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PREDICTION MODELS FOR NETWORK-LINKED DATA1
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Prediction algorithms typically assume the training data are independent
samples, but in many modern applications samples come from individuals
connected by a network. For example, in adolescent health studies of risk-
taking behaviors, information on the subjects’ social network is often avail-
able and plays an important role through network cohesion, the empirically
observed phenomenon of friends behaving similarly. Taking cohesion into
account in prediction models should allow us to improve their performance.
Here we propose a network-based penalty on individual node effects to en-
courage similarity between predictions for linked nodes, and show that incor-
porating it into prediction leads to improvement over traditional models both
theoretically and empirically when network cohesion is present. The penalty
can be used with many loss-based prediction methods, such as regression,
generalized linear models, and Cox’s proportional hazard model. Applica-
tions to predicting levels of recreational activity and marijuana usage among
teenagers from the AddHealth study based on both demographic covariates
and friendship networks are discussed in detail and show that our approach
to taking friendships into account can significantly improve predictions of
behavior while providing interpretable estimates of covariate effects.

1. Introduction. Advances in data collection and social media have resulted
in network data being collected in many applications, recording relational infor-
mation between units of analysis (Michell and West (1996), Pearson and Michell
(2000), Pearson and West (2003)). This information is often collected along with
more traditional covariates on each unit of analysis. One such case study we fo-
cus on in this paper is the survey data from the National Longitudinal Study of
Adolescent Health (the AddHealth study) (Harris (2009)). AddHealth was a ma-
jor national longitudinal study of students in grades 7–12 during the school year
1994–1995, after which three further follow-ups were conducted in 1996, 2001–
2002, and 2007–2008. In the Wave I survey, all students in the sample completed
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in-school questionnaires, and a subsample completed a follow-up in-home inter-
view with more detailed questions. There are questions in both the in-school sur-
vey and the in-home interview asking students to name their friends (up to 10) so
friendship networks connecting students can be constructed based on this informa-
tion. In addition to the information about friends, the survey also asked hundreds
of questions about various aspects of the students personal and school life, collect-
ing information about age, gender, race, socio-economic status, health, academic
achievement, etc.

There is a large body of work extending over decades on predicting a response
variable of interest from such covariates, via linear or generalized linear models,
survival analysis, classification methods, and the like, which typically assume the
training samples are independent and do not extend to situations where the sam-
ples are connected by a network. There is also now a large body of work focusing
on analyzing the network structure implied by the relational data alone, for ex-
ample, detecting communities; see Goldenberg et al. (2010) and Abbe (2017) for
reviews. The more traditional covariates, if used at all in such network analyses,
are typically used to help analyze the network itself, for example, find better com-
munities (Binkiewicz, Vogelstein and Rohe (2017), Newman and Clauset (2016),
Zhang, Levina and Zhu (2016)). There has not been much focus on developing a
general statistical framework for using network data in prediction, although there
are methods available for specific applications (Wolf et al. (2009), Asur and Hu-
berman (2010), Vogelstein et al. (2015)).

In the social sciences and especially in economics, on the other hand, there has
been a lot of recent interest in causal inference on the relationship between a re-
sponse variable and both covariates and network influences; see e.g., Shalizi and
Thomas (2011) and references therein, and Manski (2013). While in certain exper-
imental settings such inference is possible (Rand, Arbesman and Christakis (2011),
Choi (2017), Phan and Airoldi (2015)), in most observational studies on networks
establishing causality is substantially more difficult than in regular observational
studies. While network cohesion (a generic term by which in this paper we mean
linked nodes acting similarly) is a well-known phenomenon observed in numer-
ous social behavior studies (Christakis and Fowler (2007), Fujimoto and Valente
(2012), Haynie (2001)), explaining it causally on the basis of observational data
is very challenging. An excellent analysis of this problem can be found in Shalizi
and Thomas (2011), showing that it is in general impossible to distinguish net-
work cohesion resulting from homophily (nodes become connected because they
act similarly) and cohesion resulting from contagion (behavior spreads from node
to node through the links), and to separate that from the effect of node covariates
themselves. However, making good predictions of node behavior is an easier task
than causal inference, and is often all we need for practical purposes. Our goal in
this paper is to take advantage of the network cohesion phenomenon in order to
better predict a response variable associated with the network nodes, using both
node covariates and network information. While we do not attempt to make causal
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inferences, we do focus on interpretable models where effects of individual vari-
ables can be explicitly estimated.

Using network information in predictive models has not yet been well studied.
Most classical predictive models treat the training data as independently sampled
from one common population, and, unless explicitly modeled, network cohesion
violates virtually all assumptions that provide performance guarantees. More im-
portantly, cohesion is potentially helpful in making predictions, since it suggests
pooling information from neighboring nodes. In certain specific contexts, regres-
sion with dependent observations has been studied. For example, in econometrics,
following the concepts initially discussed by Manski (1993), assuming some type
of an auto-regressive model on the response variables is common, such as the ba-
sic autoregressive model in Bramoullé, Djebbari and Fortin (2009) and its variants
including group interactions and group fixed effects (Lee (2007)). Such models
assume specific forms of different types of network effects, namely, endogenous
effects, exogenous effects and correlated effects, and most of this literature is fo-
cused on identifiability of such effects. In Bramoullé, Djebbari and Fortin (2009)
and Lin (2010), these ideas were applied to the AddHealth data which we discuss
in detail in Section 5. However, these methods have mainly been used to identify
social effects defined within a very specific and difficult to verify model, without
a focus on interpretability or good prediction performance. For instance, includ-
ing neighbors’ responses as covariates in linear regression makes interpretation
of other covariate effects more difficult, and can make the distributional assump-
tions difficult to satisfy. This has been done carefully in spatial statistics literature,
for example with the conditional autoregressive model (CAR) (Besag (1974)), but
fitting these models typically requires MCMC and is very time-consuming. In ad-
dition, these methods do not extend easily beyond linear regression (e.g., to gener-
alized linear models and Cox’s proportional hazard model).

Our approach is to introduce network cohesion using penalties built using the
network information, and framing the problem as loss plus penalty; for simplic-
ity, we will present the method for regression first, and then discuss extensions to
general losses. At a high level, our network penalty parallels the ideas of fusion
(Land and Friedman (1997), Tibshirani et al. (2005)). Fusion penalties generally
shrink the difference between either coefficients or predictions that are expected to
be similar. Fusion penalties based on a network of variables have been used in vari-
able selection (Li and Li (2008, 2010), Pan, Xie and Shen (2010), Kim, Pan and
Shen (2013)), but this line of work is not directly relevant here since we are inter-
ested in using the network of observations, not variables. However, our approach
can be viewed as a regression version of the point estimation problem discussed
in Sharpnack, Singh and Krishnamurthy (2013) and Wang et al. (2016). Alterna-
tively, it can be viewed in a Bayesian framework, as regression with a Gaussian
Markov random field prior over the network.

We show that our method gives consistent estimates of covariate effects and
derive explicit conditions on when enforcing network cohesion in regression can
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be expected to perform better than ordinary least squares. In contrast to previous
work, we assume no specific form for the cohesion effects and require no informa-
tion about potential groups. We also derive a computationally efficient algorithm
for implementing our approach, which is efficient for both sparse and dense net-
works, the latter with an extra sparsification step which we prove preserves the
relevant network properties. To the best of our knowledge, this is the first proposal
of a general prediction framework with network cohesion among the observations
that is computationally feasible and can retain covariate interpretations as well as
make out-of-sample predictions.

The rest of this paper is organized as follows. In Section 2, we introduce our ap-
proach in the setting of linear regression. We frame it as a penalized least squares
problem which has a closed-form solution, and derive its Bayesian interpretation
and connection to various other models. The idea is then extended to general-
ized linear models. Empirically, we show that our approach outperforms prediction
without networks as well as an earlier modification intended to incorporate infor-
mation from neighbors. Finite sample and asymptotic properties are discussed in
Section 3. Brief simulation results demonstrating the theoretical bounds and com-
parisons to benchmarks are presented in Section 4. A detailed analysis and discus-
sion of cohesion in the AddHealth data is presented in Section 5, where we apply
our method to predict recreational activity and marijuana usage among teenagers.
All algorithms in this paper are implemented in the R package netcoh (Li, Levina
and Zhu (2016)), available on CRAN. Code for the examples in the paper can be
found on the first author’s webpage.

2. Regression with network cohesion.

2.1. Set-up and notation. We start from setting up notation. By default,
all vectors are treated as column vectors. The data consist of n observations
(y1,x1), (y2,x2), . . . , (yn,xn), where yi ∈ R is the response variable and xi ∈ R

p

is the vector of covariates for observation i. We write Y = (y1, y2, . . . , yn)
T for the

response vector, and X = (x1,x2, . . . ,xn)
T for the n × p design matrix. We treat

X as fixed and assume its columns have been standardized to have mean 0 and
variance 1. We also observe the network connecting the observations, G = (V ,E),
where V = {1,2, . . . , n} is the node set of the graph, and E ⊂ V × V is the edge
set. We represent the graph by its adjacency matrix A ∈ R

n×n, where Auv = 1 if
(u, v) ∈ E and 0 otherwise. We assume there are no loops so Avv = 0 for all v ∈ V ,
and the network is undirected, that is, Auv = Avu. The (unnormalized) Laplacian
of G is given by L = D − A, where D = diag(d1, d2, . . . , dn) is the degree matrix,
with node degree du defined by du = ∑

v∈V Auv .

2.2. Linear regression with network cohesion. Cohesion is a vague term that
can be interpreted in several ways depending on whether it refers to the network
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itself or both the network and additional covariates. Cohesion defined on the net-
work alone can be reflected in various properties, such as local density, connectiv-
ity and community structure; we refer the readers to Chapter 4 of Kolaczyk (2009)
for details. In the context of prediction on networks, which is our focus, two types
of cohesion are commonly discussed: homophily (also known as assortative mix-
ing) and contagion. Homophily means nodes similar in their characteristics tend
to connect, with the implication of a causal direction from sharing individual char-
acteristics to forming a connection. In contrast, contagion means that nodes tend
to behave similarly to their neighbors, with a casual direction from having a con-
nection to exhibiting similar characteristics. Distinguishing these two phenomena
in an observational study without additional strong assumptions is not possible
(Shalizi and Thomas (2011)). Nonetheless, both of these indicate a correlation be-
tween network connections and node similarities, observed empirically by many
social behavior studies (Haynie (2001), Pearson and West (2003), Fujimoto and
Valente (2012)), and that is all we need and assume in this paper. We use the
generic term “cohesion” in order to cover both possibilities of homophily and con-
tagion, which we do not need to distinguish.

The general cohesion penalty idea is simplest to present in the context of linear
regression, so we start from this setting. Assume that

(2.1) Y = α + Xβ + ε,

where α = (α1, α2, . . . , αn)
T ∈ R

n is the vector of individual node effects, and
β = (β1, β2, . . . , βp)T ∈ R

p is the vector of regression coefficients. At this stage,
no assumption on the distribution of the error ε is needed, but we assume Eε = 0
and Var(ε) = σ 2In, where In is the n×n identity matrix. For simplicity, we further
assume that n > p and XT X is invertible. If p > n and this is not the case, the usual
penalties on β , such as a lasso and ridge, can be applied; our focus here, however,
is on regularizing the individual effects, and so we will not focus on additional
regularization on β that may be necessary.

Including the individual node effects α instead of a common shared intercept
turns out to be key to incorporating network cohesion. In general α and β , which
add up to n + p unknown parameters, cannot be estimated from n observations
without additional assumptions. One well-known example of such assumptions is
the simple fixed effects model (see e.g. Searle, Casella and McCulloch (1992)),
when n samples come from K known groups (typically K � n), and within each
group individuals share a common intercept. Here, we regularize the problem
through a network cohesion penalty on α instead of making explicit assumptions
about any structure in α.

The regression with network cohesion (RNC) estimator we propose is defined
as the minimizer of the objective function

(2.2) L(α,β) = ‖Y − Xβ − α‖2 + λαT Lα,
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where ‖ · ‖ is the L2 vector norm and λ > 0 is a tuning parameter. An equivalent
and more intuitive form of the penalty, which follows from a simple property of
the graph Laplacian, is

(2.3) αT Lα = ∑
(u,v)∈E

(αu − αv)
2.

Thus, we penalize differences between individual effects of nodes connected by
an edge in the network. We call this term the cohesion penalty on α. We assume
that the effect of covariates X is the same across the network; as with any linear
regression, two nodes with similar covariates will have similar values of xT β ,
and the cohesion penalty ensures the neighboring nodes have similar individual
effects α. Note that this is different from imposing network homophily (which
would require nodes with similar covariates to be more likely to be connected).

The minimizer of (2.2) can be computed explicitly (if it exists) as

(2.4) θ̂ = (α̂, β̂) = (
X̃T X̃ + λM

)−1
X̃T Y .

Here, X̃ = (In,X) and

M =
[

L 0n×p

0p×n 0p×p

]
,

where 0a×b is an a × b matrix of all zeros. The estimator exists if X̃T X̃ + λM is
invertible. Note that

(2.5) X̃T X̃ + λM =
[
In + λL X

XT XT X

]
,

so it is positive definite if and only if the Schur complement In + λL −
X(XT X)−1XT = PX⊥ + λL is positive definite. From (2.3), we can see that L is
positive semi-definite but singular since L1n = 0 where 1 is the vector of all ones,
and thus in principle the estimator may not be computable. In Section 3, we will
give an interpretable theoretical condition for the estimator to exist. In practice, a
natural solution is to ensure numerical stability by replacing L with the regularized
Laplacian L+γ I , where γ is a small positive constant. Then the estimator always
exists, and in fact the regularized Laplacian may better represent certain network
properties, as discussed by Amini et al. (2013), Chaudhuri, Graham and Tsiatas
(2012), Le, Levina and Vershynin (2017) and others. The resulting penalty is

(2.6)
∑

(u,v)∈E

(αu − αv)
2 + γ

∑
v

α2
v,

which one can also interpret as adding a small ridge penalty on α for numerical
stability.
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REMARK 1. The penalty (2.6) suggests a natural baseline comparison for our
model which can be used to assess whether cohesion is in fact present in the data.
If the graph has no edges, that is, no information about network connections is
available, the penalty (with γ = 1) reduces to a ridge penalty on the individual
effects α. The parameter estimates are then obtained by minimizing

(2.7) Ln(α,β) = ‖Y − Xβ − α‖2 + λ‖α‖2.

We call this the null model for RNC, as it still incorporates individual node
effects which in themselves can improve performance compared to OLS with a
common intercept. As discussed later in Section 2.4 and 2.7, this null model can
also be viewed as a random effects model with i.i.d. Gaussian intercepts. Compar-
ing the fit of the null model to that of RNC can in fact provide qualitative evidence
of cohesion. For linear regression, the null model can improve the fit to training
data, but it gives exactly the same estimate of β as the OLS (Lemma 3 in the
Supplementary Material (Li, Levina and Zhu (2019))), and thus cannot improve
predictions on test data, since without network information individual effects on
test data cannot be estimated; see more on this in Section 4.

REMARK 2. A possible alternative to our cohesion penalty is the network
lasso penalty,

∑
(u,v)∈E |αu − αv| (Hallac, Leskovec and Boyd (2015)). However,

this penalty introduces piecewise constants on the network, a rather stronger as-
sumption than we make about cohesion which may not be always realistic. It is
also much more computationally demanding, requiring a sophisticated algorithm
and implementation even for moderate size networks.

REMARK 3. It is also possible to assume different but cohesive covariate ef-
fects β for each individual, which can be implemented in exactly the same way
as our idea of the individual intercepts α. As usual, there is a trade-off between
including more parameters for better fit and parsimony of the model. We set β to
be shared among all individual to represent the universal treatment effect, which
seems to be reasonable and easy to interpret in many situations.

2.3. Network cohesion for general loss functions. The RNC methodology ex-
tends naturally to generalized linear models and many other regression or classifi-
cation models, such as Cox’s proportional hazard model (Cox (1972)) for survival
analysis, and support vector machines (Vapnik (1995)) for classification using the
formulation of Wahba et al. (1999). Here we will explicitly write out two exten-
sions, to generalized linear models (GLMs) and Cox’s model. For any GLM with a
link function φ(EY ) = Xβ + α, where α ∈ R

n are the individual effects, suppose
the log-likelihood (or partial log-likelihood) function is �(α,β;X,Y ). Then if the
observations are linked by a network, to induce network cohesion one can fit the
model by maximizing the penalized likelihood

(2.8) �(α + Xβ;Y ) − λαT (L + γ I)α.
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When � is concave in α and β , which is the case for exponential families, the
optimization problem can be solved via Newton–Raphson or another appropriate
convex optimization algorithm. Note that the quadratic approximation to (2.8) is
the quadratic approximation to the log-likelihood plus the penalty, and thus the
problem can be efficiently solved by iteratively reweighed linear regression with
network cohesion, just like the GLM is fitted by iteratively reweighed least squares.
The ridge penalty term γ I helps with numerical stability and for logistic regres-
sion avoids fitted probabilities of 0 and 1 for isolated nodes, which may cause
the iterative algorithm to diverge; as discussed in the previous section, adding this
term to the Laplacian also improves its representation of the underlying network
structure.

RNC can be similarly generalized to Cox’s proportional hazard model (Cox
(1972)). In this setting, we observe times until some event occurs, called survival
times, which may be censored (unobserved) if the event has not occurred for a par-
ticular node. Cox’s model assumes the hazard function hv(y) for each individual
v is

hv(y) = h0(y) exp
(
xT

v β
)
, v ∈ V,

where y is the survival time, xv is the vector of p observed covariates for individ-
ual v, β ∈ Rp is the coefficient vector, and h0 is an unspecified baseline hazard
function. When we have observations connected by a network, we can model the
individual effects and then encourage network cohesion. Thus we will assume the
hazard for each node v is given by

(2.9) hv(y) = h0(y) exp
(
xT

v β + αv

)
, v ∈ V,

where αv is the individual effect of node v. The appropriate loss function in terms
of the parameters θ = (α,β) is the partial log-likelihood

(2.10) �(θ;y) = ∑
v

δv

[
xT

v β + αv − log
( ∑

u:yu≥yv

exp
(
xT

u β + αu

))]
,

where yv is the observed survival time for node v, and δv is the censoring indica-
tor, which is 0 if the observation is right-censored and 1 otherwise. Note that the
partial log-likelihood is invariant under a shift in α since such a shift can always
be absorbed into h0. Thus for identifiability, we require

∑
αv = 0. For fixed co-

variates xv , αv is the individual deviation from the population average log-hazard.
The sum-to-zero constraint can be automatically enforced by replacing the net-
work Laplacian L in the network cohesion penalty with its regularized version
L + γ I , or equivalently adding a ridge penalty on α’s. Thus we maximize the
following objective function, adding a regularized cohesion penalty to the partial
log-likelihood:

�(θ) − λαT (L + γ I)α.
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2.4. A Bayesian interpretation. The RNC estimator can also be framed as a
Bayesian regression model. Consider the model

Y |α,β ∼N
(
α + Xβ, σ 2I

)
, β ∼ πβ(φ), α ∼ πα(�),

where πβ(φ) is the prior for β with hyperparameter φ, πα(�) is the prior for α

with hyperparameter �, and σ 2 is assumed to be known. Suppose we take πβ(φ)

to be the noninformative Jeffrey’s prior, reflecting lack of prior knowledge about
the coefficients, and set πβ(φ) ∝ 1. For α, assume a Gaussian Markov random
field (GMRF) prior πα = NG(0,�), where � = �−1 = ζ 2(L + γ I)−1. Note that
when γ = 0, � is not invertible, and πα is an improper prior called intrinsic GMRF
(Rue and Held (2005)).

If the posterior modes are used as the estimators for α and β , then this is equiv-
alent to (2.2) with λ = σ 2/ζ 2 and the Laplacian replaced by the regularized Lapla-
cian L + γ I . Thus the estimator of (2.2) is the Bayes estimator with the improper
intrinsic GMRF prior over the network on α. Note that this Bayesian interpretation
is also valid for the generalized linear models.

2.5. Prediction and choosing the tuning parameter. To compute fitted values
on the training data (in-sample prediction), we simply use α̂ + Xβ̂ . The out-of-
sample prediction task in this setting is to make predictions on a group of new
subjects whose covariates as well as network connections (but not responses) be-
come available after the model is fitted on training data. Since we have a different
αv for each node v, predicted individual effects are needed for new samples. Sup-
pose we have a total of n training samples and n′ test samples, resulting in a new
network with n + n′ nodes where the first n nodes are from training and the last n′
are the test nodes. Write the associated Laplacian as

L′ =
[
L11 L12
L21 L22

]
,

where L11 corresponds to the original n training samples and L22 corresponds to
the n′ test samples. Similarly write the individual effect vector as (α1,α2), where
α1 = α̂ is estimated from training data, and α2 needs to be predicted.

To take advantage of cohesion, we predict α2 by minimizing the overall cohe-
sion penalty, letting

α̂2 = arg min
α2

(α̂,α2)
T L′(α̂,α2).

This gives

α̂2 = −L−1
22 L21α̂.

This corresponds to a supervised prediction setting, our focus in this paper,
which assumes only the training data are available at the time of fitting. Our
method can also be used in a semi-supervised setting, where the entire network
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is available at the time of training. In this case, the cohesion penalty at the fitting
stage can include all the individual effects for all data points and the entire network
so α1 and α2 are jointly optimized simultaneously.

The tuning parameter λ can be selected by cross-validation. Randomly splitting
or sampling from a network is not straightforward; however, we found that the
usual “naive” cross-validation finds very good tuning parameters for our method,
perhaps because it is fundamentally a regression problem and we are not attempt-
ing to make any inferences about the structure of the network. We tune using reg-
ular 10-fold cross-validation, randomly splitting the samples into 10 folds, leaving
each fold out in turn, and training the model using the remaining nine folds and
the corresponding induced subnetwork. The cross-validation error is computed as
the average of the prediction errors on the fold that was left out, and the tuning
parameter is picked to minimize the cross-validation error.

2.6. An efficient computation strategy. Computing the estimator (2.4) involves
solving a (n+p)× (n+p) linear system so a naive implementation would require
O((n+p)3) operations. For GLMs, such a system has to be solved in each Newton
step. This computational burden can be reduced significantly by taking advantage
of the fact that most networks in practice have sparse adjacency matrices as well as
sparse Laplacians, which allows for using block elimination. A general description
of this strategy can be found in many standard texts (see e.g., Boyd and Vanden-
berghe (2004), Ch. 4). Here we give the details in our setting.

The linear system we need to solve is(
X̃T X̃ + λM

)
a = b.

From (2.5), we can rewrite this system with the following block structure:[
I + λL X

XT XT X

][
a1
a2

]
=

[
b1
b2

]
.

The top row gives

(I + λL)a1 = (b1 − Xa2)

and substituting this into the bottom row, we have(
XT X − XT (I + λL)−1X

)
a2 = b2 − XT (I + λL)−1b1.

Note that I + λL is a symmetric diagonal dominant (SDD) matrix, and is sparse
most of the time in practice, so (I + λL)−1b1 and (I + λL)−1X can be efficiently
computed (Koutis, Miller and Peng (2010), Cohen et al. (2014)). The cost of this
step is roughly O(p(n + 2|E|)(logn)1/2), where |E| is the number of edges in the
network and c is some absolute constant. The cost of the remaining computations
is dominated by the cost of inverting the p × p matrix XT X − XT (I + λL)−1X,
which is of the same order as the cost of solving a standard least squares problem.
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When A and L are dense matrices, with |E| = O(n2), the strategy above has
the cost of O(pn2((logn)1/2), which is still better than naively solving the system,
but we do not gain anything from block elimination unless L is sparse. However,
we can first apply a graph sparsification algorithm to A and use the sparsified A∗
as input for RNC. For instance, the algorithm of Spielman and Teng (2011) can
find A∗ with O(ε−2n logn) edges at the cost of O(|E| log2 n) operations such that
its sparsified Laplacian L∗ satisfies

(1 − ε)L � L∗ � (1 + ε)L,

for a given constant ε > 0. After this sparsification step, the complexity of solving
the linear system reduces to O(pn logc n) for c ≤ 3. In Section 3, we will pro-
vide theoretical guarantees for the accuracy of the RNC estimator based on L∗
compared to that based on L.

When the number of edges is on the order of O(n2), the sparsification step it-
self has complexity of O(n2 logc n), which is not necessarily cheaper than directly
solving the original dense linear system using the SDD property. However, the ad-
vantage of sparsification becomes obvious when one has to iteratively solve the
linear system for the GLM or Cox’s model, and/or compute a solution path for a
sequence of λ values. In such situations, sparsificaiton only has to be done once
and the average complexity of solving the linear system can be close to O(n logc n)

for the whole estimation procedure. Details of complexity calculations for the RNC
are given in the Supplementary Material (Li, Levina and Zhu (2019)); a more com-
prehensive discussion of the computational trade-off of sparsification can be found
in Sadhanala, Wang and Tibshirani (2016).

2.7. Connection to other models.

Fixed group effects models. The fixed effects regression model with subjects
divided into groups is a special case of RNC. If the graph G represents the groups
as cliques (everyone within the same group is connected), there are no connections
between groups, and we let λ → ∞, then all nodes in one group will share a
common intercept.

Mixed effects models. A mixed model, like ours, has individual effects viewed
as random (α) and fixed covariate effects (β), but no network effects. Our null
model is a standard mixed model. The Bayesian interpretation of our method sug-
gests we are inducing correlations between the random effects, α ∼ NG(0,�).
The estimator (2.4) is then the mixed model equation in Henderson (1953) for es-
timating fixed effects and predicting random effects simultaneously (see Searle,
Casella and McCulloch (1992)). However, the framework of mixed models re-
quires stronger assumptions on the form of variance components. Moreover, (gen-
eralized) mixed models are not designed for predictions conceptually, and we will
show in the simulation study as well as analytically in Lemma 3 in the Supple-
mentary Material (Li, Levina and Zhu (2019)) that the null model is not able to
improve on out-of-sample predictions.
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Spatial models. In spatial statistics, data points are typically indexed by their
locations. A weight matrix A can be computed as a function of distance between
locations and can be used as a weighted analogue of our network adjacency ma-
trix. This leads to natural connections between RNC and methods used in spatial
statistics. In particular, ignoring the covariates X, RNC reduces to the Laplacian
smoothing point estimation procedure in Sharpnack, Singh and Krishnamurthy
(2013) and Wang et al. (2016), which is equivalent to krigging in spatial statis-
tics (Cressie (1990)). It has been shown that a class of semi-supervised learning
methods based on Laplacian smoothing can be viewed as “graph krigging” (Xu,
Dyer and Owen (2010)). From this perspective, RNC can be viewed as a general-
ization of graph krigging of Xu, Dyer and Owen (2010) to incorporate covariates
and general loss functions. With covariates X included, the Bayesian interpreta-
tion of RNC assumes the same Gaussian Markov random field distribution for α

as the conditional autoregressive model (CAR) (Besag (1974)) and its GLM gen-
eralization (Chapter 9 of Waller and Gotway (2004)) assume for errors in spatial
regression. However, ζ 2 and σ 2 in our Bayesian interpretation are treated as pa-
rameters in the CAR, while λ = σ 2/ζ 2 is treated as a tuning parameter in RNC.
Further, the CAR model is fitted either by maximum likelihood involving compu-
tationally expensive integration steps, or by posterior inference via Markov chain
Monte Carlo after assuming a full Bayesian model with additional priors on β and
ζ 2, etc. Both ways require much heavier computations than RNC, especially for
GLM where the Gaussian Markov random field is no longer the conjugate prior.
More importantly, CAR models cannot be applied to general loss functions that
are not a well-defined likelihood, for example, for Cox’s model and SVM. Also,
CAR models suffer from conceptual difficulties in making out-of-sample predic-
tions (Waller and Gotway (2004)). In contrast, RNC provides a universal strategy
under general loss functions and comes with a natural out-of-sample predictor,
discussed in Section 2.5.

Manifold embeddings. Our Laplacian-based penalty has connections to the
large literature on manifold embeddings and semi-supervised learning. The gen-
eral task of manifold embeddings is to embed data points, typically observed in
some high-dimensional space equipped with a potentially non-Euclidean similar-
ity measure, into a low-dimensional Euclidean space, while preserving dissim-
ilarity between the points as much as possible. Finding the “right” embedding
space is expected to help with downstream analysis tasks, such as visualization
(Tenenbaum, De Silva and Langford (2000)) or clustering (Shi and Malik (2000)).
Perhaps the algorithm most closely related to ours is Laplacian Eigenmaps (Belkin
and Niyogi (2003)), which proposed using k eigenvectors of the constructed graph
Laplacian L corresponding to the smallest eigenvalues as the Euclidean embed-
ding of the graph in order to obtain a low-dimensional representation of the data,
and its kernel version with a regularization penalty (Belkin, Niyogi and Sindhwani
(2006)). There are multiple semi-supervised learning approaches to prediction on
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manifolds, where it is assumed that all the similarities (corresponding to the net-
work in our case) are observed but only some of the data points are labelled (Zhou
et al. (2004), Zhou, Huang and Schölkopf (2005)). Later out-of-sample extensions
(Bengio et al. (2004), Vural and Guillemot (2016), Cai, He and Han (2007)) were
developed by assuming the embedding coordinates take certain specific forms as
functions of the original data points, and in general the manifold literature relies
on an underlying Euclidean space where distance and smoothness are well defined,
an assumption we do not make.

Supervised manifold embeddings have also been proposed when class labels
are available in training data, including for the Laplacian Eigenmaps (Raducanu
and Dornaika (2012), Yang, Sun and Zhang (2011), Vural and Guillemot (2016)).
The basic idea is to learn a low-dimensional embedding of the data that also corre-
sponds to a good separation of classes, and then use the coordinates in this embed-
ding as predictors instead of the original variables. For general response variables
instead of class labels, there is no supervised variant of Laplacian Eigenmaps as
far as we are aware. More importantly, the embedding coordinates are typically
complicated implicit functions of all the variables, and their coefficients cannot be
interpreted in any meaningful way. Our method, on the other hand, has the original
variables as predictors in the model (and nothing else), and thus their regression
coefficients are readily interpretable.

3. Theoretical properties of the RNC estimator. Recall the RNC estimator
is given by

(3.1) θ̂ = (
X̃T X̃ + λM

)−1
X̃T Y ,

where

M =
[
L 0
0 0

]
.

We continue to assume that X has centered columns and full column rank. Intu-
itively, we expect the network cohesion effect to improve prediction only when the
network provides “new” information that is not already contained in the predic-
tors X. We formalize this intuition in the following assumption:

ASSUMPTION 1. For any u �= 0 in the column space of X, uT Lu > 0.

This natural and fairly mild assumption is enough to ensure the existence of the
RNC estimator. Write col(X) for the linear space spanned by columns of X and
col(X)⊥ for its orthogonal complement. Then the projection matrix onto col(X)⊥
is PX⊥ = In − PX , where PX = X(XT X)−1XT . Write λmin(M) for the minimum
eigenvalue of any matrix M . Then we have the following lemma:

PROPOSITION 1. Whenever λ > 0, we have 0 ≤ ν = λmin(PX⊥ + λL) ≤ 1.
Under Assumption 1 the RNC estimator (3.1) exists.
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Proposition 1 shows that when the network is connected and X is centered, the
RNC estimator always exists since in a connected graph, L has rank n − 1, and an
eigenvector 1.

THEOREM 3.1. Under Assumption 1, the RNC estimator θ̂ = (α̂, β̂) defined
by (3.1) satisfies

MSE(α̂) ≤ λ2

ν2 ‖Lα‖2 + n

ν
σ 2,(3.2)

MSE(β̂) ≤ λ2

ν2μ
‖Lα‖2 + σ 2

(
1

ν
+ 1

)
tr

((
XT X

)−1)
,(3.3)

E‖Ŷ −EY‖2 ≤ λ2

ν
‖Lα‖2 + σ 2‖Sλ‖2

F ,(3.4)

where the minimum eigenvalue of XT X is denoted by μ and ‖Sλ‖F is the Frobe-
nius norm of the shrinkage matrix Sλ = X̃(X̃T X̃ + λL)−1X̃T . In particular, when
‖Lα‖ = 0, and therefore α is constant over each connected component of the net-
work, RNC is unbiased.

The proof is given in the Supplementary Material (Li, Levina and Zhu (2019))
where the expressions for exact errors are also available. Theorem 3.1 applies to
any fixed n. The asymptotic results as the size of the network n grows are presented
next in Theorem 3.2. We add the subscript n to previously defined quantities to
emphasize the asymptotic nature of this result.

THEOREM 3.2. If Assumption 1 holds, μn = O(n), ‖Lnαn‖2 = o(nc) for
some constant c < 1, and there exists a sequence of λn and a constant ρ > 0 such
that lim infn νn > ρ, then

MSE(β̂) ≤ O
(
λ2

nn
−(1−c)) + O

(
n−1)

.

Therefore if λ2
n = o(n1−c), β̂ is an L2-consistent estimator of β .

REMARK 4. Note that the quantity Lα appearing in the assumptions is the
gradient of the cohesion penalty with respect to α, ∇ααT Lα = 2Lα. We call Lα
the cohesion gradient. In physics, cohesion gradient is used to measure heat diffu-
sion on graphs when α is a heat function:

(Lα)v = ∣∣N(v)
∣∣(αv −

∑
u∈N(v) αu

|N(v)|
)
,

where N(v) is the set of neighbors of v defined by the graph. Thus ‖Lα‖ rep-
resents the difference between nodes’ individual effects and the average of their
neighbors’ effects. The condition of Theorem 3.2 requires that the norm of the



146 T. LI, E. LEVINA AND J. ZHU

vector Lα ∈ R
n grows slower than O(

√
n). This condition is satisfied by a large

set of n-dimensional vectors defined on many networks; the following proposition
gives an example.

PROPOSITION 2. Assume the network is a
√

n×√
n lattice. Then ‖Lα‖2 ≤ nc

as long as α is in the subspace spanned by k smallest eigenvalues of L for some

k ≤ Cn
1+c

2 , where C and c are some constants and c < 1.

It is instructive to compare the MSE of our estimator with the MSE of the ordi-
nary least squares (OLS) estimator, as well as the null model (which is what our
estimator gives when the network has no edges). For OLS, we have

β̂OLS = (
XT X

)−1
XT Y , α̂OLS = ȳ1,

where α̂OLS is the common intercept. Compared to OLS, the RNC estimator re-
duces bias caused by the network-induced dependence among samples, and as a
trade-off increases variance; thus intuitively, one would expect that the signal-to-
noise ratio and the degree of cohesion in the network will determine which es-
timator performs better. From Theorem 3.1 and the basic properties of the OLS
estimator (Supplementary Material (Li, Levina and Zhu (2019))), it is easy to see
that if

(3.5)
(

n

ν
− 1

)
σ 2 ≤ V (α) − λ2

ν2 ‖Lα‖2,

where V (α) = ∑
v(αv − ᾱ)2, then the RNC estimator of the individual effects α̂

has a lower MSE than that of α̂OLS. The left hand side of (3.5) represents the
increase in variance induced by adding the individual effects, whereas the right
hand size is the corresponding reduction in squared bias. When α is sufficiently
smooth over the network, ‖Lα‖ is negligible compared to other terms, and the
condition essentially requires that the total variation of αv around its average is
larger than the total noise level. Similarly, for the coefficients β , if

(3.6) tr
((

XT X
)−1)σ 2

ν
≤ ∥∥(

XT X
)−1

XT α
∥∥2 − λ2

μ
‖Lα‖2

then the RNC estimator β̂ has a lower MSE than β̂OLS. Again, the two sides of
the inequality represent the increase in variance and the reduction in squared bias,
respectively. The null model gives an estimate for β identical to β̂OLS, so the same
comparison applies. The null model estimate of α involves more terms and the
corresponding tuning parameter and does not result in clear comparison. However,
we demonstrate the difference numerically by the next example and by our simu-
lation study in Section 4. The exact formula for the null model estimation error is
given in the Supplementary Material (Li, Levina and Zhu (2019)).
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FIG. 1. Mean squared prediction error E‖Ŷ −EY‖2/n and the bias-variance trade-off of the RNC
estimator (based on the upper bound (3.4) in Theorem 3.1), in the setting of Example 1 with σ = 0.5.

EXAMPLE 1. We illustrate the bias-variance trade-off on a simple example.
Suppose we have a network with n = 300 nodes which consists of three discon-
nected components G1, G2, G3, of 100 nodes each. Each component is gener-
ated as an Erdos–Renyi graph, with each pair of nodes forming an edge inde-
pendently with probability 0.05. Individual effects αi are generated independently
from N (ηci

,0.12), where ci ∈ {1,2,3} is the component to which nodes i belongs,
η1 = −1, η2 = 0, η3 = 1. We set λ = 0.1. Substituting the expectation EA for A,
we have ν ≈ 0.5, ‖Lα‖2 ≈ 105, and V (α) ≈ 203. Then as long as the noise vari-
ance σ < 0.57, (3.5) will be satisfied. Similarly, XT X ≈ nI2, and ‖XT α‖2 ≈ 406
in expectation. Thus (3.6) holds and the RNC is beneficial if σ < 0.54 (approxi-
mately). The bias-variance trade-off in the mean squared prediction errors (MSPE)
can be demonstrated explicitly when varying λ; Figure 1 shows this trade-off be-
tween bias and variance together with the OLS baseline when σ = 0.5. The MSPEs
of OLS and the null model are also shown. Note that this calculation for RNC is
based on conservative bounds. In reality the RNC is going to be beneficial for a
larger range of σ values.

REMARK 5. If we use (2.6) and are willing to make strong assumptions about
the distribution as in the Bayesian interpretation, it can be shown (see Searle,
Casella and McCulloch (1992), Ch. 7 for details) that α̂ is the best linear unbi-
ased predictor (BLUP) of α and β̂ is the best linear unbiased estimator (BLUE)
of β . However, these are strong assumptions which we prefer to avoid.

Finally, we investigate the effects of graph sparsification, proposed in Sec-
tion 2.6 to reduce computational cost. For any ε > 0, let L∗ be the Laplacian of a
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network on the same nodes satisfying

(3.7) (1 − ε)L � L∗ � (1 + ε)L.

In addition, let θ̂ be the minimizer of

(3.8) f (θ) = �(α + Xβ;Y ) + λαT Lα,

and θ̂
∗

be the minimizer of

(3.9) f ∗(θ) = �(α + Xβ;Y ) + λαT L∗α,

where � can be a general loss function, such as the sum of squared errors in linear
model or the negative log-likelihood in GLM.

THEOREM 3.3. Given two Laplacians L and L∗ satisfying (3.7) for 0 < ε <

1/2, assume � in (3.8) is twice differentiable and f is strongly convex with m > 0,
such that for any θ = (α,β) ∈ R

n+p ,

�2f (θ) � mIn+p.

Then θ̂ and θ̂
∗

minimizing (3.8) and (3.9) respectively, with the same λ, satisfy

(3.10)

∥∥θ̂∗ − θ̂
∥∥2 ≤ 2ελ

m
min

(
2α̂T

Lα̂ + ∣∣α̂T
Lα̂ − α̂∗T

L∗α̂∗∣∣ + 2εα̂∗T
L∗α̂∗

,

2ελ

m
λ1(L)2‖α̂‖2

)
.

Theorem 3.3 can be seen as a generalization of the result of Sadhanala, Wang
and Tibshirani (2016) for point estimation by Laplacian smoothing (or krigging)
for Gaussian and binary data. Our bound is slightly better than that of Sadhanala,
Wang and Tibshirani (2016).

REMARK 6. The term α̂T
Lα̂ is the cohesion penalty and is expected to

be small for estimated α̂. Further, we can expect both |α̂T
Lα̂ − α̂∗T

L∗α̂∗| and
εα̂∗T

L∗α̂∗ to be much smaller than α̂T
Lα̂, and the first bound in (3.10) is typi-

cally much smaller than the second. Therefore, the bound is essentially

(3.11)
∥∥θ̂∗ − θ̂

∥∥2 � 4ελ

m
α̂T

Lα̂.

REMARK 7. The theorem shows that the squared error in estimation with an
ε-approximated Laplacian is decreasing linearly in ε. In particular, it is easy to
check that for the linear regression case, we have

�2�(θ) = 2
(
X̃T X̃ + λM

)
.
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Strong convexity always holds whenever RNC estimate exists, and the bound be-
comes

(3.12)
∥∥θ̂∗ − θ̂

∥∥2 � 2ελα̂T
Lα̂

λn(X̃T X̃ + λM)
.

REMARK 8. Theorem 3.3 can also be viewed as a result on network misspec-
ification. If the true network is observed with errors, but its Laplacian L∗ satisfies
(3.7) and is close enough to the correct L, we have the same error bound for the
estimate from the mispecified network. Another way to make the method more
robust to errors in the network is to replace L by a low-rank approximation to it, if
we have reasons to believe a low-rank structure describes the underlying network
well.

4. Numerical performance evaluation. In this section, we investigate the ef-
fects of including network cohesion on simulated data in linear regression. A sim-
ilar study about logistic regression is included in the Supplementary Material (Li,
Levina and Zhu (2019)).

The simulated networks are generated from the stochastic block model with
n = 300 nodes and K = 3 blocks. Under the stochastic block model, the nodes
are assigned to blocks independently by sampling from a multinomial distribu-
tion with parameters (π1, . . . , πK). Then given block labels ci for i = 1, . . . , n, the
edges Aij , 1 ≤ i < j ≤ n, are generated as independent Bernoulli variables with
P(Aij = 1) = Bcicj

, where the K × K symmetric matrix B contains probabili-
ties of within-block and between-block connections. We set π1 = π2 = π3 = 1/3,
Bkk = pw = 0.2, and Bkl = pb for all k �= l. As in Example 1, the individual ef-
fects αi’s are generated independently from a normal distribution with the mean
determined by the node’s block label, N (ηci

, s2), where η1 = −1, η2 = 0, η3 = 1,
and the parameter s controls how “cohesive” the αi’s within each block are. The
predictor coefficients β are drawn independently from N (1,1).

This simulation setting is not especially favorable to RNC since it does not
satisfy the smoothness requirement of Theorem 3.2 except when s = 0. Moreover,
because edges connecting different blocks give false information and edges within
the same block are all exchangeable, an edge between two nodes does not give
direct evidence of them having similar α’s (except when pb = 0). However, there
is cohesion on the network in the sense that some α’s are more similar to each
other than to others, and we can vary the strength of cohesion by varying s; varying
pb allows us to test robustness against “false” edges, meaning edges that do not
indicate similarity.

We compare RNC to four other methods on these simulated networks: a base-
line (OLS for continuous response and logistic regression for binary response), the
null model, where the graph is empty and we simply add a ridge penalty on the
individual effects, a fixed effects “oracle” model which knows the true blocks and
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uses the same α for all the nodes in the same block, and a mixed effects model
which adds Gaussian random effects to the fixed effect model, fitting exactly the
model that was used to generate the data. The tuning parameters are always se-
lected by 10-fold cross-validation; however, the linear null model always makes
the same out-of-sample predictions as OLS, for any value of λ, and thus cross-
validation cannot be used to select the tuning parameter. This is a side effect of
the bigger problem for the null model, which is its inability to make nontrivial
out-of-sample predictions. Instead of cross-validation, we use the restricted max-
imum likelihood (REML) estimate under the corresponding linear mixed model
framework for λ = σ 2/ζ 2. The mixed effects model is also estimated by REML.

Four performance metrics are reported: the average mean squared error (MSE)
of α and β , and in-sample and out-of-sample mean squared prediction errors
(MSPEs). Figure 2 shows results as the variance parameter s changes from 0 to
1 with pb = 0.02. All methods get worse as s increases and the signal-to-noise
ratio goes down, as one would expect. The OLS is the worst on all measures since
the other models incorporate the individual effects α and thus provide a better fit.
However, incorporating α in the null model only helps with the in-sample error;
for estimating β and out-of-sample prediction, the null model is exactly the same
as OLS.

The RNC and the two oracle models generally perform much better and are
fairly close to each other, with the oracle fixed effects model performing somewhat
better on the in-sample error when s is small and the oracle is close to the true
model, and both the RNC and oracle mixed effects model outperforming the oracle
fixed effects model for larger s since they can adapt to the changing amount of
cohesion over the network. Instead of using known blocks we could have also
fitted them by one of the many available community detection methods, but that
would only help if the underlying model does indeed have communities. The RNC,
on the other hand, does not require an assumption of communities and can adapt
to cohesion over many different types of underlying graphs.

Figure 3 shows how the four performance metrics respond to an increase in pb,
the probability of “false” edges, with fixed s = 0.1. As expected, the performance
of RNC degrades as pb increases. However, even when pb = 0.05, when the ratio
of within-block “true” edge probability to between-block “false” edge probability
is only 4/3, RNC still does much better than OLS and the null model in estimating
β and out-of-sample prediction.

We conclude this section with a simple example illustrating the graph sparsifica-
tion approach to dense networks. We generate a weighted network with n = 3000
nodes, divided into three blocks of 1000 nodes each. All the within-block entries
of the weighted adjacency matrix are 1 and the other entries are 0.1. Thus the net-
work matrix is a fully dense matrix. The other settings are the same as in the linear
regression simulation, and we compare the linear RNC estimator using the original
Laplacian L to the one based on the sparsified L∗. Figure 4 shows the results as
a function for different values of the approximation accuracy ε’s, defined in (3.7).
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FIG. 2. Linear regression with varying s and pb = 0.02. Performance is evaluated by the MSEs of
α and β , and in-sample and out-of-sample mean squared prediction errors.

The top left plot shows the the sparsified matrix corresponding to ε = 0.15, which
has around 52% of all elements set to 0. The top right plot shows the observed
approximation error ‖θ̂∗ − θ̂‖2 and its theoretical upper bound (3.12). The theo-
retical bound is conservative but follows the same trend. Finally, the bottom plots
of the difference in estimation errors for α and β show that the difference between
the sparsified and the original estimators goes to 0 as ε → 0, as it should, and that
for moderate values of ε the differences are small and can go in either direction,
which suggests an increase in variance but not much change in bias. Overall, in
this example sparsification provides a reliable approximation to the original RNC
estimator, and is a useful tool to save computational time for large dense networks.
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FIG. 3. Linear regression with varying pb and s = 0.1. Performance is evaluated by the MSEs of
α and β , and in-sample and out-of-sample mean squared prediction errors.

5. Analysis of the AddHealth data. We investigate the ability of our method
to capture network effects and improve prediction in two applications using data
from the AddHealth study (Harris (2009)). We will only use Wave I data in
which both covariates and friendship networks are available. Our first test task
is predicting students’ recreational activity from their demographic covariates and
their friendship networks; this was done via a network autoregressive model in
Bramoullé, Djebbari and Fortin (2009), who used the in-school survey data. In or-
der to be able to compare with their results directly, we also use the in-school data
only for this task. The students were asked about friends at both in-school and in-
home interviews, and the resulting networks are somewhat different. Our second
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FIG. 4. Top left: the adjacency matrix of the sparsified network for ε = 0.15 (white indicates a
nonzero entry, black is a zero entry); Top right: ‖θ̂∗ − θ̂‖2 and the bound (3.12); Bottom left: relative
improvement of the sparsified estimator α∗ over the original estimator α̂, that is, 1−MSEα∗ /MSEα̂ ;
Bottom right: relative improvement of the sparsified estimator β∗ over the original estimator β̂ .

application is predicting the age of first marijuana use, and the data on marijuana
use are only available from the in-home interviews; thus for the second task we
use the friendship network constructed from the in-home interviews. Prediction
performance on these two tasks is presented in this section. Additional results on
sensitivity to missing data are presented in the Supplementary Material (Li, Levina
and Zhu (2019)).

5.1. Predicting recreational activity in adolescents: A linear model example.
This exact task on the AddHealth data was considered by Bramoullé, Djebbari and
Fortin (2009), who incorporated peer effects into ordinary linear regression in via
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the auto-regressive model

(5.1) yv = 1

|N(v)|
∑

u∈N(v)

(
γyu + xT

u τ
) + xT

v β + εv, v ∈ V,

or, equivalently, in matrix form

(5.2) Y = (
I − γD−1A

)−1(
D−1AXτ + Xβ + ε

)
.

The authors called this the social interaction model (SIM), also sometimes
called a “linear-in-means” model. In econometric terminology, the local average
of responses models endogenous effects, and the local averages of predictors are
the exogenous effects. This model generally requires multiple additional assump-
tions to be identifiable and distributionally compatible across different equations,
an issue not considered by Bramoullé, Djebbari and Fortin (2009). It also loses the
interpretation of predictor coefficients as the change in the predicted value corre-
sponding to a unit increase in one predictor with all others fixed. When there are
known groups in the data, fixed effects can be added to this model (Lee (2007)).
In Bramoullé, Djebbari and Fortin (2009), SIM was applied to the AddHealth data
to predict levels of recreational activity from a number of demographic covari-
ates as well as the friendship network. The covariates used are age, grade, sex,
race, whether born in the U.S., living with the mother, living with the father,
mother’s education, father’s education, and parents’ participation in the labor mar-
ket. For some of the categorical variables, some of the levels were merged; refer to
Bramoullé, Djebbari and Fortin (2009) for details. Recreational activity was mea-
sured by the number of clubs or organizations to which the student belongs, with
“4 or more” recorded as 4. The histogram as well as the mean and standard de-
viation of recreational activity are shown in Figure 5. We used exactly the same
variables with the same level merging.

We compare performance of our proposed RNC method with the SIM model
(5.1) from Bramoullé, Djebbari and Fortin (2009), and to regular linear regression

FIG. 5. Histogram of the response, recreational activity level, from the data set used in the linear
regression example. The mean recreational activity is 1.22, with standard deviation 1.23.
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without network effects implemented by ordinary least squares (OLS), with the
same response and predictors as in Bramoullé, Djebbari and Fortin (2009). As dis-
cussed, the null model always gives out-of-sample predictions identical to OLS,
so we do not distinguish between them in this example. We also include boost-
ing (with tree stumps as base learners) using the same covariates as OLS, which
gives a measure of how much improvement relative to OLS can be achieved us-
ing the same covariates without a linearity assumption. Boosting was tuned by
cross-validation using the R package of Hothorn et al. (2018). As an additional
comparison with SIM, we also fit RNC with local averages of predictors as addi-
tional variables in the model (RNC-LA). We also apply the Bayesian model from
Section 2.4, which is equivalent to the CAR model as discussed in Section 2.7.
However, such a model can only make out-of-sample predictions if the entire net-
work, including that of the test data, is available before training. Therefore, we
implement this model as an oracle, including the entire network connecting the
test and the training data at the training stage. We call this method “oracle-Bayes”
to indicate it is using oracle information that is not available to all the other meth-
ods, and thus is not a fair competitor. The Bayesian estimates are computed as
posterior medians from MCMC samples using the implementation of Lee (2013).

We use the largest school in the dataset, with 2350 students. For 1223 records
with some missing values, we implemented conditional imputation, using random
forests trained on all the variables without missing values. In the Supplementary
Material (Li, Levina and Zhu (2019)), we include a sensitivity analysis to the pro-
portion of missing data, showing that our analysis is very robust. To order predic-
tors, we randomly split the network in two connected subgraphs with similar sizes.
We use one of these connected networks, with 898 data points, to perform variable
selection, and the other network with 940 points for evaluating the models. The
remaining 512 samples are not connected to either of the two networks and mostly
consist of isolated nodes or isolated pairs; we remove them from the analysis since
those are not going to be able to demonstrate peer effects.

We perform forward variable selection on the variable selection set, and then
add variables in the selected order to the model fitted on the other dataset. Doing
variable selection and model evaluation on two separate data sets avoids introduc-
ing model selection bias into our estimated prediction error. The forward selection
procedure starts with fitting an RNC model without any covariates, obtaining an
estimate of α̂ from this model, and then running standard forward selection adding
one variable at a time to α̂ which always remains in the model with a fixed coeffi-
cient 1. This ensures that selected variables are not acting as proxies to peer effects
but are adding as much new information as possible.

To evaluate predictive performance, we randomly hold out 90 students (about
10%) from the model evaluation dataset as test data, and fit all the models on
the rest. The variables are added to all the models one at a time in the order de-
termined by the variable selection procedure. The procedure is repeated for 50
independent random data splits into training and test sets. The root mean squared
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TABLE 1
Root mean squared errors for predicting recreational activity, over 50 independent data splits into

test (90 samples) and training sets. All methods are compared to RNC by a paired two-sample t-test,
where ** indicates p ≤ 10−4 and * indicates 10−4 < p < 10−2. Each row adds the variable listed
to the model in the previous row, in the order determined on a separate set by forward selection with

network cohesion effects included

Model OLS & Null Boosting SIM RNC RNC-LA oracle-Bayes

no covariates 1.217 ** 1.214 ** 1.177 ** 1.157 1.157 1.165 *
+ father’s education 1.215 ** 1.210 ** 1.180 ** 1.156 1.160 * 1.165
+ race 1.213 ** 1.212 ** 1.178 ** 1.158 1.164 * 1.163
+ age 1.214 ** 1.212 ** 1.177 ** 1.158 1.163 1.161
+ mother’s education ** 1.216 ** 1.213 ** 1.179 ** 1.160 1.167 1.171
+ born in the US 1.217 ** 1.214 ** 1.179 ** 1.161 1.169 1.168
+ sex 1.211 ** 1.208 ** 1.174 * 1.157 1.161 1.167
+ parents in labor market 1.214 ** 1.209 ** 1.179 ** 1.159 1.165 1.172 *
+ living with mother 1.216 ** 1.210 ** 1.182 ** 1.161 1.169 1.174 *
+ living with father 1.218 ** 1.210 ** 1.186 ** 1.163 1.174 * 1.172
+ grade 1.219 ** 1.210 ** 1.188 ** 1.163 1.176 * 1.175 *

errors (RMSEs) over these 50 splits are shown in Table 1. In each row, we report
the results from a paired t-test over the 50 random splits for each model compared
with RNC. It is clear that both SIM and RNC are able to improve predictions by
using information from the network, but RNC is more effective at this in all mod-
els. Including local averages of predictors does not help RNC at all, indicating that
the network effects it picks are distinct from and perhaps more informative than
the ones reflected in local average. The oracle-Bayes method does not perform as
well as RNC either, though it uses more information. A potential explanation for
this may be that the specific distribution assumptions that the Bayesian model im-
poses are not satisfied for this dataset; in particular, it might be a stretch to model
the 4-level ordinal recreation activity variable as Gaussian. Using boosting does
not help either, because the predictors are not particularly informative.

The network information is relatively more helpful: the RNC error using only
network cohesion and none of the predictors is lower than the error of any model
fitted by either OLS, SIM, or oracle-Bayes. As with any other prediction task,
adding unhelpful covariates tends to corrupt performance, and RNC achieves the
best performance with only one predictor in the model (father’s education). Fi-
nally, the coefficients from both OLS and RNC regressions are reported in the
Supplementary Material (Li, Levina and Zhu (2019)). They are generally simi-
lar, suggesting that the network cohesion penalty does not fundamentally change
interpretation of the coefficients, but improves prediction.

REMARK 9. For fair comparison with Bramoullé, Djebbari and Fortin (2009),
we formulate the problem of predicting recreational activity level as a linear regres-
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sion problem. However, given the ordinal nature of the response, an alternative
option may be using ordinal regression with network cohesion.

5.2. Predicting the risk of adolescent marijuana use. While many prediction
tasks can be addressed with linear or logistic regression, there are settings where
survival analysis is the only appropriate tool. In the AddHealth survey, the students
were asked “How old were you when you tried marijuana for the first time?”, and
the answer can either be age (an integer up to 18) or “never”, which is a censored
observation of age of first use. A survival model is thus the appropriate prediction
tool. Here we apply Cox’s proportional hazard model, with network cohesion, to
the largest community in the dataset with 1862 students from the Wave I in-home
interview (this question was only asked in the in-home interviews). The friendship
network is also based on in-home data for consistency; there are 2820 additional
covariates on each student collected from the in-home surveys.

As before, missing values are imputed with conditional imputation using ran-
dom forests, with covariates without missing values as predictors. However, we
deleted variables that had missing values due to questionnaire design, and vari-
ables with more than half the values missing. This left us with 218 variables in
total (since there are so many variables in the in-home survey, there are many
missing values). As in the previous example, we split the data randomly into two
connected components of roughly equal sizes, 645 observations for variable selec-
tion and 647 observations for model evaluation. The remaining isolated nodes or
pairs are removed. The variable selection step is implemented as in the previous
example, with network cohesion effects in the model. Five strongest predictors are
selected, with the additional requirement that each survey category (survey ques-
tions were grouped) has no more than one variable selected. We then use a regular
forward selection algorithm to determine the order in which these five variables
should be added to the model.

Given the selected variables and the order in which to add them, we fit the reg-
ular Cox’s model, the null model, boosting variant of the Cox’s model (Bühlmann
and Hothorn (2007)), and the RNC for survival on the model evaluation data set.
The null model is numerically nearly identical to the regular Cox’s model. We also
include a naive extension of the social interaction model (SIM) (5.1) to survival
analysis, including the neighborhood averages of x’s as extra covariates. However,
the neighborhood averages of y’s cannot be computed here, since many of the y’s
are censored and it is not clear how to extend the autoregressive component of the
model to survival data. We also include “RNC-LA” again, which adds all the local
averages of predictors to the RNC model. In the survival model, RNC can be fit-
ted with no covariates, but this is not possible for the regular Cox’s model or SIM
since partial likelihood is not defined without covariates.

Evaluating predictive performance of survival models is not straightforward; we
use the survival ROC curve suggested by Song and Zhou (2008). We calculate the
prediction ROC curve for each age between 14 and 17 (most age values fall into
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TABLE 2
Average integrated AUC (iAUC) for survival prediction ROC curves for age 14–17, over 50 random

splits of the data into training and test sets. All methods are compared with RNC by a paired
two-sample t-test. ** indicates p ≤ 10−4 and * indicates 10−4 < p < 10−2. Each row adds the

variable listed to the model in the previous row, in the order determined on a separate set by
forward selection with network cohesion effects included

Model Cox & Null Boosting SIM RNC RNC-LA

no covariates – – – 0.606 0.606
+ ever tried cigarette smoking 0.657 ** 0.668 ** 0.663 ** 0.709 0.703 **
+ deliberately damaged others’ property 0.700 ** 0.714 ** 0.707 ** 0.735 0.736
+ times of being jumped in past 12 months 0.713 ** 0.722 ** 0.733 * 0.740 0.758 **
+ how often to wear seatbelt in a car 0.721 ** 0.729 ** 0.743 0.745 0.765 **
+ received school suspension 0.727 ** 0.742 * 0.743 0.748 0.766 **

this range), then integrate the area under curve (AUC) over age to get a measure of
overall prediction performance. We randomly select 60 nodes (about 10% ) as the
test set and use the remaining nodes and their induced sub-network as the train-
ing set. This is independently repeated 50 times and the average integrated AUC
(iAUC) over the 50 replications is used to evaluate performance. For simplicity
of comparisons, we fixed the tuning parameter λ = 0.005 for all models, based
on validation on a different school, and set γ = 0.1. This results in a conservative
comparison of our method to Cox’s model, since tuning each RNC fit separately
can only improve its performance.

Table 2 shows the average iAUC results. All models improve or stay the same
with additional predictors. All methods that use the network information always do
better than the regular Cox’s model with the same covariates. RNC always outper-
forms SIM, and RNC-LA improves upon RNC for models with more covariates,
but not for the smaller ones. This may suggest that some predictors’ local aver-
ages are more helpful than others; however, including any local averages distorts
the meaning of the coefficients. Overall, the network cohesion effect in predicting
marijuana usage is clearly useful. Boosting is also able to improve the predictive
power over the regular Cox’s model; however, RNC outperforms boosting in all
cases. This suggests that the network effect is more important than nonlinear co-
variate effects (as modeled by boosting), though boosting is already much better
than models with only linear effects.

The estimated individual hazards exp(α̂v)’s are shown in Figure 6, represented
by node size, together with the friendship network and the observed age repre-
sented by node color. The cohesion effect can be seen in both the data itself and in
the estimated hazards.

Table 3 shows the coefficients of the regular Cox’s model and the RNC model.
They are overall similar, though it appears that for most variables the coefficient is
slightly reduced with the addition of network effects. This makes sense since some
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FIG. 6. Age of first marijuana risk use shown on the friendship network. Node size represents the
individual’s hazard, and node color represents the observed age of first use.

of the covariates are also likely cohesive (Michell and West (1996), Pearson and
Michell (2000), Pearson and West (2003)) and can serve as proxies to peer effects,
thus appearing to be more influential than they really are by themselves.

6. Discussion. We have proposed a general computationally efficient frame-
work for introducing network cohesion effects into prediction problems, without
losing the interpretability and meaning of the original predictors. For the regression
setting, we also derived conditions for when this approach outperforms regular re-
gression and have shown the proposed estimator is consistent. In general, we can
view RNC as another example of benefits of regularization when there are more

TABLE 3
Estimated covariate coefficients from regular Cox’s model and RNC for first age of marijuana use

prediction

Covariate Cox & Null RNC p-value (from Cox)

ever tried cigarette smoking 1.627 1.370 <10−6

deliberately damaged others’ property 0.348 0.367 <10−4

times of being jumped in past 12 months −0.122 −0.191 0.077
how often wears seatbelt 0.288 0.283 0.007
received school suspension 0.633 0.473 <10−6
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parameters than one can estimate with the data available. Encouraging network
cohesion implicitly reduces the number of free parameters, somewhat in the same
spirit as the fused lasso penalty (Tibshirani et al. (2005)). There are important dif-
ferences, however; we have a computationally efficient way to use the available
network data whereas the fused lasso optimization problem is hard to solve, and
we can explicitly assess the trade-off in bias and variance that results from encour-
aging cohesion.

A future direction to explore is understanding the behavior of network cohe-
sion on different kinds of networks. The large literature on random graph models
for networks gives many options for modeling the network as random rather than
treating it as fixed, as we did here; we would expect that some types of networks
spread cohesion over the network faster than others. While we focused on predic-
tion in this paper, the cohesion penalty may also turn out to be useful in causal
inference on networks when such inference is possible. Formal inference under
cohesion, such as confidence intervals and hypothesis tests, are also left for future
work.
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