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With the growing cost of health care in the United States, the need to
improve efficiency and efficacy has become increasingly urgent. There has
been a keen interest in developing interventions to effectively coordinate the
typically fragmented care of patients with many comorbidities. Evaluation
of such interventions is often challenging given their long-term nature and
their differential effectiveness among different patients. Furthermore, care
coordination interventions are often highly resource-intensive. Hence there
is pressing need to identify which patients would benefit the most from a care
coordination program. In this work we introduce a subgroup identification
procedure for long-term interventions whose effects are expected to change
smoothly over time. We allow differential effects of an intervention to vary
over time and encourage these effects to be more similar for closer time points
by utilizing a fused lasso penalty. Our approach allows for flexible modeling
of temporally changing intervention effects while also borrowing strength in
estimation over time. We utilize our approach to construct a personalized en-
rollment decision rule for a complex case management intervention in a large
health system and demonstrate that the enrollment decision rule results in
improvement in health outcomes and care costs. The proposed methodology
could have broad usage for the analysis of different types of long-term inter-
ventions or treatments including other interventions commonly implemented
in health systems.

1. Introduction. Health care costs in the United States have continued to rise
and at the same time health outcomes remain relatively poor. This trend has led
to an increasingly urgent need to improve both the quality and efficiency of care.
Much work towards this aim has focused on the care of complex patients with
many comorbidities, chronic conditions, or serious illnesses. These patients, often
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referred to as “high-need, high-cost” (HNHC) patients account for approximately
half of all US health care spending (Cohen and Yu (2012)) yet their needs are
often unmet. To better meet these needs it is imperative to focus on care delivery
strategies that are commensurate with the particular needs of HNHC patients.

Due to their often wide-ranging comorbidities, HNHC patients require complex
and multifaceted care. Often, patients with many chronic conditions and diseases
visit a multitude of different doctors for their different conditions. Each doctor
works to address the individual conditions and diseases of the patient, typically
using the latest advances in care for each specific condition. However, a care de-
livery system that works on solving the individual problems of a patient without
considering treating the patient as a whole tends to result in high costs and poor
health outcomes (Stange (2009)). The tendency of patients to have their individ-
ual conditions treated separately often serves HNHC patients poorly, resulting in a
model of care which can be significantly fragmented and uncoordinated (Cheung
et al. (2009), U. S. Department of Health and Services (2012), Stange (2012)). To
help mitigate this problem, much research has focused on developing interventions
that reduce care fragmentation and encourage treatment of the patient and not the
individual diseases and conditions of the patient.

One common approach to accomplishing this is through a complex case man-
agement (CCM) intervention, a class of interventions which seek to coordinate the
care of complex patients and provide them with a system of increased support, ad-
vocacy, and education (Hickham et al. (2013)). In CCM interventions, a nurse or
social worker takes responsibility for coordinating and implementing the care plan
of individual patients, thus reducing care fragmentation. CCM interventions have
been widely adopted across health systems in the US, however, a recent system-
atic review of such interventions suggests that these programs have a wide range
of efficacy and cost (Hickham et al. (2013)).

While many CCM interventions show little benefit in improving care, the pro-
grams which are successful in reducing costs and improving patient outcomes
tend to target the enrollment of patients who are believed to be likely to benefit
(Blumenthal et al. (2016)). This suggests that CCM interventions have different
effects across different subsets of the population of HNHC patients. Indeed it is
well-established that whether or not patients benefit from an intervention often de-
pends on their individual characteristics, yet there is little guidance towards effec-
tively identifying patients who might benefit from CCM interventions (Hickham
et al. (2013)). In this paper we seek to fill this gap by introducing a statistical
framework for identifying which patients benefit from long-term interventions.

However, the long-term nature of many health system interventions, such as the
CCM, presents many challenges for such identification. First, patient outcomes
are typically observed at regular time intervals and thus the repeated measures of
patient health and utilization outcomes must be accounted for. Second, the effect
of an intervention is expected to change over time due to institutional learning,
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that is, nurses involved in care coordination may improve their coordination ef-
forts with time. Furthermore, there may be delayed intervention effects which may
differ based on what comorbidities specific patients have and the nurses and doc-
tors involved in the intervention may need time to build trust with certain patients.
Another problem in reliably identifying a subgroup of patients who would ben-
efit from an intervention is the fact that randomized controlled trials are often
impossible to conduct due to time, resource, or administrative constraints. Thus
researchers are often faced with the difficult task of using existing observational
studies to establish a causal relationship between patient characteristics and benefit
from enrollment in an intervention.

In this paper we develop a methodology to overcome these challenges in iden-
tifying patients likely to benefit from long-term health system interventions like
CCM. We extend the statistical methodology for subgroup identification devel-
oped by Chen et al. (2017) to handle longitudinal intervention effects which may
change smoothly over time. Our proposed method results in the estimation of a
score which can be used to assess the expected benefit of an intervention using
patient baseline characteristics. We propose two versions of our methodology, one
which relies on propensity score weighting and another which relies on matching,
such as propensity score matching (Rosenbaum and Rubin (1983)).

The remainder of this paper is organized as follows. In Section 2 we introduce
the underlying outcome model that guides our methodology and also introduce
background information on a framework for subgroup identification for single
time-point outcomes. In Section 3 we introduce our working model and our es-
timator for subgroup identification in addition to a technique for evaluating the
validity of our estimated subgroups. In Section 4 we investigate the finite-sample
performance of our estimator using a numerical study. Finally, in Section 5 we use
our estimator to identify a subgroup of patients who benefit from a CCM interven-
tion in UW Health, the health system affiliated with the University of Wisconsin-
Madison, and demonstrate that it identifies a subgroup of patients which benefit
from CCM in terms of multiple patient outcomes.

2. Preliminaries.

2.1. Notation and model for longitudinal outcomes. In many long-term inter-
ventions, it is conceivable and often expected that the effect of the intervention
may change gradually over time. Some interventions may have a pronounced ef-
fect in the beginning with less effect over time. Some interventions may involve
an intensive process, whose effects take time to establish and may build over time.
In such settings, we are interested in modeling the longitudinal patient outcomes
as a time-varying function of patient characteristics and the intervention status.
Let Yt be an outcome of interest measured at time t , X ∈ X be a length p vector
of baseline covariates, and A ∈ {1,−1} be a treatment status where A = 1 indi-
cates enrollment in an intervention and A = −1 indicates a patient is in the control
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group. Then the outcome over time can be modeled as

(1) E(Yt |X,A) = φt(X) + γ 0(t)
′X · A/2,

where t indexes the temporal domain and φt(X) is an unspecified function
representing covariate main effects. Model (1) allows for covariates and the
intervention-covariate interactions to have temporally changing effects on the lon-
gitudinal outcomes where the functional form of the covariate main effects is un-
specified and the form of the treatment-covariate interactions is a varying coeffi-
cient model. This is similar to a varying coefficient model (Hastie and Tibshirani
(1993), Fan and Zhang (1999, 2008)) which is often used to model longitudinal
data. The key difference is Model (1) specifies a varying coefficient model for
only the treatment-covariate interactions and the main covariate effects φt are left
unspecified.

In the context of subgroup identification, the key interest is in estimating a con-
trast function which elicits the covariate-specific effect of an intervention at time
t : �(X, t) = E(Yt |A = 1,X) − E(Yt |A = −1,X). Under Model (1), this con-
trast is simply γ 0(t)

′X. Here, although CCM interventions are often long-term,
the intervention status A does not change over time and hence we assume that the
intervention status has no time dynamics. In the formulation of Model (1), the ef-
fects which determine the contrast function are specified as a function of time. In
settings where data is limited in sample size and in time, it may be challenging to
estimate γ (·) nonparametrically, as hundreds or even thousands of covariates may
be available from healthcare claims or electronic health records. Furthermore, in
the evaluation of health system-wide interventions, such data are often measured
at regular intervals (monthly in the case of utilization outcomes such as hospital-
ization events) so we can instead focus on simply estimating this function over
time on a regular grid. Thus it is natural to model the response as

(2) E(Yt |X,A) = φt(X) + γ ′
0tX · A/2 where t = 1, . . . ,K.

We now use the notation γ 0t instead of γ 0(t) for the interaction effects due to data
being collected on a discrete grid of time points. Using the model above is equiv-
alent to fitting a model for each point in time where data is observed. Here the
contrast function can be written as �t(X) = γ ′

0tX. While this parameterization
is flexible, due to a large number of parameters when the number of covariates
and time points is large, the parameters in this model also may be challenging
to estimate efficiently when the sample size is limited even when using variable
selection techniques such as the lasso (Tibshirani (1996)). In essence, estimating
the parameters in this model to change freely over time may be too flexible. Yet
there is additional information about CCM interventions that we can incorporate
into our modeling strategy to help reduce this complexity. In health system inter-
vention settings we would not expect rapid temporal changes in the intervention
effects and the subgroup of patients who benefit. In particular, case managers in-
volved in the implementation of CCM believe that for most patients the benefits of
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CCM may slowly accumulate over time. This belief is substantiated by evidence
more broadly that care management interventions may take time to realize benefit
(Bodenheimer and Berry-Millett (2009)). In Section 3 we will introduce a flexible
smoothing approach to mitigate this problem by encouraging coefficients closer in
time to be more similar, thus borrowing strength over time.

2.2. Subgroup identification via treatment scoring. The overarching goal of
subgroup identification is to relate patient characteristics to an optimal treatment
or intervention decision. This is often achieved by modeling the interactions be-
tween patient characteristics and a treatment or intervention. With a suitable model
for these interactions one can then identify for any new patient whether that patient
is expected to realize an improvement in his or her outcomes if given the treatment
or intervention. We now provide some background information on a robust esti-
mation procedure to accomplish this goal for outcomes measured at a single time
point K = 1. Assume the continuous response Y , where without loss of generality
positive values are associated with better outcomes, is generated from the follow-
ing model:

(3) E(Y |X,A) = φ(X) + γ ′
0X · A/2,

where φ(X) represents main covariate effects, γ 0 reflects linear intervention-
covariate interaction effects, and X contains an intercept. We make a few further
assumptions to clarify how our estimands relate to causal quantities using the fa-
miliar potential outcome framework of Rubin (2005). Y (1) and Y (−1) denote the
potential outcomes for a patient under intervention A = 1 and control A = −1 re-
spectively. A comparison of Y (−1) and Y (1) reveals the causal effect of A. However
for any individual, only one of the potential outcomes is observed. To relate the po-
tential outcomes to the observed outcome Y , we make the following assumptions:

(i) Y = I (A = 1)Y (1) + I (A = −1)Y (−1), which is essentially a claim that
the intervention status of one patient does not affect the potential outcomes of
other patients. This assumption is also known as the Stable Unit Treatment Value
Assumption (SUTVA).

(ii) A ⊥⊥ (Y (1), Y (−1))|X; this assumption is typically called the “strongly ig-
norable assumption” and essentially means that there are no unmeasured con-
founders.

(iii) The treatment assignment is guided by π(x) = P(A = 1|X = x), where
0 < π(x) < 1 for all x ∈ X .

Under Model (3) and Assumptions (i)–(iii), the contrast function �(x) = E(Y |A =
1,X = x) − E(Y |A = −1,X = x) = γ ′

0x for those with covariates X = x
has a causal interpretation and equals the conditional average causal effect
E(Y (1) − Y (−1)|X = x).

The term �(x) acts as a “benefit score”, in the sense that positive values of �(x)

correspond to a positive benefit for a patient with characteristics x and negative
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values indicate a negative impact on the average causal effect of an intervention.
Hence, �(x) can be used to identify which patients are expected to benefit from
an intervention. Furthermore, since the benefit score has a direct interpretation
regarding the magnitude of effect, it can also be used to order patients by how much
they are expected to benefit from an intervention. Chen et al. (2017) proposed to
estimate �(x) by estimating γ̂ as the minimizer of

(4) L(γ ) = 1

N

N∑
i=1

M[Yi,γ
′xi · Ai/2]

Aiπ(xi ) + (1 − Ai)/2

with respect to γ , where M(y,v) is a loss function satisfying a) Mv(y, v) =
∂M(y, v)/∂v is increasing in v for any given y and b) U(y) ≡ Mv(y,0) is mono-
tone in y. When the outcome Y is continuous, a reasonable choice for M(y,v) is
the squared error loss (y −v)2. Many other choices are available and correspond to
existing literature (Chen et al. (2017)). Different outcomes can be accommodated
by the use of corresponding losses, such as the logistic loss if binary outcomes are
of interest. While the main effects φ(·) are not being estimated in (4), minimiza-
tion of (4) still results in valid estimates of �(x) and can often be better than when
incorporating the main effects of the covariates if the model for the main effects
is misspecified, as modeling the full relationship between covariates and outcome
emphasizes accuracy in predicting the clinical outcome over optimizing treatment
decisions (Zhao et al. (2012)). The population version of (4) is �(γ ) = E[�(γ ,x)],
where

(5) �(γ ,x) = E

[
M(Y,γ ′x · A/2)

Aπ(x) + (1 − A)/2

∣∣∣X = x

]
.

Under Assumptions (i)–(iii), the minimizer γ̂ 0 of �(γ ) has the property that if
γ̂ ′

0x < 0 then E[U(Y (1))|X = x] > E[U(Y (−1))|X = x] and if γ̂ ′
0x > 0 then

E[U(Y (1))|X = x] < E[U(Y (−1))|X = x]. Thus γ̂ ′
0x reflects for each level of

covariate values which of the treatment options yields larger expected potential
outcomes and hence it can be used to identify which patients are expected to bene-
fit from a treatment. Thus, the average potential outcome is larger among patients
with A = 1 and γ̂ ′

0x > 0 than those with A = −1 and γ̂ ′
0x > 0. Similarly, the

average potential outcome is larger among patients with A = −1 and γ̂ ′
0x ≤ 0

than those with A = 1 and γ̂ ′
0x ≤ 0. Furthermore, γ̂ ′

0x can be used to estimate
the magnitude of the treatment effect. For example, if M(y,v) = (y − v)2, then
γ̂ ′

0x = �(x). For other loss functions, γ̂ ′
0x will not necessarily be the treatment

effect itself, but a monotone transformation of it.
In observational studies, π(x) is generally unknown and thus must be estimated.

This can be accomplished in the same way as is typically done in analyses focus-
ing on estimating average treatment effects from observational studies. As noted in
Rosenbaum and Rubin (1983), this involves modeling choices to relate the treat-
ment status A to the covariates. A typical choice is a logistic regression model,
however, in some applications a more flexible model may be required. High di-
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mensionality can be handled using variable selection techniques. When using (4)
in an analysis, one can straightforwardly deal with data scenarios with a large
number of potential treatment-effect modifiers. In the analysis of health system in-
terventions, it is reasonable to assume that the major patient characteristics which
modify the effect of an intervention are a subset of the available information at
hand. In such high-dimensional scenarios we can add a penalty term, λ

∑p
j=1 |γ j |,

to (4) in order to perform variable selection. This causes the estimated benefit score
to be a function of a smaller number of the available covariates.

The loss function (4) is clearly designed for data where the effect of a treatment
or intervention is expected to be constant in time. This may not be appropriate
for long-term interventions with longitudinally measured outcomes. We aim to
adapt this general approach of benefit score estimation to appropriately handle
data where the effects of an intervention may change over time.

3. Methodology.

3.1. Fused comparative intervention scoring. Denote γ = (γ ′
1, . . . ,γ

′
K)′ and

denote γ 0 = (γ ′
01, . . . ,γ

′
0K)′ as the true coefficients over time. We assume that

the data are generated from model (2). Under this model we allow both the effect
of the intervention and its interactions with patient characteristics to change freely
over time.

We propose an extension of �(γ ) and thus (5) that accounts for longitudinally
changing intervention effects as �(γ 1, . . . ,γ K) = E[�(γ 1, . . . ,γ K,x)], where

(6) �(γ 1, . . . ,γ K,x) = E

[
1

K

K∑
t=1

M(Yt ,γ
′
tx · A/2)

Aπ(x) + (1 − A)/2

∣∣∣∣X = x

]
.

Here each set of coefficients γ k represents the treatment-covariate interaction for
the kth time point. Thus the minimizer (γ̂ 01, . . . , γ̂ 0K) of �(γ 1, . . . ,γ K) provides
a benefit score for each time point. Although different patients may benefit differ-
entially from an intervention over time, for example, some patients may reap bene-
fits from a program early on while others may require months in the intervention to
begin to see benefit, decisions about whether to enroll patients only occur once at
baseline. We focus on baseline decisions in part because the effects of CCM are ex-
pected to last even after disenrollment. Thus, an attempt to optimize when patients
should be disenrolled may be a secondary concern. We can then make personalized
enrollment decisions by summarizing the time-specific benefit scores into a single
benefit score d(X), which reflects the overall benefit. The single score can be used
to create an individualized intervention rule (IIR), or a map from baseline patient
characteristics to an intervention decision, such as sgn(d(X)), where sgn(·) is the
sign function that takes value 1 for positive arguments and −1 otherwise. For ex-
ample, a simple average of the benefit scores davg(X) = K−1 ∑K

t=1 γ̂ ′
0tX would

reflect the average benefit over time.
Furthermore, if Assumptions (i)–(iii) hold for Yt , Y

(1)
t , and Y

(−1)
t for all t =

1, . . . ,K the IIR sgn(davg(X)) (i.e., patients with an average benefit score greater
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than zero are assigned to the intervention) maximizes the average value function
VU(d) = E[K−1 ∑K

t=1{U(Y
(1)
t ) − U(Y

(−1)
t )}d(X)]. This can be seen from the

fact that the minimizer of �(γ t , . . . ,γ K) has the property that if
∑K

t=1 γ̂ ′
0tx < 0

then E[∑K
t=1 U(Y

(1)
t )|X = x] > E[∑K

t=1 U(Y
(−1)
t )|X = x] and if

∑K
t=1 γ̂ ′

0tx > 0

then E[∑K
t=1 U(Y

(1)
t )|X = x] < E[∑K

t=1 U(Y
(−1)
t )|X = x]. Thus, the estimated

IIR reflects a mapping from baseline patient characteristics to intervention de-
cisions that, if implemented, would cause the largest expected average potential
outcomes over time. If certain times, such as early on in the intervention, are
deemed more important, then one could consider a weighted average such as
dwavg(X) = {∑K

t=1 wt }−1 ∑K
t=1 wt γ̂

′
0tX for wt > 0.

The observed data consists of Nt samples at time t : (Yit ,xi ,Ai), where Yit is
the response for unit i at time t , Ai is the intervention status, and xi are the patient
covariate values. The sample size is a function of t only allowing for dropout
due to noninformative issues such as patients being enrolled at different calendar
times, which results in missing outcome information for recently enrolled patients
who have not been followed for the entire follow-up period. We do not allow for
temporally changing post-baseline covariate values.

As mentioned in Section 2.1, if there is a limited sample size, it may be chal-
lenging to estimate all parameters in this model efficiently. Therefore we propose
to use an estimator which encourages smoothness of the estimated coefficients
over time, and thus in turn smoothness of the benefit scores over time. To do so
we utilize the fused lasso (Tibshirani et al. (2005)) to encourage the interaction
effects of each variable to be more similar for closer points in time. Additionally,
high numbers of variables are present in many health care services applications. As
such we utilize a lasso penalty to induce some coefficients to be zero. We propose
the following estimator: γ̂ = (γ̂ ′

1, . . . , γ̂
′
K)′ of γ 0 as the minimizer of

K∑
t=1

1

Nt

Nt∑
i=1

M(Yit ,γ
′
txi · Ai/2)

Aiπ(xi ) + (1 − Ai)/2
+ λ1

p∑
j=1

K∑
t=2

|γ j t − γ j (t−1)|

+ λ2

p∑
j=1

K∑
t=1

|γ j t |
(7)

with respect to γ = (γ 1, . . . ,γ K), where Nt is the sample size at time t . If there
is differential loss to follow-up, immortal time bias may be a concern. In such a
case further measures such as inverse probability of censoring weighting may be
required (Robins and Finkelstein (2000)); however, this issue is beyond the scope
of this paper. The third term in (7) is a standard lasso penalty which induces vari-
able selection. The second term in (7) encourages the effects of individual vari-
ables to be similar over time, thus borrowing strength across observations in time.
This stabilizes the estimated coefficients γ̂ t over time which thus also stabilizes
the estimated benefit scores and also helps to reduce variance in estimation. The
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propensity function π(xi ) is unknown and must be estimated. Since we restrict our
focus to single time-point enrollments, the propensity function can be estimated in
the same way as described in Section 2.2.

In some modeling scenarios, it may be necessary to consider an estimator based
on propensity score matching instead of weighting. To handle matching-based
analyses, consider �m(γ 1, . . . ,γ K) = E[�m(γ 1, . . . ,γ K,x)], where

(8) �m(γ 1, . . . ,γ K,x) = E

[
1

K

K∑
t=1

wM
(
Yt ,γ

′
tx · A/2

)∣∣∣∣X = x

]
,

where w is a weight which either adjusts for the size of the matched groups or
can be set as w = (Aπ(x) + (1 − A)/2)−1. However, if the weights depend on
Ai , both E[w(A)I (A = 1)|X] and E[w(A)I (A = −1)|X] must be constants con-
ditional on π(X) = a. Commensurate with this population-based objective, we
propose the estimator γ̂ m = (γ̂ ′

1m, . . . , γ̂ ′
Km)′ as the minimizer of

K∑
t=1

1

Nt

Nt∑
i=1

wiM
(
Yit ,γ

′
txi · Ai/2

) + λ1

p∑
j=1

K∑
t=2

|γ j t − γ j (t−1)|

+ λ2

p∑
j=1

K∑
t=1

|γ j t |,
(9)

where again wi is an individual weight which is either (Aiπ(xi ) + (1 − Ai)/2)−1

or is calculated to adjust for the size of each matched group, for example,
wi = w(Ai) = I (Ai = 1)(Ci + 1) + I (Ai = −1)(Ci + 1)/Ci where Ci is
the number of controls in the matched cluster to which unit i belongs. The
above conditions required for the weights w(A) hold for the above exam-
ples. The minimizer of (9) targets a slightly different quantity. In particular,
the population version �m(γ , . . . ,γ K) of the first term in (9) is such that its
minimizer (γ̂ 01m, . . . , γ̂ 0Km) has the property that if

∑K
t=1 γ̂ ′

0tmx < 0 then

E[∑K
t=1 U(Y

(1)
t )|X = x,A = 1] > E[∑K

t=1 U(Y
(−1)
t )|X = x,A = 1] and if∑K

t=1 γ̂ ′
0tmx > 0 then E[∑K

t=1 U(Y
(1)
t )|X = x,A = 1] < E[∑K

t=1 U(Y
(−1)
t )|X =

x,A = 1]. This is related to the treatment effect on the treated, but conditional on
patient covariates. For more detailed derivations regarding the matching estimator,
please see the Supplementary Material (Huling, Yu and Smith (2019)).

The expected improvement in outcome for a new patient with baseline covari-
ates x∗ if given the intervention A is then estimated as x∗′γ̂ t at time t . This im-
provement may change over the course of an intervention. Hence, if we wish to
recommend whether a patient should enroll in an intervention, we can average
their expected improvement in outcome over time as B̂(x∗) = K−1 ∑K

j=1 γ̂ ′
tx

∗.
Then we may recommend patients to the intervention if we expect them to have
a positive average expected improvement in their outcomes. The recommended
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enrollment status, or IIR, is d̂avg(x
∗) = sgn(B̂(x∗)). The term B̂(x∗) is thus a

benefit score for recommending the intervention. One may also consider other
summaries of the expected longitudinal outcomes, such as the median or other
quantiles. There of course is uncertainty in our estimate of which patients benefit
from an intervention and which do not and thus in any finite sample there may be
a subgroup of patients for whom the proper recommendation is ambiguous. Model
selection plays a role in (7), and thus a standard bootstrap approach may fail to
obtain correct prediction intervals for the benefit score. It may be possible to ob-
tain prediction intervals for benefit scores for individuals with an approach similar
to that developed in Efron (2014). Identification of such patients is an interesting
area of research but is beyond the scope of this paper.

Similar to Chen et al. (2017), we can augment the loss function M(y,v)

to allow for efficiency improvements. That is, we can work with M̃(y, v,x) =
M(y,v) + g(x, v), where the augmentation function g satisfies that ∂g(x, v)/∂v

is nondecreasing in v. For the squared loss, this includes a common practice of
shifting the outcome by a function of the covariates: M̃(y, v,x) = {y −a(x)−v}2.
In our setting, one can let a(x) vary for different t and estimate it using both x and
outcome information up to time t . The loss function (7) can be straightforwardly
minimized with minor modifications to an alternating direction method of multi-
pliers (ADMM) algorithm as described in Section 6.4.1 of Boyd et al. (2011) for
the generalized lasso (Tibshirani and Taylor (2011)).

3.2. Assessment of IIR impact with bootstrap bias correction. Evaluating the
validity of the estimated subgroups using the same data used to identify the sub-
groups will result in overly optimistic estimates of the benefit of the treatment as-
signments by our models. As such, we use the bootstrap bias correction method of
Harrell, Lee and Mark (1996), and further explained in Foster, Taylor and Ruberg
(2011), to adjust for any overfitting bias which might occur. The bootstrap proce-
dure works by first estimating the amount of bias present in a particular statistic
and then subtracting that amount from the statistic. In general, suppose we want to
estimate the amount of bias for any statistic S. In subgroup identification, S may
represent the expected improvement in the patient outcomes if patients are enrolled
in an intervention based on the estimated IIR. Denote Strain(X) to be the estimate
of the statistic S based on our training data of n subjects and evaluated on the
data X. For b = 1, . . . ,B , let Xb be bootstrap samples (with replacement) of size
n and based on which, we can similarly construct Sb. Now let Sb(Xb) and Sb(X)

be evaluations of Sb on the bth bootstrap sample Xb and our original training data
X respectively. Then the bootstrap estimate of the amount of bias with regards to
the statistic S is

(10) bias(X) = 1

B

B∑
b=1

[
Sb(Xb) − Sb(X)

]
.

A bias-corrected estimate of the statistic S is Strain(X) − bias(X).
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4. Simulation. Data were simulated according to the following model:

(11) Yt = β ′
0tX + γ ′

0tX · A/2 + εt ,

where εt are i.i.d. N(0,32) random variables. Model (11) is a special case of Model
(2) with main effects φt(X) = β ′

0tX and K = 6 in accordance with the motivating
study. The initial sample size is 100 for all scenarios. As patients in the CCM study
are enrolled at different calendar times, resulting in some patients with missing
outcomes in later time points due to incomplete follow-up, we include a scenario
where 10 observations are lost to dropout after each time point. In addition, we
investigate a setting where the sample size is fixed for each time point. The number
of variables at each time point is set to 50 where 10 of the variables have nonzero
coefficients at each time point for their corresponding interaction effects and 12
variables have nonzero coefficients for their main effects. The nonzero coefficients
for the first five intervention-covariate interactions will be as described below and
the second five intervention-covariate interactions coefficients are the negation of
the first five.

In our data generation, we chose the nonzero main effects β ′
0t as c · (1,−1,1,1,

1,−1,1,−1,1,1,1,−1) for t ∈ {1,2,3} and c ·(2,−2,−1,1,1,−1,2,−2,−1,1,

1,−1) for t ∈ {4,5,6}. The value c is set to 1 for simulations with large main ef-
fects and 1/3 for simulations with small main effects. Then we use the following
three separate scenarios of intervention-covariate interactions with varying degrees
of smoothness. The first scenario exhibits the most smoothness in intervention ef-
fects over time and we chose

(γ 01, . . . ,γ 06) =

⎡⎢⎢⎢⎢⎢⎣
1.00 1.00 1.00 1.00 1.00 1.00

−1.00 −1.00 −1.00 −0.75 0.75 0.75
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 0.75 0.75 0.75 0.75

−0.50 −0.50 −0.50 −0.75 −0.75 −0.75

⎤⎥⎥⎥⎥⎥⎦ .

The second scenario sets γ ′
0t as (1,−1,1,1,−0.5,−1,1,−1,−1,0.5) and for t ∈

{1,2,3} and (1.5,−0.5,−1,1,−0.5,−1.5,0.5,1,−1,0.5) for t ∈ {4,5,6}. The
third scenario sets

(γ 01, . . . ,γ 06) =

⎡⎢⎢⎢⎢⎢⎣
0.70 0.80 0.90 1.25 1.50 1.50

−1.00 −1.00 −0.50 −0.50 0.50 0.50
1.00 1.00 1.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00

−0.75 −0.75 −0.75 −0.50 −0.25 −0.25

⎤⎥⎥⎥⎥⎥⎦ .

The third scenario represents the least smooth situation in terms of the interactions.
The proportion of nonzero interaction effects is chosen to be similar to the CCM

study and that both binary and continuous covariates affect the intervention het-
erogeneity. The first two and last eight covariates in X are binary with success
probability 0.25 and the remaining covariates in X are multivariate normal with
variance covariance matrix 1 along the diagonal and ρ|i−j | for the element in the
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row i column j position for i �= j . The covariates are generated in this way as there
are both binary covariates and continuous covariates with high multicollinearity
in the CCM study. The intervention statuses A ∈ {1,−1} are generated from the
propensity model logit(Pr(A = 1|X)) = ν0 +ν′X with the first 15 elements of ν as
(−1,0,1,0,0,0,0,0,0,1,−1,1,−1,1,−1) ·0.75 and the remaining 0. Therefore
the particular nonzero structure of ν indicates that there are overlapping covariates
that impact both the treatment assignment and outcome. In the simulation, the out-
come Y has a range of approximately [−23.7,23.5], where we assume that larger
is better.

We investigate the performance of the proposed fused lasso estimator in com-
parison with an ad hoc approach in which a separate model is fit for each time
point. In the ad hoc approach, we minimize the loss

(12)
K∑

t=1

1

Nt

Nt∑
i=1

(Yit − γ ′
txiAi)

2

Aiπ(xi ) + (1 − Ai)/2
+

K∑
t=1

λt

p∑
j=1

|γ j t |

with respect to (γ 1, . . . ,γ K), which is equivalent to fitting a separate model for
each time point with the lasso for variable selection. All tuning parameters λt

for (12) and λ1 and λ2 for (7) are chosen by 10-fold cross validation with mean-
squared error as the criterion. For both our method and the ad hoc approach,
we use a simple outcome-shifted augmentation function for each time point:
at (x) = N−1

t

∑Nt

i=1 Yit . For both methods we estimate π(xi ) using a penalized
logistic regression model with a lasso penalty and tuning parameter selected by
10-fold cross validation with out-of-fold deviance as the criterion. The simulation
is run 500 times for each method and data-generating scenario.

The performance of each approach is compared based on two criteria. The first
is with regards to the accuracy in identifying the subgroup of patients who will
benefit from the treatment under the true simulation model. In particular, we define
those who truly benefit from the intervention as those covariate values such that the
“oracle” average benefit score K−1 ∑K

t=1 �(X, t) = K−1 ∑K
t=1 γ ′

0tX > 0. Hence
the accuracy over the simulations is acc = 500−1 ∑500

s=1 I {sgn(
∑K

t=1 γ ′
0tX

∗
s > 0) =

sgn(
∑K

t=1 γ̂ ′
tsX

∗
s > 0)} where γ̂ ts is the estimate of γ 0t for a particular method

based on the sth simulated dataset and X∗
s is the sth independent test set of

size 100,000. Thus an accuracy of 1 indicates the estimated IIR identifies all pa-
tients whose average potential outcomes under the intervention K−1 ∑K

t=1 Y
(1)
t are

higher than their potential outcomes under no intervention K−1 ∑K
t=1 Y

(−1)
t . The

second criteria is the overall benefit of the assigned treatments defined as

(13)
1

N∗
t

N∗
t∑

i=1

Yit

Aiπ(xi) + (1 − Ai)/2

{
sgn

(
d̂(xi )

) = Ai − sgn
(
d̂(xi )

) �= Ai

}
,

where N∗
t = 100,000 is the sample size in the test set for time t . The quantity

(13) is a measure of the improvement in terms of average potential outcomes for
patients whose treatment statuses are concordant to the estimated IIR versus pa-



836 J. D. HULING, M. YU AND M. SMITH

FIG. 1. Accuracy results from the simulation for each method and scenario. The accuracy of the
estimated subgroups is evaluated on an independent test set of size 100,000 for each simulation and
each scenario. The columns of plots labeled “n: const” have sample sizes which are fixed for all time
points, that is, have no dropout. The columns of plots labeled “n: decr” have sample sizes which
decrease over time, that is, a number of samples drop out after each time point.

tients whose treatment statuses are not. Thus higher values of (13) indicate more
effective IIRs that yield better overall patient outcomes. Maximization of (13) is
equivalent in an asymptotic sense to maximization of the value function Vu. We
compare the values of (13) under both our proposed and ad hoc approaches with
that under the oracle IIR, sgn(K−1 ∑K

t=1 γ ′
0tX).

The accuracy results evaluated on the test set for all simulations are depicted as
boxplots in Figure 1. In the simulation, the true subgroups have equal proportions
in the treatment group and the control group and hence random guessing for each
patient would result in an accuracy of 0.50 on average. The benefit of the proposed
estimator is more pronounced when the size of the main covariate effects on the
outcome is smaller. For scenarios with a large main effect size, the results can be
improved by constructing a model for the main effects φt (X) to use as the aug-
mentation function. The proposed estimator performs better when the sample size
decreases over time, as the fused lasso penalty takes advantage of the underlying
smoothness in the interactions over time, thus information from time points with
more observations is leveraged in later time points with fewer observations. In all
small main effect scenarios and all decreasing sample size scenarios the proposed
estimator always results in a higher proportion of optimal IIRs and tends to be less
variable over the simulations.

It is possible for two models to yield a similar accuracy and at the same time
result in different average improvements in outcomes across a population. Thus
in evaluating benefit score estimation approaches, evaluating the improvement in
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FIG. 2. Benefits of treatment assignment results from the simulation for each time point and method
with sample sizes that decrease by 10 after each time point. The benefit of assignments is evaluated
on an independent test set of size 100,000 for each simulation and each time point.

outcomes is highly informative about the quality of subgroups found. The results
for the estimated benefit of treatment assignments for the scenarios with sample
sizes decreasing over time are depicted as boxplots in Figure 2 and the correspond-
ing results for scenarios with no decrease in sample size are in Figure 3. These

FIG. 3. Benefits of treatment assignment results from the simulation for each time point and method
with constant sample sizes in time. The benefit of assignments is evaluated on an independent test set
of size 100,000 for each simulation and each time point.
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boxplots are based on the independent test set. The simulation results for the ben-
efit of treatment assignments show a similar story as for accuracy. For simulation
scenarios with large main covariate effects, there are a few time points for both
scenarios 2 and 3, the scenarios with the least smoothness in interactions, when
the proposed approach results in a lower proportion of optimal IIRs, especially
in the last two time periods for scenario 3. The proposed fused lasso approach
performs better for time periods where the true effects change slowly over time,
and does worse only when the true interaction effects have both a rapid change
in a particular time point and the magnitudes of the main effects are large, as can
be seen in time points 5 and 6 in simulation scenario 3 with large main effects.
There is more variability in the results for scenarios with large main effects; this
is due to the fact that the signal-to-noise ratio of the interaction effects, defined
as

√
Var(γ 0(t)

′X · A/2)/
√

Var(εt + φt(X)), is lower when the main effects are
larger, all else being equal. As mentioned previously, the decrease in performance
when main effects are large may be remedied by specifying a model for the main
effects to be used as an augmentation function at (x) for each time point. If spec-
ified correctly, or near-correctly, this type of augmentation function can mitigate
the variability in estimating the benefit scores induced by the large main covariate
effects (Chen et al. (2017), Tian et al. (2014)).

Note that both the proposed and naive approaches do not reach the perfor-
mance of the oracle treatment. This is experienced across the literature of sub-
group identification. Please see Qian and Murphy (2011), Zhou et al. (2017), Zhou
and Kosorok (2017), among many others, for further empirical evidence of this
phenomenon. Given the high dimensionality of our simulation and the low signal-
to-noise ratio of the interaction effects (ranging between 0.417 and 0.854 across
the simulation scenarios), our simulation setup is quite challenging and thus it is
not expected for any method to achieve fully optimal results with small samples.

In the Supplementary Material (Huling, Yu and Smith (2019)) we investigate the
performance of the proposed and naive approaches when the main effects φt(X)

have a nonlinear form, in particular φt(X) = (β ′
0tX)2/4. The proposed approach

is robust to such nonlinearities, enabling the use of the proposed approach for
outcomes that have a complex relationship with covariates, provided that �t(X)

has a linear form.

5. Analysis of complex case management data. In this section we analyze
the implementation of a CCM intervention at UW Health. The intervention is an
ongoing effort and was designed as an intensive system of coordinated care for
highly complex patients, such as those with many chronic conditions. There is
substantial evidence that patients may be more or less likely to benefit from an in-
tervention depending on their personal and clinical characteristics (Hickham et al.
(2013)). However, there is a lack of effective tools for choosing candidates for
case management, as no studies have rigorously examined patient subgroups to
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learn which patients achieve the greatest benefit from enrollment in case manage-
ment programs. In this section we seek to fill this gap by utilizing the proposed
approach of Section 3. Our analysis focuses on 198 patients enrolled in CCM. In
this analysis we seek to use information from these patients to identify what pa-
tients are likely to benefit from enrollment in CCM. Information regarding these
outcomes was collected once per month for six months from Medicare claims. The
timescale of interest is time since enrollment.

Given the size of our pool of control patients and the large number of covariates,
we found it more effective to utilize propensity score matching, instead of weight-
ing. Matching can increase the robustness of parametric propensity score model-
ing and decrease sensitivity to extreme weights as recommended by Rosenbaum
and Rubin (1983) and Imbens and Rubin (2015), Chapter 15. Thus, we utilize the
matching-based objective (9) for estimation.

Seven hundred fifty-three variables from Medicare claims and electronic health
records were considered in the propensity score model. These 753 variables were
screened from a much larger pool of variables based on knowledge and experience
of the case managers involved in the CCM implementation and also based on a
measure of their potential as confounders based on the procedure of Schneeweiss
et al. (2009). Further, based on consultation with case managers, we know that
certain patient characteristics such as healthcare utilization, specific diagnoses, and
social issues are considered when making enrollment decisions. These characteris-
tics are also included in the 753 variables. Variables were selected into the propen-
sity score model using the lasso with the tuning parameter selected by 10-fold cross
validation, resulting in a propensity score model with 41 variables. Summary infor-
mation regarding standard predetermined demographic and medical covariates of
the CCM group and comparison group are presented in Table 1; however, these co-
variates are not the 41 selected in the propensity score model. Each case is matched
to C control patients with C = 4 in most cases and C = 3 when 4 close matches
were not available.

The baseline information is collected over a period of 12 months and the out-
comes are collected monthly for a total of six months starting after the baseline
period. The endpoints of interest are the monthly average event rate, the monthly
average number of event days, and the monthly average Medicare payment amount
in thousands of dollars. An event is defined as a hospitalization or visit to the Emer-
gency Department. Event days are defined as the number of days spent in an event
(i.e., a hospitalization or an Emergency Department visit). The mean event rate is
between 0.068 (0.005) and 0.056 (0.005) across the months, the mean number of
monthly event days is between 0.175 (0.018) and 0.137 (0.015) over the months,
and the mean monthly payment amount is between 655 (51) and 545 (42), where
the numbers in parentheses are standard errors. In practice some patients enrolled
in CCM rarely actively participate in the intervention. We are interested in under-
standing the effect of CCM as it is implemented in practice and furthermore the
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TABLE 1
Average covariate values for the CCM and comparison groups. Binary covariates are summarized

in terms of percents

CCM Comparison P Value
n = 198 n = 759

Sociodemographics
Mean age (SD) 70.035 (13.603) 72.401 (14.132) 0.031
Female 66.667 64.954 0.714
Non-hispanic white 89.394 93.676 0.055
Other race/ethnicity 10.606 6.324 0.055
Medicaid insurance ever 37.374 31.489 0.137
Disability entitlement 37.374 27.141 0.006
Mean percent of patient zip code with a 93.713 93.047 0.025
high school degree or more
Mean HCC score (SD) 3.101 (1.937) 3.121 (2.094) 0.899

Utilization
Average number of emergency dept visits (SD) 2.076 (2.927) 1.854 (3.073) 0.348
Average number of hospitalizations (SD) 1.394 (1.738) 1.387 (1.591) 0.962
Average number of days in hospital (SD) 7.030 (11.987) 6.827 (10.977) 0.829
Average number of OBS stays (SD) 0.308 (0.630) 0.271 (0.597) 0.462
Average number of days in outpatient 0.354 (0.771) 0.381 (1.109) 0.689
observation stay (SD)
Average payment amount (SD) 32.937 (40.285) 36.949 (42.529) 0.218

Chronic conditions
Congestive heart failure 41.919 32.279 0.014
COPD/Asthma 47.475 46.377 0.845
Chronic kidney disease 49.495 51.252 0.718
Anxiety 52.020 47.694 0.315
ESRD 2.020 7.773 0.006
Anemia 44.444 44.005 0.976
Rheumatoid arthritis/vasculitis 13.131 13.439 1.000
Chronic blood loss anemia 4.040 4.084 1.000
Coagulopathy 9.596 8.432 0.707
Depression 44.949 37.418 0.064
Diabetes with chronic complication 17.677 13.439 0.161
Diabetes without chronic complication 27.273 25.955 0.776
Hypertension 72.222 81.950 0.003
Hypothyroidism 37.374 31.884 0.168
Liver Disease 7.071 6.719 0.987
Lymphoma 1.515 2.635 0.512
Fluid or electrolyte disorders 52.020 49.144 0.521
Metastatic cancer 5.556 5.007 0.896
Other neurological disorders 34.848 32.543 0.596
Obesity 36.869 37.022 1.000
Paralysis 7.576 6.456 0.688
Pulmonary circulation disease 18.182 15.415 0.402
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TABLE 1
(Continued)

CCM Comparison P Value
n = 198 n = 759

Psychosis 26.263 20.158 0.077
Peripheral vascular disease 27.778 30.435 0.522
Renal failure 32.828 35.441 0.546
Solid tumor without metastasis 8.586 7.510 0.722
Valvular disease 18.687 21.344 0.470
Weight loss 17.677 12.516 0.077

effects of CCM are expected by case managers to last after disenrollment. Hence
we conduct an intention-to-treat analysis of its clinical effectiveness.

All cases and controls were required to have Medicare claims, to be alive in the
baseline period, to have primary medical insurance coverage Medicare Part A and
Part B throughout the study period or until death, and for this to be their first enroll-
ment in the CCM intervention. Each patient is required to have at least 12 months
of baseline data available prior to enrollment, or prior to a potential enrollment
time for control patients. Patients are enrolled at different calendar times, with a
few patients being enrolled within six months of the data collection time, resulting
in recently enrolled patients having missing outcome information (20 dropouts).
A smaller number of patients were lost to follow-up due to death (4 dropouts).
The dropout rate of the case and control groups is remarkably similar. As covari-
ate information contains missing values, we utilize a simple imputation approach.
Covariate values are imputed within each decile of a Hierarchical Condition Cat-
egories risk variable (Pope et al. (2000)) and a missingness indicator is included.
However, not all missingness indicators were screened into the smaller list of 753
variables.

A model estimated by minimizing (7) for each of the three outcomes separately,
resulting in three sets of estimated benefit scores. The squared error loss was used
for each outcome. Although the full regression model for each of these outcomes
may be complex, our estimation approach is robust to nonlinearities in the main
effects, furnishing confidence in the appropriateness of our modeling approach.
See the Supplementary Material (Huling, Yu and Smith (2019)) for simulation
evidence of such robustness. The two tuning parameters controlling the level of
sparsity in the estimates and the level of similarity of the estimates over time are
selected by five-fold cross validation. The folds were chosen by randomly selecting
cases with all of their matched controls. We investigated use of the naive approach
(12), however, this resulted in no selected variables.

The estimated subgroups are relatively consistent across all three outcomes (for
each of the six months between 53.9% and 55.5% of all patients were assigned the



842 J. D. HULING, M. YU AND M. SMITH

same intervention status for all of the three models), lending credence to the valid-
ity of the results. For the payment amount model, between 366 and 370 variables
were selected for each of the six months, between 248 and 250 for the event rate
model, and between 299 and 305 were selected for the event day count model. The
number of variables selected in common across all three models was 101, further
suggesting consistency of estimated subgroups. For each of the three models, the
vast majority of selected variables had coefficients estimated to be nearly constant
for all six months, indicating a consistency of the subgroups over time. Further-
more, the models for different outcomes tended to result in estimated decision
rules that were consistent for individuals. The pairwise correlations of estimated
benefit scores (averaged over the six months) for the different models ranged from
0.504 to 0.79, indicating a reasonably high concordance with each other. The over-
all IIRs for each outcome are constructed as d̂avg(x) = sgn(B̂(x)), in other words
a patient with a positive average benefit score, that is, B̂(x) > 0, will be “recom-
mended” CCM and any patient with a negative benefit score, that is, B̂(x) ≤ 0,
will be recommended not to enroll in CCM.

As mentioned above, many covariates were selected for each model. Here we
describe some of the effects of covariates which had the biggest impact on the es-
timated IIRs. Characteristics of patients who are estimated to benefit from CCM
include those: with lupus, who had Bilirubin tests ordered, with a high number of
congestive heart failure admissions, who infrequently visited the electronic health
record online tool for communicating with their doctors, a high distinct number
of analgesic or anesthetic prescriptions, and those with a high number of unique
therapeutic or pharmaceutical drug classes administered in the baseline period.
Characteristics of patients who are estimated not to benefit from CCM include
those: who had Emergency Department visits in the baseline period that did not
lead to hospitalization, who have a low resting pain level, those with a low recent
Body Mass Index, with a low number of unique prescribing providers, with a large
number of blood calcium level tests ordered, and those with a low fall risk. These
characteristics are sensible and indicate that patients with a high level of com-
plexity in their care with many different potentially interacting prescriptions, for
example, are likely to benefit from CCM, which is designed to mitigate these types
of problems. Similarly, those who have indication of a low level of complexity are
less likely to benefit from CCM.

To determine the impact of the estimated IIRs, we evaluate the difference of the
average outcomes in the subgroup of patients whose assigned intervention statuses
are concordant to the model recommendations, compared with the subgroup of pa-
tients whose assigned intervention statuses are not. If our model finds a meaning-
ful subgroup, we would expect a difference. Furthermore, we also look at refined
subgroups of patients. In particular we want to evaluate whether patients who we
recommend CCM and actually received CCM fare better than patients we recom-
mend CCM and did not receive it. If this is the case, we can have confidence that
our recommendations to CCM are helpful. Similarly we want to evaluate whether



FUSED COMPARATIVE INTERVENTION SCORING 843

FIG. 4. Dark gray lines represent the empirical averages over time among the subgroup of patients
whose recommended intervention status (by the model constructed with the corresponding outcome)
agrees with their actual intervention status and the light gray lines represent the empirical averages
over time among the subgroup of patients whose recommended intervention status disagrees with
their actual intervention status. The error bars for the bootstrap debiased means represent a 95%
confidence interval estimated using bootstrap resampling. The error bars for the naive means rep-
resent the mean plus and minus one standard deviation. The payment outcome is in thousands of
dollars.

patients we recommend not enroll in CCM and actually did not receive CCM fare
better or worse than patients we recommend not enroll in CCM and did, in fact, en-
roll. It would be reassuring if these two groups have similar outcomes, although it
is possible that CCM could result in increased healthcare utilization. Figures 4 and
5 display these comparisons. In addition to the empirical averages, the bootstrap
debiased estimates of these outcome means are displayed. It is important to note
that the purpose of the debiasing step is to estimate a population-level quantity and
hence while it results in estimates of the benefit of the estimated IIRs which are
less pronounced, it does not change the subgroups themselves.

In Figure 5 we can see that after adjusting for bias due to overfitting, those who
were recommended to be enrolled in CCM and were actually enrolled in CCM
have fewer events, fewer event days, and smaller payment amounts than those
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FIG. 5. Dark gray lines represent the empirical averages over time among various subgroups of
patients who were in the control group and the light gray lines represent the empirical averages over
time among various subgroups of patients who were enrolled in CCM. These averages are stratified
based on the recommendations of the estimated IIRs. All outcomes are on a monthly average basis
and payments are in thousands of dollars per month. The error bars for the bootstrap debiased
means represent a 95% confidence interval estimated using bootstrap resampling. The error bars for
the naive means represent the mean plus and minus one standard deviation. The payment outcome is
in thousands of dollars.

who were recommended CCM and were not actually enrolled in CCM. However,
patients who were not recommended to be enrolled in CCM and did enroll in
CCM did not see any significant worsening of their overall payments after adjust-
ing for overfitting, although some patients tended to have more events in earlier
months when enrolled in CCM and not recommended CCM. In Figure 4, we see
that, for months two through six, the concordant patients tended to have better
outcomes than discordant patients. This indicates that implementing our estimated
IIR should result in better outcomes overall. It is also interesting to note that there
is less overall benefit to CCM in the first month, substantiating the notion that
CCM interventions require time for patients to accumulate health improvements.
Additional information on a health system’s application of an estimated IIR (i.e.,
benefit score) will be available at https://www.hipxchange.org/BenefitScore.

https://www.hipxchange.org/BenefitScore
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6. Conclusion. In this paper we have introduced an approach for modeling
the heterogeneity of longitudinal intervention effects. The proposed approach can
be effective in scenarios with a small sample size, many longitudinal observations,
and many covariates and can be used for subgroup analyses of data from either ran-
domized controlled trials or observational studies. Health systems across the US
are actively assessing the effectiveness of their interventions and seeking new ways
of improving the implementation of them. Our proposed method for identifying
subgroups of patients who benefit the most from such interventions can provide
a new avenue for the improvement of health system interventions more broadly.
Currently our approach only considers scenarios where the effects governing the
subgroups are linear; however, it may be appropriate in some circumstances to
consider a more flexible model for the benefit score. This would require more in-
volved considerations to ensure smoothness of the estimated regression function
over time.

The intervention studied in this paper was not plagued by informative censor-
ing issues, such as death that may be attributable to the intervention of interest.
This may not be an issue in many studies of health system interventions, however,
such issues may arise for studies with extraordinarily long follow-up or studies
involving interventions with greater health risks. Handling such scenarios would
require extensions of our framework to help mitigate from biases resulting from
informative censoring. Depending on the type of intervention and the nature of the
censoring involved, an inverse-probability-of-censoring weighting approach or a
semi-competing risks approach may be warranted.
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SUPPLEMENTARY MATERIAL

Supplement A: “Fused comparative intervention scoring for heterogene-
ity of longitudinal intervention effects” (DOI: 10.1214/18-AOAS1216SUPPA;
.pdf). We provide derivation of the validity of the matching version of our estima-
tor and additional simulation results under nonlinear main effects.

Supplement B: personalizedLong_0.0.1 (DOI: 10.1214/18-AOAS1216
SUPPB; .zip). We provide an R implementation of the proposed methodology.
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