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This article discusses an instrumental variable approach for analyzing
censored data that includes many instruments that are weakly associated with
the endogenous variable. We study the effect of imprisonment on time to em-
ployment using an administrative data on all individuals sentenced for felony
in Michigan in the years 2003-2006. Despite the large body of research on
the effect of prison on employment, this is still a controversial topic, espe-
cially since some of the studies could have been affected by unmeasured con-
founding. We take advantage of a natural experiment based on the random
assignment of judges to felony cases and construct a vector of instruments
based on judges’ ID that can avoid the confounding bias. However, some
of the constructed instruments are weakly associated with the sentence type,
that is, the endogenous variable, which can potentially lead to misleading
results. Using a dimension reduction technique, we propose a novel semi-
parametric estimation procedure in a survival context that is robust to the
presence of many weak instruments. Specifically, we construct a test statistic
based on the structural failure time model and provide inference by inverting
the testing procedure. Under some assumptions, the optimal choice of the test
statistic has also been derived. Analyses show a significant negative impact
of imprisonment on time to employment which is consistent with some of the
previous results. Our simulation studies highlight the importance of account-
ing for weak instruments in the analyses in terms of both bias and inflated
type-I error rates.

1. Introduction. We consider instrumental variable (IV) analyses with cen-
sored data in settings that include many weak instruments—weakly associated
with the treatment variable. The key advantage of IV method is that it allows re-
laxation of the “no unmeasured confounders” assumption under some conditions
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[Wright (1934), Haavelmo (1943), Angrist, Imbens and Rubin (1996), Abadie
(2003), Inoue and Solon (2010), Ertefaie et al. (2017)]. However, IV analyses may
lead to misleading results in the presence of weak instruments. In fact, Bound,
Jaeger and Baker (1995) showed that in such settings, IV estimates may approach
to ordinary least squares estimates which we know are subject to bias because
of unmeasured confounding [Staiger and Stock (1994), Imbens and Rosenbaum
(2005), Small and Rosenbaum (2008)].

In 2013, the incarceration rate in the US was the highest in the world [Mauer
(2001), Austin and Irwin (2012), Currie (2013), Travis, Western and Redburn
(2014)]. The rise of mass incarceration over the last four decades has prompted
intense interest among social scientists in the consequences of incarceration for
the individuals and families who experience it [Kling (2006), Alexander (2012),
Turney and Wildeman (2015), Kilgore (2015)]. A large body of research sug-
gests that serving time in prison affects one’s employment [Pager (2008)], rele-
gates workers to the secondary labor market [Western (2002), Weiman, Stoll and
Bushway (2007)], and affects attachment to the labor market [Apel and Sweeten
(2010)]. However, there are several studies that find much smaller or nonexistent
prison effects [Kling (2006), Loeffler (2013)]. Thus, the evidence on the effect
of prison on employment remains inconclusive, especially since some of these
studies could have been affected by unmeasured confounding. For example, a
judge’s assessment of how likely an offender is to reoffend—and thus the sen-
tencing decision—can be influenced by information available to her that does not
get recorded in administrative data (e.g., statements from witnesses) and may also
be related to the time to employment, resulting in omitted variable bias/unobserved
confounding [Nagin, Cullen and Jonson (2009)].

Our data includes all individuals sentenced for a felony in Michigan in the years
2003-2006—over 100,000 individuals assigned to 151 judges. One important fea-
ture of this data that encourages IV analysis is the fact that judges are randomly
assigned in Michigan within counties. Specifically, criminal cases are assigned to
judges by the court clerk when cases are initially filed (at indictment). Therefore
initial charges are filed before the prosecutor knows which judge will be assigned.
In this paper, we take advantage of a natural experiment based on the random as-
signment of judges to felony cases and construct a vector of IVs based on judges’
ID. We are interested in the effect of imprisonment on time to employment with
quarterly earnings above poverty where the unit of time is in calendar quarter for-
mat and the poverty line is defined for a single person of working age under 65.
Moreover, the earnings come from jobs recorded by the unemployment insurance
system.

The first step in IV analyses is to assess the association between the IV and
the sentence type, that is, prison and nonprison sentences. We fit a random effect
model that includes judges’ ID as a random intercept, baseline covariates including
the counties indicator as fixed effects and the sentence type as a dependent vari-
able [Chamberlain and Imbens (2004)]. Our results show that the random intercept
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FI1G. 1. Michigan sentencing data. Estimated random intercepts for judges’ ID in Michigan in the
years 2003-2006.

component is significant which provides evidence that our instrument judges’ ID
is associated with the sentence type. However, the estimated random intercepts are
relatively small for many judges (Figure 1). Moreover, after controlling for mea-
sured covariates, the F-statistic is 27 which is relatively small given the large sam-
ple size and the dimension of the vector of instruments [Stock and Yogo (2005)].
In fact, Stock and Yogo showed that, with 150 IVs, F-statistic of 84 corresponds to
more than 20% error rate for a 0.05 level test where the test level is defined as the
maximal size of the Wald test of the estimated treatment effect. These observations
suggest the possibility of weak instruments which can lead to an invalid inference
by inflating the type-I error rate [Stock, Wright and Yogo (2002)] and providing a
biased estimate [Bound, Jaeger and Baker (1995)].

In econometrics, there is a vast literature on estimating the treatment effect in the
presence of many weak instruments. Staiger and Stock (1997) developed asymp-
totic theory for IV analyses when the number of instruments is assumed to be fixed
and the coefficients of the instruments in the treatment model are specified to be
in an n~!/2 neighborhood of zero. Their results show that when IVs are weak,
the two-stage least squares (2SLS) and the limited information maximum like-
lihood (LIML) estimates are not consistent and the standard errors are underesti-
mated while the bias is less of a problem for LIML than 2SLS [Magdalinos (1990),
Choi and Phillips (1992), Buse (1992), Magdalinos (1994), Bekker (1994), Bound,
Jaeger and Baker (1995), Anderson, Kunitomo and Matsushita (2010)]. Another
direction to study the asymptotic behavior of IV estimates has been taken by Chao
and Swanson (2005) that accounts for both many and weak instruments by allow-
ing the number of instruments to go to infinity as a function of sample size and
shrinking the coefficients of the instruments in the treatment model toward zero as
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the sample size grows [Hahn and Inoue (2002), Chamberlain and Imbens (2004),
Newey and Windmeijer (2009), Belloni et al. (2012), Chao et al. (2014), Kaffo and
Wang (2017)].

IV methods have been extended to analyses of survival data subject to censor-
ing. Bosco et al. (2010) generalized the 2SLS method to account for censoring
by fitting a logistic regression that includes the treatment as dependent variable
and the provider-preference based IV as independent variable in the first stage and
included the predicted values obtained by the first stage in the Cox proportional
hazard regression in the second stage [MacKenzie et al. (2014)]. In the context of
additive hazard models, Li, Fine and Brookhart (2015) developed a closed-form,
two-stage treatment effect estimator that relies on assuming linear structural equa-
tion models for the hazard function [Tchetgen et al. (2015), Chan (2016)]. An al-
ternative two-stage residual inclusion (2SRI) that includes the residual of the first-
stage model in the second stage is proposed by Terza, Basu and Rathouz (2008)
that can be used in nonlinear regression models, for example, Weibull models. The
2SRI does not account for censoring. However, when instruments are weak none
of the aforementioned methods that fit a logistic or a least squares model at the
first stage of the analysis can be applied to settings with many weak IVs [Bound,
Jaeger and Baker (1995)].

In this paper, we propose a pivotal method that adjusts for confounding using
IVs to estimate the treatment effect in survival contexts. Specifically, we use a di-
mension reduction approach to reduce the dimension of the vector of instruments
to the dimension of treatment variables and show that our method is robust to the
presence of many weak IVs. Similar to Staiger and Stock (1997), our asymptotic
framework assumes a fix number of instruments and lets the coefficients of the
instruments in the treatment model go to zero as the sample size goes to infinity
[Kleibergen (2007)]. This framework is appropriate for settings where the sample
size is quite large relative to the number of instruments which is indeed the case
in our application [Stock and Yogo (2005), Hausman and Newey (2004), Hansen,
Hausman and Newey (2008)]. Our work builds on Kleibergen (2007). In the con-
text of standard linear regression, Kleibergen proposed test statistic that is specif-
ically designed to cases with many weak IVs. He showed that his test statistic is
more powerful than the AR statistic proposed by Anderson and Rubin (1950). The
IV analysis developed in this article generalizes Kleibergen (2007) to settings with
censored data.

2. Framework and model.

2.1. Notation. Suppose that the data is composed of n i.i.d. triplet (T, D, Z*)
where D denotes the sentence type and D € {0, 1} for nonprison and prison sen-
tences, respectively. Let Z* be a single (L + 1)-valued vector of judge’s IDs that
is used to form a L mutually independent orthogonal binary instruments Z*. Also,
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let T be the time to employment with quarterly earnings above poverty. In the pres-
ence of censoring, we only observe Y = min(7, C) where C is the censoring time.
We consider a particular type of censoring where censored subjects are those who
stayed unemployed or are employed with salary below poverty at the planned end
of study, that is, administrative censoring. Thus, the random variable C records the
difference between the end of follow-up date and the subject’s sentence date. The
administrative censoring time C may vary across subjects, but for each subject the
value of C is known at the start of the follow-up. For example, all offenders in our
study whose sentence date is on July 30, 2005 had the same potential follow-up
time cp. We assume that C is independent of potential outcomes and covariates. Let
A = I(T < C) be the censoring indicator and X be a vector of baseline measured
covariates.

We use potential outcome framework to present our causal model and the re-
quired assumptions [Splawa-Neyman (1990), Rubin (1978)]. Let D% denote the
potential sentence type when assigned to a particular judge, that is, Z* = z*, and
T<"4 denote the counterfactual time to employment if Z* = z* and D = d. Also,
define Y4 = min(T¥"¢, C) as the counterfactual length of follow-up time and
AT = [(T%4 < C) as the counterfactual censoring indicator.

2.2. Assumptions. Our proposed method requires that the following assump-
tions hold for every L:

ASSUMPTION 1 (Stable unit treatment value assumption [Rubin (1978)]). Let
Z* and D denote the n x L matrix of instruments and n-dimensional vector of
sentence type, respectively.

a. If zf = z/*, then Df* = Df/* for all subjects.
b. If zf = z/* and d; = d;, then Tf*’g = Tf*’g for all subjects.

The SUTVA implies that the sentence type status of any individual does not

affect the sentence type and the time to employment of other subjects. Under this

z5d yzfd o zf i\ gdi i o Tf
i ’Yl ’Dl)aS(T; A aY' 7Dl )7

. . z¥.d
assumption we can write (7;” ™, A A ;

respectively for subject i.

ASSUMPTION 2 (Consistency). Individuals’ observed time to employment 7;
is the counterfactual time to employment under the sentence type D and instrument

Z* thatis, T; = Tl-Z*’D.

ASSUMPTION 3. Z* is associated with D conditional on the vector of mea-
sured covariate X.

ASSUMPTION 4. Z* is uncorrelated with unmeasured confounders condi-
tional on X. More specifically, Z* || (T4 D)X,
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ASSUMPTION 5. Z* affects the time to employment only through the sen-
* I%
tence type, that is, T* d_ T? 4 for all 7%, 7%, d and all individuals. So we can
write Tl-z*’d =74

Assumptions 1 and 2 link the potential outcome and the observed data. We be-
lieve that these two assumptions are plausible. However, a case can be made for
violations. For example, a reason for violation of SUTVA is that felons who are
sentenced to prison may dissuade their friends to commit crimes. We refer to an
instrument as a valid IV when Assumptions 3, 4 and 5 are satisfied. Using the
random effect model discussed in the Introduction, we have verified that Assump-
tion 3 holds despite the possibility of weak association. We discuss the plausibility
of Assumptions 4 and 5 in detail in Section 5.2.

2.3. Preliminaries. We first introduce the Anderson—Rubin (AR) statistic
[Anderson and Rubin (1950)] and the KJ-statistics [Kleibergen (2007)] in stan-
dard linear regression settings. Assuming that all the time to employment were
observed and followed an accelerated failure time (AFT) model, one could use
the existing AR- or KJ-statistic to overcome the challenges arising in the presence
of many weak IVs. Under these assumptions, log(T) = oD + ¢ where ¢ has a
mean zero normal distribution with variance 2. It is assumed that cov(e, &4) #0
where ¢4 = D — (Z(Z'Z)~'Z) D [Kleibergen (2007)]. For simplicity of notation,
baseline covariates X are excluded from both models. Then,

AR(Bp) = (log(T) — ,BOD)Z[Z/UZZ]_IZ/(Iog(T) — ,BOD)/
and

K (o) = (log(T) — BoD)ZI1(Bo)[T1(Bo) Z' o> ZT1(Bp)] ™'
x T1(B0)'Z (log(T) — PoD)’,

J(Bo) = (log(T) — BoD)Zt (Bo) L[¢ (Bo) Z'0*ZE (Bo) 1]~
x £(Bo) Z (log(T) — BoD)’,

where T1(Bo) = (Z'Z)"'Z'[D — (log(T) — BoD)**G*], and ¢(Bo)L =
(Z'Z)"'T1(Bo) 1 is the orthonormal complement of ¢ (Bp), that is, Z(B0) ¢ (Bo)L =
Ix—1 and ¢(Bo)1¢(Bo) = 0. Under the null hypothesis Hp : B = fo, Anderson
and Rubin (1950) showed that the AR converges in distribution to XZ(L), and
Kleibergen (2007) showed that K- and J-statistics converge in distribution to x (1)
and x2(L — 1), respectively. Our contribution is to generalize these statistics to set-
tings with censored data.
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2.4. Failure time model. Following Robins and Tsiatis (1991), consider the
following structural failure time model

(1) T° = 79 exp[ fod],

where T¢ is the counterfactual time to employment if D = d. Thus, exp[Bod] can
be interpreted as the factor by which sentence type d shortens or accelerates the
time to employment [Joffe (2001)]. This model assumes rank preservation of the
subjects’s time to employment meaning that if it takes a longer time for subject
i to find a job compared with subject j when both are sentenced to nonprison
sentences, it would also take a longer time to find a job for subject i than subject
j if both were sentenced to prison [Mark and Robins (1993), Herndn et al. (2005),
Solomon et al. (2014)].

Under Assumptions 1 and 2 the structural model (1) can be linked to the ob-
served data as

T(Bo) = T" =T exp[Bo D).

We use the notation T'(B¢) to acknowledge the dependence on By. The counterfac-
tual time to employment 7 is independent of the vector of instruments given that
Assumptions 4 and 5 hold. However, we do not observe the time to employment 7’
for all of the subjects because some cannot find a job at the end of the follow-up.
Intuitively, one may define Y 0 = min(7°, €% where C0 = C exp[Bo D] and follow
a standard G-estimation method [Robins (1993, 1997)]. Unfortunately, this is not
a proper way of handling censored data because even when Sy is the true causal
effect, Y is no longer independent of D since C is a function of the sentence
type [Hernén et al. (2005)].

Artificial censoring is a method to handle censored data in causal inference.
The idea is to restrict the analysis to subjects whose employment time would
have been observed regardless of their sentence type. Let D be a bounded set that
is the support of D. Define the minimum potential censoring time as CT(8) =
C min{exp(Bd); d € D} which reduces to C min{1, exp(8)} when D is binary.
Unlike €9, CT(B) is not a function of the sentence type. Define a new censor-
ing indicator AT(B) = I(U(B) < CT(B)) where U(B) = min(Y (B), CT(B)) and
Y(B) = Yexp[BD]. Notice when = 0, both censoring indicators are identical
and when B # 0, A =0 implies AT(8) = 0 but not the other way around. Thus,
we are artificially censoring some subjects whose time to employment is observed
to preserve the exchangeability result

2) [UB), AT(B)} LZ*|X.

The independence result holds because (U (S), AT (B)) are functions of (U (B),
C7(B)) that is independent of Z* under Assumptions 4 and 5. For the simplicity
of notation, assuming an additive model for the association between Z* and X, we
rewrite (2) as

3) [{UB), A"(B)} LZ,
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where Z = Z* — PxZ* with Px = X(X’X)~'X’. Thus, assuming that Px is well
defined, Z is the orthogonal projection of Z* onto the space spanned by covari-
ates X. In the following, we refer to Z as our vector of instruments and assume
that all the variables are centered including the artificial censoring variable AT(8).

3. Estimation in the presence of many weak IVs.

3.1. Testing procedures. The independence result (3) plays a central role in
our proposed inferential procedure. Based on the AR statistic [Anderson and Rubin
(1950)], a test statistic that explores the correlation between AT(ﬂo) and Z can be
formed as

4 AR(Bo) = AT (B0)Z[Z'sanZ] ™ Z AT (B0,

where Mz =1 — Pz and saa = AT(Bo) Mz AT (By)/(N — L). Under Hy, the AR
statistic converges to Xz(L). In contrast with the 7-test based on the 2SLS IV anal-
yses, the Anderson—Rubin test has correct size regardless of the strength of the
IVs. This is mainly because the denominator of the 2SLS estimators is a function
of cov(Z, D), and thus, weak I'Vs result in unstable estimators. This is not the case
in (4) and the strength of IVs can only affect the power of AR test statistic [Staiger
and Stock (1997), Hahn, Hausman and Kuersteiner (2004), Wang et al. (2018)].

A deficiency of the AR statistic is that it has low power because the degrees
of freedom parameter of its limiting distribution is equal to the number of instru-
ments L. We propose the following two chi-square test statistics to overcome this
deficiency:

K (Bo) = AT(BO)ZIT(B0)[T1(Bo) Z's s ZT1(B0)] ™ T1(B0) Z AT (Bo).

J(Bo) = AT (B0)ZE (Bo) L[¢ (Bo) L Z'sanZE (Bo) ]~ ¢ (Bo) L Z AT (Bo),
where TT(fo) = (Z'Z)~'Z'[D — AT(Bo)241, and ¢(Bo)r = (Z'Z)"'T(Bo).
is the orthonormal complement of ¢(Bp), that is, {(,Bo)lg“(ﬂo) | = Ix—1 and
£(Bo)1¢(Bo) =0. Also, spg = A%(,Bo)/MZD/(N — L). Assuming that instruments
are valid, under Hy, the K- and J- statistics converge to Xz(l) and XZ(L — 1), re-
spectively. An interesting feature of these two statistics is that they are independent
because the projection operators ZIT(Bo)[T1(B0) Z'sanZI1(Bo)1~ ' T1(By)'Z’ and
Z:(Bo) 1L[£(Bo) |\ Z'sanZs (Bo) 117! ¢(Bo) Z' are orthogonal. This implies that the
K- and J- statistics add up to the AR statistic. The K- and J- statistics are the gen-
eralizations of the test statistics in Kleibergen (2007) to survival outcome settings.
Proposition 1 states the limiting behavior of the K- and J- statistics for different
limiting sequences of the association parameter between the treatment and instru-
ments.

&)

PROPOSITION 1. Let y be the association parameter between the treatment
indicator and instruments. Assuming that Assumptions 4 and 5 hold, under the null
hypothesis Hy : B = Bo, and when:
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a. the instruments are strong such that y = O(1),
b. the instruments are weak such that y = n~'/>H where H is a vector of
constants,

the K- and J- statistics converge in distribution to Xz(l) and XZ(L — 1), respec-
tively.

The proof is presented in Section S3 of the Supplementary Material [Ertefaie
et al. (2018)]. Proposition 1 shows that the limiting distribution of the K- and J-
statistics are robust to the specification of the association parameter between the
treatment and instruments.

Assuming that the IV is valid, these statistics are testing whether, for a given g,
the artificial censoring indicator AT(/S) is uncorrelated with the vector of instru-
ment Z. Specifically, K (8p) uses a dimension reduction tool and instead of directly
looking at the correlation between AT(B) and vector of instruments, it explores
the correlation between AT(B8) and a projection of a function of the sentence type
variable onto the space spanned by instruments. By construction when there is no
unmeasured confounding, AT(B) is independent of the sentence type. However, in
the presence of unmeasured confounding which is the main subject of this paper,
this independence does not hold anymore. In fact, the artificial censoring indicator
may be a function of unmeasured confounders. For example, it is plausible that
individuals with more serious crimes are more likely to have AT (8) = 0 because
it may be more difficult for them to find a job and if such characteristics are not
captured by measured covariates, then even under the null hypothesis, AT(8) will
depend on the sentence type through the unmeasured confounders.

The key idea in K (f) is to asymptotically retrieve the independence condition
under Hy by projecting a new variable D — AT(/SO);AAZ onto the space spanned

by instruments where D — AT(,BO)% can be viewed as the residual of the least

squares regression of D on AT(B). Thus, the K-statistic tests if under the null hy-
pothesis, there is any path from instruments that goes through the sentence type to
the artificial censoring indicator. The J-statistic serves a different purpose. The test
statistic J(B) is constructed using the orthogonal complement IT(8p)) and tests
given that the null hypothesis holds, if there are any other paths that go from instru-
ments to the artificial censoring indicator. For example, when there is a direct path
from Z to the time to employment, that is, Assumption 5 is violated, J(8p) may
reject the null hypothesis Hy : 8 = Bo even when Hy is true Kleibergen (2007),
Section 3.

The proposed K- and J-statistics have more power than AR because their lim-
iting chi-square distributions have degrees of freedom of less than L. Particularly,
the K-statistic is using only one degrees of freedom which is due to the dimen-
sion reduction process that replaces Z with ZI1(fp) that is a n x 1 vector. One
may think that estimation based on the K-statistic alone would outperform other
estimation procedures based on any combinations of the K- and J-statistics due to
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the small degrees of freedom. However, Kleibergen (2007) showed that although
the K-statistic is a powerful test, in some cases, the power drops significantly
around the inflexion points and local maxima of the statistic. He overcame this
deficiency by using the J-statistic as a pretest for the K-statistic. Thus, a testing
procedure of size «, first tests the null hypothesis using the J-statistic with level
oy and if rejected, performs the test using the K-statistic with level ax such that
(1—a)=(~0—ay)(1 —ag), thatis, o ~ oy + ag. From now on, we refer to this
testing procedure as KJ,; j, statistic where a = oy x 100 and b = ag x 100. Note
that the KJp s is equivalent to the K-statistic.

We generalized the dimension reduction technique proposed by Kleibergen
(2007) to settings with censored data. Another potential method to reduce the di-
mension of the vector of instruments is to utilize the idea in the provider prefer-
ence based IVs and construct a “harshness” score for each judge which leads to a
one-dimensional instrument [Brookhart and Schneeweiss (2007), Brookhart et al.
(2006)]. However, the harshness score is not known and must be estimated using
the available data by, for example, estimating the proportion of felons sentenced
to prison by each judge. To provide valid inferences, this method requires data
splitting so that the harshness is estimated using the first portion of the data and
the prison effect is estimated using the second portion of the data [Bound, Jaeger
and Baker (1995), Ertefaie, Small and Rosenbaum (2017)]. One drawback of the
sample splitting is the reduction in the sample size and thus, reducing the statis-
tical power. Our dimension reduction method does not suffer from this drawback
and utilizes the entire data. Hernan and Robins (2006) discussed the other issues
related to the provider preference based IVs in detail [Li et al. (2015)].

Confidence intervals for 8 can be constructed by inverting the testing proce-
dures. Accordingly, when the AR or KJ statistic with oy = 0 is used, point esti-
mates ,3 are obtained as a parameter value 8 for which the test results in the highest
p-value. The point estimate of the KJ statistic with oy > 0 is the one with highest
K-statistic p-value among those that are not rejected by the J-statistic. However,
when the treatment effect is heterogeneous, AR and KIJ statistic with oy > 0 may
result in an empty confidence intervals that is discussed in Section S1 of the Sup-
plementary Material [Kadane and Anderson (1977), Small (2007), Davidson and
MacKinnon (2014)].

3.2. More powerful testing procedures. The testing procedures proposed in
the previous section are functions of the observed time to employments only
through the artificial censoring indicator. Intuitively, the power of the tests can
be potentially improved by incorporating more information of the observed time
to employments than just a binary artificial censoring indicator. However, it may
require imposing some parametric models on the time to employments.

In the following proposition, we consider a more general form of the test statis-
tics K (Bo), J(Bo), and AR(Bp) where the censoring indicator is replace by a func-
tion g(AT, B). We then derive the optimal choice of this function.
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PROPOSITION 2. Suppose T has a density function fr(t). Then the density
Sfunction of the treatment-free survival time Ty is f1,(t) = exp(BD) fr (t exp{BD}).
Assuming that the score function corresponding to the survival likelihood can be
decomposed as Sg(§) = DgOPt(AT(,B), U(B), &) where & is the set of nuisance pa-

rameters, then the function goPt(AT(,B), U(B), é) is the optimal choice ofg(AT, B)
where £ is the estimated nuisance parameters.

PROOF. Because the map from T to TO = T exp[BD] is one to one with
strictly positive Jacobian determinant d7°/98 = exp(BD), we have fr(t) =
exp(BD) fro(texp{BD}). Define a score function Sg(§) =dL/9p = Dg(AT(B),
U(B), &) where L is the corresponding log-likelihood. Then, following Tsiatis
(2006), the efficient score function can be constructed as ngf(é ) = Sp(€) —
E[Sg(6)IX] = (D — E[DX])g(AT(B), U(B), ). The unknown vector of nuisance
parameters £ can be replaced by a consistent estimator £. Now, because we are in-
terested in the null hypothesis of no association between D and Tp, assuming that
IVs are valid, that is, the IVs are associated with the outcome only through their as-
sociation with the treatment, we can replace D with a function of instruments g (Z)

and define ngfT () = (q(Z) —E[q(Z)X])g(AT(B), U(B), &). However, by defini-
tion, our instruments Z = Z* — PxZ*, where Py = X' (X’ X)*IX, are orthogonal
to the space spanned by X. Thus E[g(Z)|X] = 0. In AR statistic, g(Z) = Z and in
the K- and J-statistics, q(Z) = ZI1(8). Thus, for example, the optimal version of
the AR statistic is given by

AR (By) = ¢P(AT(B), U(B), E)Z[Z'sanZ] ' Z g™ (AT(B), U(B), §)
where saa = 77 8PHAT(B), U(B), §) Mzg®™(AT(B), U(B), &) and Mz, = I —

Pz. The optimal version of the K- and J-statistics can be derived similarly. [J

To clarify the proposition, for example, assume that 7 is exponentially dis-
tributed with mean 1/X. Then the density function of the treatment-free survival
time 79 is fro(t) = Aexp(BD)exp(—tAexp{BD}) and the log-likelihood function
for U(B) is

L =BDAT(B)+ AT(B)log(ro) — AoY exp(BD).

Taking derivatives of £ with respect to 8 gives the score function
S50 =55 = DAT(H) = ADU(B).

After replacing A with its maximum likelihood estimator %, we have Sp (h) =
. + ~
2 _ DAt — UBFSE). Thus, g™(AT(BLUB).H) = (AT(B) —

: YUB)
U(B) 347
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The asymptotic distributions of our test statistics are agnostic to the number of
covariates. This is because we are not projecting out the effect of covariates from
the outcome model. However, one can gain efficiency by including the covariates
into the analysis and estimate A using the covariates, that is, A(x), and plugging
it in gOPt(AT(,B), U(p), A(X)). In this situation, the denominator of the variance
estimator must be modified, and

1 N A
san = mg"l’t(A*(ﬂ), U(B), A(x)) Mzg*™ (AT(B), U(B), A(x)),
where p is the dimension of the vector of covariates. See Section S4 of the Sup-
plementary Material [Ertefaie et al. (2018)].

4. Simulation studies. We further evaluate in simulation studies the perfor-
mance of the proposed method under different survival time distributions. Within
each scenario, we also vary the strength and number of instruments. The treatment
variable is generated from

(6) D ~ Binomial( explyZ+nX + U} >

14+exp{yZ+nX+ U}

where n = (0.5, 0.5), X = (X1, X) and U generated from a standard normal dis-
tribution with a diagonal covariance matrix, and Z is a k € {5, 50} dimensional
vector of I'Vs that are generated independently from a standard normal distribution.
We assume that X are U are measured and unmeasured confounders, respectively.
The parameter y = (1,0, 0, ..., 0) reflects the strength of IVs with y; = 2.0, and
1.0. Thus, in our simulation, only the first IV is valid. We have tuned the cen-
soring mechanism such that we get about 30% censoring in all the scenarios. We
implemented five methods:

e KJ represents the estimator obtained by inverting the test statistic in (5). The
KJ® corresponds to the more powerful version of the KJ statistic discussed in
Proposition 2.

e AR represents the estimator obtained by inverting the test statistic in (4). The
AR® corresponds to the more powerful version of the AR statistic discussed in
Proposition 2.

e 2SLS correspond to a two-stage IV method in which the second stage fits a
parametric AFT model that includes predicted treatment values obtained in the
first stage model that regresses the treatment on Z.

e LIML is the limited information maximum likelihood estimator that is obtained
using the ivmodel R package where we replace the outcome with the artificial
censoring indicator.

e Fuller represents an estimator proposed by Fuller (1977) that is obtained us-
ing the ivmodel R package where we replace the outcome with the artificial
censoring indicator.
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e 2SLS¥! js a G-estimation based estimator that involves artificial censoring and
assumes a parametric AFT model for the survival times.

e Regression ignores the presence of unmeasured confounding and fits an AFT
model using treatment D as an independent variable.

4.1. Simulation study: Exponential. Consider exponential distribution for the
survival time

Y ~ exponential(5exp{2D + 0.5X| 4+ 0.5X, + U}).

We also assume that the first IV, that is, the only valid IV, is associated with X such
that Z; = X1 + X» + ¢ where ¢ is a standard normal random variable. We generate
500 datasets of size 1000 according to this model.

In the KI*f and AR, we consider g°P'(AT(B),U(B),») = (AT(B) —
U (B)A(x)) where for any given 8, A(x) = exp{#X} with 7} = arg minn{f}DA*(,B) +
AT(,B)nX — Yexp(BD + nX)}. In the 2SLS and 2SLS™ we assume exponential
model for the outcome, that is, no model misspecification. Both the KJ and AR
statistics lead to an unbiased estimators and KJ®f outperforms all the other meth-
ods. When the strength of IV is moderate, that is, y; = 2.0, the LIML and Fuller
estimators perform well but their confidence intervals are slightly undercovered
when L = 50. Moreover, when the dimension of the vector of instruments is small,
that is, L = 5, the latter methods lead to confidence intervals that are 10%—20%
wider than the one obtained by the KI®f. Although the estimator 2SLS*" with
L =5 and y; = 1.0 is unbiased, the coverage rate of the confidence interval is
slightly below the nominal rate and as the number of instruments increases to
L =50, the coverage rate decreases drastically and the estimator reveals signif-
icant bias. The LIML and Fuller estimators also suffer from low coverage rates
when the strength of the IV is reduced and L = 50.

When there are L = 50 instruments and the only valid IV is weak, that is,
y1 = 1.0, KI°f is the only unbiased approach that provides two sided confidence
intervals with a valid coverage rate. The other test based procedures KJ, AR,
and AR fail to provide an upper bound for the confidence intervals and the LIML
and the Fuller lead to undercovered confidence intervals. Figure 2 provides more
detail about the power of KJ (solid line), KJ (dashed line), AR (dotted line)
and AR (dashed-dotted line) statistics. The plot with L = 50 and y; = 1.0 shows
low power on the right side of the true parameter value. Figure S2 in the Supple-
mentary Material compares the power plot of the LIML with KJ° and AR, The
LIML reveals some type-I error rate inflation when L = 50 and y; = 1. The Fuller
estimators have similar behavior to LIML, and thus, are omitted from Figure S2.

We also studied the effect of the sample size to the instrument dimension ratio
on the estimates by fixing the L = 50 and increasing the sample size from 500
to 10,000. Figure 3 shows that for smaller sample sizes the 2SLS estimator (solid
line) has a notable bias and as the sample size increases the bias reduces. Moreover,
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FI1G. 2. Simulation study: The survival outcome is generated using an exponential distribution with
30% censoring rate. Power plots of efficient KJ (solid line), KJ (dashed line), efficient AR (dotted
line) and AR (dotted-dashed line). L: number of instruments; y = (y1,0,0, ..., 0): strength of the
instruments.

the KIJ statistic (dotted line) has the smallest absolute bias and the bias is slightly
larger for the AR estimate (dashed line).When the instruments are stronger with
y1 = 2, the 2SLS estimator is less bias but the KJ and the AR methods outperform
the 2SLS uniformly for all the sample sizes considered. The LIML and Fuller
estimators reveal similar behavior as the KJ method and are omitted.

4.2. Simulation study: Weibull. Similar to Section 4.1, we assume that n =
(0.5, 0.5) but consider a Weibull distribution for the survival time

Y ~ Weibull(shape = 0.5, scale = 5exp{fD + X| + X» + 2U}).

Our goal is to study how model misspecification affects the results. Specifically,
in the 2SLS and 2SLS*", we postulate an exponential model for the outcome in

the KJ°f and AR, and consider gP'(AT(B), U(B), %) = (AT(B) — U (B) ZZ@T(%))
which was derived in Section 3.2. In Table 1, we have also reported the coverage
of the corresponding confidence intervals to reflect the effect of model misspecifi-
cation. Our previous results in Table 2 suggest that the 2SLst provides unbiased
effect estimates when there are small number of instruments, that is, L = 5. How-
ever, in Table 1, the coverage rate corresponding to the constructed confidence

interval for the 2SLS™"!! shows that type-I error rate is significantly inflated due to
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FI1G. 3.  Simulation study: The survival outcome is generated using an exponential distribution with
30% censoring rate and L = 50 instruments. y = (1, 0,0, ..., 0): strength of the instruments. Plots
show the absolute bias of the KJ (dotted line), the AR (dashed line) and the 2SLS (solid line). Sample
sizes are from 500 to 10,000.

the model misspecification and/or the presence of weak IVs. The LIML and the
Fuller estimators are substantially less efficient and when L =5, the correspond-
ing confidence intervals are up to 35% wider than the one obtained by the KJ°f,
Moreover, The LIML and the Fuller fail to provide finite confidence intervals. Fig-
ure 4 displays the power of KJ eff (solid line), KJ (dashed line), ARCf (dotted line),
and AR (dashed-dotted line) statistics. See also Figure S3 in the Supplementary
Material [Ertefaie et al. (2018)].

4.3. Simulation results summary. We studied the effect of number of instru-
ments and the strength of instruments on different estimators. Our results showed
that the g-estimation based the 2SLS estimator, that is, 2SLS*™, is unbiased only
when there is a small number of instruments and as the number of instruments
increases this estimator shows significant bias. However, the proposed test based
estimators KJ*ff, KJ, AR, AR, LIML, and Fuller remain unbiased regardless
of the number of IVs. Estimators that are obtained by the KJ methods are more
efficient and the corresponding confidence intervals are shorter than the ones ob-
tained by AR, LIML, and Fuller statistics. For example, in Table 2 for L = 50
and y; = 2, the confidence interval obtained by the AR®T is 1.87 wider than the
one obtained by the KJ°f, The importance of the KJ statistic and particularly the
KJ*f becomes more evident when there are many weak IVs, for example, L = 50
and y; = 1, where AR, LIML, and Fuller based estimators often fail to provide
an upper bound for their corresponding confidence intervals (see, e.g., Table 1).
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TABLE 1
Simulation study: Weibull. The survival outcome is generated using a Weibull distribution with 30%
censoring rate. L: number of instruments; y = (1, 0,0, ..., 0): strength of the instruments; CI:

confidence interval; Covg.: coverage of confidence intervals. True By =2

Methods L=5 L =50
Estimate 95% CI  Length of Covg. Estimate 95% CI  Length of Covg.
95% CI 95% CI

y1=2.0

Kyefh 199  (0.60,3.50) 290 096 200  (0.40,3.78) 338 095
KJ| 4 201  (0.44,3.80) 336 096 200 (0.32,406) 374 095
KIS 200  (0.66,3.42) 267 096 200 (0.42,3.64) 322 096
Klo.s 202 (0.52,3.72) 320 096 200  (0.34,3.92) 358 095
AR®ff 212 (0.24,398) 374 096 210 (—0.78,5.72) 650 095
AR 208  (0.12,432) 420 097 209 (—0.84,632) 568 094
2sLsart 214 (0.84,3.02) 218 080 1.68  (0.58,2.64) 206  0.64
LIML 195 (0.45,3.65 320 096 199  (0.38,3.76) 338 094
Fuller 194 (044,359 315 095 200 (039,375 336 095
2SLS 334 (254,414 160 001 361 (2.81,441) 160 001
Regression 548  (5.32,5.64) 032 000 551 (535,567) 032  0.00
y1=1.0

Kt 200 (-0.36,498) 534 097 198 (—1.22,791) 9.3 094
KJ4 194 (—048,6.51) 699 096 196 (—1.49,400) +oo 097
KIS 201 (—034,472) 506 097 198 (—1.20,7.73) 893 095
KJo.s 193 (—040,637) 677 096 196 (—1.44,400) oo 098
AReff 1.80  (—=0.90,6.70) 7.60 096 200 (—2.81,400) +oo  0.96
AR 220 (—1.18,4+00) +oo 097 200 (—3.23,400) +oo 097
2sLsart 204 (0.02,3.68) 3.62 081 104 (—0.48,250) 294 047
LIML 194 (—055,695 750 095 195 (—0.80,400) +oo  0.96
Fuller 196 (—0.55,6.89) 744 095 195 (—0.84,400) oo 097
2SLS 247 (1.25,3.69) 244 036 361 (2.81,441) 160 0.0l

Regression  5.99 (5.37,6.61) 1.24 0.00  5.51 (5.35,5.67) 0.32 0.00

We have also studied the effect of model misspecification on different estimators
where the true survival times were generated from a Weibull distribution and the
postulated model was exponential. This model misspecification results in invalid
confidence intervals for the 2SLS based estimator 2SLS" (Table 1). However, the
proposed estimators are robust to model misspecification and the inference remains
valid. We have also implemented the bias-corrected 2SLS estimator [Hausman and
Newey (2004)] and the results showed that its performance was inferior to all the
other estimators considered except the 2SLS and the Regression estimators (results
are omitted).
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TABLE 2
Simulation study: The survival outcome is generated using an exponential distribution with 30%
censoring rate. L: number of instruments; y = (y1,0,0, ..., 0): strength of the instruments; CI:

confidence interval; Covg.: coverage of confidence intervals. True fy =2

Methods L=5 L =50
Estimate 95% CI  Length of Covg. Estimate 95% CI  Length of Covg.
95% CI 95% CI

y1 =2.0

KJTfa 1.99 (0.90, 3.10) 2.20 0.94 2.03 (0.77, 3.25) 2.48 0.95
KJ1:4 2.01 (0.88, 3.28) 2.40 0.94 1.96 (0.73, 3.45) 2.72 0.95
KISt 197  (0.95,3.04) 209 095 195 (0.85,3.20) 235 095
Klp, s 1.95 (0.87,3.22) 2.35 0.95 1.96 (0.77,3.41) 2.64 0.94
ARCff 1.95 (0.69, 3.36) 2.67 0.93 2.00 (—0.15,4.25) 4.40 0.96
AR 1.94 (0.65,3.64) 2.99 0.94 2.05 (—0.26,5.42) 5.68 0.95
2SL.grt 1.92 (1.01, 3.02) 2.01 0.94 1.45 (0.67,2.46) 1.79 0.69
LIML 1.95 (0.87,3.22) 2.35 0.96 2.08 (0.86,3.21) 2.35 0.92
Fuller 1.97 (0.85,3.17) 2.32 0.95 1.90 (0.85, 3.20) 2.35 0.92
2SLS 3.31 (2.51,4.11) 1.60 0.00 3.60 (2.72,4.48) 1.76 0.00
Regression  5.52 (5.08,5.96) 0.88 0.00 5.50 (5.06,5.94) 0.88 0.00
y1 =10

KJ?TZ 2.00 (0.32,3.76) 3.44 0.95 2.03 (—0.44,5.12) 5.56 0.95
Kl 4 201  (0.26,4.88) 462 096 196 (—046,+00) +oo 098
KJgfg- 2.04 (0.34,3.74) 3.40 0.96 2.11 (—0.42,5.10) 5.52 0.96
Klp s 2.03 (0.28,4.82) 4.54 0.95 212 (—0.44, 4-00) +o00 0.97
AR 202 (—0.14,436) 450 096 210 (—=1.90,4+00) +oo 097
AR 2.04 (—0.22,5.32) 5.54 0.95 2.18  (=2.00, 400) +o00 0.97
2518t 1.90 (0.40, 3.26) 2.82 0.87 1.16  (—0.24,2.24) 2.44 0.36
LIML 2.05 (0.25,4.41) 4.16 0.95 1.98 (0.06, 7.90) 7.84 0.89
Fuller 2.04 (0.24,4.30) 4.06 0.94 1.91 (0.05,7.85) 7.80 0.90
2SLS 2.64 (1.76,3.52) 1.76 0.41 3.14 (2.30,3.98) 1.68 0.21

Regression  5.88 (5.48,6.28) 0.80 0.00  5.88 (5.48,6.28) 0.80 0.00

In Section S4 of the Supplementary Material [Ertefaie et al. (2018)], we have
investigated the performance of our methods in the presence of many covariates
in the model p = 20, 100. The results show that the type-I error rates are slightly
inflated for the LIML and the Fuller estimators but the KJ*f performs well. More-
over, when there are many covariates, the LIML and the Fuller have higher and
lower statistical power in the left and right sides of the true value, respectively,
compared with the KJ°f (Table S2). The KJ statistic also performs well regarding
the type-I error rate but as expected has slightly lower power than the LIML and
the Fuller statistics. In Section S5 of the Supplementary Material we have studied
the impact of increasing the number of instruments to L = 100, 250 on our estima-
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F1G. 4. Simulation study with covariates: The survival outcome is generated using a Weibull distri-
bution with 30% censoring rate. Power plots of efficient KJ (solid line), KJ (dashed line), efficient AR
(dotted line), and AR (dotted-dashed line). L: number of instruments; y = (y1,0,0, ..., 0): strength
of the instruments.

tors. Figure S1 shows that while the KJ outperforms all the other methods when
L =100 and y; =1, 2, it reveals some type-I error rate inflation when L = 250
and this is exacerbated when the instrument is weak, that is, y; = 1. The LIML
performs poorly in all the scenarios and seems to be unreliable due to the dra-
matic type-I error rate inflation. The Fuller estimator reveals similar behavior as
the LIML and is omitted. Our results suggest that, in such extreme cases, that is,
L =250, the AR statistic is more robust compared with the KJ and LIML estima-
tors.

In general, when IVs are not strong, the coverage rate of the 2SLS™!! estimator
is below the nominal rate and increasing the number of IVs decreases the coverage
rate drastically [Stock, Wright and Yogo (2002)]. Although the LIML and Fuller
also suffer when there are many IVs, they seem to be more robust than the 2SLS.
Overall, the KJ°f outperforms all the other estimators in all the different scenarios
considered in this section. It is robust to model misspecification and provides valid
inference in the presence of many weak IVs.

5. Application.

5.1. Overview. Our dataset includes 111,000 sentenced for a felony in Michi-
gan between 2003-2006. We are interested in the total effect of incarceration on
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time to employment with quarterly earnings above poverty, and thus, the time is
measured from the sentence date. At the end of the study follow-up, 45% of felons
were unemployed and considered as censored observations. We define a binary
treatment variable which is one if sentenced to prison and zero otherwise. Using
judges’ ID, we create a 150-dimensional vector of mutually orthogonal binary in-
struments (Z*).

5.2. Validity of 1V assumptions. The validity of a candidate instrument relies
on the core Assumptions 1-5. We assessed the association between the IV and
the sentence type by fitting a random effect model discussed in Section 1. Our
results showed that the random intercept component is significant which provides
evidence that Assumption 3 is satisfied. However, as shown in Figure 1, the esti-
mated random intercepts are relatively small for many judges which suggests the
presence of weak [Vs.

While we cannot empirically verify that judge assignment is random with re-
spect to unobserved variables, we can check that the covariates we observe are
uncorrelated with judge assignment. In order to assess the degree of covariate bal-
ance across judge types, we created two categories of judge “harshness” based
on whether the estimated random effect was above or below the median. The di-
chotomization helps us to assess whether the covariate imbalances are reduced
across the different judges types compared to the sentence types, that is, treat-
ment groups. This procedure provides insight about the validity of Assumption 4.
Specifically, imbalance in measured confounders across categories of the [V makes
Assumption 4 less plausible because, for example, if the measured covariates are a
proxy of the unmeasured confounders, an association between the measured con-
founders and the IV suggests that there will be an association between the IV and
unmeasured confounders. Figure 5 shows the standardized differences in means,
that is, the values of the differences in means divided by the pooled standard devia-
tion. These standardized differences suggest that there is a significant improvement
in terms of the covariate imbalance across the judges types compared to sentence
type.

The exclusion restriction, that is, Assumption 5, is another core assumption in
IV analyses that is not completely testable. In our example, Assumption 5 could
be violated if offenders that are assigned to a harsh judge, that is, judges that have
more tendency of sentencing offenders to prison, were more likely to take plea bar-
gain which may eventually plea down to a misdemeanor. Thus it may be easier for
the offender to find a job. However, it is conceivable to assume that after control-
ling for all the measured covariates, the judges’ ID affects the time to employment,
that is, outcome, only indirectly through the sentence type which suggests that As-
sumption 5 is plausible.

5.3. The effect of imprisonment on time to employment with quarterly earnings
above poverty. We include all the covariates listed in Figure 5 in our analysis by



2666 A. ERTEFAIE ET AL.

Single, 1/0
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Property, 1/0
Prior misdemeanors, 1/0
Person, 1/0 . a
Number of arrests
Mental liiness, 1/0
Married or common law, 1/0 n
Female, 1/0 .
Education category B . Group
Drug use, 1/0 B « Judges’ Type
Divorced or Separated, 1/0 - s + Sentence Type
Controlled Substance, 1/0
Black, 1/0 [N
Wages23 :
Public Order, 1/0
Employ23, 1/0 B
Employ12, 1/0
Alcohol use, 1/0
Age category at sentencing 4
Wages12 :

Covariates

-1.0 0.5 0.0 0.5 1.0
Standardized Differences

FI1G. 5. Michigan sentencing data. Covariate imbalance across the sentence types, that is, treat-
ment, and the judges’ type, that is, function of candidate 1Vs. Standardized difference defined as the
absolute value of the difference in means divided by the pooled standard deviation.

redefining our IV as the orthogonal projection of Z* onto the space spanned by the
covariates. Table 3 shows the effect estimates and 95% confidence intervals (CI)
obtained by different methods. Overall, our analysis shows that imprisonment has
a significant negative effect on time to employment with quarterly earnings above
poverty. The point estimates obtained by the KJ and the AR methods are fairly
close with the AR estimate being slightly lower. However, there is a drastic differ-
ence in terms of the length of the corresponding confidence intervals. Specifically,
the KJ, , gives the point estimate of —1.81 with 95% CI (—2.08, —1.26) while
the point estimate using the AR is —1.70 with 95% CI (—2.58, —0.12). Thus, the
length of the confidence interval if the former estimator is 65% shorter than the lat-
ter one. This highlights the importance of the dimension reduction technique used
in the K1 statistics that leads to a substantial power gain. The point estimates imply
that being sentenced to prison multiples the number of quarters to employment by
a factor of 6 compared with nonprison sentences.

To derive the more powerful test statistics KJff and AReff, Wwe assume an ex-
ponential model for the outcome and consider gOPt(AT(,B), U(p), )A\) = (A‘L(,B) —

U (,B)ZZ%T(%)) which was derived in Section 3.2. The 2SLS¥! is a G-estimation
based estimator that involves artificial censoring and assumes an exponential
model for the survival times. Also, the Regression approach ignores the presence
of unmeasured confounding and, assuming an exponential model, fits an AFT

model using treatment D and measured covariates as independent variables. As
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TABLE 3
Michigan data. L: number of instruments, that is, judges; CI: confidence interval

Methods L =150
Estimate 95% CI Length of 95% CI

Kyefh —1.80 (—=2.07,-1.32) 0.75
KJp 4 —1.81 (—2.08, —1.26) 0.82
KIS —1.80 (—2.05,—1.34) 0.71
KJo.s —~1.81 (—2.05, —1.28) 0.77
AReff —1.70 (=2.54,—0.39) 2.17
AR —1.70 (—2.58,—0.12) 2.46
LIML —1.80 (—2.06, —1.30) 0.76
Fuller —1.80 (=2.06, —1.31) 0.75
2SLsat -1.97 (=2.15, —1.74) 0.41
Regression —0.83 (—0.86, —0.80) 0.06

expected, the KIf and AR® have shorter confidence intervals compared with the
KJ and AR. The Regression estimator is bias and seems to underestimate the ef-
fect of imprisonment due to both possible unmeasured confounding. The LIML
and Fuller estimators are similar to the KJ estimators with confidence intervals
that are slightly wider than the KJ®f and shorter than the KJ.

The point estimates obtained by the 2SLS¥" and the K1 statistic are fairly close
with the 2SLS*™" being slightly higher. This might be due to the large ratio of the
sample size to instrument dimension, which implies that, in terms of bias, the 2SL.S
does not suffer by much from the overfitting issue discussed in Bound, Jaeger and
Baker (1995) (see Figure 3 in the simulation studies section). However, the con-
fidence interval of the 2SLS*! estimator is 50% shorter than the one obtained by
the KJ statistic which may be caused by either presence of weak IVs or misspeci-
fication of the postulated survival model. In our analyses, we have 151 judges and
after controlling for measured covariates, the F-statistic is only 27 which suggests
the possibility of weak instruments (see also Figure 1). Following Stock and Yogo
(2005) and our simulation results in Table 1, it is likely that the confidence inter-
val of the 2SLS*! estimator is undercovered, and thus it is not a valid confidence
interval.

5.4. Subgroup analyses. The effect of imprisonment on employment varies
across gender and race [Steffensmeier, Ulmer and Kramer (1998), Pager (2003,
2008), Decker et al. (2014)]. Table 4 summarizes the results of our subgroup
analysis. Imprisonment has the largest negative effect among White Female of-
fenders. Specifically, the estimated effect using KJgffs among White male and fe-
male offenders are —1.92 with 95% CI (—2.15, —1.45) and —2.05 with 95% CI
(—3.46,0.01), respectively.
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TABLE 4
Michigan data. Subgroup analysis. CI. confidence interval; n: sample size

Estimate 95% CI Length of Estimate 95% CI Length of
95% CI 95% CI
Subgroup: White, Male Subgroup: Black, Male
n=50,516 n=239,724
KJ‘I’ff1 —1.92  (-2.16,—1.40) 0.76 —1.38  (—1.88,—-0.48) 1.40
KJ) 4 ~196 (—=2.17,-132)  0.84 —138  (—1.84,-0.28) 1.56
KIS —1.92  (=2.15,-145  0.70 ~138  (-1.84,-0.51) 133
KJo s —1.96 (=2.15,-1.34) 0.81 —-138  (—-1.79,—-0.40) 1.39
ARCH -1.66  (=2.68,—0.11)  2.57 - - -
AR —1.66 (—2.77,0.10) 2.87 - - -
LIML —-1.96 (=2.15,-1.36) 0.79 —130 (—1.78,—-0.46) 1.32
Full —1.97  (=2.15,-1.37) 0.78 —-1.30 (—-1.77,—-0.46) 1.31
2SLS™ 199  (=2.16,—1.73) 0.43 —1.60 (=1.92,—1.15) 0.77
Subgroup: White, Female Subgroup: Black, Female
n=11,322 n ="7867
KJ?fa —2.05 (=3.47,0.10) 3.57 —0.87 (—3.44, 4+00) -
KJi 4 —2.05 (—3.48,0.42) 3.90 —0.80 (—3.44, 4-00) -
KISt —2.05  (—3.46,0.01) 3.40 —0.87  (—3.43,220) 5.3
Klp s —2.05 (—=3.46,0.38) 3.84 —0.80 (—3.45, +00) -
AR _ _ _ _ _ _
AR - - - - - -
LIML —-1.99 (-2.91,-0.32) 2.59 —0.40 (—=3.30,2.07) 3.37
Full —1.99  (-2.89,-0.32) 2.57 —0.40 (—=3.30,2.08) 3.38
2SLS 188  (—2.62,—0.56) 2.06 —0.70 (—=3.25,1.05) 4.30

The magnitude of the 2SLS*! bias increases as the sample size decreases. For
the subgroup of Black Females (n = 7867) which is the smallest in sample size,
the KJgffS results in a point estimate of —0.87 with 95% CI (—3.43, 2.20) while

the 2SLS! estimate is —1.15 with 95% CI (—2.87,1.10). The performances of
the LIML and Fuller estimators are also affected by the smaller sample size in the
subgroup of Black females. Specifically, in this subgroup, the LIML and Fuller
estimates are roughly 50% smaller than the KJ estimates while for all the other
subgroups the estimates are fairly close to the KJ estimates. The AR and AR are
only able to provide inference for the largest subgroup with n = 50,516 and for
the other subgroups, these two test statistic fail because of low power. The KJgffS,
LIML, and Fuller are the only procedures that have enough power to provide valid
confidence intervals for all the subgroups regardless of their sample sizes. How-
ever, the latter two methods seem to lead to biased estimates for smaller sample
sizes. We have investigated this point through our extensive simulation studies in
Section 4 and Section S5 of the Supplementary Material [Ertefaie et al. (2018)].
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Our analyses show that imprisonment has a negative effect on time to employ-
ment with quarterly earnings above poverty. The effect is significant among Male
offenders such that a prison sentence multiples number of quarters to the employ-
ment by roughly 7 and 4 among White and Black male offenders, respectively.

6. Discussion. In this paper, we proposed a G-estimation based treatment ef-
fect inferential procedure in a survival context that is robust to the presence of
many weak instruments. Our method adjusts for confounding using IVs and thus
provides an unbiased estimate even when some of the confounders are unmea-
sured. In general, one of the limitations of the G-estimation methods is that estima-
tion becomes infeasible when there are several parameters of interest because such
methods require a multidimensional grid search. Thus, generalization of the pro-
posed method to settings with multiple treatments would be an interesting future
work. Notice that selecting subjects based on their received treatment can result in
a biased estimate [Swanson et al. (2015), Ertefaie et al. (2016a, 2016b)]. Hence,
performing multiple IV analyses to estimate treatment effects in multitreatment
settings is not possible.

IV analyses rely on some assumptions that cannot be completely tested using
observed data. The validity of these assumptions become increasingly important
when IVs are weak because estimators in such settings are invariably sensitive
even to a small departure from the assumptions [Imbens and Rosenbaum (2005),
Small and Rosenbaum (2008), Baiocchi et al. (2010), Ertefaie, Small and Rosen-
baum (2017)]. Thus, developing sensitivity analyses for the proposed procedures
is important and can provide support for the validity of the results [Small (2007),
Conley, Hansen and Rossi (2012), Kolesar et al. (2015), Kang, Cai and Small
(2015)].

SUPPLEMENTARY MATERIAL

Supplement to “Instrumental variable analysis with censored data in the
presence of many weak instruments: Application to the effect of being sen-
tenced to prison on time to employment” (DOI: 10.1214/18-A0AS1174SUPP;
.zip). The supplementary material contains: the proof of Proposition 1, additional
simulation studies, and a discussion on the heterogeneous treatment effects.
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