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Data stewards seeking to provide access to large-scale social science data
face a difficult challenge. They have to share data in ways that protect privacy
and confidentiality, are informative for many analyses and purposes, and are
relatively straightforward to use by data analysts. One approach suggested in
the literature is that data stewards generate and release synthetic data, that
is, data simulated from statistical models, while also providing users access
to a verification server that allows them to assess the quality of inferences
from the synthetic data. We present an application of the synthetic data plus
verification server approach to longitudinal data on employees of the U.S.
federal government. As part of the application, we present a novel model for
generating synthetic career trajectories, as well as strategies for generating
high dimensional, longitudinal synthetic datasets. We also present novel veri-
fication algorithms for regression coefficients that satisfy differential privacy.
We illustrate the integrated use of synthetic data plus verification via analysis
of differentials in pay by race. The integrated system performs as intended,
allowing users to explore the synthetic data for potential pay differentials and
learn through verifications which findings in the synthetic data hold up and
which do not. The analysis on the confidential data reveals pay differentials
across races not documented in published studies.

1. Introduction. Widespread access to large-scale social science datasets
greatly enhances the work of evidence-based policy makers, social scientists, and
statisticians. Yet, widespread dissemination of large scale social science data also
carries a significant social cost: it puts data subjects’ privacy and confidentiality at
risk. Simply stripping unique identifiers like names and exact addresses, while nec-
essary, generally does not suffice to protect confidentiality. As is well documented
[e.g., Sweeney (1997, 2015), Narayanan and Shmatikov (2008), Parry (2011)], ill-
intentioned users may be able to link records in the released data to records in
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external files by matching on variables common to both sources. These threats are
particularly serious for large-scale social science data. Such data often come from
administrative or privately collected sources so that, by definition, someone other
than the organization charged with sharing the data knows the identities and (a
large number of) attributes of data subjects. Large-scale social science data also
typically include many variables that, since the data arguably are known by others,
could serve as matching variables.

As the size, richness, and quality of social science data have increased, so too
have the threats to confidentiality. Confronted with these risks, responsible data
stewards face a difficult dilemma: how can they provide access to confidential so-
cial science data while protecting confidentiality of data subjects’ identities and
sensitive attributes? Often data stewards—whether in academia, government, or
industry—default to restricting access to carefully vetted and approved researchers
via licensing arrangements or physical data enclaves. This is only a partial solu-
tion. It denies the benefits of data access to broad subsets of society including, for
example, students who need data for learning the skills of data analysis and citizen
scientists seeking to understand their society.

One approach that has been suggested in the literature [e.g., Karr and Reiter
(2014)] to deal with this dilemma is for data stewards to use an integrated sys-
tem comprising three components, namely (i) a fully synthetic dataset [Rubin
(1993)] intended for wide access, (ii) a verification server [Reiter, Oganian and
Karr (2009)] that allows users to assess the quality of inferences from the syn-
thetic data, and (iii) means for approved users to access the confidential data, such
as by secure remote access or a physical enclave. We review the rationale for this
approach in Section 2. As far as we are aware, however, no one has implemented or
illustrated this type of integrated system for complex data typically used in social
science research.

In this article, we present an application of synthesis with verification on lon-
gitudinal data comprising the workforce of the United States federal government
from 1988 to 2011. Specifically, we generate an entirely synthetic federal work-
force using administrative data from the Office of Personnel Management (OPM).
The dimensionality and longitudinal structure present many complications for syn-
thetic data generation; indeed, part of the contribution of this article is to describe
strategies for generating synthetic datasets with such complexity. Among these
strategies is a new Bayesian model for generating career trajectories. We also in-
clude assessments of the analytic validity of and potential disclosure risks in the
synthetic data. To illustrate the benefits and usage of verification servers, we esti-
mate regression models with the synthetic data that assess systematic differences
in employee salaries by race and gender, and we investigate how such differences
change over time. We verify the results using novel verification measures that we
design to satisfy differential privacy [Dwork (2006)]. We empirically evaluate the
performance of the new differentially private measures, illustrating when to expect
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them to yield analytically useful results and when not to do so. Finally, we validate
the regression results using the confidential data.

The findings are remarkable for both methodological and substantive reasons.
For the former, the integrated system performs as advertised, allowing us to see
the validity, and shortcomings, of the synthetic data results. For the latter, the con-
fidential data suggest that, given our model specification, (i) the differential in pay
for white and black female employees has been increasing over time, and that
(ii) Asian male employees make substantially less on average than white male em-
ployees over much of the time frame we analyzed. As far as we know, neither of
these findings have been previously documented in the public sector at this mag-
nitude or detail.

The remainder of this article is organized as follows. In Section 2, we review the
general framework of providing synthetic data with verification via an integrated
system. In Section 3, we describe the OPM data in more detail and outline the pro-
cedures used to generate the synthetic data, including the new Bayesian model for
generating synthetic careers. In Section 4, we describe the novel differentially pri-
vate verification measures. In Section 5, we mimic a usage of the integrated system
to analyze the differential pay gap: we start with the synthetic data, verify findings
using the differentially private measures, and repeat the analysis on the confiden-
tial data. Although the big picture concepts underlying this integrated system have
been highlighted previously [Callier (2015), Commission on Evidence-Based Pol-
icymaking (2017), page 57], this analysis represents the first illustration of the full
framework on genuine data. The substantive analysis itself is notable, as we are un-
aware of any recent, public studies by the federal government on racial disparities
in pay. The relative decrease in gains by black women and the relatively stagnant
differential between white and black men suggest limited recent progress toward
pay equality for these groups. Finally, in Section 6, we discuss implementation
issues for these kinds of integrated systems and suggest topics for future research.

2. The framework: Synthesis with verification. We use a framework that
integrates three key ideas from the literature on confidentiality protection and data
access. The first idea is to provide synthetic public use files, as proposed by Rubin
(1993) and others [e.g., Little (1993), Fienberg (1994), Raghunathan, Reiter and
Rubin (2003), Reiter and Raghunathan (2007), Drechsler (2011)]. Such files com-
prise individual records with every value replaced with simulated draws from an
estimate of the multivariate distribution of the confidential data. When generated
appropriately, synthetic data can preserve many, but certainly not all, important
associations in the confidential data. They also should carry low risks of reiden-
tification disclosures, since the released data do not correspond to actual records.
This largely eliminates the kinds of record linkage attacks that have broken typical
disclosure control methods, as it is nonsensical for ill-intentioned users to match
synthetic records to external files.
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While synthetic data have been used to release public use versions of sev-
eral high profile social science datasets [Abowd, Stinson and Benedetto (2006),
Hawala (2008), Machanavajjhala et al. (2008), Drechsler et al. (2008), Kinney
et al. (2011)], at present they have a critical weakness. Users of synthetic data can-
not determine how much their analysis results have been impacted by the synthesis
process if all they have are the synthetic data. This limitation leads to the second
idea that is integrated in the framework: provide users access to verification servers
[Reiter, Oganian and Karr (2009)]. A verification server is a query-based system
that (i) receives from the user a statistical query that enables comparison of results
from the synthetic and confidential data, and (ii) returns an answer to the query
without allowing the user to view the confidential data directly [Karr and Reiter
(2014)]. With the output from a verification server, users can decide whether or
not results based on the synthetic data are of satisfactory quality for their par-
ticular purposes. Crucially, however, verifications also leak information about the
confidential data. Thus, we should apply some form of disclosure limitation to
the verification measures, ideally one that enables the data steward to bound the
information leakage. This is precisely what differential privacy promises, which
motivates us to develop the new verification measures presented in Section 4.

Undoubtedly, some analyses will not be adequately preserved by the synthetic
data. The verification server will help users learn this, thereby reducing the chances
of false findings based on the synthetic data. These users may desire access to the
confidential data, which motivates the third prong of the integrated data access
system: provide remote access to confidential data to approved users via virtual
machines on a protected research data network (PRDN). Variants of PRDNs are
in use by many organizations, including national statistical agencies, universities,
and the National Opinion Research Center. Thus, we do not describe how to set up
the architecture for a PRDN in this article, although we use one at Duke University
(https://arxiv.org/abs/1710.03317) to validate results in the OPM application.

Integrating all three ideas in a single system creates synergies. Data stewards can
establish policies with low barriers for access to the synthetic data, for example,
by allowing users to access the synthetic data without completing an extensive
approval process. Users can start with the synthetic data to investigate distributions
and relationships, determine what questions might be answerable with the data
(e.g., are there enough cases of interest to support accurate modeling), examine
the need for transformations and recoded variables, and develop appropriate code.
The verification server can enable users to know when to trust and act on their
results, and when perhaps not to do so. Even users who are not satisfied with the
quality of the results can benefit from starting with the synthetic data. Storage and
processing of large-scale data are costly to data stewards, who likely will pass
some costs to users. Users who have an informed analysis plan—for example,
they know the approximate marginal distributions of the data and have a sense of
the data structure—can improve their efficiency when using the PRDN, thereby
saving their own time and money. By performing their data explorations outside

https://arxiv.org/abs/1710.03317


1128 A. F. BARRIENTOS ET AL.

the PRDN, these analysts will use up fewer cycles on the protected systems and
open opportunities for more efficient use of those systems.

3. Description of data.

3.1. Overview of the confidential data. The Office of Personnel Management
maintains the personnel records for all civil servants in the United States. We work
with a subset of the data from the OPM’s Central Personnel Data File (CPDF) and
Enterprise Human Resources Integration system (EHRI), which we jointly refer to
as the Status File (SF). The SF we use is a snapshot of the civil service on every
September 30 (the end of the fiscal year), comprising approximately two million
employees per year from 1988 to 2011. For each employee, the file includes annual
data on characteristics like age, agency, education level, pay grade, occupation,
supervisory status, entry and departure, and other background characteristics. The
data are longitudinally linked. We exclude employees from the armed services,
the Department of Defense, the U.S. Postal Service, and individuals who work in
classified roles, sensitive agencies, and sensitive occupations as defined by OPM.
The final analysis file includes personnel records from 3,511,824 employees.

The OPM data are valuable because they allow researchers to investigate many
key questions in the study of human capital in large organizations and govern-
ment organizations in particular. For example, researchers can use the OPM data
to examine government agencies’ ability to recruit high quality individual talent,
to develop their employees’ expertise within those agencies, and to retain the best
and brightest in government service [e.g., Lewis and Durst (1995), Bolton and
de Figueiredo (2016)]. These are important and complicated challenges; public
agencies must cope with episodic turnover of political appointees, limited abil-
ity to adjust worker compensation in response to outside market pressures, diffi-
culty in performance measurement due to the nature of governmental tasks, and
constraints on frictionless alterations to the government workforce because of em-
ployment terms for civil servants [Borjas (1980), Bolton, de Figueiredo and Lewis
(2016)]. Ultimately, research with these data can shed light on the relative costs
and benefits of human capital management strategies. The OPM data also are used
by the government as a major input for wage comparisons, tracking personnel, de-
termining workforce diversity, and helping to construct personnel policies for the
over two million civil servants.

As of this writing, the OPM has made several derivatives of the SF data avail-
able to the public, although not the full SF data that we work with. In particular,
the OPM releases summary data online as “data cubes.” These comprise quar-
terly tabular summaries of a limited set of variables without employee indicators
that would allow for over-time comparisons. Pursuant to the Freedom of Informa-
tion Act (FOIA), the OPM provides nonanonymized data for six variables—name,
agency, location, position, grade, and salary—for each civil service employee in
a nonsensitive position to anyone who requests them. Some proprietary websites,
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such as FedSmith, also make some or all of these limited data available to the pub-
lic. The news agency BuzzFeed used a FOIA request to obtain and subsequently
release a subset of the OPM data. Unlike our SF data, the data released by Buz-
zFeed do not include race or gender, which typically are not included by the OPM
in FOIA requests, nor 14 other variables that we synthesize.

We obtained the SF data through an agreement with OPM, with the understand-
ing that we would not reveal personally identifiable information when using the
data, especially information that OPM deems sensitive like race and gender. The
OPM data files are currently housed in a PRDN at Duke University with strict ac-
cess and confidentiality standards under a Duke University IRB-approved protocol.
We did extensive work cleaning and preparing these data for research purposes, in
accordance with the OPM’s “Guide to Data Standards (Part A).” The supplemental
material in Barrientos et al. (2018) includes more details on our data preparation
processes.

The availability of the limited data, as well as now the BuzzFeed data and possi-
bly future releases from FOIA requests, pose an obvious disclosure risk problem. If
the SF data were “anonymized” by standard techniques employed by government
agencies—for example, stripping names coupled with aggregating or perturbing
a small fraction of the data values—an ill-intentioned user might be able to re-
verse engineer a large percentage of the OPM database by matching the six or
more known fields to the same fields in the anonymized data. They subsequently
could retrieve the private and confidential data of a large percentage of the federal
personnel.

3.2. Overview of synthetic data creation. To reduce these disclosure risks, the
OPM could release a fully synthetic version of the SF. In this section, we provide
an overview of our process for generating the synthetic SF data. We focus on the
methods for generating synthetic careers, races, and wages; these variables are
central to our illustrative verification analysis of wage differentials. The synthesis
models for other variables are described in Barrientos et al. (2018). As of this
writing, the OPM has not yet determined whether or not to make the synthetic data
available to a broader set of researchers.

The SF data are complicated, making the task of generating useful synthetic
data challenging. The employees are measured on 29 variables over the course of
24 years. They work across 607 agencies, some of which have only a handful of
employees and some of which have thousands of employees. The variables are
mostly nominal with levels ranging from 2 (sex) to 803 (occupation), and also in-
clude a small number of numerical variables. For any employee, most variables
can change annually, although a few demographic variables remain constant or
change deterministically (age). Many pairs of variables have theoretically impos-
sible combinations, such as certain occupations being restricted to certain educa-
tion and degree types. Some variables should be nondecreasing over time, such as
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months of military service and educational levels, although the confidential data
have records that violate those restrictions, presumably due to reporting errors.

To make the synthetic data, we construct a joint distribution using sequential
conditional modeling, as done in Kinney et al. (2011). This allows us to develop
models targeted to different types of variables, to conveniently incorporate logical
relationships among the variables, and to develop efficient, parallelizable code. We
order the variables from the first to last to be synthesized. Let Vij be the value of
the j th ordered variable for the ith employee, where j = 1, . . . ,29. We seek the
joint distribution,

(1) p(Vi1, . . . ,Vi29) = p1(Vi1)×p2(Vi2|Vi1)×· · ·×p29(Vi29|Vi1, . . . ,Vi28),

where each pj denotes the conditional distribution of Vj given V1, . . . ,Vj−1. We
let V1 correspond to the sequence of agencies where the employee has worked,
which defines the employee’s career. Nearly all other variables depend on when
and where the employee works, so modeling this variable first facilitates the syn-
thesis process. We let (V2, . . . ,V7) be, in order, gender, race, educational level,
age in years, years since the employee earned the degree mentioned in educational
level, and an indicator for ever having served in the military. These demographic
variables are, for the most part, straightforward to model because either (1) they
remain constant across time or change in a deterministic manner after the initial
year, or (2) change with only low probabilities. We let (V8, . . . ,V29) include the
remaining variables, which depend on the characteristics of the employee’s job that
year. Examples of these variables include occupation, part-time or full-time status,
grade and step classification, supervisory status, and pay. A full list of variables is
in Barrientos et al. (2018).

For Vj that can change annually, where j > 1, we generally apply lag-one mod-
eling strategies to simplify computation. Specifically, let Vijt be the j th variable
at year t for the ith employee. Let ti1 < · · · < tini

be the ni years when employee i

has values (is working), and set Vij = (Vij ti1, . . . , Vij tini
). For longitudinal Vj , we

use the conditional representation

pj (Vij |Vi1, . . . ,Vi(j−1))

=
ni∏

l=2

pjtil (Vij til |Vi1, . . . ,Vi(j−1), Vij ti1, . . . , Vij til−1),
(2)

where pjtil denotes the distribution of Vijtil conditioned on the previous j − 1
variables and the values of Vij up to time til−1. We assume that

pjtil (Vij til |Vi1, . . . ,Vi(j−1), Vij ti1, . . . , Vij til−1)

= pjtil (Vij til |Vi1til , . . . , Vi(j−1)til , Vij til−1).
(3)

Thus, the conditional distribution of Vijtil depends only on current values of Vij ′ ,
1 < j ′ < j − 1, and the nearest past value of Vij .
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For purposes of this article, we create and analyze one synthetic dataset. If de-
sired by the OPM, we could create and release multiple synthetic datasets by re-
peating the data generation process. An advantage of releasing multiple synthetic
datasets is that users can propagate uncertainty from the synthesis process through
their inferences using simple combining rules [Raghunathan, Reiter and Rubin
(2003), Reiter and Raghunathan (2007), Drechsler (2011)].

3.2.1. Modeling strategy for employees’ careers (V1). We define an em-
ployee’s career as the sequence of agencies where the employee has worked
throughout the 24 years. Since most employees have not worked in all 24 years,
we create an additional “agency” corresponding to the status of not working. With
this additional level, all employees’ sequences have length 24.

To model these sequences, we create three additional variables. Let G be the
number of agencies where the employee has worked over the 24 years. Let Z be
the list of years in which the employee moved to a new agency, including a change
in working status. Let W be the ordered sequence of unique agencies where the
employee has worked. The values of (G,Z,W) completely describe the entire
career of any employee, as illustrated in Table 1.

Defining a model for employees’ careers is equivalent to defining a model for
(G,Z,W), which we do sequentially. For G, we use a discrete distribution on
{1, . . . ,24} with probabilities equal to the observed frequencies of each value,
from which we randomly generate the values of G associated with the synthetic
employees. For Z|G, we create a one-to-one function TG to map Z into a space of
permutations dependent on G. We model TG(Z)|G using a latent model defined on
the simplex space. The latent model is defined using mixtures of Dirichlet distribu-
tions. This model allows us to borrow information across different agency patterns
(given G) and, therefore, to give positive probability to unobserved values of Z|G.
Since we use a one-to-one mapping, the model for TG(Z)|G can be easily used to
generate values from Z|G. Finally, we model W|Z, G using a Markov chain of or-
der one. A formal description of the three submodels is in Barrientos et al. (2018).

TABLE 1
Illustration of how to define (G,Z,W) using three hypothetical employees and 10 years. Each

column in the employee’s career represents a year; a 0 means the employee did not work that year;
and, A, B, and C represent three different agencies. For example, employee e1 did not work in years

1 and 2, worked in agency A for two years, stopped working in years 5 and 6, and worked in
agency C during the last four years

Employee Employee’s career G Z W

e1 0 0 A A 0 0 C C C C 3 (3,5,7) (0,A,0,C)

e2 0 0 0 0 0 0 0 0 0 B 2 10 (0,B)

e3 A 0 B C C A A A 0 0 4 (2,3,4,6,9) (A,0,B,C,A,0)
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While targeted at modeling careers, this model can be applied more generally for
other sequences of categorical variables.

3.2.2. General strategy for race (V3). Almost all employees report the same
value of race in all 24 years. However, 2.7% of employees report different values
across the years, usually changing values only once or twice. It is possible that
these represent clerical errors in the data, but it is also the case that OPM changed
the ways that they handled the collection of race data during the period covered by
our dataset. In particular, different categories were available for employee selection
at different points from 1988 to 2011, and eventually OPM allowed individuals to
select more than one race. There is no way for us to distinguish clerical errors
from instances in which employees changed their race identification for personal
reasons or because of how the data were collected.

Rather than model longitudinal changes in race across time for all employees,
which easily could result in far more switching than observed in the data, we in-
stead create an auxiliary binary variable that indicates whether the values of race
remain the same across all years or not. Using the confidential data, we estimate
a model for this binary outcome with classification and regression trees (CART),
conditioning on sex (V2) and predictors derived from the employee’s career (V1).
CART models are useful as synthetic data engines, as they can reflect important
features of conditional distributions automatically and flexibly. Following the ap-
proach in Reiter (2005b), we run the synthetic values of (V1,V2) down the fitted
tree to generate synthetic values of the binary variables for each synthetic em-
ployee. For synthetic employees whose generated binary variable indicates that
their race value does not change, we predict their race using a CART-based model
estimated from the confidential data. This model uses the first observed race as
the outcome variable and (V1,V2) as predictors. Finally, for synthetic employ-
ees whose binary variable indicates that their race values change across time, we
model the race at each year using (2) and (3), using CART for each p3,t where
t = 1, . . . ,24.

3.2.3. General strategy for wages (V27). Federal employees’ basic pay (salary
before any location adjustments) is set by tables known as pay plans. For example,
most government employees in white collar occupations fall under the General
Schedule pay plan. For most pay plans, basic pay is a deterministic function of a
combination of variables, usually including the employee’s grade and step. Thus,
in theory, you can find any federal employee’s pay by locating their grade and
step on their pay plan table. However, in the SF, some employees’ basic pay is not
consistent with their pay plan, grade, and step; when this happens, usually the pay
coincides with a value in the pay table associated with a neighboring step.

To capture these features, we synthesize pay plan, grade, and step before basic
pay, thereby allowing us to “look up” the pay for the synthetic employees. We
model basic pay using (2) and (3) with a CART synthesizer, assuming that basic
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pay is a nominal variable. This essentially is equivalent to sampling from the values
of basic pay reported in grade and step for a given pay plan, but also allowing for
other variables on the file to explain deviations from the pay plan.

3.2.4. Evaluations of analytic validity. We evaluate the analytic validity of the
synthetic OPM data using the general approach for synthetic data products cur-
rently published by federal statistical agencies. First, we consult subject matter
experts and staff at the OPM to determine a set of analyses that is representative of
likely uses of the synthetic data. The subject matter experts suggested estimands
involving race and gender, which are not available for individual employees on
public use files, as well as analyses involving longitudinal trends. The staff at the
OPM suggested estimands that can be obtained from the data cubes, as they believe
users will have more faith in the synthetic data if those are faithfully reproduced.
Second, after selecting the analyses, we run them on the synthetic and confidential
data within the PRDN. We compare the results, identifying features of the joint dis-
tribution that are modeled accurately and not as accurately as desired. This process
is iterative, in that we use the results to refine and improve the synthesis models.

With a dataset of this complexity and dimensionality, the number of potentially
interesting analytical validity checks is enormous. We summarize an extensive, but
necessarily partial, set of results from these checks in Barrientos et al. (2018) and at
https://github.com/DukeSynthProj/DukeSyntheticDataResources. In these results,
we include analyses of pay differentials by race for sub-populations of the OPM
file, including specific agencies and occupations. Of course, with a dataset of this
complexity and dimensionality, it is practically impossible to preserve all relation-
ships when synthesizing. This underscores the benefits of verification servers for
synthetic data products.

3.2.5. Evaluations of disclosure risks. For this synthetic OPM file, we do not
evaluate the risks that intruders can use the synthetic data to learn whether or not
particular individuals are in the confidential OPM database. The confidential OPM
database is a census, so that all federal employees (in the agencies we include)
are known to be in the database. Further, as mentioned in Section 3.1, various
nonanonymized data products derived from the confidential OPM data are publicly
available. Hence, intruders seeking to learn whether or not certain individuals are
in the OPM database have far more informative—indeed, perfectly informative—
sources to use than the synthetic OPM data. Instead, we focus on the risk that
intruders can use the synthetic OPM data to infer values of individual employees’
sensitive variables that are not in the public data products, like gender and race.

To assess these inferential disclosure risks, we compute probabilities that intrud-
ers correctly guess individuals’ sensitive values given the synthetic data. Here, we
describe an approach for assessing inferential disclosure risks for employees’ most
recently reported races. Broadly, we identify combinations of variables known to
be publicly available, namely the six fields released as nonanonymized data by

https://github.com/DukeSynthProj/DukeSyntheticDataResources
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OPM and the 14 variables in the BuzzFeed data, that are present in both the syn-
thetic and confidential OPM files. For each of these combinations, we compute the
percentage of times each race category appears in the synthetic data. We record the
numbers of individuals for whom the percentage corresponding to their actual race
exceeds a threshold deemed too high risk (thresholds are determined by policies
of the data steward). Details of the methodology appear in Barrientos et al. (2018).

Revealing the thresholds and the exact numbers of individuals exceeding them
could result in increased disclosure risks for some records. Hence, as typical when
reporting disclosure risks in applications with genuine sensitive data [e.g., Holan
et al. (2010)], we do not publish precise estimates of the probabilities. We can say,
however, that less than 15% of employees’ true races can be guessed correctly by
using this attack strategy. Whether or not this is an acceptable risk is, of course, a
matter for the data steward (OPM) to decide.

When considering such probabilities, it is also important for data stewards to
compare against relevant baseline risks. For example, suppose that anyone can
learn the marginal distribution of race for particular agencies in particular years
from public sources. Suppose further that this public information reveals that all
employees in a certain agency report the same race in one year (which happens
for some small agencies). In this scenario, synthetic data with this same marginal
distribution do not reveal any new information about these employees’ races. Ar-
guably, this should not be counted as a disclosure risk attributable to the synthetic
data. In fact, the data cubes published by OPM include tables of marginal distribu-
tions of race by agency, as well as margins of race by other variables. Hence, we
can treat the marginal distributions of race from the cubes as baseline risks. Doing
so, we find that more than half of the races correctly estimated in the synthetic data
also can be determined using just the marginal information from the data cubes.
We also find that, across all employees in one particular year, the probabilities for
the synthetic OPM data are lower than those for the data cubes for about 50% of
employees, and higher for about 15% of employees. Again, whether or not this is
an acceptable incremental disclosure risk is a policy decision for the data steward
rather than the statisticians who assess the risk.

Assessing inferential disclosure risks for high-dimensional, fully synthetic data
is a computationally intensive and challenging task, and is the subject of ongo-
ing research. For additional discussion, see Reiter (2005a), Abowd and Vilhu-
ber (2008), Drechsler (2011), Wang and Reiter (2012), Reiter, Wang and Zhang
(2014), and McClure and Reiter (2016), as well as the applications cited in Sec-
tion 2. Section 6 includes additional discussion of disclosure risks in the integrated
system.

4. Verification measures. The quality of inferences from synthetic data de-
pend entirely on the quality of the models used to generate the data, as the synthetic
data only can reflect distributional assumptions in the synthesis models [Reiter
(2005a)]. Analysts of the synthetic data need some way to assess the accuracy of
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their particular inferences based on the synthetic data. Verification servers provide
an automated means to provide such feedback.

In designing a verification server, the agency must account for a crucial fact:
verification measures leak information about the confidential data [Reiter, Oga-
nian and Karr (2009), McClure and Reiter (2012)]. Clever data snoopers could
submit queries that, perhaps in combination with other information, allow them to
estimate confidential values too accurately. To reduce these risks, one approach is
to require verification measures to satisfy ε-differential privacy (ε-DP), which we
now explain briefly.

Let A be an algorithm that takes as input a database D and outputs some quantity
o, that is, A(D) = o. In our context, these outputs are used to form verification
measures. Define neighboring databases, D and D′, as databases of the same size
that differ in one row and are identical for all other rows.

DEFINITION 1 (ε-differential privacy). An algorithm A satisfies ε-differential
privacy if for any pair of neighboring databases (D,D′), and any output o ∈
range(A), Pr(A(D) = o) ≤ exp(ε)Pr(A(D′) = o).

Intuitively, A satisfies ε-DP when the distributions of its outputs are similar for
any two neighboring databases, where similarity is defined by the factor exp(ε).
The ε, also known as the privacy budget, controls the degree of the privacy offered
by A, with lower values implying greater privacy guarantees. ε-DP is a strong
criterion, since even an intruder who has access to all of D except any one row
learns little from A(D) about the values in that unknown row when ε is small.

Differential privacy has three other properties that are appealing for verifica-
tion measures. Let A1(·) and A2(·) be ε1-DP and ε2-DP algorithms. First, for any
database D, releasing the outputs of both A1(D) and A2(D) ensures (ε1 + ε2)-DP.
Thus, we can track the total privacy leakage from releasing verification measures.
Second, releasing the outputs of both A1(D1) and A2(D2), where D1 ∩ D2 = ∅,
satisfies max{ε1, ε2}-DP. Third, for any algorithm A3(·), releasing A3(A1(D)) for
any D still ensures ε1-DP. Thus, post-processing the output of ε-DP algorithms
does not incur extra loss of privacy.

One method for ensuring ε-DP, which we utilize for ε-DP verification mea-
sures, is the Laplace Mechanism [Dwork (2006)]. For any function f : D →
R

d , let �(f ) = max(D1,D2) ‖f (D1) − f (D2)‖1, where (D1,D2) are neighbor-
ing databases. This quantity, known as the global sensitivity of f , is the max-
imum L1 distance of the outputs of the function f between any two neigh-
boring databases. The Laplace Mechanism is LM(D) = f (D) + η, where η is
a d × 1 vector of independent draws from a Laplace distribution with density
p(x|λ) = (1/(2λ)) exp(−|x|/λ), where λ = �(f )/ε.

We now present verification measures that satisfy ε-DP and help analysts assess
the importance of regression coefficients. We derive the measures for linear regres-
sion, as we use these models in the analysis of wage differentials by race. To fix
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notation for describing the measures, let D include all n individuals in the subset of
the confidential data that is of interest for analysis. For any individual i belonging
to D, let yi ∈ R be the response variable and xi = (1, xi,1, . . . , xi,p)T ∈ R

p+1 be
a set of predictors, where both are transformed as desired for regression model-
ing. Hence, D = {(xi, yi)}ni=1, where all values are from the confidential data. Let
E(yi |xi) = βT xi , where β = (β0, . . . , βp)T ∈ R

p+1.

4.1. Measures for importance of regression coefficients. In many contexts, an-
alysts are interested in whether or not the value of some βj exceeds some thresh-
old, say γ0. For example, users of the SF data (economists, policy makers, lawyers)
might consider a value of βj corresponding to 1% or larger differential in average
pay to be practically significant evidence of wage discrimination. But, they might
be less concerned when βj corresponds to a differential less than 1%. Without loss
of generality, assume that we want to determine if some βj < γ0. Corresponding to
this decision, we define the parameter θ0 = I(−∞,γ0](βj ), where I(−∞,γ0](βj ) is an
indicator function that equals one when βj ∈ (−∞, γ0] and equals zero otherwise.
We note that the measure can be used for any interval, for example, of the form
[l, u] or (u,∞].

For many regression analyses of the SF data, the confidence intervals for the
relevant βj are narrow due to large sample sizes. For these βj and most γ0, the
maximum likelihood estimate (MLE) of βj effectively tells the analyst whether
θ0 = 1 or θ0 = 0. To formalize this notion, let β̂N

j be the MLE of βj based on a
sample with N individuals (where N stands for a generic sample size). We approx-
imate θ0 by using the pseudo-parameter

θN =
⎧⎨
⎩

1 if P
[
β̂N

j ≤ γ0
] ≥ γ1,

0 if P
[
β̂N

j ≤ γ0
]
< γ1.

Here, γ1 ∈ (0,1) reflects the degree of certainty required by the user before she
decides there is enough evidence to conclude that θ0 = 1. When β̂N

j is a consistent
estimator of βj , we can guarantee that limN→∞ θN = θ0.

Unfortunately, we cannot release β̂N
j , nor other deterministic functions of D,

directly and satisfy ε-DP. Instead, we release a noisy version of the key quantity in
θN , namely r = P(β̂N

j ≤ γ0). We do so using the subsample and aggregate method
[Nissim, Raskhodnikova and Smith (2007)]. We randomly split D into M disjoint
subsets, D1, . . . ,DM , of size N (with inconsequential differences when N = n/M

is not an integer), where M is selected by the user. We discuss the choice of M in
Section 6. In each Dl , where l = 1, . . . ,M , we compute the MLE bjl of βj . The
(bj1, . . . , bjM) can be treated as M independent draws from the distribution of β̂N

j ,
where N = n/M . Let Wl = I(−∞,γ0](bjl). Each Wl is an independent, Bernoulli
distributed random variable with parameter r . Thus, inferences for r can be made
based on S = ∑M

l=1 Wl . However, we cannot release S directly and satisfy ε-DP;
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instead, we generate a noisy version of S using the Laplace Mechanism with λ =
1/ε, resulting in SR = S + η. The global sensitivity equals 1, since at most one of
the partitions can switch from zero to one (or vice versa).

The noisy SR satisfies ε-DP; however, interpreting it directly can be tricky.
First, SR is not guaranteed to lie in (0,M) nor even to be an integer. Second,
alone SR does not provide estimates of uncertainty about r . We therefore use a
post-processing step—which has no bearing on the privacy properties of SR—to
improve interpretation. We find the posterior distribution of r conditional on SR

and using the noise distribution, which is publicly known. Using simple Markov
chain Monte Carlo techniques, we estimate the model,

(4) SR|S ∼ Laplace(S,1/ε), S|r ∼ Binomial(M, r), r ∼ Beta(1,1).

Here, we treat S as an unobserved random variable and average over it. Hence, the
computations never touch the confidential data other than through the differentially
private SR .

The verification server reports back the posterior distribution of r to the analyst,
who can approximate θN for any specified γ1 simply by finding the amount of
posterior mass below γ1. Alternatively, analysts can interpret the posterior dis-
tribution for r as a crude approximation to the Bayesian posterior probability,
π(βj ≤ γ0|SR). For instance, if the posterior mode for r equals 0.87, we could
say that the posterior probability that βj < γ0 is approximately equal to 0.87. We
caution that this latter interpretation may not be sensible for small sample sizes.

In the verification of the OPM regression analyses, we use measures that com-
pare differences between regression coefficients estimated with the confidential
data and user-specified thresholds. The substantive experts on our team felt that
this was most appropriate for the analysis of wage gaps. However, the measures
can be used to compare synthetic and confidential data regression coefficients.
Rather than setting thresholds based on scientific or policy considerations, the user
can set thresholds based on the differences they are willing to tolerate between the
synthetic and confidential data coefficients. For example, suppose the synthetic
data coefficient of interest is −0.021. Suppose that the user considers the synthetic
data estimate sufficiently accurate when the confidential data coefficient is within
±50% of the synthetic data coefficient (or some other user-defined tolerance in-
terval). The user can set the threshold at (l, u) = (−0.031,−0.010). A reported
posterior mode of r near 1 suggests that the difference between synthetic data and
observed data coefficients is within the tolerance bound (±50%), whereas a value
near zero suggests otherwise.

For any particular analysis, the usefulness of these verification measures de-
pends on the sample size, the number of partitions, and the value of ε allowed by
the data steward. Barrientos et al. (2018) includes analyses of the OPM data that
illustrate the performance of the verification measures for different values of these
features. We discuss some of these findings in Section 6.
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4.2. Measures for longitudinal trends in regression coefficients. With longi-
tudinal data, analysts often are interested in how the value of some βj changes
over time. For example, in the SF analysis, we want to know whether the racial
wage gap is closing or growing as the years advance. Suppose for a moment that
we knew the values of βj for all years. One simple way to characterize the trend
in βj over time is to break the data into K consecutive periods and, in each time
period, find the OLS line predicting βj from year. The slopes of these lines pasted
together represent a piece-wise approximation to the trend. Of course, we do not
know the values of βj ; we must use D to learn about these slopes.

We use this idea to construct a verification measure for longitudinal trends in
regression coefficients. Specifically, the analyst begins by selecting K periods of
interest. In each period, the analyst posits some interval for the slope and requests
an ε-DP verification of whether the values of βj are consistent with that posited
interval. For example, the analyst might split D in K = 2 consecutive intervals, and
posit that the slope of βj over the years is negative in the first period and positive
in the second period. In the wage gap analysis, this would correspond to a growing
wage gap in the first period, followed by a shrinking wage gap in the second period.
The analyst can use the synthetic data to identify the periods of interest and set the
intervals for the slopes, as we illustrate in Section 5.4. Effectively, this evaluates
whether the trends in βj estimated with the confidential data match the trends
estimated with the synthetic data.

Formally, suppose that D can be divided into nonempty subsets, {Dt }t∈T , where
Dt denotes all the data points in D at year t , and T is some period of years under
study. Further, suppose that for every (yit , xit ) ∈ Dt , E(yit |xit ) = βT

t xit , where
β t = (β0t , . . . , βpt )

T is the vector of coefficients at time t . Let Tk ⊂ T be a sub-
set of years. The analyst seeks to learn the overall trend in the values of βjt ,
where t ∈ Tk , during that time. To characterize this trend, let m({(t, βjt )}t∈Tk

)

be a real-valued function that returns the slope of the OLS line passing through
the points {(t, βjt )}t∈Tk

. The analyst might be interested in, for example, whether
m({(t, βjt )}t∈Tk

) < 0 indicating a decreasing trend, m({(t, βjt )}t∈Tk
) > 0 indicat-

ing an increasing trend, or more generally, m({(t, βjt )}t∈Tk
) ∈ Ck for some interval

Ck , for example, Ck is tight around zero for a flat trend. Hence, for any interval Ck ,
the analyst seeks to learn θ0 = ICk

(m({(t, βjt )}t∈Tk
)), where ICk

(m({(t, βjt )}t∈Tk
))

is an indicator function that equals one when m({(t, βjt )}t∈T ) ∈ Ck and equals zero
otherwise.

Because θ0 is a binary parameter, we can use the methods in Section 4.1 to
release an ε-DP version of it. Here we outline the procedure; formal details are
in Barrientos et al. (2018). We split D into M partitions of employees. In each
Dt

l , we compute the MLE bjtl of βjt . We let Wl = ICk
(m({(t, bjtl)}t∈Tk

) and S =∑M
l=1 Wl . Following the logic of Section 4.1, we use (4) to get posterior inferences

for r = P [m({(t, β̂Nt

j t )}t∈Tk
) ∈ Ck], where β̂

Nt

j t is the MLE of βjt based on a sample
with Nt individuals.
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When trends over the entire T are of interest, analysts can partition T into
K consecutive periods, Tk = {tk−1, tk−1 + 1, . . . , tk}, where k = 1, . . . ,K and
t0 < t1 < · · · < tK . For a given set of intervals {Ck}Kk=1, the analyst can do the ver-
ification separately for each interval, and interpret the set of results. Alternatively,
the analyst can perform a single verification across all intervals, setting the pa-
rameter of interest to θ0 = ∏K

k=1 ICk
(m({(t, βjt )}t∈Tk

)). Here, θ0 equals one when
m({(t, βjt )}t∈T ) ∈ Ck for every k = 1, . . . ,K , and equals zero otherwise. For ex-
ample, to examine whether the trend of βjt is decreasing during the first 9 years
and is increasing during the last 15 years, the analyst would set C1 = (−∞,0),
C2 = (0,∞), T1 = {1, . . . ,9}, and T2 = {10, . . . ,24}. If the mode of the posterior
probability for r equals 0.93, we say that the posterior probability that βjt de-
creases during the first 9 years and increases over the last 15 years approximately
equals 0.93.

When setting Ck to (−∞,0) or (0,∞), that is, simply estimating whether the
slope of the values of βj over Tk is negative or positive, the posterior modes have
predictable behavior. Values are close to one when the true slope has the sign
implied by Ck and is far from zero; values are close to zero when the true slope
has opposite sign and is far from zero; and, values are close to 0.5 when the true
slope itself is close to zero. This last feature arises when the slopes in the partitions
bounce randomly around zero.

The analyst who requests a single verification for T spends only ε of the pri-
vacy budget. However, this analyst only can tell if the whole trend over T in the
confidential data matches that in the synthetic data. In contrast, the analyst who re-
quests K verifications, one for each Tk , spends Kε of the budget. But, this analyst
gets finer details of the trend. For this reason, when the privacy budget allows, we
recommend using K > 1 periods for verification, as we do in the analysis of the
racial wage gap, to which we now turn.

5. Wage differentials in the federal government. We now illustrate how
synthetic data, verification, and a PRDN could be used together to analyze pay
differentials by race in the federal government. Section 5.1 provides background
on estimating pay differentials. Section 5.2 introduces our general regression mod-
eling approach for the SF data analysis. Section 5.3 describes an overall analysis
of average differences in pay across races, pooling all years of data. Section 5.4
investigates the trends in pay differentials over time.

5.1. Prior research on pay differentials. Social scientists have spent decades
measuring the race wage gap. Estimates based on data from the Current Population
Survey, the National Longitudinal Survey of Youth, and the Panel Study of Income
Dynamics, among other datasets, put the unconditional black wage gap over the
past thirty years between 16%–40%. When controlling for individual demographic
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and job-related variables, such as education, age, gender, occupation, and industry,
estimates put the gap between 0%–15%, depending upon the precise dataset, con-
trols, and statistical methods used [Altonji and Blank (1999), Cancio, Evans and
Maume (1996), Card and Lemieux (1994), Maxwell (1994), McCall (2001), Neal
and Johnson (2003), O’Neill (1990)]. Estimates of the race wage gap have been
declining or steady over the past few decades [Hoover, Compton and Giedeman
(2015), Sakano (2002)]. For example, Altonji and Blank (1999) estimate that the
black wage gap for full time, year-round workers, controlling for education, ex-
perience, region, industry, and occupation remained steady at approximately 6.5%
from 1979 to 1995. Other studies controlling for only age, education, and location
have found the gap drop from 47% in 1940 to 18% in 2000 [Black et al. (2013)].

While most research on the race wage gap has focused on private sector labor
markets, there is a steady literature measuring it in the public sector [Borjas (1982),
Borjas (1983), Kim (2004), Charles (2003), McCabe and Stream (2000), Llorens,
Wenger and Kellough (2007), Lewis and Nice (1994)], and particularly in the fed-
eral government. Lewis (1998) found that between 1976 and 1986, the conditional
race wage gap for black men declined from 21.0% to 16.7%, but for black women
declined only from 29.7% to 27.9%; for Hispanic men the move was from 17.9%
to 13.0%, and for Hispanic women it was 27.9% to 23.3%. Lewis (1998) also
found that black men with educations and work experiences comparable to those
for white men encounter a wage gap of 4%. He concluded that minorities made
substantial progress in closing the wage gap between 1975 and 1995, especially
at the very senior levels of the government. More recent work on the U.S. fed-
eral government found the race wage gap, controlling for demographic and agency
characteristics, between 1988 and 2007 closed slightly for blacks from 7.9% to
7.4%, closed for Asians from 1.5% to 0.5%, and closed for Hispanics from 4.5%
to 2.8% [Government Accountability Office (2009), page 57]. In the GAO report,
the wage gaps were not broken out separately by sex.

5.2. General modeling approach. Following conventions in the literature on
pay disparities [Blau and Kahn (2017)], we estimate the race wage gap using lin-
ear regression techniques with a standard set of demographic and human capi-
tal predictors, running the same models on both the synthetic and confidential SF
datasets. The dependent variable is the natural logarithm of an employee’s inflation
adjusted basic pay in a given year. Basic pay is an individual’s base salary and ex-
cludes any additional pay related to geographic location, award payments, or other
monetary incentives paid out to employees. We exclude any observations with pay
values of 0 or codes indicating the record is invalid, according to the OPM. We use
all available cases [Little and Rubin (2002)] for regression modeling, as we have
no reason to think values are systematically missing. In the confidential data, race
is missing for 0.06% of person-years; gender is nearly always observed; education
is missing for 1.82% of person-years; age is missing for 0.01% of person-years;
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occupation is missing for 0.03% of person-years; and agency and year are never
missing.

The central independent variable is the race with which individual employees
identify. Prior to 2005, employees could choose to identify with 16 categories. The
largest five utilized were American Indian or Alaska Native, Asian or Pacific Is-
lander, black, Hispanic, and white. The other, substantially less-utilized categories
were Asian Indian, Chinese, Filipino, Guamanian, Hawaiian, Japanese, Korean,
Samoan, Vietnamese, Other Asian/Pacific Islander, and Not Hispanic in Puerto
Rico. We group these categories (save the last) with the Asian or Pacific Islander
category and drop the (very small) category of Not Hispanic in Puerto Rico in ac-
cordance with government practice given the ambiguity in this category [Springer
(2005), footnote 9]. After 2005, OPM created a new combined race and ethnicity
variable that enables respondents to select both a race and a Hispanic ethnicity.
Additionally, OPM collapsed the various Asian national categories into a single
Asian category, and separated out Native Hawaiian and/or Other Pacific Islander
into its own category.

To make races comparable across years, we follow OPM’s guidance and aggre-
gate the Asian and Native Hawaiian and/or Other Pacific Islander categories to a
single Asian category that is consistent with the aggregation for the pre-2005 data.
Additionally, we code individuals that report a Hispanic ethnicity as Hispanic and
disregard their self-reported race (if they did report one). In the regressions, we
include indicator variables for four racial groups: American Indian/Alaska Native
(AI/AN), Asian, black, and Hispanic. The omitted reference category is white.

We also include other variables plausibly correlated with race and pay. These in-
clude the employee’s age as well as its square, and years of educational attainment
after high school. We include fixed effects for the bureau in which an individual
works to account for time-constant organizational factors that may affect wages,
and over 800 indicators for individuals’ occupations to account for differences
in pay structures across occupations. This is the most disaggregated occupational
measure available.

Previous research on the racial wage gap in the federal government has found
substantial differences between male and female employees [e.g., Lewis (1998)].
We therefore perform analyses separately by gender.

There is some question as to how general the occupational information included
in regression analyses of pay disparities should be. On the one hand, if individu-
als are systematically excluded from different occupations on the basis of race,
because of discrimination or some other factor, for instance, then including infor-
mation on that occupation may lead to a biased estimate of racial pay disparities.
However, at the same time, there are important differences across occupations in
terms of pay structures and career advancement for which analysts would like to
control [Bolton and de Figueiredo (2017)]. Here, we report results conditional on
occupation; Barrientos et al. (2018) include results that condition only on six broad
occupation classifications.
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TABLE 2
Coefficients from overall regression models and posterior modes r̂ of verification measures AI/AN

stands for American Indian and Alaska Native, and Asian includes individuals that identify as
Native Hawaiian or Pacific Islander. Absolute values of t-statistics are in parentheses. Disparities in

sample sizes arise from deletions of cases with missing values in the confidential data analyses

Males’ regression Females’ regression

Variable Synthetic r̂ Confidential Synthetic r̂ Confidential

AI/AN −0.006 (4) 0.76 −0.019 (12) −0.009 (7) 0.97 −0.027 (19)

Asian −0.028 (30) 0.99 −0.040 (43) −0.011 (13) 0.42 −0.010 (11)

Black −0.021 (39) 0.99 −0.036 (61) 0.00013 (0.3) 0.003 −0.003 (8)

Hispanic −0.014 (22) 0.99 −0.029 (42) −0.013 (19) 0.99 −0.021 (30)

Age 0.033 (365) 0.043 (480) 0.023 (286) 0.032 (404)

Age Sq. −0.00027 (269) −0.00036 (352) −0.00019 (205) −0.00027 (295)

Education 0.013 (122) 0.021 (180) 0.014 (130) 0.023 (198)

Employee-years 13,008,298 12,720,500 12,263,514 11,874,048
Employees 1,446,499 1,430,238 1,390,611 1,348,381

5.3. Overall differentials. In the overall analysis, each observation is an
employee-year. Most individuals are observed for multiple years, so these obser-
vations are not independent. We therefore use robust standard errors that account
for clustering at the employee level [Cameron and Miller (2015)]. We also include
indicators for the year in which the observation occurs, thereby accounting for
year-level shocks to wages that are experienced by all employees.

Mimicking the way analysts would use the integrated system, we start by esti-
mating separate models for male and female employees using the synthetic data.
The results in Table 2 reveal important relationships between race and pay in the
federal government. In particular, according to the synthetic data results, men who
identify as AI/AN, Asian, black, and Hispanic are paid significantly less than
comparable white male employees. The same holds for women of all race cate-
gories except black, where the effect is not distinguishable from zero in terms of
both practical or statistical significance. Male (female) employees that identify as
AI/AN earn approximately 0.6% (0.9%) less than similarly situated white male
(female) employees. The gaps for Asian and black male employees relative to
white male employees appear to be significantly larger at 2.8% and 2.1%, respec-
tively. These gaps are noticeably smaller for women of these two race categories,
even nonexistent for black female employees. Hispanic men and women take home
about 1.4% less than comparable white employees.

The analyst next would submit requests for verification of these results. For
each race coefficient in Table 2, we make a separate verification query using the
method in (4) with ε = 1. We group employees into m = 50 partitions, so that each
employee is a member of only one partition. Thus, in the language of ε-DP, the
neighboring databases differ in one employee, as opposed to one employee-year
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observation. The former is more sensible for verifications of the overall regression.
A data snooper with knowledge of all but one employee-year observation could
figure out many, if not all, of the values for the missing observation by logical
deduction, for example, easily inferring the age of the missing year and bounding
the salary between the previous and successive years. We set the threshold γ0 =
−0.01, and target queries at whether βj < −0.01 or not.

As evident in Table 2, the posterior modes of the verification measure clearly
indicate that the wage gaps for male employees who are black, Asian, and His-
panic are all at least 1%. The evidence of at least a 1% wage gap for AI/AN men
is less obvious but still suggestive, with a posterior mode around 0.75. Thus, the
verification measures validate the findings from the synthetic data regressions of
substantial racial wage gaps for black male, Asian male, and Hispanic male em-
ployees, and they suggest the synthetic data results for AI/AN male employees are
close to accurate as −0.006 is not far from −0.01. For women, the posterior mod-
els of the verification measure clearly indicate at least 1% wage gaps for Hispanic
and AI/AN employees. They also provide strong evidence against a wage gap of at
least 1% for female black employees, with a posterior mode near zero. For female
Asian employees the verification measure suggests the wage gap could be almost
equally likely above or below 1%, as the posterior mode equals 0.42. This sug-
gests that the true coefficient is likely near −0.01. Thus, the verification measures
validate the findings from the synthetic data that the wage gap for Hispanic female
employees is at least 1%, but that there is not a substantial wage gap for black fe-
male employees. They also suggest that the estimate for AI/AN (−0.009) could be
an underestimate, since the verification measures suggest that the true coefficient
is indeed less than −0.01. Finally, they suggest that the synthetic data coefficient
for female Asian employees is likely accurate, since it is close to −0.01.

We expect that some users might be satisfied with this level of verification,
and thus can publish the synthetic data results plus the verification answers. How-
ever, others may want to perform the analysis on the confidential data via the re-
mote access component of the system. As shown in Table 2, in the confidential
data regression the estimated coefficients for all four race indicators are negative
and statistically significant for both genders, suggesting that nonwhite employ-
ees earn less than white employees. The estimated gaps for men are at least 1.9%
across races, with particularly large gaps for black men (3.6%) and Asian men
(4.0%). For women, AI/AN, Asian, and Hispanic employees earn 2.7%, 1.0%, and
2.1% less than comparable white female workers. Strikingly, the coefficient esti-
mate for black women is essentially zero, suggesting parity with similarly situated
white women. The wage gaps for black women and Asian women are substantially
smaller than for men of those race categories.

The effect sizes from the confidential data are fairly similar to those from the
synthetic data. This is in accord with the conclusions from the verification mea-
sure. The most practically relevant difference in the synthetic and confidential data
results exists for employees that identify as AI/AN: the synthetic data show gaps
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FIG. 1. Estimated racial wage gaps (coefficients of race indicators) for yearly males’ regressions
in synthetic data (left) and confidential, authentic data (right).

of less than 1% whereas the confidential data show gaps of at least 1.9%. This
group of employees is the smallest racial group in the federal government, making
it challenging to create accurate synthetic data for them.

5.4. Year-by-year results. We next turn to year-by-year estimates of pay gaps
in order to examine potential trends over time. We estimate the same models used
in Table 2, except run on each year of data separately. As before, we start with
the synthetic data. The synthetic data results in Figure 1 suggest that the wage
gap for men has shrunk steadily over the period of the study in all race groups
but black males. For black males, the estimated gap appears to be relatively stable
throughout the time period. By 2011 in the synthetic data, the wage gap appears to
have disappeared for AI/AN and Hispanic men, and reduced to around −1% for
Asian men.

For female employees, the story from the synthetic data is more complicated.
Figure 2 suggests that AI/AN, Asian, and Hispanic women all had declining wages
relative to white women until the early 2000s, when the trend largely reversed,
with all three groups making progress toward parity. Indeed, the synthetic results
indicate that AI/AN women actually earned more than comparable white women
after 2006. For black women, the synthetic data estimates of the wage gap change
only slightly, from 0.1% in 1988 to -0.2% in 2011, suggesting negligible wage
gaps at any time point in time during the study.

To verify these trends, we estimate the longitudinal measure described in Sec-
tion 4.2. Looking at Figure 1 for male employees, analysts might consider two
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FIG. 2. Estimated racial wage gaps (coefficients of race indicators) for yearly females’ regressions
in synthetic data (left) and confidential, authentic data (right).

sets of time periods {Tk}. The first is an overall trend, setting K = 1 and T1 = T
for all races. The second uses K = 2 periods, with a bifurcation at a year where
the pattern deviates most noticeably. These are the years 2003 for AI/AN men,
2002 for Asian men, 1998 for black men, and 1997 for Hispanic men. We do the
same for female employees, using Figure 2 to identify bifurcations at 1998 for
AI/AN women, and at 2000 for all other female employees. We set each Ck to in-
dicate whether the slope is positive (Ck = [0,∞]) or negative (Ck = [−∞,0]). Of
course, one could examine other time periods and intervals. For each verification,
we use ε = 1 and M = 50 partitions, ensuring that each employee appears only
once in each partition.

Table 3 displays the posterior modes of the verification measures for the two
sets of periods. For men, the posterior modes are all at least 0.7 for all time periods
and all races, with most above 0.9. This indicates that the trends in the synthetic
data coefficients accord well with the trends in the confidential data regressions for
these two sets of periods. For women, however, the verification results give reason
to doubt some of the trends in the synthetic data regressions. For AI/AN women,
we see strong agreement in the overall trend over all years and the trend from 1998
onward, but some uncertainty about the trend between 1988 and 1998. Verification
values around 0.50 are consistent with a nearly flat trend in the confidential data
coefficients, which is also the trend in the synthetic data. For Asian women, we see
strong agreement in the synthetic and confidential regression trends over 2000 to
2011, modest agreement from 1988 to 2000, and poor agreement over the whole
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TABLE 3
Posterior modes r̂ of verification measures for year-by-year

trends. AI/AN stands for American Indian and Alaska Native, and
Asian includes individuals that identify as Native Hawaiian or

Pacific Islander

Males Females

Coefficient Interval r̂ Interval r̂

AI/AN 1988–2011 0.94 1988–2011 0.94
1988–2003 0.82 1988–1998 0.60
2003–2011 0.91 1998–2011 0.98

Asian 1988–2011 0.99 1988–2011 0.33
1988–2002 0.89 1988–2000 0.72
2002–2011 0.96 2000–2011 0.98

Black 1988–2011 0.89 1988–2011 0.99
1988–1998 0.74 1988–2000 0.98
1998–2011 0.71 2000–2011 0.14

Hispanic 1988–2011 0.99 1988–2011 0.55
1988–1997 0.85 1988–2000 0.74
1997–2011 0.99 2000–2011 0.97

period. The synthetic data trend suggests the wage gap for Asian women in 2011 is
nearly the same value as in 1988; however, the verification measures suggest that
is not the case. For black women, the verification results confirm that the wage
gap increased over the 24 years as a whole, and in particular between 1988 and
2000. However, the trend in the synthetic data coefficients—which suggests black
women actually caught up to white women—is not accurate. With a posterior mean
of 0.14, we clearly should not trust the trend for black women in the synthetic
data after 2000. For Hispanic women, we see strong agreement in the synthetic
and confidential regression trends after 2000, and modest agreement from 1988 to
2000. Between 1988 and 2011, however, the verification measure is close to 0.5,
suggesting that the trend line from the confidential data is nearly flat for Hispanic
women.

Turning to the results on the confidential data, Figures 1 and 2 show that the
race wage gap has been shrinking for all groups except black female employees.
In the confidential data, we estimate a significant decline in the position of black
women relative to white women in the federal service during the time period of
our study. In 1988, we estimate that black women earned 0.3% more than similar
white counterparts. By 2011, black women were earning approximately 1.4% less
than white women with similar demographics and occupations.

The trends observed in the synthetic dataset are largely mirrored in the confi-
dential data, with the exception of black female employees. This was apparent in
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the verification measures, as well, which highlighted the mismatch in the trends for
black women after 2000. In both analyses, however, it is clear that black women
have not experienced the gains that women identifying with other races have rel-
ative to white women. In general, estimated coefficients from the synthetic data
analyses tend to be smaller in magnitude than those from the confidential data
analyses. There are some sign discrepancies for the estimated coefficients as well.
For instance, in the synthetic results, Hispanic males are estimated to have higher
levels of pay relative to comparable white men in the final years of the analysis.
However, the coefficient estimates from the confidential data for Hispanic males
never exceed zero.

6. Concluding remarks. The integrated system described here enables the
work flow illustrated by the OPM analysis: start with synthetic data, verify re-
sults, and access the confidential data via a PRDN when necessary. Although one
could implement systems that exclude some of the components, integrating all
three components has advantages. We now describe some of these benefits, fram-
ing the discussion around examples of alternative systems that exclude one or more
of the components.

One possibility is not to bother releasing record-level synthetic data at all. In-
stead, the data steward only allows users to query a system for disclosure-protected
outputs of analyses. While in some contexts providing only outputs may be suffi-
cient, we believe that providing access to record-level synthetic data has enormous
benefits. Record-level data provide readily accessible testbeds for methodologi-
cal researchers to evaluate their latest techniques. They help students and trainees,
who may not be able to gain approval to use a PRDN or other secure data enclave,
learn the skills of data analysis. Even for experienced researchers, large-scale data
can be difficult to “get your head around” because of complexities and structural
subtleties that are difficult to learn without seeing the data. Researchers often do
not know in advance which are the right questions to ask of the data or the best
modeling choices for addressing those questions. As noted by Karr and Reiter
(2014), exploratory analyses dealing with the data themselves are a fruitful path to
the right questions.

Another possibility is to skip the verification step and allow for direct valida-
tion of results. That is, allow the user to send code implementing the analysis of
interest to the data holder, who runs the code on the confidential data and returns
disclosure-protected output to the user. In fact, the Census Bureau has this sys-
tem in place, offering validation of results for some of its synthetic data products
[Vilhuber, Abowd and Reiter (2016)]. The disclosure protection involves ad hoc
methods like rounding estimates to a small number of significant digits and en-
suring estimates are based on some minimum number of cases. Validation as im-
plemented currently and differentially private verification have similar goals, but
there are differences. Verification servers can provide immediate, automated feed-
back on the quality of analysis results, whereas validation typically requires some
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amount of manual labor on the part of the data holder, who must investigate the
code and the outputs for disclosures, decide what treatments to apply, and repeat as
necessary. Done once this checking may not be too onerous, but done repeatedly it
can cost the user and the data holder significant time, depending on the resources
the data holder makes available for validation. Additionally, with differentially pri-
vate verification the data holder can track the total privacy loss of any sequence of
verification requests, which provides a provable bound on the disclosure risk from
allowing comparisons of the real and synthetic data results; this is not the case
with repeated applications of ad hoc validation methods. On the other hand, for
users who want results from the confidential data for a specific analysis regardless
of what a verification would reveal, skipping the verification step could result in
fewer queries of the confidential data, which has advantages for privacy protection.

A third possibility is to allow verification of synthetic data results but not pro-
vide users with results from the confidential data via a PRDN or validation service.
This may be fine for users whose analyses are faithfully preserved in the synthetic
data, but this is clearly inadequate for other users. As seen with the OPM applica-
tion and in other synthetic datasets [Abowd, Stinson and Benedetto (2006), Kinney
et al. (2011)], inevitably synthetic data are unreliable for some analyses.

Validation is implicitly a central part of the integrated system outlined here. Out-
puts from approved researchers’ analyses of the confidential data via the PRDN
still should be subject to disclosure control treatment. Ideally, these treatments sat-
isfy ε-DP, so that the system can keep track of the total privacy budget spent on
verification and validation of results. Indeed, an interesting research topic is to op-
timize the usage of differentially private verification and validation for a fixed pri-
vacy budget. Differentially private output perturbation is available for many types
of analyses, especially those based on counts [Dwork and Roth (2013)]. We are
not aware of differentially private regression output perturbation techniques that
scale with low error to models of the dimension and complexity used here, that is,
a data matrix with 28 million rows and over 800 columns. Most existing methods
for differentially private regression generate only point estimates of coefficients
without standard errors; some do so under restrictions on the sample spaces of the
dependent or independent variables not relevant for the OPM data. Given the cur-
rent state of the art, we suggest that data holders use ε-DP methods when available
and use ad hoc methods currently employed by statistical agencies when not. This
points to two other important research topics, (i) developing and testing the prac-
tical performance of formally private regression algorithms for large dimensional
models and data, and (ii) assessing disclosure risks inherent in coupling ad hoc
disclosure treatment of outputs with differentially private verification measures.

This last research question can be extended to the entire integrated system: how
do we characterize the disclosure risks inherent in releasing synthetic data like
the kind we generated for the OPM data, coupled with ε-DP verification or vali-
dation measures, and ad hoc validation measures when needed? We do not have
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a general answer to this question, as it presents difficult conceptual and compu-
tational challenges; this is a topic for future research. One goal to work toward
is to require all validations and all synthetic data generators to satisfy ε-DP, and
rely on composition properties to provide bounds on the risk. To our knowledge,
this currently is not possible (at acceptably low levels of error) with state-of-the-
art techniques for generating ε-DP synthetic data [e.g., Barak et al. (2007), Abowd
and Vilhuber (2008), Blum, Ligett and Roth (2008), Machanavajjhala et al. (2008),
Charest (2010), Hardt, Ligett and McSherry (2012), Mir et al. (2013), Karwa and
Slavković (2016)] for data with the dimensionality and complexity of the OPM
data. However, work is ongoing. Because the integrated system is inherently mod-
ular, one can substitute other techniques for synthetic data generation, verification,
and validation appropriate for the tasks at hand.

Coupling synthetic data with verification and validation services has benefits for
data stewards as well. In particular, because analysts have opportunities to verify
and validate results, it is not overly problematic if the synthetic data provide low
quality answers for some analyses. This leeway can allow data stewards to use
relatively straightforward modeling strategies with automated fitting routines, like
those we used to generate the OPM synthetic data, in place of comprehensive
or computationally expensive modeling strategies. Related, it also can allow data
stewards to use synthesis routines that result in greater privacy protections at the
cost of lower analytical validity.

The ε-DP verification measures are based on binary variables computed on sub-
samples of the confidential data. This is a generic method that can be adapted to
handle comparisons for many types of models, making it a flexible strategy for ver-
ification. However, it is not always effective for analyses based on small samples,
as documented in Barrientos et al. (2018). In fact, for some analyses and datasets,
the partitioning process can result in inestimable regressions. For example, the ran-
dom subsampling may result in partitions that have perfect co-linearities or dummy
variables with all values equal to zero. Many software packages automatically drop
such variables and report coefficients for the remaining variables, making it still
possible to compute the measures although complicating interpretations of the re-
sults. When errors make it impossible to obtain results, we suggest adapting the
binary measure by adding a third category of counts corresponding to the number
of errors. Here, the outputs of the measure include the number of ones, zeros, and
errors. We can protect these counts using the Laplace Mechanism, and report pos-
terior modes of the number of errors and the fraction of ones among cases without
errors. Barrientos et al. (2018) present and evaluate this variant of the algorithm.
In the wage gap analyses reported here, fitting errors did not occur due to the large
sample sizes.

The choice of the number of partitions is up to the data analyst; we used M = 50
in the wage gap verification. Analysts should strive to make M as large as possi-
ble to minimize the impact of the Laplace noise on the verification counts. On the
other hand, users should allow r to be as close to one (or zero) as possible, as these
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values are easiest to interpret. Making M too large flattens the distribution of the
MLEs in the partitions, thereby moving r toward 0.5 and more uncertain verifica-
tion decisions. We found that M = 50 gave a satisfactory trade off for the analyses
presented in Section 5. We recommend that analysts experiment with the synthetic
data to find a suitable M for their analysis of interest. Another possibility is to
spend some of the privacy budget on selecting an optimal M from a discrete set
of choices, according to some loss function that depends on M and r . Developing
such measures is an area for future research.

Using the verification server, or any differentially private data release strategy,
requires the data steward to set privacy budgets. Abowd and Schmutte (2017) de-
scribe the data steward’s task of setting ε as balancing trade offs in the amount
of privacy protection and degree of data usefulness desired by society for the data
product at hand. They use survey data to assess people’s preferences for privacy
and a loss function on the accuracy of estimates (of an income distribution) to ex-
press data usefulness. To date, however, there have been few examples of differen-
tially private data releases in genuine production settings, and hence few practical
guidelines for setting ε. The Census Bureau releases differentially private syn-
thetic data showing maps of the street blocks where people live and work based
on ε ≈ 9 [Machanavajjhala et al. (2008)]. The data are released once every year,
and a new privacy budget (of about 9) is used for each release. Google Chrome
uses a differentially private algorithm called RAPPOR [Elringsson, Pihur and Ko-
rolova (2014)] to collect sensitive browser characteristics from users continuously
(every day). They use a per-day ε = log(3). Recent work [Tang et al. (2017)] has
analyzed the algorithms used by Apple MacOS Sierra (Version 10.12) to collect
sensitive user data that have been claimed to satisfy differential privacy. Through a
combination of experiments, as well as static and dynamic code analysis, this work
estimates the privacy loss per each data item sent to Apple’s servers to be ε = 1 or
ε = 2, and the overall privacy loss to be around 16 per day.

Regardless of the choice of ε, if the data steward follows ε-DP strictly, at some
point the total privacy budget allowed will be exhausted, at which point no new
analysis results may be released. With a finite privacy budget, data stewards have
to decide who gets access to the system and in what order. These raise complicated
issues of fairness and evaluation of the importance of analyses, which have yet to
be addressed in production settings with interactive query systems. The privacy
budget used by a sequence of verification requests is an instance of a more general
problem of optimizing the privacy loss of a sequence of queries over the database
[e.g., Hardt and Rothblum (2010), Ullman (2015)]. However, existing work only
considers optimizing the privacy budget for a sequence of a special class of aggre-
gation queries called linear queries (e.g., counts and histograms). Optimizing the
privacy budget for an adaptively chosen sequence of complex tasks (e.g., regres-
sion or verification) is an open research problem.

For integrated systems that utilize ε-DP, it seems likely that any reasonable
overall privacy budget will be exhausted quicker than desired. We see two general
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paths to addressing this dilemma. One is technological: it should be possible to
develop verification measures that use less of the privacy budget. For example, our
verification measures operate independently on coefficients, but there may be ways
to leverage correlation among the coefficients to do multivariate verification. For
specific analyses and verification tasks, it may be fruitful to work directly with the
coefficients rather than through methods based on subsampling.

Another approach is policy-oriented: data stewards can give up some of the
global protection from differential privacy to enhance access. For example, rather
than enforce an overall privacy budget over all queries of the data, the data steward
can provide individual, approved users with a finite privacy budget. In this case,
the data steward trusts users not to collude with each other to circumvent the pro-
tection offered by the formal privacy. This type of policy is common in other pri-
vacy preserving data analyses, such as secure multi-party computation [Karr et al.
(2007)] Alternatively, and the approach implicitly taken in our illustrative applica-
tion of synthesis plus verification, the data steward can allocate a privacy budget
per analysis. In this case, the data steward trusts individual users not to attempt
to learn sensitive information from repeated queries. With these compromises, the
data steward can control the information leakage from providing verifications for
any individual user or analysis, while still offering the convenience and useful-
ness of automated verification. When coupled with penalties for malfeasance and
other policies, the data steward might consider either compromise reasonable, as
legitimate researchers generally are interested in scientific inference rather than
attacking privacy protections.

Finally, we are developing a verification server and associated R package that
implements the verification measures from Section 4. This system allows analysts
to run verification measures on synthetic data, so that they can assess the likely
usefulness of the measures for their analysis of interest, as well as select effective
values of M . The package also offers methods for generating ε-DP plots of residu-
als versus predicted values, thereby helping users assess the reasonableness of the
assumptions of a posited model when applied on the confidential data [Chen et al.
(2016)]. The codebase for the verification measures, as well as code used to gener-
ate the synthetic OPM data, are available in Barrientos et al. (2018). We intend to
make the package available on CRAN, so that data stewards and other researchers
can experiment with and further develop this framework for providing access to
confidential social science data.

SUPPLEMENTARY MATERIAL

Supplement A to “Providing access to confidential research data through
synthesis and verification: An application to data on employees of the U.S. fed-
eral government” (DOI: 10.1214/18-AOAS1194SUPPA; .pdf). This document
provides supporting material for aspects of the OPM synthesis plus verification
application. In Section 1, we provide a formal description of the three submod-
els used to model the employee’s career. In Section 2, we discuss the modeling

https://doi.org/10.1214/18-AOAS1194SUPPA
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strategies used to synthesize variables in the OPM data. In Section 3, we provide
the full list of the synthesized variables along with a brief description of each of
them. In Section 4, we present the analyses of wage gaps conditional on six broad
categories of occupation rather than the 803 used in the main text. In Section 5,
we describe a method for empirical disclosure risk assessment for OPM synthetic
data. In Section 6, we formally describe the verification measures for longitudinal
trends in regression coefficients. In Section 7, we examine the performance of the
ε-differentially private verification measures used in the text, and we present a ver-
ification measure that is suitable for analyses where some regression coefficients
are nonestimable.

Supplement B to “Providing access to confidential research data through
synthesis and verification: An application to data on employees of the U.S. fed-
eral government” (DOI: 10.1214/18-AOAS1194SUPPB; .pdf). This document
provides graphical analyses comparing the OPM synthetic and confidential data
used in the main text.

Supplement C to “Providing access to confidential research data through
synthesis and verification: An application to data on employees of the U.S. fed-
eral government” (DOI: 10.1214/18-AOAS1194SUPPC; .zip). This file contains
the code used to generate the synthetic OPM data and compute the verification
measures proposed in the main text.
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