5).

LEMMA 5.1. For any z > 0, under (3.4), we have

P
(|ξ1 + · · · + ξn| > z

) ≤ 2 exp
(
−bz2

2n

)
for 0 < β < 1.(5.12)

Under (3.5), and for β = 1,

P
(|ξ1 + · · · + ξn| > z

)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 exp
(
− z2

2n
− b1z

2k

n2k−1

)
, 0 < z ≤ b0n,

2 exp
(
−b2z

2

2n

)
, z > b0n.

(5.13)

PROOF. (5.12) follows easily from (3.4) and Chebyshev’s inequality.
As for (5.13), when 0 < z ≤ b0n, set t = z/n. By the Chebyshev inequality, we

have

P(ξ1 + · · · + ξn > z) ≤ e−tzEet(ξ1+···+ξn)

= e−tz(Eetξ )n
≤ e−tz exp

(
nt2

2
− nb1t

2k

)

= exp
(
− z2

2n
− b1z

2k

n2k−1

)
.

Similarly,

P(ξ1 + · · · + ξn < −z) ≤ exp
(
− z2

2n
− b1z

2k

n2k−1

)
,

and hence

P
(|ξ1 + · · · + ξn| > z

) ≤ 2 exp
(
− z2

2n
− b1z

2k

n2k−1

)
.

A similar argument for z > b0n completes the proof of (5.13). �
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LEMMA 5.2. Under condition (3.5) and for β = 1, we have

cn
1
2 − 1

2k ≤ E exp
(

1

2n
(ξ1 + · · · + ξn)

2
)

≤ Cn
1
2 − 1

2k ,(5.14)

where c and C are constants such that 0 < c < C < ∞. Under condition (3.4), for
0 < β < 1, we have

1 ≤ E exp
(

β

2n
(ξ1 + · · · + ξn)

2
)

≤ C,(5.15)

where C > 1 is a finite constant.

PROOF. Noting that

ex2/2 = 1√
2π

∫ ∞
−∞

etx−t2/2 dt,

we have
√

2πE exp
(

1

2n
(ξ1 + · · · + ξn)

2
)

=
∫ ∞
−∞

E exp
(

t√
n
(ξ1 + · · · + ξn) − t2

2

)
dt

(5.16)

≤
∫
|t |≤b0

√
n
e−b1t

2k/nk−1
dt +

∫
|t |>b0

√
n
e
− t2

2 (1− 1
b2

)
dt

≤ Cn
1
2 − 1

2k

for some constant C.
For the lower bound of Ee

1
2n

(
∑n

i=1 ξi )
2
, as ρ is of type k with strength λρ , then by

the Taylor expansion, for |t | ≤ b0,∣∣∣∣ t
2

2
− log Eetξ

∣∣∣∣ ≤ Cλt
2k,

where Cλ = λρ + b0 sup|t |≤b0
|H(2k+1)(t)| is a constant. Thus, for |t | ≤ b0,

Eetξ ≥ exp
(

t2

2
− Cλt

2k

)
.

Similar to (5.16), we have

√
2πEe

1
2n

(
∑n

i=1 ξi )
2 ≥ E

∫
|t |≤b0

√
n
e

t√
n
(ξ1+···+ξn)− t2

2 dt

≥ cn
1
2 − 1

2k .

This proves (5.14).
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Under condition (3.4) and similar to (5.16), we have

E exp
(

β

2n
(ξ1 + · · · + ξn)

2
)

≤ C,

and by the Jensen inequality,

Ee
β
2n

(
∑n

i=1 ξi )
2 ≥ e

β
2n

E((ξ1+···+ξn)2)

≥ 1.

This completes the proof of (5.15). �

Let X = (X1, . . . ,Xn) be a random vector following the Curie–Weiss distribu-
tion satisfying (3.3). We have the following inequalities.

LEMMA 5.3. Under condition (3.5), we have

E
(

X1 + · · · + Xn

n1− 1
2k

)2k

≤ C, β = 1,(5.17)

and under condition (3.4), we have

E
(

X1 + · · · + Xn√
n

)2
≤ C, 0 < β < 1.(5.18)

PROOF. Let Mn = 1√
n
(ξ1 + · · · + ξn) and Zn = Ee

1
2 M2

n . For β = 1 and when
(3.5) holds, by (3.3), we have

E
(
S2k

n

) = nk

Zn

E
(
M2k

n e
1
2 M2

n
)

= nk

Zn

∫ ∞
0

(
2kx2k−1 + 1

2
x2k+1

)
e

1
2 x2

P
(|Mn| ≥ x

)
dx(5.19)

= nk

Zn

(I1 + I2),

where

I1 =
∫ b0

√
n

0

(
2kx2k−1 + 1

2
x2k+1

)
e

1
2 x2

P
(|Mn| ≥ x

)
dx,

I2 =
∫ ∞
b0

√
n

(
2kx2k−1 + 1

2
x2k+1

)
e

1
2 x2

P
(|Mn| ≥ x

)
dx.

For I1, letting Dn = [b0
√

n] + 1, where [a] is the integer part of a, we have

I1 ≤
Dn∑
j=0

∫ j+1

j

(
2kx2k−1 + 1

2
x2k+1

)
e

1
2 x2

P
(|Mn| ≥ x

)
dx
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≤ C

(
1 +

Dn∑
j=1

j2k+1
∫ j+1

j
e

1
2 x2−jx+jxP

(|Mn| ≥ x
)
dx

)

≤ C

(
1 +

Dn∑
j=1

j2k+1e− j2

2

∫ j+1

j
ejxP

(|Mn| ≥ x
)
dx

)

≤ C

(
1 +

Dn∑
j=1

j2k+1e− j2

2

∫ j+1

j
e
jx− x2

2 − b1x2k

nk−1 dx

)
by (5.13)

≤ C

(
1 +

Dn∑
j=1

j2k+1e
− b1j2k

nk−1 dx

)

≤ C
(
1 + n(2k+1)(k−1)/2k).

A similar argument can be made for I2. By (5.19) and (5.14), we have

E
(
S2k

n

) ≤ Cn2k−1.(5.20)

This completes the proof of (5.17). A similar argument holds for (5.18). This com-
pletes the proof of Lemma 5.3. �

LEMMA 5.4. For 0 < β ≤ 1, there exists a constant b3 > β such that

Eeb3ξ
2/2 ≤ C.(5.21)

PROOF. When 0 < β < 1, we choose b3 such that β < b3 < b; then

Eeb3ξ
2/2 = 1√

2πb3

∫ ∞
−∞

Eetξ−t2/(2b3) dt

≤ 1√
2πb3

∫ ∞
−∞

e
− t2

2 ( 1
b3

− 1
b
)
dt

≤ C.

When β = 1, we choose b3 such that 1 < b3 < b2. Then

Eeb3ξ
2/2 = 1√

2πb3

∫ ∞
−∞

Eetξ−t2/2b3 dt

≤ 1√
2πb3

∫
|t |≤b0

exp
(

t2

2
− b1t

4 − t2

2b3

)
dt

+ 1√
2πb3

∫
|t |>b0

exp
(

t2

2b2
− t2

2b3

)
dt

≤ C.

This proves (5.21). �
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Let X̄i = 1
n
(Sn − Xi).

LEMMA 5.5. For 0 < β ≤ 1, and for r ≥ 1, we have

E
(|Xi |r | X̄i

) ≤ CeβX̄2
i .(5.22)

PROOF. Let ξ be a random variable with the probability measure ρ indepen-
dent of X̄i . Then

E
(|Xi |r | X̄i

) = E(|ξ |re βξ2

2n
+βX̄iξ | X̄i)

E(e
βξ2
2n

+βX̄iξ | X̄i)

and

E
(
e

βξ2

2n
+βX̄iξ | X̄i

) ≥ E
(
eβX̄iξ | X̄i

)
≥ e− βX̄2

i
2 E

(
e−βξ2/2)

(5.23)

≥ e− βX̄2
i

2 e−βE(ξ2)/2

≥ e−β/2e−βX̄2
i /2.

By Lemma 5.4, given t = b3y, where b3 depends on β , b and b2, we have

P
(|ξ | ≥ y

) ≤ e−tyE
(
et |ξ |)

≤ e−tyE
(
e

b3ξ2

2 + t2
2b3

)
≤ Ce−b3y

2/2.

Therefore,

E
(|ξ |re βξ2

2n
+ βξ2

2
) ≤

∫ ∞
0

(
ryr−1 + 2βyr+1)

eβy2(1+1/n)/2P
(|ξ | ≥ y

)
dy

≤ C

∫ ∞
0

(
ryr−1 + 2βyr+1)

eβy2(1+1/n)/2−b3y
2/2 dy

≤ C,

and by the Cauchy inequality,

E
(|ξ |re βξ2

2n
+βX̄iξ | X̄i

) ≤ eβX̄2
i /2E

(|ξ |re βξ2

2n
+ βξ2

2
)

≤ CeβX̄2
i /2.

(5.24)

This completes the proof of (5.22). �
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LEMMA 5.6. If 0 < β < 1 and (3.4) is satisfied, then for r > 0 and θ > 0, we
have

E
(|X̄i |reθX̄2

i
) ≤ Cn−r/2.(5.25)

If β = 1 and (3.5) is satisfied, then for r ≥ 0 and θ > 0, we have

E
(|X̄i |reθX̄2

i
) ≤ Cn− r

2k .(5.26)

PROOF. Without loss of generality, assume i = 1. Observe that

E
(|X̄1|reθX̄2

1
) = 1

nrZn

E|ξ2 + · · · + ξn|re
β
2n

(ξ1+···+ξn)2+ θ

n2 (ξ2+···+ξn)2

≤ 1

nrZn

Ee
β
2 (1+1/n)ξ2

1 E|ξ2 + · · · + ξn|re(
β
2n

+ θ+β

n2 )(ξ2+···+ξn)2

.

When 0 < β < 1 and (3.4) is satisfied, by (5.15), we have Zn ≥ 1. Also, similar
to (5.12),

P
(|ξ2 + · · · + ξn| > y

) ≤ 2e
− by2

2(n−1) .

Thus, for r ≥ 2,

E|ξ2 + · · · + ξn|re(
β
2n

+ θ+β

n2 )(ξ2+···+ξn)2

≤ C

∫ ∞
0

(
ryr−1 + (

βn−1 + 2(θ + β)n−2)
yr+1)

e
(

β
2n

+ θ+β

n2 )y2− b
2(n−1)

y2

dy

≤ Cnr/2.

This proves (5.25). Similarly, following the proof of (5.17), (5.26) holds for r ≥ 2.
When r = 0, similar to Lemma 5.2, we have

E
(
eθX̄2

i
) ≤ C.

By the Cauchy inequality, (5.25) and (5.26) hold for 0 < r < 2. This completes the
proof of Lemma 5.6. �

LEMMA 5.7. For each 1 ≤ i < j ≤ n, we have∣∣E((
X2

i − 1
)(

X2
j − 1

))∣∣
≤

{
Cn−1, 0 < β < 1,under (3.4),

Cn−1/k, β = 1,under (3.5).

(5.27)

PROOF. We consider i = 1, j = 2 only. Note that

E
((

X2
1 − 1

)(
X2

2 − 1
)) = 1

Zn

E
(
ξ2

1 − 1
)(

ξ2
2 − 1

)
exp

(
β

2n
(ξ1 + · · · + ξn)

2
)
.
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Set m12 = ξ3 + · · · + ξn. We first calculate the conditional expectation given
ξ3, . . . , ξn. In fact, for any s, we have

E
(
ξ2

1 − 1
)(

ξ2
2 − 1

)
e

β
2n

(ξ1+ξ2)
2+ β

n
(ξ1+ξ2)s

=
√

β√
2π

∫ ∞
−∞

E
(
ξ2

1 − 1
)(

ξ2
2 − 1

)

× exp
(

βt√
n
(ξ1 + ξ2) + βs

n
(ξ1 + ξ2) − βt2

2

)
dt

=
√

β√
2π

∫ ∞
−∞

(
E

((
ξ2

1 − 1
)
e
(

βt√
n
+ βs

n
)ξ1))2

e−βt2/2 dt.

Observe that∣∣∣∣E(
ξ2

1 − 1
)

exp
(

βt√
n
ξ1 + βs

n
ξ1

)∣∣∣∣
≤

(
βt√
n

+ βs

n

)
E

(|ξ1|3 + |ξ1|) exp
(

βt√
n
|ξ1| + βs

n
|ξ1|

)
(5.28)

≤
(

βt√
n

+ βs

n

)
eβs2/(2n2)+βt2/(2

√
n)E

(|ξ1|3 + |ξ1|)e βξ2
1

2 (1+ 1√
n
)

≤ C

(
βt√
n

+ βs

n

)
eβs2/(2n2)+βt2/(2

√
n).

Therefore, ∣∣E(
ξ2

1 − 1
)(

ξ2
2 − 1

)
e

β
2n

(ξ1+ξ2)
2+ β

n
(ξ1+ξ2)s

∣∣
≤ C

∫ ∞
−∞

(
t2

n
+ s2

n2

)
exp

(
βt2
√

n
+ βs2

n2 − βt2

2

)
dt

≤ C

(
1

n
+ s2

n2

)
eβs2/n2

.

Hence,

∣∣E((
X2

1 − 1
)(

X2
2 − 1

))∣∣ ≤ CE
(

1

n
+ m2

12

n2

)
eβm2

12/n2+βm2
12/(2n).

Similar to the proofs of Lemmas 5.3 and 5.6, for 0 < β < 1,

E
(

1

n
+ m2

12

n2

)
eβm2

12/n2+βm2
12/(2n) ≤ Cn−1,

and for β = 1,

E
(

1

n
+ m2

12

n2

)
eβm2

12/n2+βm2
12/(2n) ≤ Cn−1/k.

This completes the proof of (5.27). �
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For 1 ≤ i ≤ n, let X = σ(X1, . . . ,Xn), and

Qi = E
((

Xi − X′
i

)∣∣Xi − X′
i

∣∣ | X )
.

As defined at the beginning of this subsection, given {Xj, j 
= i}, X′
i and Xi are

conditionally independent and have the same distribution.

LEMMA 5.8. For 0 < β ≤ 1, we have

E
(
Q2

i

) ≤ C,(5.29) ∣∣E(QiQj )
∣∣ ≤ Cn−1.(5.30)

PROOF. By Lemmas 5.5 and 5.6,

E
(
Q2

i

) ≤ E
(
Xi − X′

i

)2 ≤ 4E
(
X2

i

) ≤ C.

To prove (5.30), let

u(s, t) = (s − t)|s − t |.
Let ξ, ξ1, . . . , ξn be i.i.d. random variables with probability measure ρ, which are
independent of (X1, . . . ,Xn). We have

Qi = E(u(Xi, ξ) exp(
βξ2

2n
+ βX̄iξ) | X )

E(exp(
βξ2

2n
+ βX̄iξ) | X )

.

Without loss of generality, consider i = 1, j = 2. Define X̄12 = 1
n
(Sn − X1 −

X2), and

Q′
1 = E(u(X1, ξ) exp(βX̄12ξ) | X )

E(exp(βX̄12ξ) | X )
,

Q′
2 = E(u(X2, ξ) exp(βX̄12ξ) | X )

E(exp(βX̄12ξ) | X )
.

Again, let m12 = (ξ3 + · · · + ξn). We have

E
(
Q′

1Q
′
2
)

= 1

Zn

Eũ(ξ1,m12)ũ(ξ2,m12)

× exp
(

β

2n
(ξ1 + ξ2)

2 + β

n
(ξ1 + ξ2)m12 + β

2n
m2

12

)
,

where

ũ(x, y) = E(u(x, ξ)e
β
n
yξ )

E(e
β
n
yξ )

.
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As u(x, y) is antisymmetric, we have

E
(
ũ(ξ1,m12)ũ(ξ2,m12)e

β
n
(ξ1+ξ2)m12 | m12

) = 0.

Moreover,

E
(∣∣u(x, ξ)

∣∣e βyξ
n

)
≤ C

(
x2Eeβyξ/n + E

(
ξ2eβyξ/2))

≤ CeCy2/n2(
1 + x2 + y2/n2)

.

Similar to (5.23), Eeβyξ/n ≥ Ce−Cy2/n2
, and thus,∣∣ũ(x, y)

∣∣ ≤ CeCy2/n2(
1 + x2 + y2/n2)

.

Therefore, similar to Lemmas 5.5 and 5.6,∣∣E(
Q′

1Q
′
2
)∣∣

≤ β

nZn

E
∣∣ũ(ξ1,m12)ũ(ξ2,m12)

∣∣(ξ1 + ξ2)
2e

β
2n

(ξ1+···+ξn)2

≤ C

nZn

E
(

1 + ξ4
1 + ξ4

2 + m4
12

n4

)(
ξ2

1 + ξ2
2
)
e

β
2n

(ξ1+···+ξn)2
(5.31)

≤ C

n
E

(
1 + X̄4

12
)(

1 + X6
1 + X6

2
)
eCX̄2

12

≤ C

n
.

Next, we estimate E((Q1 − Q′
1)

2). Note that∣∣Q1 − Q′
1
∣∣

≤ |E(u(X1, ξ)eβX̄12ξ (e
βξ2

2n
+ βX2

n − 1) | X )|
E exp(

βξ2

2n
+ βX̄1ξ)

+ E(|u(X1, ξ)|eβX̄12ξ | X )E(eβX̄12ξ |e βξ2

2n
+βX̄12ξ − 1| | X )

E(e
βξ2
2n

+βX̄12ξ | X )E(eβX̄12ξ | X )

.

Note also that |u(s, t)| ≤ (s − t)2. Similar to Lemmas 5.5 and 5.6, we have

E
((

Q1 − Q′
1
)2) ≤ Cn−2.(5.32)

Observe that∣∣E(Q1Q2)
∣∣ ≤ ∣∣E(

Q′
1Q

′
2
)∣∣ + ∣∣E(

Q1
(
Q2 − Q′

2
))∣∣

+ ∣∣E(
Q2

(
Q1 − Q′

1
))∣∣ + ∣∣E(

Q1 − Q′
1
)(

Q2 − Q′
2
)∣∣.(5.33)
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Then, by the Cauchy inequality and substituting (5.29), (5.31) and (5.32) into
(5.33), we get the desired result. �

We are now ready to prove Propositions 5.1–5.3.

PROOF OF PROPOSITION 5.1. By the definition of Sn and S′
n, we have

E
(
Sn − S′

n | X ) = 1

n

n∑
i=1

E
(
Xi − X′

i | X )

= X̄ − 1

n

n∑
i=1

E
(
X′

i | X )

= X̄ − 1

n

n∑
i=1

∫ ∞
−∞ xe

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

.

Observe that for 0 < β ≤ 1,

∫ ∞
−∞ xe

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

= h(X̄i) + r1i ,(5.34)

where

h(s) =
∫ ∞
−∞ xeβsx dρ(x)∫ ∞
−∞ eβsx dρ(x)

and

r1i =
∫ ∞
−∞ xe

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

−
∫ ∞
−∞ xeβX̄ix dρ(x)∫ ∞
−∞ eβX̄ix dρ(x)

.

We first give the bound of E|r1i |. Note that by (5.23) and (5.24),

E|r1i | ≤ E
∣∣∣∣
∫ ∞
−∞ x(e

βx2

2n − 1)eβX̄ix dρ(x)∫ ∞
−∞ e

βx2
2n eβX̄ix dρ(x)

∣∣∣∣

+ E
∣∣∣∣
∫ ∞
−∞(e

βx2

2n − 1)eβX̄ix dρ(x)
∫ ∞
−∞ xe

βx2

2n eβX̄ix dρ(x)∫ ∞
−∞ e

βx2
2n eβX̄ix dρ(x)

∫ ∞
−∞ eβX̄ix dρ(x)

∣∣∣∣

≤ C

n
E

∣∣∣∣
∫ ∞
−∞ |x|3 exp(

βx2

2n
+ βX̄ix) dρ(x)∫ ∞

−∞ expβX̄ix dρ(x)

∣∣∣∣(5.35)

+ C

n
E

∣∣∣∣
∫ ∞
−∞ |x|2e βx2

2n
+βX̄ix dρ(x)

∫ ∞
−∞ |x|e βx2

2n
+βX̄ix dρ(x)

(
∫ ∞
−∞ eβX̄ix dρ(x))2

∣∣∣∣
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≤ Cn−1EeCX̄2
i

≤ Cn−1.

For h(X̄i), we consider two cases.

Case 1. β = 1. As ρ is of type k, by the Taylor expansion,

h(X̄i) = X̄i + h(2k−1)(0)

(2k − 1)! X̄2k−1
i + 1

(2k − 1)!
∫ X̄i

0
h(2k)(t)(X̄i − t)2k−1 dt

= X̄ − 1

n
Xi + h(2k−1)(0)

(2k − 1)! X̄2k−1 + h(2k−1)(0)

(2k − 1)!
(
X̄2k−1

i − X̄2k−1)
(5.36)

+ 1

(2k − 1)!
∫ X̄i

0
h(2k)(t)(X̄i − t)(2k−1) dt.

Hence,

E
(
Sn − S′

n | X ) = h2k−1(0)

(2k − 1)!X̄
2k−1 + R1,(5.37)

where

R1 = −1

n

n∑
i=1

(
h(X̄i) − X̄ − h(2k−1)(0)

(2k − 1)! X̄2k−1
)

− 1

n

n∑
i=1

r1i ,

and r1i is given in (5.34) with β = 1.
Observe that by (5.36),

h(X̄i) − X̄ − h(2k−1)(0)

(2k − 1)! X̄2k−1

= −1

n
Xi + h(2k−1)(0)

(2k − 1)!
(
X̄2k−1

i − X̄2k−1)
(5.38)

+ 1

(2k − 1)!
∫ X̄i

0
h(2k)(t)(X̄i − t)(2k−1) dt.

For the first term of (5.38), it follows from Lemmas 5.5 and 5.6 that
1

n
E|Xi | ≤ Cn−1.(5.39)

For the second term, by Lemmas 5.5 and 5.6 again,

h(2k−1)(0)

(2k − 1)! E
∣∣X̄2k−1

i − X̄2k−1∣∣
≤ Cn−1E

(|Xi |(|X̄i |2k−2 + (|Xi |/n
)2k−2))

(5.40)
≤ Cn−1E

(
1 + |X̄i |2k−1)

eC|X̄i |2

≤ Cn−1.
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To bound the last term, we first consider h(2k)(s). Recalling that

h(t) =
∫ ∞
−∞ xetx dρ(x)∫ ∞
−∞ etx dρ(x)

and observing that ∫ ∞
−∞

etx dρ(x) ≥ 1

and ∣∣∣∣ dj

dtj

∫ ∞
−∞

etx dρ(x)

∣∣∣∣ =
∣∣∣∣
∫ ∞
−∞

xjetx dρ(x)

∣∣∣∣ ≤
∫ ∞
−∞

(
1 + |x|2k+1)

etx dρ(x)

for j = 0,1, . . . ,2k + 1, we have
∣∣h(2k)(t)

∣∣ ≤ C

∫ ∞
−∞

(
1 + |x|2k+1)

etx dρ(x)

≤ Cet2/2.

Thus, by (5.26),

1

(2k − 1)!E
∣∣∣∣
∫ X̄i

0
h(2k)(t)(X̄i − t)(2k−1) dt

∣∣∣∣
≤ CE

(
X̄2k

i eX̄2
i /2) ≤ Cn−1.

(5.41)

By (5.39), (5.40) and (5.41), (5.38) can be bounded by

E
∣∣∣∣h(X̄i) − X̄ − h(2k−1)(0)

(2k − 1)! X̄2k−1
∣∣∣∣ ≤ Cn−1.(5.42)

Together with (5.34) and (5.35), we have

E|R1| ≤ Cn−1.

Case 2. For β ∈ (0,1), we have

h(X̄i) = βX̄i +
∫ X̄i

0
h′′(t)(X̄i − t) dt

= βX̄ − β

n
Xi +

∫ X̄i

0
h′′(t)(X̄i − t) dt.

Hence,

E
(
Sn − S′

n | X ) = (1 − β)X̄ + R2,

where

R2 = −1

n

n∑
i=1

(
−β

n
Xi +

∫ X̄i

0
h′′(t)(X̄i − t) dt

)
− 1

n

n∑
i=1

r1i .
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Similar to (5.42), we have

E
∣∣∣∣−β

n
Xi +

∫ X̄i

0
h′′(t)(X̄i − t) dt

∣∣∣∣ ≤ Cn−1.

Together with (5.35), we have

E|R2| ≤ Cn−1.

This completes the proof. �

PROOF OF PROPOSITION 5.2. Observe that

E
((

Sn − S′
n

)2 | X ) = 1

n

n∑
i=1

E
(
X2

i − 2XiX
′
i + (

X′
i

)2 | X )

= 1

n

n∑
i=1

(
X2

i − 2Xi

∫ ∞
−∞ xe

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

+
∫ ∞
−∞ x2e

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

)

:= 2 + R3 + R4 + R5,

where

R3 = 1

n

n∑
i=1

(
X2

i − 1
)
,

R4 = −1

n

n∑
i=1

2Xi

∫ ∞
−∞ xe

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

,

R5 = 1

n

n∑
i=1

∫ ∞
−∞ x2e

βx2

2n
+βX̄ix dρ(x)∫ ∞

−∞ e
βx2
2n

+βX̄ix dρ(x)

− 1.

By the Taylor expansion, and similar to the proof of E|R1| and E|R2|, we have

E|R4| + E|R5| ≤
{
Cn−1/2, 0 < β < 1,

Cn− 1
2k , β = 1.

As for E|R3|, we have

E
(
R2

3
) = 1

n2

n∑
i=1

E
(
X2

i − 1
)2 + 1

n2

∑
i 
=j

E
(
X2

i − 1
)(

X2
j − 1

)
.
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By Lemma 5.7, we have

E
(
X4

i

) ≤ C,
∣∣E(

X2
i − 1

)(
X2

j − 1
)∣∣ ≤

{
Cn−1, 0 < β < 1,

Cn−1/k, β = 1.

Therefore,

E|R3| ≤
{
Cn−1/2, 0 < β < 1,

Cn− 1
2k , β = 1.

This proves (5.9) and (5.10). �

PROOF OF PROPOSITION 5.3. We have

E
((

Sn − S′
n

)∣∣Sn − S′
n

∣∣ | X )
= 1

n

n∑
i=1

E
((

Xi − X′
i

)∣∣Xi − X′
i

∣∣ | X )
.

Then (5.11) follows from Lemma 5.8. �

5.3. Proof of Theorem 3.3. The Berry–Esseen bound (3.11) follows from The-
orem 2.1 and Proposition 5.4 below.

PROPOSITION 5.4. Let Wn be as defined in (3.8) and σ ′ = {σ ′
1, . . . , σ

′
n}, where

for each i, σ ′
i is an independent copy of σi given {σj , j 
= i}. Let I be a random

index independent of all others and uniformly distributed over {1, . . . , n}, and let
W ′

n = √
n(

β2

n2κ2 |S′
n|2 − 1), where S′

n = ∑n
j=1 σj − σI + σ ′

I . Then (Wn,W
′
n) is an

exchangeable pair and there exists a constant cβ depending on β only such that

E
(
Wn − W ′

n | Wn

) = λ(Wn − Rn) and E|Rn| ≤ cβn−1/2,(5.43)

where λ = 1−βψ ′(κ)
n

;

E
∣∣∣∣B2 − 1

2λ
E

((
Wn − W ′

n

)2 | Wn

)∣∣∣∣ ≤ cβn−1/2,(5.44)

where B is defined in (3.10); and

1

λ
E

∣∣E((
Wn − W ′

n

)∣∣Wn − W ′
n

∣∣ | Wn

)∣∣ ≤ cβn−1/2.(5.45)

PROOF. Let Sn = ∑n
i=1 σi and σ (i) = Sn − σi . The proof is organized in the

following three parts.
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(i) Proof of (5.43). Let σ = (σ1, . . . , σn). As shown in Kirkpatrick and
Meckes [20] [page 23, equation (12)], we have

E
(
Wn − W ′

n | σ ) = 2

n
Wn + 2√

n
− 2β

n1/2κ2

(
β|Sn|/n

)
ψ

(
β|Sn|/n

) + R1,

where ψ(x) = coth(x) − 1/x and |R1| ≤ Cn−3/2 for some constant C depending
on β . The Taylor expansion yields

(
β|Sn|/n

)
ψ

(
β|Sn|/n

) = κψ(κ) + (
ψ(κ) + κψ ′(κ)

)(β|Sn|
n

− κ

)
+ R2,

where |R2| ≤ C(β|Sn|/n − κ)2 with C depending on β .
Moreover, by Kirkpatrick and Meckes [20] (page 25),

β|Sn|
n

− κ = κWn

2
√

n
+ R3,

where |R3| ≤ C|Wn|2/n. Recalling (3.9) and combining all of the preceding in-
equalities, we have

E
(
Wn − W ′

n | σ ) = 1 − βψ ′(κ)

n
(Wn − Rn),

where |Rn| ≤ CW 2
n /n1/2. It follows from Kirkpatrick and Meckes [20] (page 24)

that there exists ε0 > 0 such that for all x ∈ (0, ε0],

P
(∣∣∣∣β|Sn|

n
− κ

∣∣∣∣ > x

)
≤ e−Kβnx2

for some constant Kβ > 0. Then

E|β|Sn|/n − κ|4 ≤ 4
∫ ε0

0
x3e−Kβnx2

dx + CP
(∣∣∣∣β|Sn|

n
− κ

∣∣∣∣ > ε0

)

≤ Cn−2 + Ce−Kβnε0(5.46)

≤ Cn−2.

It follows from the definition of Wn that

E|Wn|2 = nE
∣∣∣∣β

2|Sn|2
n2κ2 − 1

∣∣∣∣2

≤ CnE
∣∣∣∣β|Sn|

nκ
− 1

∣∣∣∣2
≤ C,

where C depends on β . This proves (5.43).
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(ii) Proof of (5.44). From Kirkpatrick and Meckes [20] [pages 25–27, equa-
tions (16) and (18)], we have

E
((

Wn − W ′
n

)2 | σ )
= 4β4

n4κ4

n∑
i=1

∣∣σ (i)
∣∣2((

1 − 2ψ(bi)/bi

) − 2ψ(bi) cosαi + cos2 αi

)

= 2λB2 + 4β4

n4κ4

(
n∑

i=1

(
1 − 2

β

)(∣∣σ (i)
∣∣2 − (n − 1)2κ2

β2

)

− 2κ

β

n∑
i=1

(∣∣σ (i)
∣∣2 cosαi − n2κ3

β3

)

+
n∑

i=1

(∣∣σ (i)
∣∣2 cos2 αi −

(
1 − 2

β

)
(n − 1)2κ2

β2

))

+ 4β4

n4κ4

n∑
i=1

(
2
∣∣σ (i)

∣∣2(
ψ(bi)

bi

− 1

β

)
− 2

∣∣σ (i)
∣∣2 cosαi

(
ψ(bi) − κ

β

))
,

where bi = β|σ (i)|/n and αi is the angle between σi and σ (i). Therefore,

1

2λ
E

(
E

((
Wn − W ′

n

)2 | σ )) − B2

= 2β4

n3κ4(1 − βψ ′(κ))
(R4 + R5 + R6 + R7),

(5.47)

where

R4 =
n∑

i=1

(
1 − 2

β

)(∣∣σ (i)
∣∣2 − (n − 1)2κ2

β2

)
,

R5 = 2κ

β

n∑
i=1

(∣∣σ (i)
∣∣2 cosαi − n2κ3

β3

)
,

R6 =
n∑

i=1

(∣∣σ (i)
∣∣2 cos2 αi −

(
1 − 2

β

)
(n − 1)2κ2

β2

)
,

R7 =
n∑

i=1

(
2
∣∣σ (i)

∣∣2(
ψ(bi)

bi

− 1

β

)
− 2

∣∣σ (i)
∣∣2 cosαi

(
ψ(bi) − κ

β

))
.

For R4, note that |σ (i) − Sn| ≤ 1; then, by (5.46),

E
∣∣∣∣β|σ (i)|

n
− κ

∣∣∣∣4 ≤ 8E
∣∣∣∣β|Sn|

n
− κ

∣∣∣∣4 + 8/n4 ≤ Cn−2.(5.48)
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Thus,

E|R4| ≤
n∑

i=1

E
∣∣∣∣∣∣σ (i)

∣∣2 − (n − 1)2κ2

β2

∣∣∣∣2

≤ Cn2
n∑

i=1

E
∣∣∣∣β

2|σ (i)|2
n2 − κ2

∣∣∣∣2
(5.49)

≤ Cn2
n∑

i=1

E
∣∣∣∣β|σ (i)|

n
− κ

∣∣∣∣
≤ Cn5/2.

For R5, by Kirkpatrick and Meckes ([20], page 28) we have

E|R5| ≤ E

∣∣∣∣∣
n∑

i=1

2κ

β

(
|Sn|〈σi, Sn〉 − n2κ3

β3

)∣∣∣∣∣ + 2κn2/β

≤ 2κ

β
E

∣∣∣∣|Sn|3 − n3κ3

β3

∣∣∣∣ + 2κn2/β(5.50)

≤ Cn5/2.

For R6, we shall prove shortly that

E

(
n∑

i=1

(〈
σi, σ

(i)〉2 −
(

1 − 2

β

)
(n − 1)2κ2

β2

))2

≤ Cn5.(5.51)

By (5.51) and the Cauchy inequality, we have

E|R6| ≤ Cn5/2.(5.52)

For R7, as ψ(κ)/κ = 1/β , and by the smoothness of ψ , we have∣∣∣∣ψ(bi)

bi

− ψ(κ)

κ

∣∣∣∣ ≤ |bi − κ|

and ∣∣ψ(bi) − ψ(κ)
∣∣ ≤ |bi − κ|.

Thus, by (5.48),

E|R7| ≤ Cn2
n∑

i=1

E|bi − κ| ≤ Cn5/2.(5.53)

Then (5.44) follows from (5.47)–(5.53).
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(iii) Proof of (5.45). Similarly, we have

E
((

Wn − W ′
n

)∣∣Wn − W ′
n

∣∣ | σ ) = 4β4

n4κ4

n∑
i=1

Mi,(5.54)

where

Mi = E
(〈
σi, σ

(i)〉∣∣〈σi, σ
(i)〉∣∣ − 〈

σ ′
i , σ

(i)〉∣∣〈σ ′
i , σ

(i)〉∣∣ | σ )
.

We shall prove that

E

(
n∑

i=1

Mi

)2

≤ Cn5.(5.55)

The proof of (5.55) is given at the end of this subsection.
By the definition of λ and (5.55), we have

1

λ
E

∣∣E((
Wn − W ′

n

)∣∣Wn − W ′
n

∣∣ | σ )∣∣ ≤ Cn−1/2.

This proves (5.45). Thus, we complete the proof of Proposition 5.4. �

We now give the proofs of (5.51) and (5.55).

PROOF OF (5.51). Set a = (1 − 2
β
) (n−1)2κ2

β2 . Given the symmetry, we have

E

(
n∑

i=1

(〈
σi, σ

(i)〉2 − a
))2

= H1 + H2,(5.56)

where

H1 = nE
(〈
σ1, σ

(1)〉2 − a
)2

,

H2 = n(n − 1)E
(〈
σ1, σ

(1)〉2 − a
)(〈

σ2, σ
(2)〉2 − a

)
.

For H1, as |σ (1)| ≤ n, we have

H1 ≤ Cn5.(5.57)

For H2, we define σ (1,2) = Sn − σ1 − σ2, and for j = 1,2, we have∣∣〈σj , σ
(j)〉2 − 〈

σj , σ
(1,2)〉2∣∣ ≤ Cn.

Thus,

H2 = H3 + L1,(5.58)

where |L1| ≤ Cn5 and

H3 = n(n − 1)E
(〈
σ1, σ

(1,2)〉2 − a
)(〈

σ2, σ
(1,2)〉2 − a

)
.
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For i = 1,2, we define

Vi

(
σ (1,2)) = E

(〈
σi, σ

(1,2)〉2 | σ (1,2)),
and thus,

E
(〈
σ1, σ

(1,2)〉2 − a
)(〈

σ2, σ
(1,2)〉2 − a

)
= E

(〈
σ1, σ

(1,2)〉2 − V1
(
σ (1,2)))(〈σ2, σ

(1,2)〉2 − V2
(
σ (1,2)))(5.59)

+ E
(
V1

(
σ (1,2)) − a

)(
V2

(
σ (1,2)) − a

)
.

Note that the conditional probability density function of (σ1, σ2) given σ (1,2) is

p12(x, y) = 1

Z
(1,2)
n

exp
(

β

2n
〈x, y〉2 + β

n

〈
x + y,σ (1,2)〉),(5.60)

where x, y ∈ S
2 and

Z(1,2)
n =

∫
S2

∫
S2

exp
(

β

2n
〈x, y〉2 + β

n

〈
x + y,σ (1,2)〉)dPn(x) dPn(y).

Similarly, we define

p̃12(x, y) = 1

Z̃
(1,2)
n

exp
(

β

n

〈
x + y,σ (1,2)〉),(5.61)

where x, y ∈ S
2 and

Z̃(1,2)
n =

∫
S2

∫
S2

exp
(

β

n

〈
x + y,σ (1,2)〉)dPn(x) dPn(y).

For any x, y ∈ S
2, we have∣∣p12(x, y) − p̃12(x, y)

∣∣ ≤ Cn−1.(5.62)

Let (ξ1, ξ2) be a random vector with conditional density function p̃12(x, y), given
σ (1,2). Then, for the first term of (5.59), by (5.62), we have

E
(〈
σ1, σ

(1,2)〉2 − V1
(
σ (1,2)))(〈σ2, σ

(1,2)〉2 − V2
(
σ (1,2)))

= E
(〈
ξ1, σ

(1,2)〉2 − Ṽ1
(
σ (1,2)))(〈ξ2, σ

(1,2)〉2 − Ṽ2
(
σ (1,2))) + L2,

(5.63)

where |L2| ≤ Cn3 and for i = 1,2,

Ṽi

(
σ (1,2)) = E

(〈
ξi, σ

(1,2)〉2 | σ (1,2))
(5.64)

= ∣∣σ (1,2)
∣∣2(

1 − 2ψ(b12)

b12

)
,

b12 = β
∣∣σ (1,2)

∣∣/n.(5.65)
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Observe that given σ (1,2), ξ1 and ξ2 are conditionally independent; then, the first
term of (5.63) is 0, and thus,∣∣E(〈

σ1, σ
(1,2)〉2 − V1

(
σ (1,2)))(〈σ2, σ

(1,2)〉2 − V2
(
σ (1,2)))∣∣ ≤ Cn3.(5.66)

It suffices to bound the second term of (5.59). Again, by (5.62), we have

E
(
V1

(
σ (1,2)) − a

)(
V2

(
σ (1,2)) − a

)
= E

(
Ṽ1

(
σ (1,2)) − a

)(
Ṽ2

(
σ (1,2)) − a

) + L3,
(5.67)

where |L3| ≤ Cn3. Recalling that βψ(κ) = κ and the definition of a, we obtain∣∣Ṽ1
(
σ (1,2)) − a

∣∣
≤ ∣∣σ (1,2)

∣∣2∣∣∣∣ψ(b12)

b12
− ψ(κ)

κ

∣∣∣∣ +
(

1 − 2

β

)∣∣∣∣∣∣σ (1,2)
∣∣2 − (n − 1)2κ2

β2

∣∣∣∣(5.68)

≤ Cn2|b12 − κ| + Cn.

By (5.68) and similar to (5.48), we have∣∣E(
Ṽ1

(
σ (1,2)) − a

)(
Ṽ2

(
σ (1,2)) − a

)∣∣
≤ Cn4E|b12 − κ|2 + Cn3(5.69)

≤ Cn3.

It follows from (5.67) and (5.69) that∣∣E(
V1

(
σ (1,2)) − a

)(
V2

(
σ (1,2)) − a

)∣∣ ≤ Cn3.(5.70)

The inequalities (5.58), (5.59), (5.66) and (5.70) yield |H2| ≤ Cn5, and this com-
pletes the proof together with (5.56) and (5.57). �

Next, we give the proof of (5.55).

PROOF OF (5.55). Given the symmetry, we have

E

(
n∑

i=1

Mi

)2

= nE
(
M2

1
) + n(n − 1)E(M1M2).(5.71)

As |σ (1)| ≤ n, we have E(M2
1 ) ≤ Cn4. For E(M1M2), we define

mi = 〈
σi, σ

(i)〉∣∣〈σi, σ
(i)〉∣∣,

m
(1,2)
i = 〈

σi, σ
(1,2)〉∣∣〈σi, σ

(1,2)〉∣∣,
where i = 1,2. Then we have |mi − m

(1,2)
i | ≤ Cn. Thus,

E(M1M2) = E
(
M

(1,2)
1 M

(1,2)
2

) + L4,(5.72)
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where |L4| ≤ Cn3 and

M
(1,2)
i = m

(1,2)
i − E

(
m

(1,2)
i | σ (1,2)).

Let (ξ1, ξ2) be as defined in (5.63). By (5.60)–(5.62), we have∣∣E(
M

(1,2)
1 M

(1,2)
2

) − E
(
M̃

(1,2)
1 M̃

(1,2)
2

)∣∣ ≤ Cn3,(5.73)

where for i = 1,2,

M̃
(1,2)
i = m̃

(1,2)
i − E

(
m̃

(1,2)
i | σ (1,2)),

m̃
(1,2)
i = 〈

ξi, σ
(1,2)〉∣∣〈ξi, σ

(1,2)〉∣∣.
As ξ1 and ξ2 are conditionally independent given σ (1,2), we have

E
(
M̃

(1,2)
1 M̃

(1,2)
2

) = 0,

and by (5.72) and (5.73) we have |E(M1M2)| ≤ Cn3. Together with (5.71), we
complete the proof of (5.55). �

5.4. Proof of Theorem 3.4. As the vertices are colored independently and uni-
formly, we can construct the exchangeable pair as follows. Let ξ ′

i , . . . , ξ
′
n be inde-

pendent copies of ξ1, . . . , ξn, and I be a random index independent of all others
and uniformly distributed over {1, . . . , n}. Recall that

W := Wn = 1

2

n∑
i=1

∑
j∈Ai

1{ξi=ξj } − 1
cn√

mn

cn
(1 − 1

cn
)
.

We replace ξI with ξ ′
I in W to obtain a new random variable W ′; then (W,W ′)

is an exchangeable pair. Let X be the sigma field generated by {ξ1, . . . , ξn} and
σ 2 = mn

cn
(1 − 1

cn
). We have

E
(
W − W ′ | X ) = 1

n

n∑
i=1

∑
j∈Ai

1{ξi=ξj } − E(1{ξ ′
i=ξj } | X )

σ

= 1

n

n∑
i=1

∑
j∈Ai

1{ξi=ξj } − 1/cn

σ

= 2

n
W.

Hence, (2.2) holds with λ = 2
n

and Rn = 0. By Theorem 2.1, it suffices to prove

E
∣∣∣∣1 − 1

2λ
E

((
W − W ′)2 | W )∣∣∣∣

≤ C
(√

1/cn +
√

d∗
n/mn + √

cn/mn

)(5.74)
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and

1

λ
E

∣∣E((
W − W ′)∣∣W − W ′∣∣ | W )∣∣

≤ C
(√

d∗
n/mn + √

cn/mn

)
,

(5.75)

where C is an absolute constant and d∗
n = max{di,1 ≤ i ≤ n}.

PROOF OF (5.74). Observe that

E
((

W − W ′)2 | X )
= 1

nσ 2

n∑
i=1

E
(( ∑

j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

)2 ∣∣∣ X

)

= 1

nσ 2

n∑
i=1

(( ∑
j∈Ai

(1{ξi=ξj } − 1/cn)

)2
(5.76)

+ E
(( ∑

j∈Ai

1{ξ ′
i=ξj } − 1/cn

)2 ∣∣∣ X

))

= 1

nσ 2

n∑
i=1

(( ∑
j∈Ai

h(ξi, ξj )

)2
+ E

(( ∑
j∈Ai

h
(
ξ ′
i , ξj

))2 ∣∣∣ X

))
,

where

h(x, y) = 1{x=y} − 1/cn.

By the law of total variance, we need only to bound the variance of the first term.
Note that

Var

(
n∑

i=1

( ∑
j∈Ai

h(ξi, ξj )

)2
)

=
n∑

i=1

Var
( ∑

j∈Ai

h(ξi, ξj )

)2
(5.77)

+ ∑
i 
=i′

Cov
(( ∑

j∈Ai

h(ξi, ξj )

)2
,

( ∑
l∈Ai′

h(ξi′, ξl).

)2)
.

As ( ∑
j∈Ai

h(ξi, ξj )

)2
= ∑

j∈Ai

h2(ξi, ξj ) + ∑
j 
=l∈Ai

h(ξi, ξj )h(ξi, ξl),
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we have

Var
( ∑

j∈Ai

h(ξi, ξj )

)2
≤ 2 Var

( ∑
j∈Ai

h2(ξi, ξj )

)
+ 2 Var

( ∑
j 
=l∈Ai

h(ξi, ξj )h(ξi, ξl)

)
.

Note that

Var
( ∑

j∈Ai

h2(ξi, ξj )

)

= E
(

Var
( ∑

j∈Ai

h2(ξi, ξj )
∣∣∣ ξi

))
+ Var

(
E

( ∑
j∈Ai

h2(ξi, ξj )
∣∣∣ ξi

))

= di

(
1

cn

(
1 − 1

cn

)(
1 − 2

cn

+ 2

c2
n

))

≤ di/cn,

where for every i 
= j ,

Var
(
h2(ξi, ξj ) | ξi

) = (1/cn)(1 − 1/cn)
(
1 − 2/cn + 2/c2

n

)
(5.78)

and

E
(
h2(ξi, ξj ) | ξi

) = (1/cn)(1 − 1/cn).(5.79)

Also, for j 
= l 
= i, E(h(ξi, ξj )h(ξi, ξl)) = 0. Thus, we have

Var
( ∑

j 
=l∈Ai

h(ξi, ξj )h(ξi, ξl)

)

= E
( ∑

j 
=l∈Ai

h(ξi, ξj )h(ξi, ξl)

)2

= 2di(di − 1)

(
1

cn

(
1 − 1

cn

))2

≤ 2d2
i /c2

n.

Therefore,

Var
( ∑

j∈Ai

h(ξi, ξj )

)2
≤ 4di/cn + 4d2

i /c2
n.(5.80)

This gives the bound of the first term of (5.77). To bound the second term of (5.77),
we let δii′ = 1{(vi ,vi′ )∈E} for i 
= i ′, which indicates the connection between vertex
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i and i ′. We have

Cov
(( ∑

j∈Ai

h(ξi, ξj )

)2
,

( ∑
l∈Ai′

h(ξi′, ξl)

)2)

= Cov
( ∑

j∈Ai

h2(ξi, ξj ) + ∑
j 
=j ′∈Ai

h(ξi, ξj )h(ξi, ξj ′),

∑
l∈Ai′

h2(ξi′, ξl) + ∑
l 
=l′∈Ai′

h(ξi′, ξl)h(ξi′, ξl′)
)

= ∑
j∈Ai

∑
l∈Ai′

Cov
(
h2(ξi, ξj ), h

2(ξi′, ξl)
)

(5.81)
+ ∑

j 
=j ′∈Ai

∑
l∈Ai′

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h2(ξi′, ξl)

)

+ ∑
j∈Ai

∑
l 
=l′∈Ai′

Cov
(
h2(ξi, ξj ), h(ξi′, ξl)h(ξi′, ξl′)

)

+ ∑
j 
=j ′∈Ai

∑
l 
=l′∈Ai′

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h(ξi′, ξl)h(ξi′, ξl′)

)

:= H1 + H2 + H3 + H4.

Next, we compute the preceding covariances. For H1, we have

H1 = δii′ Var
(
h2(ξi, ξi′)

) + δii′
∑

j∈Ai\{i′}
Cov

(
h2(ξi, ξi′), h

2(ξi, ξj )
)

+ δii′
∑

l∈Ai′ \{i}
Cov

(
h2(ξi, ξi′), h

2(ξi′, ξl)
)

+ ∑
j∈Ai\{i′}

∑
l∈Ai′ \{i}

Cov
(
h2(ξi, ξj ), h

2(ξi′, ξl)
)
.

For the first term, by (5.78) and (5.79), we have

Var
(
h2(ξi, ξi′)

) ≤ 1/cn.

For j ∈ Ai \ {i′}, by (5.79), we have

Cov
(
h2(ξi, ξi′), h

2(ξi, ξj )
) = Cov

(
E

(
h2(ξi, ξi′) | ξi

)
,E

(
h2(ξi, ξj ) | ξi

))
= 0.

Similarly, for l ∈ Ai′ \ {i}, we have

Cov
(
h2(ξi′, ξi), h

2(ξi′, ξl)
) = 0.
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For the last term, if j 
= l /∈ {i, i ′}, then h(ξi, ξj ) and h(ξi′, ξl) are independent. If
j = l /∈ {i, i′}, by (5.79), we have

Cov
(
h2(ξi, ξj ), h

2(ξi′, ξl)
) = 0.

Therefore,

|H1| ≤ δii′/cn.(5.82)

For H2, we have

H2 = δii′
∑

j 
=j ′∈Ai

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h2(ξi, ξi′)

)

+ ∑
j 
=j ′∈Ai

∑
l∈Ai′ \{i}

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h2(ξi, ξl)

)
(5.83)

= H21 + H22.

For H21, if j 
= i′ or j ′ 
= i′, then

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h2(ξi, ξi′)

)
= E

(
h(ξi, ξj )h(ξi, ξj ′)h2(ξi, ξi′)

)
= E

(
E

(
h(ξi, ξj )h(ξi, ξj ′)h2(ξi, ξi′) | ξi, ξi′

))
= 0.

If j = i′ or j ′ = i, similarly,

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h2(ξi, ξi′)

) = 0.

Therefore,

H21 = 0.(5.84)

For H22, the covariance is not zero only if {j, j ′} = {i′, l}. Therefore,

H22 = ∑
l∈Ai∩Ai′

Cov
(
h(ξi, ξi′)h(ξi, ξl), h

2(ξi′, ξl)
)

= ∑
l∈Ai∩Ai′

E
(
E

(
h(ξi, ξi′)h(ξi, ξl), h

2(ξi′, ξl) | ξi′, ξl

))
(5.85)

= 1

cn

∑
l∈Ai∩Ai′

E
(
h3(ξi′, ξl)

)

≤ C(di ∧ di′)/c
2
n.

Similarly, H22 ≥ −C(di ∧ di′)/c2
n. By (5.83)–(5.85),

|H2| ≤ C(di ∧ di′)/c
2
n.(5.86)
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Similarly,

|H3| ≤ C(di ∧ di′)/c
2
n.(5.87)

For H4, we have

H4 = 2δii′
∑

j∈Ai\{i′}

∑
l 
=l′∈Ai′

Cov
(
h(ξi, ξi′)h(ξi, ξj ), h(ξi′, ξl)h(ξi′, ξl′)

)

+ ∑
j 
=j ′∈Ai\{i′}

∑
l 
=l′∈Ai′

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h(ξi′, ξl)h(ξi′, ξl′)

)

:= H41 + H42.

For H41, the covariance is not zero only if {l, l′} = {i, j}. Thus,

|H41| = 4δii′
∣∣∣∣ ∑
j∈Ai∩Ai′

Cov
(
h(ξi, ξi′)h(ξi, ξj ), h(ξi′, ξi)h(ξi′, ξj )

)∣∣∣∣
≤ Cδii′(di ∧ di′)/c

2
n.

For H42, the covariance is not zero only if {j, j ′} = {l.l′}:
H42 = 2

∑
j 
=j ′∈Ai∩Ai′

Cov
(
h(ξi, ξj )h(ξi, ξj ′), h(ξi′, ξj )h(ξi′, ξj ′)

)

= 2
∑

j 
=j ′∈Ai∩Ai′
Cov

(
E

(
h(ξi, ξj )h(ξi, ξj ′) | ξj , ξj ′

)
,

E
(
h(ξi′, ξj )h(ξi′, ξj ′) | ξj , ξj ′

))
= 2

c2
n

∑
j 
=j ′∈Ai∩Ai′

Var
(
h(ξj , ξj ′)

)

≤ C(di ∧ di′)
2/c3

n.

Therefore,

|H4| ≤ Cδii′(di ∧ di′)/c
2
n + C(di ∧ di′)

2/c3
n.(5.88)

Combining (5.81), (5.82), (5.86), (5.87) and (5.88) we have

Cov
(( ∑

j∈Ai

h(ξi, ξj )

)2
,

( ∑
l∈Ai′

h(ξi′, ξl)

)2)

≤ C
(
δij /cn + (di ∧ di′)/c

2
n + (di ∧ di′)

2/c3
n

)
.

(5.89)

By (5.77), (5.80) and (5.89), we have

Var

(
n∑

i=1

( ∑
j∈Ai

h(ξi, ξj )

)2
)

≤ C
(
d∗
nmn/c

2
n + mn/cn + m2

n/c
3
n

)
.
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The law of total variance yields

Var

(
n∑

i=1

E
(( ∑

j∈Ai

h
(
ξ ′
i , ξj

))2 ∣∣∣ X

))
≤ C

(
d∗
nmn

c2
n

+ mn

cn

+ m2
n

c3
n

)
,

and thus,

Var
(

1

2λ
E

((
W − W ′)2 | X ))

≤ C

σ 4

(
d∗
nmn

c2
n

+ mn

cn

+ m2
n

c3
n

)

≤ C
(
d∗
n/mn + cn/mn + 1/cn

)
.

This completes the proof of (5.74). �

PROOF OF (5.75). This proof is slightly different from that of (5.74). Observe
that

E
((

W − W ′)∣∣W − W ′∣∣ | X )
= nσ 2

n∑
i=1

E
(( ∑

j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

)∣∣∣∣ ∑
j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

∣∣∣∣ ∣∣∣ X

)
.

The variance of the preceding summation can be expanded to

Var

(
n∑

i=1

Mi

)
=

n∑
i=1

Var(Mi) + ∑
i 
=i′

Cov(Mi,Mi′),

where

Mi = E
(( ∑

j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

)∣∣∣∣ ∑
j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

∣∣∣∣ ∣∣∣ X

)
.

Noting that E(Mi) = 0, we have

Var(Mi) = E
(
M2

i

)
≤ E

(( ∑
j∈Ai

1{ξi=ξj } − 1{ξ ′
i=ξj }

)4)

≤ Cdi

(
1

cn

(
1 − 1

cn

))(
2di

(
1

cn

− 1

c2
n

)
+ 1

)
.

To calculate the covariance term, for each i 
= j , let ηij = 1{ξi=ξj } − 1{ξ ′
i=ξj },

Ti = ∑
j∈Ai

ηij , and T
(i′)
i = ∑

j∈Ai\{i′}
ηij .

Then Mi = E(Ti |Ti | | X ).
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Observe that for i 
= i ′ and given that X , Ti |Ti | is a function of ξ ′
i and Ti′ |Ti′ |

is a function of ξ
′
i′ ; thus, Cov(Ti |Ti |, Ti′ |Ti′ | | X ) = 0. By the total covariance

formula, we have Cov(Mi,Mi′) = Cov(Ti |Ti |, Ti′ |Ti′ |). As ξi and ξ ′
i are indepen-

dent and identically distributed, Ti |Ti | and −Ti |Ti | are also identically distributed.
Therefore, E(Ti |Ti |) = 0, and for some constant C, we have

Cov(Mi,Mi′)

= E
(
Ti |Ti |Ti′ |Ti′ |)

= E
(
T

(i′)
i

∣∣T (i′)
i

∣∣T (i)
i′

∣∣T (i)
i′

∣∣) + E
(
T

(i′)
i

∣∣T (i′)
i

∣∣(Ti′ |Ti′ | − δii′T
(i)
i′

∣∣T (i)
i′

∣∣))
+ E

((
Ti |Ti | − δii′T

(i′)
i

∣∣T (i′)
i

∣∣)T (i)
i′

∣∣T (i)
i′

∣∣)
+ E

((
Ti |Ti | − δii′T

(i′)
i

∣∣T (i′)
i

∣∣)(Ti′ |Ti′ | − δii′T
(i)
i′

∣∣T (i)
i′

∣∣)).
Define Fi = σ {ξj , j 
= i}. Given Fi , Ti |Ti | and T

(i)
i′ |T (i)

i′ | are conditionally inde-
pendent,

E
(
Ti |Ti |T (i)

i′
∣∣T (i)

i′
∣∣) = E

(
T

(i)
i′

∣∣T (i)
i′

∣∣E(
Ti |Ti | | Fi

)) = 0.

Similarly,

E
(
Ti′ |Ti′ |T (i′)

i

∣∣T (i′)
i

∣∣) = 0

and

E
(
T

(i′)
i

∣∣T (i′)
i

∣∣T (i)
i′

∣∣T (i)
i′

∣∣) = 0.

Thus,

E
(
Ti |Ti |Ti′ |Ti′ |)

= E
((

Ti |Ti | − δii′T
(i′)
i

∣∣T (i′)
i

∣∣)(Ti′ |Ti′ | − δii′T
(i)
i′

∣∣T (i)
i′

∣∣)).(5.90)

Without loss of generality, we assume that δii′ = 1. Note that∣∣Ti |Ti | − T
(i′)
i

∣∣T (i′)
i

∣∣∣∣
= ∣∣(Ti − T

(i′)
i

)|Ti | + T
(i′)
i

(|Ti | −
∣∣T (i)

i

∣∣)∣∣
≤ 2

∣∣ηii′T
(i′)
i

∣∣ + ∣∣η2
ii′

∣∣,
and thus,

E
(
Ti |Ti | − T

(i′)
i

∣∣T (i′)
i

∣∣)2

≤ CE
(
η2

ii′
(
T

(i)
i

)2) + CE
(
η4

ii′
)

= C

( ∑
j∈Ai\{i′}

E
(
η2

ii′η
2
ij

) + ∑
j 
=l∈Ai\{i′}

E
(
η2

ii′ηijηil

) + E
(
η4

ii′
))

≤ Cdi/c
2
n + C/cn.
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Similarly,

E
(
Ti′ |Ti′ | − δii′T

(i)
i′

∣∣T (i)
i′

∣∣)2 ≤ Cdi′/c
2
n + C/cn.

By (5.90) and the Cauchy inequality, we finally have∣∣E(
Ti |Ti |Ti′ |Ti′ |)∣∣ ≤ C

√
didi′/c

2
n + C/cn.

Similar to the proof of (5.74), we obtain the bound (5.75). �
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