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COMPOSITIONAL MEDIATION ANALYSIS FOR MICROBIOME
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Motivated by recent advances in causal mediation analysis and problems
in the analysis of microbiome data, we consider the setting where the effect
of a treatment on an outcome is transmitted through perturbing the micro-
bial communities or compositional mediators. The compositional and high-
dimensional nature of such mediators makes the standard mediation analysis
not directly applicable to our setting. We propose a sparse compositional me-
diation model that can be used to estimate the causal direct and indirect (or
mediation) effects utilizing the algebra for compositional data in the simplex
space. We also propose tests of total and component-wise mediation effects.
We conduct extensive simulation studies to assess the performance of the
proposed method and apply the method to a real microbiome dataset to in-
vestigate an effect of fat intake on body mass index mediated through the gut
microbiome.

1. Introduction. It has been shown that fat intake is associated with body
mass index (BMI) (Bray and Popkin (1998)) and obesity is associated with the gut
microbiome (Ley et al. (2006), Turnbaugh et al. (2006)). From this information, a
very natural question to ask is whether fat intake has some effects on BMI medi-
ated through the perturbation of the gut microbiome. The approach to answering
this type of questions is known as “mediation analysis.” Mediation analysis is a
statistical method of studying the effect of a treatment or exposure on an outcome
transmitted through intermediate variables, referred to as “mediators” or “inter-
vening variables.” It has been widely applied in various disciplines, such as so-
ciology, psychology, and epidemiology, since the influential paper by Baron and
Kenny (1986) and become increasingly popular due to recent advances in causal
inference (Imai, Keele and Yamamoto (2010), Pearl (2000), Rubin (2005)), which
clarifies the assumptions needed for causal interpretation. Until recently, media-
tion analysis has been restricted to a single mediator as depicted in Figure 1, and
the effect of a treatment on an outcome transmitted through a mediator is often
formulated and implemented within the framework of linear structural equation
models (LSEMs).
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FIG. 1. A single-mediator model: a, b, and c are path coefficients; U1i and U2i are the disturbance
variables for a mediator Mi and an outcome Yi , respectively; Ti is a treatment variable; Xi is a set
of pre-treatment variables.

For instance, an LSEM for the path diagram in Figure 1 can be formulated as

Mi = a0 + aTi + X�
i h + U1i ,

Yi = c0 + cTi + bMi + X�
i g + U2i ,

where Ti is a treatment for unit i, Mi a mediator, Yi an outcome variable, and Xi

a set of pre-treatment variables that may affect the treatment, mediator, and out-
come; a, b, and c are path coefficients; a0 and c0 are intercepts for Mi and Yi ,
respectively; h and g are nuisance coefficients for Xi ; U1i and U2i are disturbance
variables for Mi and Yi , respectively. Under this model, the effect of Ti on Yi trans-
mitted through Mi , called the indirect or mediation effect, is defined by the product
of the path coefficients a and b. The effect of Ti on Yi not transmitted through Mi ,
the direct effect, is defined by the path coefficient c. The model formulation for
Figure 1 shows that the total effect of Ti on Yi is the sum of the direct and indirect
effects, c + ab.

In recent years, numerous studies have extended the applicability of medi-
ation analysis: incorporating nonlinearity and interaction between a treatment
and a mediator (Imai, Keele and Yamamoto (2010), Pearl (2001), VanderWeele
and Vansteelandt (2010)); incorporating multiple mediators (Preacher and Hayes
(2008), VanderWeele and Vansteelandt (2014)). A few studies have also proposed
methods for high-dimensional mediators. Chén et al. (2018) proposed a method to
estimate path coefficients of an LSEM by finding the linear combinations of medi-
ators that maximize the likelihood of linear structural equations, which is similar to
principal components. Huang and Pan (2016) introduced a transformation model
using principal components and included the interaction in their model. Zhao and
Luo (2016) proposed a sparse mediation model using a regularized LSEM ap-
proach.

In this paper, we contribute to extending the applicability of mediation analy-
sis further by proposing an estimating method for the causal direct and indirect
effects when mediators are compositional. Compositional data refer to propor-
tions or percentages of a whole and frequently arise in a wide range of disciplines
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such as mineral components of a rock in geology and vote shares of an election
in psephology. In microbiome and metagenomic studies, to account for different
sizes of sequencing libraries for 16S rRNA or shotgun metagenomic sequencing,
the sequencing reads (i.e., count data) are often normalized into proportions. This
normalization introduces the unit-sum constraint (i.e., proportions sum to unity),
which transforms a k dimensional Euclidian space R

k into a k − 1 dimensional
simplex space S

k−1, thus making the statistical models for unconstrained data in-
appropriate for compositional data. To deal with the nature of compositional data,
Aitchison (1982) introduced an axiomatic approach with various operations under
logratio transformation, which provides a one-to-one mapping between R

k and
S

k−1, and various researchers including himself have formalized and extended this
approach. Aitchison and Bacon-Shone (1984) proposed a linear and quadratic log
contrast model for compositional covariates. Billheimer, Guttorp and Fagan (2001)
formulated the algebra for compositions in the simplex space. Lin et al. (2014) de-
veloped a linear log contrast regression model for compositional covariates in a
high-dimensional setting, and Shi, Zhang and Li (2016) generalized the linear log
contrast regression model.

We propose a framework for mediation analysis when mediators are high di-
mensional and compositional. Our framework utilizes two components: (1) an es-
timation method based on the compositional operators of Aitchison (1982) and the
composition algebra of Billheimer, Guttorp and Fagan (2001) and (2) the linear
log contrast regression of Lin et al. (2014), Shi, Zhang and Li (2016). We em-
ploy the first component (i.e., compositional algebra) to jointly estimate an effect
of a randomly assigned treatment on all compositional mediators. To this end, we
propose minimizing the difference between observed and estimated compositions
with a norm for the composition. We use the second component to quantify an
effect of a treatment and compositional mediators on an outcome. Under this com-
positional mediation framework, we show that the causal direct and indirect effects
are identifiable under some assumptions.

Section 2 introduces a compositional mediation model for a continuous out-
come and discusses model assumptions and identifiability conditions. Section 3
describes methods of estimating composition and regression parameters and their
covariance matrices. We also discuss null hypotheses for the total and component-
wise mediation effects and introduce a method for sensitivity analysis. Section 4
compares the performance of our method in extensive simulation studies with two
methods that can be applied to compositional mediators. Section 5 presents an ap-
plication of the proposed method to a gut microbiome dataset. Finally, Section 6
presents a brief discussion of the methods and results.

2. Compositional mediation model and causal interpretation.

2.1. Notation. For unit i, we let Ti be a treatment, M i a vector of k composi-
tional mediators, Yi an outcome, and Xi a set of pre-treatment variables that may
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affect the treatment, mediator, and outcome. We denote by T , M, and X , respec-
tively, the support of the distribution of Ti , M i , and Xi . In the model assumptions
and the identification of the causal direct and indirect effects, we adopt the poten-
tial outcomes framework. We denote by M i (t) the potential outcome under Ti = t

and by Yi(t,m) the potential outcome under Ti = t and M i = m. Thus, we can
express an observed variable M i = M i (Ti). Similarly, Yi = Yi(Ti,M i (Ti)).

2.2. Compositional mediation model. Suppose that we have a random sam-
ple of size n from a population where we observe Yi , Ti , Xi , and M i for each
unit i. Note that M i ∈ S

k−1 for all i, that is, M i = {(Mi1, . . . ,Mik) : Mij > 0, j =
1, . . . , k,

∑k
j=1 Mij = 1}. Figure 2 shows the effect of Ti on Yi mediated through

M i given Xi .
Before introducing a compositional mediation model, we define some compo-

sitional operators as in Aitchison, 1982. For two compositions η, ζ ∈ S
k−1, the

perturbation operator is defined by

η ⊕ ζ =
(

η1ζ1∑k
j=1 ηj ζj

,
η2ζ2∑k

j=1 ηj ζj

, . . . ,
ηkζk∑k

j=1 ηj ζj

)�
,

and the power transformation for a composition η by a scalar υ by

ηυ =
(

ηυ
1∑k

j=1 ηυ
j

,
ηυ

2∑k
j=1 ηυ

j

, . . . ,
ηυ

k∑k
j=1 ηυ

j

)�
.

With these operators, we propose the following compositional mediation model:

M i = (
m0 ⊕ aTi ⊕ h

Xi1
1 ⊕ · · · ⊕ h

Xiq
q

) ⊕ U1i ,(1)

Yi = c0 + cTi + (logM i )
�b + X�

i g + U2i subject to b�1k = 0,(2)

FIG. 2. A compositional mediation model: aj , bj and c are path coefficients, j = 1, . . . , k; U1i and
U2i are disturbance variables for k compositional mediators M i and an outcome Yi , respectively;
Ti is a treatment variable; Xi is a set of pre-treatment variables.
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where m0 is the baseline composition (i.e., when Ti = E(Ti)); similarly, c0 is the
baseline for Yi ; a,b, and c are path coefficients; h1, . . . ,hq and g are nuisance
parameters corresponding to Xi ; 1k is a vector of k ones. Note that U1i ∈ S

k−1

since M i ∈ S
k−1. We do not specify the distribution of U1i ; however, we assume

that U1i is perturbed around the identity element Jk−1 of Sk−1, that is, E(U1i ) =
Jk−1, where Jk−1 = 1k/k. We also assume U2i ∼ N(0, σ 2). To better understand
the compositional disturbance term U1i , we can transform the model (1) using the
additive logratio transformation. For a composition vector η, the additive logratio
transformation (alt) of η is defined as

alt(η) =
(

log
η1

ηk

, log
η2

ηk

, . . . , log
ηk−1

ηk

)�
.

By taking the alt() on both sides of model (1), we have

alt(M i ) = alt(m0) + Ti alt(a) +
q∑

r=1

Xir alt(hr ) + alt(U1i ),

that is, alt(U1i ) is modeled linearly with other terms.
The model (1) formulates how a treatment perturbs a composition from the

baseline composition, which is measured by the composition parameter a. With
the compositional operators, all the calculations are done within the simplex space,
leading to intuitive interpretation. The composition parameter a is directly inter-
pretable as a composition, and a new composition is the baseline composition (m0)
perturbed by a for Ti = 1 and h1, . . . ,hq for Xi = x.

The model (2) links a treatment and a composition to an outcome. To account for
the compositional nature of M i , we impose a linear constraint, b�1k = 0, which is
crucial for an estimator of regression coefficients to have desirable properties for
compositional data, such as subcompositional coherence (Aitchison and Bacon-
Shone (1984), Lin et al. (2014)) since the regression coefficient b is independent
of an arbitrary scaling of the basis count from which a composition is obtained,
that is, (logCM i )

�b = (logM i )
�b for any constant C. In addition, the regression

coefficients remain unaffected by correctly excluding some or all of the zero com-
ponents Lin et al. (2014). The subcompositional coherence property is one of the
principals of compositional data analysis Aitchison (1982). Because of the linear
constraint, the interpretation of a given bj has to be in the context of other nonzero
components in b. Under the linear constraint, model (2) can be rewritten as

Yi = c0 + cTi + alt(M i )
�b−k + X�

i g + U2i ,

where b−k = (b1, b2, . . . , bk−1)
�.

2.3. Model assumptions and identification. Identification of the causal direct
and indirect effects requires several assumptions. To define our identifying as-
sumptions, we use the potential outcomes notation described in Section 2.1. Com-
bined with the stable unit treatment value assumption (SUTVA) and the positivity
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assumption (i.e., 0 < P(Ti = t |Xi = x) and 0 < P(M i (t) = m|Ti = t,Xi = x)),
the assumptions for the compositional mediation model are given by{

Yi

(
t ′, log(m)

)
, logM i (t)

} ⊥⊥ Ti |Xi = x,(3)

Yi

(
t ′, log(m)

) ⊥⊥ logM i (t)|Ti = t,Xi = x,(4)

No interaction between Ti and M i on the response,(5)

for t, t ′ ∈ T , m ∈ M, and x ∈ X . The SUTVA consists of two components: no
interference (i.e., no effect of a treatment applied to one unit on an outcome for
other units) and no hidden variation of treatment (i.e., consistent treatment lev-
els) (Imbens and Rubin (2015)). The assumptions (3)–(4) with the positivity as-
sumption are an extension of the sequential ignorability assumptions for the single
mediator model (Imai, Keele and Tingley (2010)). Basically, they state that there
is no unmeasured confounding variable after controlling for Xi . The no interac-
tion assumption (5) can be relaxed; See Supplementary Material VI (Sohn and Li
(2019)).

These assumptions appear like those for the multiple mediators model (Imai
and Yamamoto (2013), VanderWeele and Vansteelandt (2014)). However, in mi-
crobiome studies, the setting we consider is different from the multiple causal
mechanisms with multiple mediators considered by Imai and Yamamoto (2013),
VanderWeele and Vansteelandt (2014). We assume that a treatment shifts merely
the overall microbiome composition from one point in the simplex to another
point; therefore, all the components of a composition must be under the same
treatment (i.e., logM i (t) or logM i(t

′)). Thus, there are, regardless of k, only four
possible cases of conditional independence like the single mediator model. For
instance, four possible cases for the assumption (3) are:

(i) {Yi(t
′, logm), logM i (t)} ⊥⊥ Ti = t |Xi = x,

(ii) {Yi(t
′, logm′), logM i (t

′)} ⊥⊥ Ti = t ′|Xi = x,
(iii) {Yi(t, logm), logM i (t)} ⊥⊥ Ti = t |Xi = x,
(iv) {Yi(t, logm′), logM i (t

′)} ⊥⊥ Ti = t ′|Xi = x,

where logm′ is a vector of the potential values of logM i (Ti) when Ti = t ′ and
Xi = x; t is an observed treatment; t ′ is a reference value for the treatment. Simi-
larly for the assumption (4).

Under the assumptions of the compositional mediation model, we have the fol-
lowing theorem to show that the models (1) and (2) lead to quantification of the
causal direct and total indirect effects.

THEOREM 1 (Identification for the compositional mediation model). Suppose
that the models (1) and (2) are correctly specified, and the assumptions (3)–(5)
combined with the SUTVA and the positivity assumptions are satisfied. Then, the
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causal direct effect ζ(t) and the causal total indirect effect δ(t) for the composi-
tional mediation model are identifiable and given by

ζ(τ ) ≡ E
[
Yi

(
t, logM i (τ )

) − Yi

(
t0, logM i (τ )

)|Xi = x
]

= c(t − t0),
(6)

δ(τ ) ≡ E
[
Yi

(
τ, logM i (t)

) − Yi

(
τ, logM i (t0)

)|Xi = x
]

= (loga)�b(t − t0),
(7)

where t is an observed treatment for unit i, t0 a reference value for the treatment,
and τ = t or t0.

A proof of Theorem 1 is given in Supplementary Material II. Pearl (2001) calls
ζ(τ ) the average natural direct effect and δ(τ ) the average natural indirect effect.
Pearl (2001) also defines the average controlled direct effect that is defined in
terms of a specific value of the mediator, rather than its potential values. Note
that ζ(t) = ζ(t0) and δ(t) = δ(t0) under the no interaction assumption. Thus, the
controlled and the natural direct effects coincide and are equal to c for a one unit
change in t , and similarly, the natural total indirect effect is (loga)�b for a one
unit change in t .

Under the compositional mediation model, the total effect of Ti on Yi can be de-
composed into the direct effect c(t − t0) and the total indirect effect (loga)�b(t −
t0), which is the sum of the component-wise indirect effects. Note that under the
model (1), a is interpreted as the expected change in M i due to Ti from Jk−1.
Thus, in the estimation of the component-wise indirect effects, a is divided by
Jk−1 so that log(kaj ) represents the expected change in log(Mij ) from 0 by a
one unit change in t . The estimator for a component-wise indirect effect does not
possess the scale invariance and subcompositional coherence property. However,
it provides indispensable information to understand mediation effect: which com-
ponents are significant. See Section 3.3 for details.

3. Parameter estimation, variance estimation, and tests of mediation ef-
fects.

3.1. Estimation of composition parameters and covariance matrix. The in-
verse of the perturbation operator is defined by

η 	 ζ =
(

η1ζ
−1
1∑k

j=1 ηj ζ
−1
j

,
η2ζ

−1
2∑k

j=1 ηj ζ
−1
j

, . . . ,
ηkζ

−1
k∑k

j=1 ηj ζ
−1
j

)�
.

With the composition operators, Billheimer, Guttorp and Fagan (2001) show that
S

k−1 constitutes a complete inner product space, allowing the definition of a norm
for a composition η:

‖η‖ = (
ηT η

)1/2 = (
alt(η)T N−1 alt(η)

)1/2
,
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where N−1 is the inverse matrix of a (k − 1) × (k − 1) matrix N defined by

N = Ik−1 + 1k−11T
k−1,

where Ik−1 is the (k − 1) × (k − 1) identity matrix.
To estimate the parameters in the model (1), we propose the following objec-

tive function, which minimizes the composition norm of the difference between
observed and estimated compositions,

(8)

(â, ĥr , m̂0) = argmin
a,hr ,m0

n∑
i=1

∥∥Mi 	 (
m0 ⊕ aTi ⊕ h

Xi1
1 ⊕ · · · ⊕ h

Xiq
q

)∥∥2

= argmin
a,hr ,m0∈Sk−1

n∑
i=1

k−1∑
j=1

{
(k − 1)

[
log

(
Mijm0ka

Ti

k

∏q
r=1 h

Xir

rk

Mikm0j a
Ti

j

∏q
r=1 h

Xir

rj

)]2

− log
(

Mijm0ka
Ti

k

∏q
r=1 h

Xir

rk

Mikm0j a
Ti

j

∏q
r=1 h

Xir

rj

)

×
k−1∑
� �=j

log
(

Mi�m0ka
Ti

k

∏q
r=1 h

Xir

rk

Mikm0�a
Ti

�

∏q
r=1 h

Xir

r�

)}
.

The objective function (8) is not convex in terms of aj , m0j , and hrj but is in
terms of alt(a)j , alt(m0)j , and alt(hr )j for j = 1, . . . , k − 1; r = 1, . . . , q . Thus,
the optimal solution can be obtained by solving the following system of linear
equations with constraints m0,a,hr ∈ S

k−1:⎡
⎢⎢⎢⎢⎢⎢⎣

D(1) D(T ) D(X1) · · · D(Xq)

D(T ) D
(
T 2)

D(T X1) · · · D(T Xq)

D(X1) D(T X1) D
(
X2

1
) · · · D(X1Xq)

...
...

...
. . .

...

D(Xq) D(T Xq) D(X1Xq) · · · D
(
X2

q

)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

alt(m0)

alt(a)

alt(h1)
...

alt(hq)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ζ 0
ζ 1
ξ1
...

ξq

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where ζ0j = k
∑n

i=1 logMij − ∑k
�=1

∑n
i=1 logMi�, ζ1j = k

∑n
i=1 Ti logMij −∑k

�=1
∑n

i=1 Ti logMi�, ξrj = k
∑n

i=1 Xir logMij − ∑k
�=1

∑n
i=1 Xir logMi�, and

for any ν, D(ν) is defined as

D(ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(k − 1)

n∑
i=1

νi −
n∑

i=1

νi . . . −
n∑

i=1

νi

−
n∑

i=1

νi (k − 1)

n∑
i=1

νi . . . −
n∑

i=1

νi

...
...

. . .
...

−
n∑

i=1

νi −
n∑

i=1

νi . . . (k − 1)

n∑
i=1

νi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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To estimate its covariance matrix �̂a , we use a bootstrap distribution of â obtained
by the percentile method of Machado and Parente (2005). See Supplementary Ma-
terial IV for details.

3.2. Estimation of compositional regression parameters and covariance ma-
trix. The log-contrast model has been the most general solution to incorporate
the unit-sum constraint in the linear regression model for compositional covariates
(Aitchison and Bacon-Shone (1984), Lin et al. (2014)). Shi, Zhang and Li (2016)
proposed a debias procedure for the �1 regularized estimates of high dimensional
compositional covariates. We use the linear log-contrast model and the debias pro-
cedure to estimate regression parameters (i.e., b and c) and their covariance matrix.
Specifically, we first solve the following objective function,

(9)
β̂ = argmin

β

1

2n

(
n∑

i=1

Yi − cTi − (logM i )
�b − X�

i g

)2

+ λ‖β‖1,

subject to b�1k = 0,

where β̂ = (ĉ, b̂, ĝ)� and λ is a turning parameter. For simplicity, the intercept
is excluded in the model, which can be eliminated by centering all the variables
in the model. We then apply the debias procedure of Shi, Zhang and Li (2016)
to the solution of the objective function (9) to obtain unbiased estimates and their
covariance matrix.

PROPOSITION 1 (Properties of the proposed estimators of (6)–(7)). a. ζ(τ ; ĉ)
and δ(τ ; â, b̂) are consistent and unbiased estimators.

b. δ(τ ; â, b̂) possesses essential properties for compositional data analysis:
scale invariance; permutation invariance; subcompositional coherence.

A proof of Proposition 1 is given in Supplementary Material III.

3.3. Hypothesis test of mediation effect. The null hypothesis of no total com-
positional mediation effect is given by

(10) H0 : (loga)�b = 0,

and the null hypothesis of no component-wise mediation effect is given by

(11) H0 : log(kaj )bj = 0 ∀j ∈ {1,2, . . . , k}.
The null hypothesis (10) reflects the total mediation effect on an outcome; how-
ever, it can disguise the actual mediation effect, which may be captured by the
null hypothesis (11). If for instance, the mediation effects of two mediators are
equal, but their directions are opposite, then the total mediation effect is zero. In
other words, we cannot reject the null hypothesis (10) but might reject the null
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hypothesis (11). Therefore, we need to test both hypotheses to avoid a misleading
conclusion about the mediation effect.

To test the null hypotheses (10) and (11), we propose two approaches: an ex-
tension of the Sobel test (Sobel (1982)) and a bootstrap approach. In testing the
null hypothesis (10) with the former, the square root of the first order asymptotic
variance of the total indirect effect is computed with the estimated covariance ma-
trices of log(kâ) and b̂ by the method described in Bollen (1987). It then is used
as a standard error of the total indirect effect in the Z-test. The expressions for
the first order asymptotic variances of the total indirect effect and component-wise
indirect effects are given in Supplementary Material V.

The distribution of a composition M i is not known, but alt(M i )j is well ap-
proximated by a normal distribution (Aitchison (1986)), that is, the distribution
of log(aj /ak) is well approximated by a normal distribution. Therefore, δ(τ ) can
also be approximated by a normal distribution assuming the product of two nor-
mal variables (i.e., log(aj /ak) and b) follows a normal distribution. Recall that∑k−1

j=1 log(aj /ak)bj = (loga)�b because b�1k = 0. In general, the product of two
normal variables does not follow a normal distribution. However, a misspecified
distribution will just reduce the power but not affect the type I error rate when the
null hypothesis of no indirect effect is false (MacKinnon et al. (2002), Shrout and
Bolger (2002)).

To avoid the assumption of normality for the indirect effect, we can use a boot-
strap approach (Shrout and Bolger (2002), VanderWeele and Vansteelandt (2014)).
To this end, we use a nonparametric bootstrap for log(kâ) and a parametric boot-
strap for b̂ using a multivariate normal distribution to approximate the sampling
distribution of δ(τ ). A p-value for δ(τ ) is then approximated by utilizing the fact
that any bootstrap replicate δ(τ )b − δ(τ ) should have a distribution close to that of
δ(τ ) when the null hypothesis is true, where δ(τ )b denotes an estimated total in-
direct effect derived from a resampled dataset (Efron and Tibshirani (1993)). That
is, a p-value can be approximated by 2

∑nb

b=1 I(δ(τ )b − δ(τ ) ≥ δ(τ ))/nb when
δ(τ ) ≥ 0 and 2

∑nb

b=1 I(δ(τ )b − δ(τ ) < δ(τ))/nb when δ(τ ) < 0, where I(·) is the
indicator function and nb is the number of bootstrap samples. Similarly, the null
hypothesis (11) can be tested. In the simulation studies, we observed no significant
difference in performance between the two methods regarding power and type I
error, concurring with Huang and Pan (2016).

3.4. Sensitivity analysis. In mediation analysis, the assumption (4) of no un-
measured confounding effect may not be satisfied even in a randomized experi-
ment. In this case, the estimated total indirect effect is invalid since the param-
eter b in the model (2) is not consistent. To address this problem, we extend
the method for the single mediation model of Imai, Keele and Tingley (2010)
to assess the sensitivity of the estimated total indirect effect to unmeasured con-
founding variables by utilizing the relationship among U0i ,U1i , and U2i , where
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U0i = Yi − (c′
0 + c′Ti + X�

i g′) is an error in modeling the total treatment effect.
Note that the total effect of a treatment is decomposed into the direct and total
indirect effects under our model specification. Since we treat k compositional me-
diators as a single mediator with k components, we assess the sensitivity of the
total indirect effect by considering the correlation between the disturbance terms
for the mediator and the outcome due to unmeasured confounding variables,

(12) ρ ≡ Corr
(
alt(U1i )j ,U2i

)
for all j = 1, . . . k − 1.

Suppose that the assumption (3) is satisfied and our model is correctly specified.
Then, for a given correlation ρ, the total indirect effect is identified and given by

(13) δρ(τ ) = (loga)�bρ(t − t0),

where bρ is a solution of the following system of k equations:

σ 2
2 + 2ρb�

ρ diag
(
�

1/2
θ

)
σ2 + b�

ρ �θbρ − σ 2
0 = 0,(14)

�θbρ = r(ρ, σ2),(15)

where σ 2
0 = Var(U0i ); σ 2

2 = Var(U2i ); θj = alt(U1i )j ; θ = (θ1, . . . , θk−1)
�; �θ =

Var(θ); r(ρ, σ2) = (Cov(U0i , θ1), . . .Cov(U0i , θk−1))
� − ρσ2 diag(�

1/2
θ )�. The

derivation of the equations (14) and (15) is given in Supplementary Material VII.
Here, σ 2

0 , θ , �θ , and Cov(U0i , θj ) for j = 1, . . . , k − 1 can be estimated consis-
tently from the residuals, and σ 2

2 is a part of the solution. We cannot extract any
information about ρ from data; therefore, we treat ρ as a sensitivity parameter and
obtain corresponding values for the total indirect effect given a plausible range
of ρ.

4. Simulation studies. Mediation analysis for multiple or high dimensional
mediators typically assumes independence between mediators to establish causal
interpretation so principal components of mediators are often used. This approach
of using principal components is also applicable to estimate the direct and total
indirect effects for compositional mediators. Another naive approach for compo-
sitional mediators is to utilize an �1 regularization, which tends to drop correlated
variables. We used these two approaches to evaluate and compare the performance
of our compositional mediation model. For the hypothesis test, we used the exten-
sion of the Sobel test for fair comparison.

In data generation, we randomly generated the treatment Ti from the standard
normal distribution and the baseline composition m0 from the standard uniform
distribution, Unif(0,1), under the unit-sum constraint. The path coefficients a, b,
and c were selected such that the direct effect is 1.00 and the total indirect effect
is approximately 0.00, 0.50, 0.75, or 1.00. For the compositional disturbance, we
used a multivariate logistic normal (LN) distribution (Aitchison (1986)) with mean
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0k−1 and covariance 2N , that is, U1i ∼ LN(0k−1,2N ). Note that a multivariate
logistic normal distribution is defined by the logistic transformation of a multi-
variate normal distribution, that is, R ∼ LN(μ,�) ⇔ alt(R) ∼ N(μ,�). For the
compositional regression disturbance, we used a normal distribution with mean 0
and variance 2, or U2i ∼ N(0,2). Recall that our model does not specify the dis-
tribution of U1i . The composition M i and the outcome Yi were then generated
according to the model (1) and (2), respectively.

4.1. Comparison of power and type I error. We first estimated the power and
type I error rate in testing the total indirect effect (TIDE) for three methods: the
principal component regression (PCR), a two-stage adaptive lasso (TSAL), and
our compositional mediation model (CMM). TSAL uses the standard lasso in
the first stage to screen irrelevant variables and the adaptive lasso in the sec-
ond stage to select consistent variables (Bühlmann and van de Geer (2011)).
We used 1500 simulations for each k mediators with a sample size n = 100 at
various probability thresholds, where k = 5,49,99: 250 simulations with each
of TIDE = 1.00,0.75,0.50; 250 simulations with no effect of Ti on M i (i.e.,
aj = 0,∀j ); 250 simulations with no effect of M i on Yi (i.e., bj = 0,∀j ); 250
simulations with inconsistent TIDEs (i.e., the sum of the component-wise indirect
effects is zero). For TIDE �= 0, the first five components of the regression parame-
ter b are nonzero for k = 5,49, and 99, therefore the effect sizes are the same for
k = 5,49 and 99. For PCR, we included only the first kpc principal components
that explain 90% of the total variance. As shown in Table 1, while all three meth-
ods roughly control the type 1 errors, CMM outperforms both the PCR and TSAL
approaches in power, especially when k is large.

To test the bias and variance of estimates of the three methods, we sim-
ulated data with c = 1.00 and (loga)�b = 0.75 at various sample sizes n =
100,200,500. The following disturbances were used: U1i ∼ LN(0k−1,0.2N ) and
U2i ∼ N(0,0.2). Figure 3 shows the results based on 200 simulations. When the
sample size is small, the estimates of all three methods are slightly biased; how-
ever, as the sample size increases, they converge to the true values. The results are
similar for k = 5,49,99.

4.2. Identification of component-wise indirect effect. PCR is not capable of
testing the component-wise indirect effects; therefore, we compared the perfor-
mance of CMM on the component-wise indirect effects only with TSAL. In data
generation, we selected the parameters a and b such that the first 7 component-
wise indirect effects are at a nonzero constant level but different combinations of
aj and bj ; the remaining 43 component-wise indirect effects are at zero. The level
of nonzero indirect effects was increased by 0.1 from 0, and we used sample sizes
n = 100,200. For multiple testing corrections, we used the Benjamini and Yeku-
tieli (2001) false discovery rate (FDR) at 0.05. As a comparison measure, the F1
score, which is the harmonic mean of precision and recall, was used. Figure 4
shows results: better performance of CMM over TSAL.
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TABLE 1
Power and type 1 error rate in testing TIDEs: number of mediators k = 5,49,99; sample size

n = 100; significance level α = 0.001,0.01,0.05. The total of 1500 simulations for each k were
used: 750 simulations with nonzero TIDEs and 750 simulations for zero TIDEs. For different

k = 5,49, and 99, the nonzero TIDEs take the same values and only the first five components of b

are nonzero. CMM: proposed compositional mediation model; PCR: principal component
regression; TSAL: two-stage adaptive lasso

Power Type 1 error

α 0.001 0.01 0.05 0.001 0.01 0.05

k = 5 CMM 0.452 0.623 0.752 0.001 0.011 0.035
PCR 0.381 0.604 0.732 0.000 0.007 0.040

TSAL 0.413 0.621 0.740 0.001 0.008 0.037

k = 49 CMM 0.476 0.675 0.820 0.001 0.015 0.043
PCR 0.051 0.207 0.423 0.000 0.005 0.029

TSAL 0.277 0.487 0.631 0.001 0.012 0.067

k = 99 CMM 0.397 0.645 0.791 0.001 0.007 0.040
PCR 0.023 0.105 0.273 0.000 0.004 0.028

TSAL 0.304 0.495 0.628 0.003 0.016 0.064

4.3. Simulation based on real dataset. We also simulated data using the com-
position of a real dataset reported in Wu et al. (2011), which is analyzed in Sec-
tion 5. The composition parameter a of this dataset was estimated by the Dirichlet
regression (Maier (2014)) with randomly generated treatments Ti from N(0,1).
The regression parameter b under the linear constraint was randomly generated
from ±4 × Unif(0,1) for ks components and set to 0 for kns components, where
k = ks + kns , and ks was randomly selected between 2 and 5. The direct effect
c was set to 1, and we used U2i ∼ N(0,2) to simulate the outcome Yi . Figure 5
shows that the estimates of the direct effect and TIDE are almost unbiased for all
three methods.

Since we randomly generated TIDEs, obtaining particular values of TIDEs was
not computationally practical. Thus, we considered only the cases that TIDEs are
greater than 0.75 to test the power. Based on 200 simulations, the power was 0.52,
0.38, and 0.48, respectively, for CMM, PCR, and TSAL at the significance level
α = 0.05, and 0.24, 0.16, and 0.21 at α = 0.01. CMM still has the highest power
while controlling the type I error.

5. Real data application. We applied CMM to a cross-sectional dataset, re-
ferred to as the “COMBO” dataset (Wu et al. (2011)). The dataset consists of 16S
rRNA sequences from fecal samples of 98 healthy individuals from the University
of Pennsylvania. It also contains demographic and clinical information including
fat intake and BMI, where the habitual long-term fat intake was derived from the
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FIG. 3. Estimated direct effects and TIDEs at various sample sizes for the number of mediators
k = 5 (top), k = 49 (middle), and k = 99 (bottom) with the true direct effect of 1.00 and the true
TIDE of 0.75, which are indicated by dotted lines. The results are based on 200 simulations. CMM:
proposed compositional mediation model; PCR: principal component regression; TSAL: two-stage
adaptive lasso.

food frequency questionnaire (FFQ). Such measurements are widely applied in
nutritional research, and their reproducibility and validity have been validated (Hu
et al. (1999)). We summarized operational taxonomic units (OTUs) at the genus
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FIG. 4. F1 scores versus levels of the component-wise indirect effects at FDR ≤ 0.05. P -values
are adjusted by the Benjamini–Yekutieli FDR procedure. CMM: proposed compositional mediation
model; TSAL: two-stage adaptive lasso.

level and then filtered out the genera that appear in fewer than 10% of the samples,
leaving 45 genera in 98 samples. Because of the difference in the total number
of OTUs in each of the sample, the OTU counts assigned to these genera were
transformed into proportions after replacing zero counts by the maximum round-
ing error 0.5, which is commonly used in compositional data analysis (Aitchison
(1986)).

5.1. Estimation of TIDE. The gut microbiota can influence host adiposity
through energy extraction from the diet with variable efficiency depending on com-
munity composition; furthermore, the microbiota can affect host adiposity by in-
fluencing metabolism throughout the body. It is therefore highly likely that the
gut microbiome can potentially mediate the effect of the diet such as fat intake on
host adiposity and BMI. Since the 98 samples were roughly randomly sampled,

FIG. 5. Biases of the direct effects and TIDEs for data simulated with the composition of the
COMBO dataset. The results are based on 200 simulations. CMM: proposed compositional medi-
ation model; PCR: principal component regression; TSAL: two-stage adaptive lasso.
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FIG. 6. Estimated component-wise indirect effects of fat intake on BMI through the gut microbiome.
Bootstrap CIs for Eggerthella, Alistipes, and Allisonella are (−0.652,0.062), (−0.015,0.668), and
(−0.093,0.786), respectively.

it is reasonable to assume that fat intake was randomly assigned. CMM was ap-
plied to the COMBO dataset with BMI as the outcome, fat intake as the treatment,
and the 45 genera as the compositional mediators. By the bootstrap approach, the
estimated direct effect is 0.933 with a 95% bootstrap confidence interval (CI) of
(0.005, 1.935) and TIDE is 0.809 with a 95% bootstrap CI of (-0.452, 2.250). The
estimated component-wise indirect effects and their 95% bootstrap CIs are shown
in Figure 6.

The estimated direct effect and TIDE (i.e., 0.933 and 0.808) correspond to
53.6% and 46.4% of the total effect of fat intake on BMI. Note that under our
model specification, the total effect of a treatment can be decomposed into the di-
rect and total indirect effects. The estimated direct effect is statistically significant
at α = 0.05, but the estimated TIDE, as well as all the component-wise indirect ef-
fects, are not. This insignificance is likely due to insufficient sample size: based on
the simulation study in which we used the characteristics of parameters estimated
from the COMBO dataset, TIDE of 0.75 and component-wise indirect effects at
around 0.2 were rarely detected with the sample size of 100.

As shown in Figure 6, the potential genera that could have statistically signifi-
cant component-wise indirect effects with a sufficient sample size are Eggerthella,
Alistipes, Oscillibacter, Acidaminococcus, and Allisonella. All these genera except
Eggerthella have positive values for the indirect effects, but their responses to fat
intake are entirely different. The abundance of Alistipes and Oscillibacter is neg-
atively correlated with fat intake and BMI, whereas that of Acidaminococcus and
Allisonella is positively correlated with fat intake and BMI. In other words, we can
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hypothesize that the increase in fat intake causes the decrease in the abundance of
Alistipes and Oscillibacter but the increase in the abundance of Acidaminococ-
cus and Allisonella which in turn cause the increase in BMI. Lam et al. (2012)
identified Oscillibacter-like organisms as a potentially important gut microbe that
mediates high fat-induced gut dysfunction and gut permeability and showed that
decrease of Oscillibacter led to increased gut permeability, which was shown to
be associated with obesity (Teixeira et al. (2012)). This observation is largely con-
sistent with those observed in mice fed with high-fat diet (Daniel et al. (2014)).

As a comparison, we applied TSAL to the COMBO dataset. Its estimates for
the direct effect and TIDE are 0.751 and 0.555, respectively, which correspond
to 57.5% and 42.5% of the total effect of fat intake on BMI. TSAL selects five
genera: Alistipes (0.161), Clostridium (0.031), Doria (0.047), Acidaminococcus
(0.150), and Allisonella (0.166), where the values in parenthesis are the estimated
component-wise indirect effects. All except the direct effect are not significant at
α = 0.05, similar to the results of CMM. Interestingly, Oscillibacter is not selected
by TSAL.

5.2. Sensitivity analysis on COMBO. TIDE of fat intake on BMI is estimated
under the assumptions (3) ∼ (5). Even though we can assume random assignment
of fat intake (i.e., the assumption (3) holds) as mentioned before, we cannot safely
assume that the assumption (4) is satisfied. Thus, we estimated TIDE given the
correlation ρ between the disturbance terms of the compositional mediators and
the outcome using the method proposed in Section 3.4. Figure 7 shows the result.
The estimated TIDE ranges from 2.162 to −1.546 for ρ ranging from −0.244

FIG. 7. TIDEs for given correlations ρ between the disturbance terms of the compositional me-
diators and the outcome. The dashed line is the estimated TIDE (i.e., 0.808) by CMM. The dotted
line indicates 0. The solid line denotes TIDEs for given ρ. The vertical line is the 95% bootstrap
confidence interval (−1.735,2.706) of TIDE when ρ = 0 (the y-axis is truncated at −0.2 and 1 for
better visualization).
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to 0.244. These values are within the 95% bootstrap CI of the estimated TIDE
assuming ρ = 0.

Our simulation results shown in Supplementary Material VIII indicate that
when the sample size is small, TIDE can be sensitive to the no confounding as-
sumption (4), that is, the range of ρ where TIDEs are significant is very small.
However, as the sample size increases, the estimates become less sensitive.

6. Discussion. In this study, we propose a compositional mediation model for
a continuous outcome where a microbial composition is treated as mediators. Our
method takes the characteristics of compositional data into account and treats the
whole compositional mediators as a unit, that is, it jointly estimates the effect of
a treatment on compositional mediators instead of each mediator separately. In
our simulation studies, we have shown better performance of our method over the
two naive methods for compositional mediators. Our method also provides a clear
interpretation of indirect effects. Application to the COMBO dataset indicates po-
tentially mediating effect of the gut microbiome in linking fat intake and BMI.
Our results estimated that about 46% of the total effect of fat intake on BMI can be
through perturbing the gut microbiome. Although the results are not statistically
significant at α = 0.05, several potentially significant bacterial genera have been
shown to be directly associated with gut permeability and therefore BMI. It would
be interesting and important to replicate these results in larger data sets.

Like other causal mediation analysis methods, the identifiability of causal medi-
ation effect under our proposed model that requires certain assumptions. Methods
for assessing the validity of these assumptions are important. The assumption (3),
which is related to the treatment assignment process, is generally not verifiable
with observational data and is usually checked by subject-knowledge matter. The
no-confounding assumption between the mediator and the outcome (4) has to be
assumed and cannot be easily verified. Instead, we have provided a method for
sensitivity analysis. For the no interaction assumption (5), one can empirically
evaluate its validity by regression analysis:

Yi = c0 + cTi + (logM i )
�b + (Ti logM i )

�γ + X�
i g + U2i ,

subject to b�1k = γ �1k = 0. If any of γ is significant, the no interaction assump-
tion is not satisfied. We included the estimators for the direct and total indirect
effects when there are interactions between the treatment and mediators in Supple-
mentary Material VI.

Even though we used a continuous treatment variable in the simulation studies,
a binary treatment variable can be used without any modification to our method. In
many clinical microbiome studies, the outcome variable is binary such as whether
a subject is diseased or not. In this case, the model (2) can be rewritten for logistic
or probit regression, assuming the outcome variable is a latent continuous vari-
able indicated by an observed dichotomous variable. Then, the model (1) and the
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modified model (2) will provide the identifiability of the direct and indirect effects
(Winship and Mare (1983)). Another interesting extension of our method is for
longitudinal compositional data, which is also very common in microbial studies.

The Gaussian assumption is made for the error term in modeling the outcomes
(i.e., BMI in our application), which often can be approximately achieved by an
appropriate transformation. One important future research is to develop bootstrap
methods for inference of the direct and total indirect effects allowing heteroscedas-
tic errors and heavy-tailed distributions.
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SUPPLEMENTARY MATERIAL

Supplement to “Compositional mediation analysis for microbiome studies”
(DOI: 10.1214/18-AOAS1210SUPP; .pdf). The online Supplemental Materials in-
clude proofs of Theorem 1 and Proposition 1, a detailed computational algorithm
for the covariance matrix of composition parameters, variance calculation for the
indirect effects, an extension of the model to allow for interactions between a treat-
ment and mediators, and a method for sensitivity analysis.
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