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JOINT MEAN AND COVARIANCE MODELING OF MULTIPLE
HEALTH OUTCOME MEASURES
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Pennsylvania State University and Duke University

Health exams determine a patient’s health status by comparing the pa-
tient’s measurement with a population reference range, a 95% interval derived
from a homogeneous reference population. Similarly, most of the established
relation among health problems are assumed to hold for the entire population.
We use data from the 2009–2010 National Health and Nutrition Examination
Survey (NHANES) on four major health problems in the U.S. and apply a
joint mean and covariance model to study how the reference ranges and as-
sociations of those health outcomes could vary among subpopulations. We
discuss guidelines for model selection and evaluation, using standard criteria
such as AIC in conjunction with posterior predictive checks. The results from
the proposed model can help identify subpopulations in which more data need
to be collected to refine the reference range and to study the specific associa-
tions among those health problems.

1. Introduction. Health exams determine a patient’s health status by compar-
ing the patient’s measurement with a population reference range. For example, in
measuring blood sugar levels, the normal range of a fasting glucose level is 70
to 100 mg/dl. People with values lower than 70 mg/dl are considered to have hy-
poglycemia (low blood sugar), and people with values higher than 100 mg/dl are
considered pre-diabetic (100–125 mg/dl) or diabetic (>125 mg/dl). The reference
range is usually a 95% interval derived from a reference population. Current guide-
lines suggest that if the reference population is heterogeneous, we should partition
it and provide a separate reference range for each subpopulation [CLSI (2008)].
Mattix et al. (2002) argue that using a single cutpoint in diagnosing kidney disease
for both genders and various race groups biases the prevalence of the disease for
some subpopulations and thus underestimates their risks. The most widely used
partition guideline is that if the ratio of the two subpopulation standard deviations
is greater than 1.5, we should collect large enough samples in those groups and
provide separate reference ranges, regardless of whether the mean difference is
significant or not [Harris and Boyd (1990)].

Similarly, certain health problems are associated with others. For example, obe-
sity is a risk factor of diabetes. Most established relations among health problems

Received July 2015; revised January 2018.
1Supported by NIH Grant R01 AI36664-01.
2Supported by NSF Grant DMS-15-05136.
Key words and phrases. Heterogeneous population, reference range, covariance regression,

NHANES.

321

http://www.imstat.org/aoas/
https://doi.org/10.1214/18-AOAS1187
http://www.imstat.org


322 X. NIU AND P. D. HOFF

are assumed to hold for the entire population. However, those relations could vary
among subpopulations. For example, Foulds, Bredin and Warburton (2012) find
that the relation between obesity and diabetes varies with ethnicity.

We use data from the 2009–2010 National Health and Nutrition Exam-
ination Survey (NHANES) to look at some major health problems in the
U.S. [CDC/NCHS (2010a), http://www.cdc.gov/nchs/nhanes/search/nhanes09_10.
aspx]. NHANES is designed to assess the health and nutritional status of adults
and children in the United States. It collects participants’ demographic, socio-
economic, dietary, activity, and behavioral information through interviews in their
homes. It also performs physical measurements and blood and urine tests in mobile
examination centers. The National Center for Health Statistics (NCHS), part of the
Centers for Disease Control and Prevention (CDC), conducts the survey mainly to
determine the prevalence of major diseases and risk factors in the U.S. population.

We focus on four health problems that are believed to be associated: chronic
kidney disease (CKD), obesity, hypertension, and diabetes. The severity and pro-
gression of each health problem can be assessed by a quantitative measurement. In
chronic kidney disease, defined as abnormalities of kidney structure or function,
the kidneys are damaged and cannot filter blood as needed. Kidney damage and
disease progression can be assessed by the urine albumin/creatinine ratio (ACR).
ACR below 30 mg/g is considered normal and above 30 mg/g is considered to in-
dicate microalbuminuria, a marker for CKD and kidney damage [KDIGO (2013)].
Obesity is quantified by body mass index (BMI), defined as weight in kilograms
divided by the square of height in meters. For adults of 20 years and older, a BMI
below 18.5 is considered underweight, 18.5–24.9 is normal, 25–29.9 is overweight,
and over 30 is obese. Hypertension (high blood pressure) is diagnosed by measur-
ing both systolic blood pressure (SBP) and diastolic blood pressure (DBP). A nor-
mal blood pressure corresponds to SBP of 80–120 mmHg AND DBP of 60–80
mmHg. If SBP > 120 or DBP > 80, a patient is considered to have elevated blood
pressure. If SBP > 120 and DBP > 80, a patient is considered to have hyperten-
sion. If SBP < 80 or DBP < 60, a patient is considered to have hypotension (low
blood pressure). SBP and DBP are usually correlated, so we take DBP to represent
blood pressure (BP). Finally, a common measurement for diabetes is the fasting
glucose level (GLU), discussed earlier.

All of these reference ranges are derived by assuming that the measurement
comes from a homogeneous population, summarized by its mean and variance.
Based on the CLSI guidelines and some previous findings [NIDDK (2013), Fraser
et al. (2012)], we use gender, age, race/ethnicity, and education level to to de-
fine subpopulations. Refining the reference ranges and associations of the four
health problems requires estimation of the means and covariances of ACR, BMI,
BP, and GLU in the subpopulations. To estimate how the mean and covariance
structure vary among subpopulations, we jointly model them as functions of the
demographic variables.

http://www.cdc.gov/nchs/nhanes/search/nhanes09_10.aspx
http://www.cdc.gov/nchs/nhanes/search/nhanes09_10.aspx
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Joint regression models for means and covariances have been developed mainly
in the context of longitudinal and repeated-measures studies. Liang and Zeger
(1986) and Zeger and Liang (1986) use generalized estimating equations (GEE)
to simultaneously estimate the parameters in the mean and covariance of a lon-
gitudinal response vector, which improves the efficiency of the mean estimate
substantially. When the heteroscedasticity is temporal, multivariate autoregressive
conditionally heteroscedastic (ARCH) models are well studied in the economet-
ric literature [Engle and Kroner (1995), Fong, Li and An (2006)]. The approach
proposed by Pourahmadi (1999) uses the Cholesky decomposition to parameterize
the class of positive-definite covariance matrices by expressing the unconstrained
parameters through generalized linear models. However, this model is not invari-
ant to reorderings of the response, and thus might not be appropriate for studies
without longitudinal or spatial structure. Chiu, Leonard and Tsui (1996) model the
logarithm of the covariance matrix as linear functions of the explanatory variables,
although the parameters are somewhat difficult to interpret. Pourahmadi (2011)
gives a comprehensive literature review of covariance estimation models.

Hoff and Niu (2012) propose a covariance regression model that directly mod-
els the covariance matrix as a function of explanatory variables. In this natural
extension of the mean regression model, the parameters have interpretations sim-
ilar to those in a mean regression. However, Hoff and Niu (2012) focus on model
development and geometric interpretations. They discuss an example of a single
continuous predictor. We extend the covariance regression model of Hoff and Niu
(2012) to accommodate multiple categorical predictor variables. We also discuss
practical issues with real data, including model selection and how to present and
interpret the results.

In the next section, we explore some basic features of the NHANES data. In
Section 3 we introduce the proposed method for joint modeling and outline the
process of model selection. We describe the details of model selection and present
our main findings in Section 4. Discussion follows in Section 5.

2. The NHANES data. The 2009–2010 NHANES had 10,537 participants,
but only 3386 had a fasting glucose blood test. Among them, only 2613 (77%)
had data for all four of ACR, BMI, BP (DBP), and GLU. Because GLU is an
important measurement when dealing with kidney diseases, we use in this analysis
only those who have complete data; the sample size reduction is due mainly to the
small number of participants who took the blood tests (GLU). Further discussion
of the sample size and missing data is in Section 5.

The demographic variables are categorical: gender (male, female), age (20–
39, 40–59, 60–79, 80+), race/ethnicity (in order of decreasing sample size: non-
Hispanic white, Mexican American, non-Hispanic black, other Hispanic, and
other), education (less than 9th grade, 9th to 11th grade, high school, associate de-
gree or some college, and college degree and higher). For the 16 marginal groups
defined by one category of one predictor, such as male, the sample sizes all exceed
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FIG. 1. Sample means with 95% confidence intervals of albumin creatinine ratio (ACR), diastolic
blood pressure (BP), body mass index (BMI), and glucose (GLU), on the natural log scale, by gender,
age, race/ethnicity (NHW: non-Hispanic white, MA: Mexican American, NHB: non-Hispanic black,
OH: other Hispanic, O: other), and education (<9th: less than 9th grade, 9–11: 9th to 11th grade,
HS: high school, AA: associate degree or some college, BS: college degree and higher) categories.
The horizontal dotted line indicates the pooled sample mean. The figure is based on the subset of 2613
individuals from NHANES 2009–2010 who have complete observations on these four variables.

100. The sample sizes among the 93 two-way cells range from 4 to 660 (median
132). Of the 200 four-way cells, 28 are empty, and the median sample size among
the other 172 four-way cells is 7.5 (range 1–74; quartiles 2 and 17). A detailed
sample size tabulation is in Supplementary Material A [Niu and Hoff (2019)].

Because most of them are skewed, we analyze these variables on the natural
log scale. In Figure 1, the sample means of the health measurements vary greatly
among demographic groups. We also calculate the sample covariance matrices
within the demographic groups, along with Bayesian posterior intervals using a
noninformative Wishart prior. Figure 2 and Figure 3 show that the variances and
correlations also vary among subpopulations. For example, the variance of ACR
is about 1.14 overall, but it can be as low as 0.79 in the 60–79 age group and as
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FIG. 2. Sample variances with 95% Bayesian posterior intervals of albumin creatinine ratio (ACR),
diastolic blood pressure (BP), body mass index (BMI), and glucose (GLU), on the natural log
scale, by gender, age, race/ethnicity, and education categories. The horizontal dotted line indicates
the pooled sample variance. The figure is based on the subset of 2613 individuals from NHANES
2009–2010 who have complete observations on these four variables.

high as 1.64 in the 80+ age group. Similarly, the correlation between BP and GLU
is around 0.06 overall, but it can be as low as −0.13 in the 60–79 age group and
as high as 0.2 in the 80+ age group. We have also considered multiplicity of the
intervals. Supplementary Material B [Niu and Hoff (2019)] includes Bonferroni-
corrected simultaneous 95% intervals. The patterns are very similar to Figures 1
to 3. The exploratory findings suggest the need for a statistical analysis that al-
lows both the mean and covariance matrix of these health outcomes to vary among
demographic groups.

3. Statistical models.

3.1. The covariance regression model. Our goal is to describe and estimate
heterogeneity of means and covariances for the cross-classified groups defined by
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FIG. 3. Sample pairwise correlations, with 95% Bayesian posterior intervals, for each pair of al-
bumin creatinine ratio (ACR), diastolic blood pressure (BP), body mass index (BMI), and glucose
(GLU), on the natural log scale, by gender, age, race/ethnicity, and education categories. The hori-
zontal dotted line is at 0. The horizontal dashed line indicates the all-sample correlation. The figure is
based on the subset of 2613 individuals from NHANES 2009–2010 who have complete observations
on these four variables.

gender, age, race/ethnicity, and education. Specifically, let y be the 4-dimensional
vector of the logarithms of ACR, BP, BMI, and GLU of an individual, and let x
be a covariate vector describing the individual’s gender, age, race/ethnicity, and
education level. We would like to estimate E[y|x] = μx and Cov[y|x] = �x simul-
taneously.

The small number of observations for each combination of categories makes it
impractical to estimate a separate covariance matrix �x for each group, based on
data from only that group. On the other hand, a common covariance matrix for all
groups would misrepresent the relations among the response variables and result
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in loss of efficiency for the mean parameters (see McCullagh and Nelder (1989),
Chapter 9 and Chapter 10). More-flexible models share information across covari-
ance matrices. Boik (2002, 2003) assumes common principal components of the
covariance matrix. Hoff (2009) proposes shrinking the covariance matrix toward a
common eigenvector structure with varying degrees of shrinkage among principal
components. Cripps, Carter and Kohn (2005) show efficiency improvement for the
mean regression parameters with a carefully selected covariance model. Gaskins
and Daniels (2013) give a more-comprehensive review of pooling methods.

Besides avoiding the loss of efficiency from assuming a common covariance
structure, we are also interested in how �x varies with x. An alternative way
of pooling across groups addresses this question with a covariance regression
model that parsimoniously describes heteroscedasticity among groups [Hoff and
Niu (2012)]. The proposed model parametrizes the mean and covariance of a mul-
tivariate response vector as parsimonious functions of explanatory variables. This
approach allows joint modeling of the mean and covariance structure of the popu-
lation being studied.

To introduce the model, we adopt the notation and definitions in Hoff and Niu
(2012). Let y ∈ R

p be a random multivariate response vector and x1 ∈ R
q1 and x2 ∈

R
q2 be vectors of explanatory variables. The variables in x1 and x2 can overlap or

even be the same. Denote the mean of y|x as μx = E[y|x] and the p×p covariance
matrix of y|x as �x = Cov[y|x]. The covariance regression model has the form

μx1
= B1x1,(3.1)

�x2 = A + B2x2xT
2 BT

2 ,(3.2)

where B1 is a p × q1 matrix, A is a p × p positive-definite matrix, and B2 is
a p × q2 matrix. The resulting covariance function in equation (3.2) is positive-
definite for all x2, and it expresses the covariance as a constant covariance matrix
A plus a rank-1, positive-semi-definite matrix that varies with x2. Hoff and Niu
(2012) consider the case where x2 is a single continuous variable, which makes
the variance a quadratic function of the predictor. We apply such a model when
there are multiple categorical predictors. For example, if sex is our only predictor,
we let x2 = (1,1)T for males and x2 = (1,0)T for females, where the first “1” in
each vector corresponds to the intercept.

The covariance regression model can also be interpreted as a special random-
effects model. Assume the observed data y1, . . . ,yn are generated by the following
model:

yi = μx1i
+ γi × B2x2i + εi ,

E[εi] = 0, Cov[εi] = A,

E[γi] = 0, Var[γi] = 1, E[γi × εi] = 0.

(3.3)
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We can interpret γi as describing additional individual-level variability beyond
the random error εi . The row vectors {b21, . . . ,b2p} of the coefficient matrix B2
describe how this additional variability is manifested in the p response variables.

Model (3.2) restricts the difference between �x and the constant matrix A to be
a rank-1 matrix. This rank-1 model essentially requires that the residuals of the p

responses are along the same direction. This restriction can be relaxed by allowing
the difference from the constant covariance to have higher rank. For example, a
rank-2 covariance regression model has the following form:

(3.4) yi = μx1i
+ γi × B2x2i + ψi × B3x2i + εi ,

where γi and ψi are mean-zero variance-one random variables, uncorrelated with
each other and with εi . B2 in equation (3.4) has a different estimate and interpreta-
tion than the B2 in equation (3.3) because of the additional term in equation (3.4).
We keep the same notation for simplicity. Under this model, the covariance matrix
of yi is given by

(3.5) �x2 = A + B2x2xT
2 BT

2 + B3x2xT
2 BT

3 .

Model (3.5) allows the deviation of �x2 from the constant matrix A to have rank 2.
We can interpret the second random effect ψ in equation (3.4) as allowing an ad-
ditional, independent source of heteroscedasticity for the p response variables.
Further flexibility can be gained with additional random effects, allowing the dif-
ference between �x and the constant matrix A to be of any desired rank up to p.

Assuming normality of the error terms, the rank-1 model can be expressed as
follows:

γ1, . . . , γn
i.i.d.∼ normal(0,1),

ε1, . . . ,εn
i.i.d.∼ multivariate normal(0,A),(3.6)

yi = μx1i
+ γi × B2x2i + εi,

μx1i
= B1x1i .

Parameters of this normal covariance regression model can be estimated by
maximum likelihood via the EM algorithm or by Bayesian estimation via Markov
chain Monte Carlo (MCMC). We focus on Bayesian estimation mainly for three
reasons: 1. the convergence of EM can be very slow due to the identifiability issue;
2. it is easier to obtain the intervals for those identifiable parameters in the Bayesian
setting; and 3. it is easier to perform model selection and diagnoses (such as pos-
terior predictive checks discussed below). Calculations are facilitated by using a
semi-conjugate prior distribution for A, B1 and B2, in which p(A) is an inverse-
Wishart (A−1

0 , ν0) distribution and C = (B1,B2) has a matrix normal distribution.
Hoff and Niu (2012) introduce this covariance regression model in the con-

text of continuous predictors, and give an example with one continuous predictor.
We extend that model to jointly estimate the mean and covariance structure of a
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large number of groups defined by several categorical variables. We fit the model
in equation (3.1) and (3.2) and its higher-rank version to the NHANES data, al-
lowing different sets of predictors for the mean and covariance matrix. Including
multiple categorical predictors requires that we address practical issues such as
variable selection and evaluation, which are not discussed in Hoff and Niu (2012).
In the next section, we discuss the outline of model selection for this covariance
regression model with multiple categorical factors.

3.2. Model selection and evaluation. Similar to any regression model, the co-
variance regression model requires a procedure for variable selection. The process
has three components: mean variable selection, covariance variable selection, and
covariance rank selection. As noted in Hoff and Niu (2012), because of the non-
identifiability of some of the parameters in the higher-rank model, methods such
as AIC or BIC are not directly applicable when comparing models with different
ranks. For the NHANES data, we include 4 predictors with at most 2-way interac-
tions (6 interaction terms) in both the mean and covariance models. The maximum
possible rank for a 4-dimensional response is 4. Simultaneous selection of the ap-
propriate interaction terms for the mean model and the covariance model and the
selection of rank would require 26 × 26 × 4 evaluations of the model, which is
computationally impractical.

As an alternative, we propose a “forward search procedure” that tries to find the
most parsimonious model without obvious lack of fit. We outline the procedure in
this section and elaborate the details with data in Section 4. First, we simplify the
situation by separating the tasks of mean and covariance model selection, based on
the fact that under multivariate normality, the maximum likelihood estimator of the
mean parameters is consistent under mis-specification of the covariance structure
[Cox and Reid (1987)]. For selecting the mean model, we assume a homogeneous
covariance model and use a standard variable-selection criterion such as AIC or
BIC. Next we fix that mean model and fit the simplest covariance model, a rank-1
model with only main effects of the four predictors. Then we assess goodness of
fit. If the simplest model has only moderate lack of fit, we add one interaction term
at a time until we find a model that is acceptable. If the simplest model displays
serious lack of fit, we increase the rank by 1 and implement forward selection for
the rank-2 model until we find an acceptable set of predictors. If necessary, we can
continue the selection to rank 3 or higher.

Model fit is evaluated with posterior predictive distributions [Guttman (1967)
and Rubin (1984)]. To assess the model, we need to construct a meaningful statis-
tic to represent lack of fit. We would like to make sure that the model we select
generates predictive datasets Ỹ that resemble the observed dataset Y (the observed
response matrix) in terms of features that are of interest. The key idea is that the
population is not homogeneous, and the covariance matrices differ among the sub-
populations defined by the variables that make up x2. Therefore we construct a
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diagnostic statistic that describes the heteroscedasticity across subpopulations de-
fined by pairwise combinations of the factors, such as all the white females, or
people 30–49 years old with a high school degree. We use 2 variables instead of 4
because the sample size is not large enough for estimation of all groups obtained
by cross-classifying the 4 variables. We define the posterior check statistic

thk(Y) = ∑

xh,xk

[
tr

(
S−1

0 Sxh,xk

) − log
∣∣S−1

0 Sxh,xk

∣∣],

where S0 is the all-sample covariance matrix, h and k denote the factors (e.g., gen-
der and age), xh and xk represent the levels of factors h and k (e.g., male and 20–39
years old), and Sxh,xk

is the sample covariance matrix of the subpopulation defined
by xh and xk (e.g., males 20–39 years old). The statistic thk(Y) is the sum of the
Wishart kernels of the sample covariance matrices Sxh,xk

for all possible values of
xh and xk , with S0 as the center. If the population is homogeneous, S0 should be a
good estimate of the Sxh,xk

. The statistic thk(Y) describes the discrepancy between
S0 and the Sxh,xk

and represents the heterogeneity of the subpopulation covariance
matrices. For each model, we compute the posterior predictive distribution of thk

for all pairs of factors. We then compare the observed value with the posterior pre-
dictive distribution of thk . If the observed statistic lies in the tail of the posterior
predictive distribution, it indicates lack of fit in that pair of factors.

4. Analysis of the NHANES data. In this section, we first describe the de-
tailed model-selection procedure and selection results for the NHANES data. Then
we present the analysis results of the NHANES data using the covariance regres-
sion model.

4.1. Model selection for the NHANES data. Following the outline in Sec-
tion 3.2, we first assume a constant covariance model and use AIC [Akaike (1973)]
to select the set of predictors for the mean model. The best mean model under AIC
includes the main effects of gender, age, race/ethnicity, and education, as well as
four two-way interactions: gender and age, gender and race/ethnicity, gender and
education, and age and race/ethnicity, with a total of 36 parameters. We then fix
the mean model and select the explanatory variables in the covariance model. We
first fit a rank-1 covariance regression model with main effects of the four predic-
tors. We examine goodness of fit of this model and find that the observed values
of the test statistics lie in the tails of the posterior predictive distributions for all
groups. We then fit a rank-2 model with main effects of the four predictors. We
plot the posterior predictive distributions of the test statistics in Figure 4. Three of
the six subpopulations (gender and age, age and education, and race/ethnicity, and
education) are well represented by the model. The remaining three subpopulations,
which show lack of fit, all involve gender and/or race/ethnicity. Therefore, we add
the interaction between gender and race/ethnicity to the rank-2 covariance model
and present the goodness-of-fit diagnostics in Figure 5. The new model generally
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FIG. 4. Posterior predictive distributions (of 800 posterior samples) of the rank-2 model with only
main effects. In each histogram the vertical line represents the goodness-of-fit statistic calculated
from the data.

improves the goodness of fit from the rank-2 main-effects model, and it appro-
priately captures the heterogeneity in most of the 2-variable subpopulations. This
relatively parsimonious model has no obvious lack of fit. We have also compared
this model with adding other interaction terms and with a rank-3 model. None
of those alternatives outperform this one. Therefore, our final model as stated in
equation (3.5) and (3.6) includes the following terms in the mean and covariance
structure:

μx1
∼ GENDER + AGE + RACE/ETHNICITY + EDU

+ GENDER ∗ AGE + GENDER ∗ (RACE/ETHNICITY)

+ GENDER ∗ EDU + AGE ∗ (RACE/ETHNICITY),

�x2 ∼ GENDER + AGE + RACE/ETHNICITY + EDU

+ GENDER ∗ (RACE/ETHNICITY).

(4.1)
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FIG. 5. Posterior predictive distributions (of 800 posterior samples) of the rank-2 model with main
effects and gender ∗ (race/ethnicity) interaction. In each histogram the vertical line indicates the
goodness-of-fit statistic calculated from the data.

4.2. Results for NHANES data. We fit the final model in equation (4.1) and
obtain the Bayesian estimates through Gibbs sampling, using the priors described
in Section 3.1. We run an MCMC chain for 50,000 iterations with thinning of
every 50 samples (i.e., use every 50th iteration), drop the first 200 post-thinning
samples as burn-in, and check the trace plots of key quantities for convergence.
The analysis is performed using R-2.15.1, package “covreg”. The key code to fit
the model and summarize the results is in Supplementary Material C [Niu and Hoff
(2019)]. The computation time is about 6 hours on a PC with an i5 core. It remains
as future work to speed up the package in order to handle larger datasets.

There are multiple ways to present the fitted mean, variance, and correlation es-
timates of the four health measurements for all of the subgroups categorized by the
four demographic characteristics. Here we suggest one graphic display that allows
us to examine the relation of the posterior median estimates to a pair of demo-
graphic variables. For a scatter plot, we associate one category of the first variable
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FIG. 6. Scatter plots of group means by gender and age. For each combination of a category of
age, a category of race/ethnicity, and a category of education, male and female define separate
subpopulations in the 4-variable cross-classification, with the male group posterior median estimate
as the x-coordinate and the female group posterior median estimate as the y-coordinate. The plotting
symbols 1 to 4 represent the group’s corresponding age category (1: 20–39, 2: 40–59, 3: 60–79, 4:
80+). The gray line is the reference line with slope 1.

with the horizontal axis and a second category with the vertical axis. A digit corre-
sponding to the category of the second variable serves as the plotting symbol. As
an example, Figure 6 illustrates this basic structure with gender as the first vari-
able and age as the second variable, with categories numbered 1 to 4. For each
combination of a category of age, a category of race/ethnicity, and a category of
education, male and female define separate subpopulations in the 4-variable cross-
classification; the coordinates of the plotted point are the corresponding posterior
median estimates.

These plots show how the mean, variance, and correlation vary with the de-
mographic variables. We highlight a few interesting patterns. Figure 6 shows that
females’ ACR values are on average higher than the corresponding males’ values
groups in the younger age groups, but in the older age groups (some of the 60–79
groups and all of the 80+ groups) males’ values are higher. Male groups’ blood
pressures are almost all higher than the values of the corresponding female groups.
The 40–59 age groups have the highest average blood pressure. More male groups
have higher glucose level than the corresponding female groups, and the glucose
level seems to increase with age.
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FIG. 7. Scatter plots of group variances by gender and age. For each combination of a category
of age, a category of race/ethnicity, and a category of education, male and female define separate
subpopulations in the 4-variable cross-classification, with the male group posterior median estimate
as the x-coordinate and the female group posterior median estimate as the y-coordinate. The plotting
symbols 1 to 4 represent the group’s corresponding age category (1: 20–39, 2: 40–59, 3: 60–79, 4:
80+). The gray line is the reference line with slope 1.

In Figure 7, the variance of ACR and the variance of GLU vary greatly among
subpopulations. The ratio of the largest to the smallest posterior median estimate
of the standard deviation is 6.76 for ACR and 4.84 for GLU. On the other hand, the
variance of BP and the variance of BMI do not vary too much; the ratios are 1.48
and 1.11, respectively. For ACR, most of the male group variance is larger than
the corresponding female group, except for a few younger age groups. Variance
generally seems to increase with age.

In the correlation plot of ACR and BMI (Figure 8), 60–79 year-old males have
positive correlations, but the corresponding female groups have negative corre-
lations. 40–59 year-old females have higher correlations than the corresponding
male groups. We include similar plots of age and race/ethnicity and age and ed-
ucation in Supplementary Material D [Niu and Hoff (2019)]. In Supplementary
Material E [Niu and Hoff (2019)] we present an alternative way of summarizing
the results including estimation uncertainties.

The findings from our model provide some evidence that the mean, variance,
and correlation of ACR, BP, BMI, and GLU vary among subpopulations. There-
fore, it might not be appropriate to assume a common mean and variance for all
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FIG. 8. Scatter plots of group correlations by gender and age. For each combination of a category
of age, a category of race/ethnicity, and a category of education, male and female define separate
subpopulations in the 4-variable cross-classification, with the male group posterior median estimate
as the x-coordinate and the female group posterior median estimate as the y-coordinate. The plotting
symbols 1 to 4 represent the group’s corresponding age category (1: 20–39, 2: 40–59, 3: 60–79, 4:
80+). The gray line is the reference line with slope 1.

subpopulations when deriving reference ranges. More data need to be collected for
some subpopulations to determine whether the reference ranges need to be refined.

5. Discussion. We use the NHANES data to study how the mean and covari-
ance structure of four health measurements vary among subpopulations. To our
knowledge, this is the first attempt to systematically examine how the variances
and correlations of those health outcomes vary among subpopulations. We extend
the covariance regression model proposed by Hoff and Niu (2012) to allow mul-
tiple categorical predictors, and we discuss practical issues in fitting complicated
datasets with multiple categorical predictors. We select four highly relevant demo-
graphic and socio-economic factors to classify the population into subgroups and
use the covariance regression model to estimate the mean and covariance parsi-
moniously for all subpopulations. We discuss guidelines for model selection and
evaluation using standard criteria such as AIC for the mean model in conjunc-
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tion with posterior predictive goodness-of-fit plots for the covariance model. The
means, variances, and correlations of those health outcomes all vary among sub-
groups. The fitted results confirm that the population is heterogeneous and that
assuming a single mean and a single covariance for the entire population is not
appropriate. We highlight some of the findings that might be of scientific interest.
The covariance regression model helps identify subpopulations for which more
data might be collected to estimate a separate reference range. In Supplementary
Material F [Niu and Hoff (2019)] we interpret some of the coefficient estimates.

We further validate the estimates by comparing the model-based intervals with
the sample-based intervals for large groups (41 groups with sample size > 20). For
the variance estimates, the percentage of times those two intervals overlap ranges
from 85% to 95%, compared with 41% to 83% for the homogeneous model. The
correlation estimates overlap 98% to 100%, compared with 85% to 95% for the
homogeneous model. The complete set of plots comparing the two sets of intervals
is in Supplementary Material G [Niu and Hoff (2019)]. To consider model mis-
specification, the sensitivity analysis [in Supplementary Material H (Niu and Hoff
(2019)] gives some confidence that the covariance regression model is reasonable
and provides reliable estimates.

The model-selection procedure can also allow the search to back up. If, after
adding multiple interaction terms, some groups have over-fit, one can remove an
interaction and refit, as in stepwise selection. The current selection and evaluation
procedure is data-driven and subjective. To develop a systematic model-selection
scheme that tries to find the overall best model, one possible approach could ex-
plicitly formulate a prior distribution to shrink some of the coefficients toward
zero, similar to the idea in Gaskins and Daniels (2013).

NHANES uses a complex survey design to select samples that are representa-
tive of the U.S. noninstitutionalized civilian population. Adjusting the difference
between sample and population is very important to obtain unbiased estimates of
population quantities. As discussed in Gelman (2007), weighting and regression
modeling are the two standard ways to accomplish this task. Winship and Radbill
(1994) compare weighted and unweighted least-squares estimators for linear re-
gression models and conclude that, if the weights depend on only predictors that
are included in the model, and the model is true, (unweighted) OLS estimates are
unbiased and consistent. In reality, if possible, accounting for the sampling weights
is more accurate than using OLS estimates, because we never know whether the
regression model is true, and often we cannot include all weight-determining fac-
tors and their interactions in the model [Gelman (2007)]. However, incorporating
the sampling weights directly can be very difficult for nonstandard models. We
therefore choose the regression approach by including the key factors that deter-
mine the weights in both the mean and covariance models. NHANES 2009–2010
oversampled specific age and race/ethnicity groups, as well as pregnant women
[CDC/NCHS (2010b)]. Therefore, the key factors that determine the sampling
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weights are gender, age, and race/ethnicity, all of which we have included in the
proposed joint model.

To further check for potential biases in our modelings, we compare the model-
based estimates of the marginal cell means (such as mean ACR for all males)
with the Horvitz–Thomson estimates of marginal cell means. We plot the H–T
estimates, 95% confidence intervals for the H–T estimates, and model-based esti-
mates in Supplementary Material I [Niu and Hoff (2019)]. The biggest discrepancy
lies in the ACR estimates for males and females. This might be due to the fact that
during pregnancy the ACR level might change, and we are not able to fully ad-
just for the oversampling of one gender (female) over the other (male). For most
of the other groups, the two estimates are very close, and the model-based esti-
mates almost all fall within the confidence intervals of the H–T estimates. This
result gives us some confidence that our model provides approximately unbiased
estimates without directly incorporating the sampling weights. It remains an inter-
esting and challenging problem to directly incorporate the weights, thereby fully
adjusting for the difference between sample and population.

In addition to the household survey, NHANES also selected certain partici-
pants for physical examinations, based on their demographic and health infor-
mation. An even smaller proportion had blood tests. Of the 10,537 participants
in the 2009–2010 survey, the numbers who had blood pressure measurements,
urine tests, and body mass measurements range from 7000 to 9000. However, only
3386 participants had a fasting glucose value (blood test). Therefore, the main re-
duction in sample size is due to the design of the survey and can be viewed as
a similar issue as weighting. On the other hand, individual measurements also
have missing values (e.g., selected participants failed to show up for exams).
Among those who have a GLU value, the missing proportions for the other three
measurements (ACR, BP, BMI) are 1%, 4%, and 1%, respectively. According to
the NHANES analysis guidelines (http://www.cdc.gov/nchs/tutorials/NHA-NES/
Preparing/CleanRecode/Info1.htm), it is usually acceptable to ignore the missing
values if the proportion is under 10%. Therefore, after accounting for the design
variables as discussed above, we assume the missingness due to nonresponse is
ignorable, and we use the complete data for the analysis without any imputation.

The current model assumes multivariate normality of the error term, which is
a strong assumption. We assessed some residual plots and did not see serious vi-
olations. In essence, we are trying to model the first- and second- order moments
that do not rely on normality of the data. The model could be extended to nonnor-
mally distributed variables through the generalized linear model framework, as in
Pourahmadi (1999). Another possibility is via semi-parametric copula models, as
proposed by Hoff (2007).

In this study, we focus on four specific health outcomes. The method is general
enough to be applied to a wide variety of multivariate outcomes.

http://www.cdc.gov/nchs/tutorials/NHA -NES/Preparing/CleanRecode/Info1.htm
http://www.cdc.gov/nchs/tutorials/NHA -NES/Preparing/CleanRecode/Info1.htm
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