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Accurately forecasting solar power using the data from multiple sources
is an important but challenging problem. Our goal is to combine two different
physics model forecasting outputs with real measurements from an automated
monitoring network so as to better predict solar power in a timely manner.
To this end, we propose a new approach of analyzing large-scale multilevel
models with great computational efficiency requiring minimum monitoring
and intervention. This approach features a division of the large scale data
set into smaller ones with manageable sizes, based on their physical loca-
tions, and fit a local model in each area. The local model estimates are then
combined sequentially from the specified multilevel models using our novel
bottom-up approach for parameter estimation. The prediction, on the other
hand, is implemented in a top-down matter. The proposed method is applied
to the solar energy prediction problem for the U.S. Department of Energy’s
SunShot Initiative.

1. Introduction. Solar energy’s contribution to the total energy mix is rapidly
increasing. As the most abundant form of renewable energy resource, solar elec-
tricity is projected to supply 14% of the total demand of the contiguous U.S. by
2030, and 27% by 2050, respectively [Margolis, Coggeshall and Zuboy (2012)].
Having a high proportion of solar energy in the electric grid, however, poses sig-
nificant challenges because solar power generation has inherent variability and un-
certainty due to varying weather conditions [Denholm and Margolis (2007), Ela,
Milligan and Kirby (2011)]. For instance, the variability can result in steep ramps
of solar power being injected into the grid causing system reliability issues. More-
over, the uncertainty of solar power often oblige system operators to hold extra
reserves of conventional power generation at significant cost. Accurate forecasting
of solar power can improve system reliability and reduce reserve cost [Orwig et al.
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(2015), Zhang et al. (2015a)]. Variation in solar power generation is primarily as-
sociated with cloud movement, formation, and dissipation. Depending on whether
the goal is minute-, hour-, or day-ahead forecast, sky imagery [Marquez and Coim-
bra (2013), Chu et al. (2014)], satellite imagery [Hammer et al. (1999), Perez et al.
(2002)], and numerical weather predictions [Perez et al. (2013), Mathiesen, Collier
and Kleissl (2013)] are used, respectively. Instead of the direct use of these predic-
tions, applying statistical methods on the forecasts from these numerical models
can significantly improve the forecasting accuracy [Mathiesen and Kleissl (2011),
Pelland, Galanis and Kallos (2013)].

Computer models have long been used to study and simulate complex physical
systems. With increasing computational capacities, these models have become an
essential part of various research areas [Welch et al. (1992), Santner, Williams and
Notz (2003), Wu (2015)]. These computer models have been extensively used in
the service industry, in particular, to predict or simulate the environmental vari-
ables in various scales. For example, Jiang et al. (2015) considered a computer
model to simulate the data center thermal system, and Klein et al. (2015) discussed
a general platform to take advantage of various environmental models to develop
predictive tools in industry.

Such application requires a specific methodological focus. Statistical analysis
of such models typically involve three modules [Qian and Wu (2008), Liu, Ba-
yarri and Berger (2009)]: (1) the computer model itself; (2) real measurement data;
(3) the discrepancy between the computer model and the real process. A key issue
in many service industry applications is leveraging the second and third module to
make an accurate prediction; in other words, the goal is to develop a framework
to make predictions by matching the computer model outputs with the historical
observations from the sensor network.

This task is closely related to model calibration to choose the optimal param-
eters for the computer model [Bayarri et al. (2007)]. However, our focus is on
building an additional layer of an empirical model and calibrating its parameters
to improve the prediction rather than optimizing the computer model itself, be-
cause iterative model running is not possible. In service industry applications, the
computer model is a small part of the larger system, hence a reasonable parameter
setting is set and minimally changed for maintaining the system reliability [Klein
et al. (2015)]. The main focus of the statistical methodology is how to efficiently
exploit the model outputs and field data to make accurate prediction and inference,
while accommodating the structure, scale, and availability of the data. In this line,
Gramacy et al. (2015) and Wong, Storlie and Lee (2017) proposed approaches to
avoid expensive computation in a computer model context, while flexibly incorpo-
rating data sets in a large scale.

Using the outputs of complex physical models in real applications, however,
poses significant challenges in statistical modeling. The main problems are gen-
erally three-fold. First, in industrial applications, the amount of data is often very
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large because measurements are obtained through automated systems. For exam-
ple, in our application in Section 4, 1522 sensors collect monitoring data every
15 minutes. Hence, the method’s capacity to incorporate a massive amount of data
is indispensable. Second, the computation method must be expeditious yet able to
take advantage of large scale data from physical models. Both efficiency and reli-
ability are essential to avoid intensive computing and system collapse. Third, the
available data is often complex. A hierarchical structure often exists and the infor-
mation varies at each level. This requires a modeling approach that can naturally
handle such complexity.

In this work, we propose a framework to exploit the abundance of physical
model forecasting outputs and real measurements from an automated monitoring
network, using multilevel models. Our method addresses the aforementioned chal-
lenges for large scale industrial applications. The proposed bottom-up approach
has a computational convenience for parameter estimation when implemented in
an automated system, because it does not rely on the Markov chain Monte Carlo
(MCMC) method. From a modeling point of view, our approach is a Bayesian hi-
erarchical model, whose inference are obtained by the Expectation-Maximization
(EM) algorithm. Using EM, the convergence of algorithm is easy to check and the
computation can be implemented in an automated fashion. Other approaches such
as mixed-effects modeling have been proposed for multilevel models [e.g., Bates
and Pinheiro (1998)]. However, to apply those methods, one may need to assemble
a single data file from different types of data structures, which can cause reliability
issues. Instead, our approach uses a summary version of data calculated from the
granular level, the storage of data, use of computer memory, and communication
during the computation, which are convenient for large-scale data. It is similar to
the split-and-conquer approach [Chen and Xie (2014)], but ours exploits the data
set’s inherent partitioned hierarchical structure. It naturally pairs well with a dis-
tributed storage system and computing resources; there is no need to assemble a
single data file for the entire data set, hence it works very well for a large scale
prediction problem.

The idea of dividing a large data set and then combining the results from each
to obtain a global inference is not new [Pratola et al. (2014), Scott et al. (2016)].
When each partition is a random sample of the data, then the likelihood becomes
easier to work with. On the contrary, our approach focuses on exploiting the al-
ready partitioned data structure to minimize the management overhead. We start
a simple modeling process at a distributed level and incorporate such structure in
the proceeding steps so that the modeling can incorporate the partition structure.
Gelman et al. (2014) also considers the bottom-up approach for inference using ex-
pectation propagation (EP) based on local tilted distribution to make the inference
more affordable when the data set is large.

A multilevel model is a powerful tool which allows for model heterogene-
ity across areas but simultaneously borrows strength from other areas [Gelman
(2006)]. It has been particularly popular in areas where data are often structured
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hierarchically, such as education [Goldstein (1986)] or epidemiology [Wong and
Mason (1985)]. While these traditional applications of multilevel models deal with
the lack of independence between measurements and model heterogeneity, our ap-
proach is intended to incorporate the large scale data in a flexible and efficient
manner.

The remainder of the paper is organized as follows. Section 2 describes the
overall problem and background. Section 3 delineates the proposed model and
methodology. Section 4 demonstrates the application of the proposed method to
large-scale solar monitoring data. We conclude with some remarks and discussions
in Section 5.

2. Global Horizontal Irradiance. In this section we describe our solar en-
ergy application and the overall problem. Our goal is to improve Global Horizon-
tal Irradiance (GHI) prediction over the contiguous United States (CONUS). GHI
is the total amount of shortwave radiation received by a surface horizontal to the
ground, which is the sum of Direct Normal Irradiance (DNI, the amount of solar
radiation received by a surface perpendicular to the rays that come from the di-
rection of the sun), Diffuse Horizontal Irradiance (DHI, the amount received by a
surface that has been diffused by the atmosphere), and ground-reflected radiation.
The amount of solar electricity produced from photovoltaic systems (i.e., solar
panels) is directly associated with GHI; a day with high GHI means a high solar
electricity production. Hence, GHI forecast is of main interest of the participants
in the electricity market.

To make a solar electricity prediction for a site where a solar panel is located,
prediction of GHI is made first. Then it is fed to a irradiance-to-power conversion
model [Soto, Klein and Beckman (2006)]—which takes the panel specification as
its inputs—to make a forecast of the amount of solar electricity generated. Among
the different sources of error for solar power forecasting, the error of GHI forecast
dominates. Thus it is critical to improve GHI forecasting to obtain more accurate
forecasting and inference of solar power.

To monitor the GHI, sensors are located over CONUS. The collected observa-
tions are obtained from the sensor locations marked on Figure 1. The GHI readings
are recorded at 1522 locations in 15-min intervals. Hence, the data size grows very
quickly; every day, thousands of additional observations are added. The data from
each site is separately stored in the database indexed by the site location. The read-
ings are obtained from various types of sensors, which may cause some potential
variability among different locations. In our application, we consider two models
to forecast GHI: Short-Range Ensemble Forecast [SREF, Du and Tracton (2001)]
and North American Mesoscale Forecast System [NAM, Skamarock et al. (2008)].
A vis-á-vis comparison of the outputs from the two models is presented in Fig-
ure 2. They share a common overall trend, however there are certain discrepancies
between the two model outputs. The model outputs are available at any location
in a pre-specified computational domain, which covers the entire CONUS. The
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FIG. 1. The map of the 1522 monitoring network locations, marked by dots.

model output is stored at every hour, but can be matched with 15-minute interval
measurement data after post-processing.

Our goal is to develop an approach for parameter estimation and prediction with
the following three considerations:

Computational efficiency: uses little memory and communication during com-
putation.

Applicability: readily handles a variety of complex data.
Practicality: runs with a deterministic algorithm so that convergence is simple

to check and the method can be implemented easily in practice.

The methodology focuses on the solar energy application for a practical implemen-
tation. Similar problems are easily found in industrial applications, as the problem
of prediction using real measurements at monitoring sensors and computer model
outputs covering the entire domain is prevalent. For those problems, the overall

FIG. 2. A vis-á-vis comparisons of two computational model outputs at one time point. Left panel
shows NAM output, while right panel SREF.
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goal is often managing a large complex system, such as micro-climate within a
facility [Jiang et al. (2015)] or environmental monitoring [Liu et al. (2016)].

In practice, the raw data related to individual data set is often too large to be
moved from the servers to a centralized location for a combined modeling. For
example, when working with satellite images or high temporal resolution data for
a large number of individual sites, it is difficult to gather the data to one place.
In contrast, our approach conducts the very first step of data summarization in
the cloud, which gives two benefits: (1) avoid the burden of transferring the data,
(2) the computation for individual sites is naturally distributed over many servers.
Our approach stems from these considerations.

3. Methodology. In this section we introduce our modeling approach within
the context of our application. Estimation and prediction are described in more
general terms to be applied to a wider array of problems.

3.1. Multilevel model for GHI. Assume that the sensors are partitioned into
H exhaustive and non-overlapping groups. Group h consists of nh sensors, where
the ith sensor in group h collects the measurements yhij for j = 1, . . . , nhi . The
predicted GHI outputs from the two models are available at the site location as
scalar values and used as covariates, xhij . Information at sensor or group level,
ch and chi are also available. Note that the covariates x are often more widely
available than yhij ’s; in our application in Section 4, the computer model output
is available not only at monitoring sites but also everywhere in the spatial domain
of interest. We assume that nh can be relatively small while nhi is usually large,
because managing the existing sensors and taking additional measurements from
them usually does not cost much, while deploying new monitoring sensors often
causes considerable cost.

We assume that the GHI measurement yhij follows

(3.1) yhij = xhijθhi + ehij ,

with a latent site-specific parameter θhi , where the covariates xhij has NAM
and SREF model output as predictors including an intercept term, and ehij ∼
t (0, σ 2

hi, νhi), where σ 2
hi is scale parameter and νhi are the degree of freedom

[Lange, Little and Taylor (1989)]. The coefficients for two predictors operate as
the weight parameters for two computer models.

We assume that the level two model follows

(3.2) θhi ∼ N(βh,�h)

for some group-specific parameters βh = (βh1, . . . , βhp) and �h. For further pre-
sentation, define the length H vector of j th coefficients of βh concatenated over
H groups

β(j) = (β1j , . . . , βHj ),
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and similarly define β̂(j). The subscript j is omitted hereinafter as we model
each parameter separately but in the same manner. To incorporate the spatial
dependence that may exist in the data, we assume that the level three model
follows

(3.3) β ∼ N(Fμ,�),

where F is a pre-specified H by q model matrix, and μ is the mean parameter of
length q . In the analysis in Section 4.2, F is chosen to be 1, length H vector of 1’s
and hence μ is a scalar. The spatial covariance � has its (k, l)th element

�kl = cov(βk, βl) = τ 2 exp(−ρdkl),

where dkl is the distance between the groups. The distance between two groups
is defined to be the distance between the centroids of groups. Thus, the level one
model is to describe the structure of the measurements and the computer model
outputs, the level two model is for the intra-group structure, and the level three
model is for the inter-group structure.

Note that a group is formed by collapsing several neighboring sites, hence the
number of groups is less than that of sites. This also reduces the computational
burden because the main computation in our spatial model relies on the number
of spatial locations. Hence it is helpful to introduce the spatial components in the
group level instead of the sensor level to provide computational benefit. As a trend
over the spatial domain exists, including spatial component in the model improves
the overall model accuracy, as discussed in Section 4.

Multilevel models are developed to incorporate the three considerations in Sec-
tion 2. The overall data storage and modeling structure of our proposed model is
summarized in Figure 3. Our approach builds up a hierarchy with the measure-
ments by taking the following three steps. The first step is summarization. There
is no direct measurement for the kth level model (k ≥ 2), so we use the obser-
vations from the lower level model to obtain a “measurement” and construct an
appropriate measurement model. The second step is combination; we combine the
measurement model and structural model to build a prediction model using Bayes
theorem. The third step is learning, in which we estimate the parameters by using
the EM algorithm. Using EM instead of Gibbs sampling not only greatly facilitates
computation but also results in an algorithm that can be run with minimal moni-
toring and intervention. In the bottom-up approach, the computation for each step
uses a summary version to ease the storage of data and spare the use of computer
memory despite the large amount of data. In the subsection below, we describe
each step in detail.

3.2. Bottom-up estimation. In this section we give a detailed description of
the estimation procedure. Since our modeling approach can be generally applied,
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FIG. 3. Overall description of the data storage and modeling structure, where the data is stored
separately for each site.

we present it with a generic model. We provide detailed steps for our model in
Section 3.1 in the Appendix.

We first consider the level one and level two models,

yhi ∼ f1(yhi |xhi; θhi),(3.4)

θhi ∼ f2(θhi |chi; ζ h),(3.5)

where yhi = (yhi1, . . . , yhinhi
)� and xhi = (x�

hi1, . . . ,x�
hinhi

)� are the observations
and covariates associated with the ith sensor in the hth group for the level one
model, respectively, and θhi is the parameter in the level one model. In (3.5), θhi

is treated as a random variable and linked to the unit-specific covariate chi and
parameter ζ h in the level two model.

To estimate ζ h in (3.5), we use the three-step approach discussed in Section 2.
In the summarization step, for each sensor, we treat (xhi,yhi) as a single data set
to obtain the best estimator θ̂hi of θhi , a fixed parameter. Define g1(θ̂hi | θhi) to be
the density of the sampling distribution of θ̂hi . This sampling distribution is used
to build a measurement error model, where θ̂hi is a measurement for the latent
variable θhi , while (3.5) is a structural error model for θhi .

The sampling distribution g1(θ̂hi | θhi) is combined with the level two model f2

to obtain the marginal distribution of θ̂hi . Thus, the MLE of the level two parameter
ζ h can be obtained by maximizing the log-likelihood derived from the marginal
density of θ̂hi . That is, we maximize

(3.6)
nh∑
i

log
∫

g1(θ̂hi | θhi)f2(θhi | chi; ζ h) dθhi
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with respect to ζ h, combining g1(θ̂hi | θhi) with f2(θhi | chi; ζ h). The maximizer
of (3.6) can be obtained by

(3.7) ζ̂ h = arg max
ζh

nh∑
i=1

E
[
log

{
f2(θhi | chi; ζ h)

} ∣∣ θ̂hi; ζ h

]
.

Note that ζ h is the parameter associated with the level two distribution, and (3.7)
aggregates the information associated with θ̂hi to estimate ζ h.

To evaluate the conditional expectation in (3.7), we derive

(3.8) p2(θhi | θ̂hi; ζ h) = g1(θ̂hi | θhi)f2(θhi | chi; ζ h)∫
g1(θ̂hi | θhi)f2(θhi | chi; ζ h) dθhi

.

The level two model can be learned by the EM algorithm. Specifically, at the t th
iteration of EM, we update ζ h by

(3.9) ζ̂
(t)

h = arg max
ζh

nh∑
i=1

E
[
log

{
f2(θhi | chi; ζ h)

} ∣∣ θ̂hi; ζ h = ζ̂
(t−1)

h

]
,

where the conditional expectation is with respect to the prediction model in (3.8)

evaluated at ζ̂
(t−1)

h , which is obtained from the previous iteration of the EM algo-
rithm.

When θ̂hi is the maximum likelihood estimator, we may use a normal approxi-
mation for g1(θ̂hi | θhi). To see this, note that we use the following score equation:

(3.10)
∂

∂θhi

logf1(yhi | xhi; θhi) = 0

with respect to θhi to obtain θ̂hi . Letting l1hi(θhi) = log{f1(yhi | xhi; θhi)}, Taylor
expansion gives

f1(yhi | θhi) = exp
{
l1hi(θhi)

}
∼= exp

{
l1hi(θ̂hi) + l

(1)
1hi(θ̂hi)(θhi − θ̂hi)

+ 0.5(θhi − θ̂hi)
�l

(2)
1hi(θ̂hi)(θhi − θ̂hi)

}
,

where l
(1)
1hi(θhi) and l

(2)
1hi(θhi) are the first and the second order partial derivatives

of l1hi(θhi), respectively. By (3.10), we have l
(1)
1hi(θ̂hi) = 0 and hence the above

expansion becomes
(3.11)

f1(yhi | θhi) ∼= exp
{
l1hi(θ̂hi)

}
exp

{−0.5(θhi − θ̂hi)
�I1hi(θ̂hi)(θhi − θ̂hi)

}
,

where I1hi(θhi) = E{−l
(2)
1hi(θhi)} is the Fisher information of θhi . Thus, asymptot-

ically, θ̂hi is a sufficient statistic for θhi and normally distributed with mean θhi
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and variance {I1hi(θhi)}−1. Hence, the prediction model (3.8) is approximately
equal to

p2(θhi | yhi; ζ ) = f1(yhi | xhi; θhi)f2(θhi | chi; ζ h)∫
f1(yhi | xhi; θhi)f2(θhi | chi; ζ h) dθhi

,

because, by (3.11), f1(yhi | xhi; θhi) ∼= K(xhi,yhi)g1(θ̂hi | θhi) holds for some
K(xhi,yhi) which does not depend on θhi .

The EM algorithm approach is a convenient way of solving (3.7) iteratively. If
f2 is the density of the normal distribution with mean μ2hi(ζ h) = E(θhi | chi; ζ h)

and variance V2hi(ζ h) = var(θhi | chi; ζ h), the conditional distribution in (3.7) is
also normal with mean μ∗

hi(ζ ) and variance V ∗
hi(ζ ), where

μ∗
hi(ζ h) = V2hi(ζ )θ̂hi + V1hiμ2hi(ζ h)

V2hi(ζ h) + V1hi

and

V ∗
hi(ζ h) = V2hi(ζ h)V1hi

V2hi(ζ h) + V1hi

,

with V1hi = {I1hi(θ̂hi)}−1. In the E-step, the conditional expectation in (3.9) is
taken with respect to the normal distribution with mean μ∗

hi(ζ
(t)
h ) and variance

V ∗
hi(ζ

(t)
h ). The M-step updates parameter ζ h by solving (3.9) with respect to ζ h

where the conditional expectation is evaluated from the E-step.
If f2 is not normal, then the marginal density in (3.8) may not have a known

closed form and hence the mean score equation in (3.9) is difficult to solve. In
this case, we may use the Monte Carlo EM algorithm to estimate the parameters.
Instead of MCMC algorithms such as Metropolis–Hastings, we can use the para-
metric fractional imputation (PFI) of Kim (2011) to simplify the computation in
the E-step of the EM algorithm. The PFI method uses the importance sampling in
the E-step and the normalized importance weights in computing the mean score
function in the M-step. Specifically, we use

θ
∗(t)
hi,m ∼ f2

(
θhi | chi; ζ̂ (t)

h

)
, m = 1, . . . ,M

to generate M Monte Carlo samples of θhi . Then compute the fractional weights

w
∗(t)
hi,m ∝ g1

(
θ̂hi | θ∗(t)

hi,m

)
with

∑M
m=1 w

∗(t)
hi,m = 1. In the M-step, we update ζ h by maximizing

lw(ζ h) =
nhi∑
i=1

M∑
m=1

w
∗(t)
hi,m logf2

(
θ

∗(t)
hi,m | chi; ζ h

)

with respect to ζ h.
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Once each ζ̂ h is obtained, we can use {ζ̂ h;h = 1, . . . ,H } as the summary of
observations to estimate the parameters in the level three model. Let the level three
model be expressed as

(3.12) ζ h ∼ f3(ζ h|ch; ξ),

where ch are the covariates associated with group h and ξ is the parameter associ-
ated with the level three model. Estimation can be done in a similar fashion to the
level two parameters. However, ζ h is now treated as a latent variable, and ζ̂ h as a
measurement. Similar to (3.6), we maximize

(3.13)
H∑

h=1

log
∫

g2(ζ̂ h | ζ h)f3(ζ h | ch; ξ) dζ h

with respect to ξ to obtain ξ̂ , where g2(ζ̂ h | ζ h) is the sampling distribution of ζ̂ h,
which is assumed to be normal. The EM algorithm can be applied by iteratively
solving

(3.14) ξ̂
(t) = arg max

ξ

H∑
h=1

E
[
log

{
f3(ζ h | ch; ξ)

} ∣∣ ζ̂ h; ξ = ξ̂
(t−1)]

,

where the conditional distribution is with respect to the distribution with density

p3(ζ h | ζ̂ h; ξ) = g2(ζ̂ h | ζ h)f3(ζ h | ch; ξ)∫
g2(ζ̂ h | ζ h)f3(ζ h | ch; ξ) dζ h

evaluated at ξ = ξ̂
(t−1)

. The level three model can be chosen flexibly depending
on the usage, as it was in the lower levels. It can incorporate the hierarchical nature
inherent to the data structure, such as utility distribution zone or state border line,
or a pragmatic grouping to potentially adjust the computational burden. Figure 4
summarizes the bottom-up approach at three levels.

3.3. Top-down prediction. In this section we describe the prediction proce-
dure. In contrast to the bottom-up approach of Section 3.2, the prediction is made
in a top-down fashion.

To describe the top-down approach to prediction, consider the three-level mod-
els in (3.4), (3.5), and (3.12). The bottom-up estimation in Section 3.2 provides a
way of estimating the parameters, θhi , ζ h, and ξ by θ̂hi , ζ̂ h, and ξ̂ , respectively,
using EM algorithm or maximizing the marginal likelihood.

Our goal is to predict unobserved yhij values from the above models using the
parameter estimates. The goal is to generate Monte Carlo samples of yhij from

(3.15)

p(yhij | xhij ; θ̂hi, ζ̂ h, ξ̂)

=
∫ ∫

f1(yhij | xhij ; θhi)p2(θhi | ζ h, θ̂hi, ζ̂ h, ξ̂)p3(ζ h | ζ̂ h, ξ̂) dζ h dθhi∫ ∫ ∫
f1(yhij | xhij ; θhi)p2(θhi | ζ hi, θ̂hi, ζ̂ h, ξ̂ )p3(ζ h | ζ̂ h, ξ̂) dζ h dθhi dyhij

,
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h=1 log
∫
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ζ̂ h = arg maxζh

∑nh

i=1 log
∫
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∑nhi

j=1 logf1(yhij |xhij ; θhi)

FIG. 4. The summary of bottom-up approach at three levels.

where p2(θhi | θ̂hi, ζ h, ζ̂ h, ξ̂) = p2(θhi | θ̂hi, ζ h) and p3(ζ h | ζ̂ h, ξ̂) are the pre-
dictive distribution of θhi and ζ h, respectively.

To generate Monte Carlo samples from (3.15), we use the top-down approach.
We first compute the predicted values of ζ h from the level three model,

(3.16) p3(ζ h | ζ̂ h, ξ̂) = g2(ζ̂ h | ζ h)f3(ζ h | ch; ξ̂)∫
g2(ζ̂ h | ζ h)f3(ζ h | ch; ξ̂) dζ h

,

where g2(ζ̂ h | ζ h) is the sampling distribution of ζ̂ h. Also, given the Monte Carlo
sample ζ ∗

h obtained from (3.16), the predicted values of θhi are generated by (3.8).
The best prediction for yhij is

(3.17) ŷ∗
hij = E3

[
E2

{
E1(yhij | xhij , θhi) | θ̂hi; ζ h

} ∣∣ ζ̂ h; ξ̂
]
,

where subscripts 3, 2, and 1 denote the expectation with respect to p3, p2, and f1,
respectively. Thus, while the bottom-up approach to parameter estimation starts
with taking the conditional expectation with respect to p1 and then moves on to
p2, the top-down approach to prediction starts with the generation of Monte Carlo
samples from p2 and then moves on to p1 and f1. Figure 5 summarizes the top-
down approach, which contrasts with the bottom-up approach illustrated in Fig-
ure 4.

To estimate the mean squared prediction error of ŷ∗
hij given by Mhij = E{(ŷ∗

hij −
yhij )

2}, we can use the parametric bootstrap approach [Hall and Maiti (2006),
Chatterjee, Lahiri and Li (2008)]. In the parametric bootstrap approach, we first
generate bootstrap samples of yhij using the three-level model as follows:

1. Generate ζ
∗(b)
h from f3(ζ h | ch; ξ̂), for b = 1,2, . . . ,B .
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Overall

Group Group

Site Site Site Site
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h ∼ f3(ζ h | ch; ξ̂)

θ
∗(b)
hi ∼ f2(θhi | chi; ζ ∗(b)

h )

y
∗(b)
hij ∼ f1(yhij | xhij ; θ∗(b)

hi )

FIG. 5. The summary of top-down approach at three levels.

2. Generate θ
∗(b)
hi from f2(θhi | chi; ζ ∗(b)

h ), for b = 1,2, . . . ,B .

3. Generate y
∗(b)
hij from f1(yhij | xhij ; θ∗(b)

hi ), for b = 1,2, . . . ,B .

Once the bootstrap samples of Y∗(b) = {y∗(b)
hij ;h = 1,2, . . . ,H ; i = 1, . . . , nh;

j = 1, . . . ,mhi} are obtained, we can treat them as the original samples and apply
the same estimation and prediction method to obtain the best predictor of yhij .
The mean squared prediction error (MSPE) Mhij can also be computed from the
bootstrap sample. That is, we use

M̂hij = E∗
{(

ŷ∗
hij − yhij

)2}
to estimate Mhij , where E∗ denote the expectation with respect to the bootstrap-
ping mechanism.

4. Prediction of Global Horizontal Irradiance. In this section we give a
detailed description of the available data. We also apply the proposed model and
compare results to those of the comparators.

4.1. Data description. We use 15 days of data for our analysis (from Decem-
ber 01, 2014 to December 15, 2014). There are 1522 sites to monitor GHI, where
the number of available data varies between 12 and 517 observations, and the total
number of observations is 557,284. To borrow strength from neighboring sites, we
formed 50 groups that are spatially clustered by applying the K-means algorithm
on the geographic coordinates. We assume the sites belonging to the same group
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TABLE 1
A sample data file from one site in the analysis

Date time GHI Meas NAM GHI SREF GHI

2014-12-01 15:15:00 10.16 8.85 7.79
2014-12-01 15:30:00 38.66 33.67 29.64
2014-12-01 15:45:00 73.30 63.83 56.20
2014-12-01 16:00:00 110.52 96.24 84.74
2014-12-01 16:15:00 148.53 108.02 119.85
2014-12-01 16:30:00 186.31 108.75 157.83

are homogeneous. The number of sites in each group, nh, varies between 10 to 59.
Depending on the goal, one can use other grouping schemes such as the distribu-
tion zone described in Zhang et al. (2015b). Calculated irradiance is available at
every 0.1 degree, and is matched to the monitoring site location. A sample data file
from one site is shown in Table 1.

In model (3.1), the degrees of freedom are assumed to be five in the analysis,
but can be assumed unknown and estimated by the method of Lange, Little and
Taylor (1989). The estimated spatial effect for two coefficients in (3.3) is depicted
in Figure 6.

Since we are interested in the amount of irradiance, we first exclude zeros from
both observed measurements and computer model outputs for the analysis. This
operation does not cause much loss of information because the physics related
to zero irradiance is well understood; before sunrise and after sunset, there is no
solar irradiance. Thus, all values are positive and skewed to the right, and we used
the logarithm transformation for both predictors and responses. Hereinafter, all
variables are assumed to be log-transformed.

4.2. Results. Under the linear regression model in (3.1), the best prediction is
ŷ∗
hij in (3.17). We compared the multilevel approach with several other modeling

FIG. 6. Spatial variation of the group-level coefficients from the second level for two computer
models, where the left panel shows the NAM model and the right panel the SREF model.
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approaches. They can be categorized into non-spatial models and spatial mod-
els. We consider these alternatives as the applications are spatial in nature. For
non-spatial models, we consider two methods: (1) Site-by-site model: fit a sepa-
rate model for each individual site; (2) Global model: fit a single model for all
sensor locations using the aggregate data combining all sensors. These are natu-
ral choices for the practitioner if simplicity is the first priority in implementation,
but inherently limited as they do not incorporate the spatial nature of the data.
For spatial models, we consider Localized Approximate GP [laGP, Gramacy and
Apley (2015), Gramacy (2016)]. For spatial models, computation should be an
important consideration because it can be prohibitively slow. laGP is specifically
designed to handle a large scale spatial data, by actively choosing the subset of
design points based on the prediction target. We let laGP search the space consid-
ering it’s along rays emanating from the predictive location of interest [Gramacy
and Haaland (2016)].

To evaluate the prediction accuracy, we conducted 10-fold cross-validation. The
dataset is randomly partitioned into 10 subsamples. Of these 10 subsamples, one
subsample was held out for validation, while the remaining nine subsamples are
used to fit the model and obtain predicted values. The cross-validation process is
repeated for each fold. The prediction from the fitted model was compared with
the observed measurements in the log scale.

We considered two scenarios: (a) prediction made at observed sites, (b) pre-
diction made at new sites. For scenario (a), we partitioned the time point into 10
sub-periods, while for (b) the sites into 10 sub-regions.

We compared the accuracy of different methods by the root mean squared pre-
diction error (RMSPE), {N−1 ∑

j (yhij − ŷhij )
2}1/2, with N being the size of the

total data set. Table 2 presents the overall summary statistics for the accuracy of
each method, calculated from cross validation. The standard deviation calculated
over the subsamples are in parenthesis.

The rightmost column shows the overall accuracy. The global model suffers
because it cannot incorporate the site-specific variation. On the contrary, the site
model suffers from reliability issues for some sites because it does not use the
information from neighboring sites. The multilevel approach strikes a fine balance
between flexibility and stability. For a comprehensive comparison of each method,
we evaluate the accuracy measure divided by the number of available data points
for each site. As noted earlier, some stations may suffer from the data reliability
problem. As such, the available sample size can vary from station to station, which
affects the site-by-site model. When the prediction is made based on few available
samples due to the data reliability issues, the inference can be unstable, affecting
the accuracy of the prediction. The multilevel method can utilize information from
other sites belonging to the same group, so it is particularly beneficial for locations
with smaller sample sizes.

We then compare the coverage of the prediction intervals of each methods eval-
uated at different confidence levels. We obtain the prediction interval using (3.15)
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TABLE 2
Root mean squared prediction error comparison of the different

modeling methods, divided by the size of the training
sample and overall

Training sample size

Method <200 ≥200 Overall

Multilevel 0.678 (0.129) 0.591 (0.052) 0.594 (0.055)
Site 1.344 (0.764) 0.593 (0.073) 0.632 (0.133)
Global 0.646 (0.038) 0.639 (0.009) 0.639 (0.009)
laGP 0.502 (0.027) 0.513 (0.011) 0.513 (0.012)

for confidence levels 0.8,0.9,0.95,0.99, and calculate the proportion of predic-
tion intervals that contain the observed GHI for each site. The prediction intervals
are computed using 5000 Monte Carlo samples. Table 3 shows the mean coverage
for each level. Standard deviations of the root mean squared error from the target
coverage are computed over subsamples, and presented in parentheses. It can be
seen that laGP performs the best, but the performance of multilevel models is more
robust than site-by-site and global models.

When predictive distribution is available, the Continuous Rank Probability
Score [CRPS, Hersbach (2000), Krüger et al. (2016)] can be used for verifica-
tion metric. For a realization yhij , the estimated cumulative distribution function
Fhij is available from p(yhij | xhij ; θ̂hi, ζ̂ h, ξ̂) in (3.15). CRPS of Fhij is defined

TABLE 3
Coverage results of the four methods with standard deviation of the

root mean squared error from the target coverage in parenthesis

Confidence level

Method 0.80 0.90 0.95 0.99

Multilevel 0.788 0.886 0.935 0.978
(0.019) (0.018) (0.017) (0.013)

Site 0.766 0.866 0.916 0.964
(0.069) (0.062) (0.054) (0.034)

Global 0.846 0.914 0.947 0.978
(0.046) (0.015) (0.004) (0.012)

laGP 0.801 0.897 0.943 0.983
(0.007) (0.006) (0.008) (0.007)
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TABLE 4
CRPS comparison of the different modeling methods, divided by the

size of the training sample and overall

Training sample size

Method <200 ≥200 Overall

Multilevel 0.346 (0.015) 0.345 (0.005) 0.345 (0.005)
Site 0.450 (0.181) 0.333 (0.049) 0.337 (0.054)
Global 0.341 (0.012) 0.350 (0.005) 0.349 (0.005)
laGP 0.260 (0.011) 0.291 (0.006) 0.290 (0.006)

by

(4.1) CRPS(Fhij , yhij ) =
∫
R

{
Fhij (z) − 1(z ≥ yhij )

}2
dz.

We can compare the performance of the different methods by calculating (4.1) for
each of them. Table 4 presents the overall summary statistics for CRPS of each
method. The standard deviation calculated over the subsamples are in parenthesis.
Overall, the laGP stands out, followed by the site-by-site and multilevel model
in aggregated results. Similar to the RMSPE, the site-by-site model suffers more
from the data reliability issues. Also, the variation is much larger for the site-by-
site model as seen in the standard deviation.

The prediction at an unobserved site also can be of interest depending on the ap-
plication. When a prediction for a new site is needed, the site level model is not able
to make the prediction. As such, the site level model is excluded in the compari-
son. The results are summarized in Table 5. The standard deviation in parenthesis
is calculated over 10 subsamples. Although multilevel may have some advantages
over the other two methods, it is not apparently much different than the others
given the large uncertainty. An interesting observation is that, laGP’s prediction
performance in this metric is not as good as other categories, which suggests that
laGP heavily uses geographic information when choosing the subdesign.

Overall, the laGP model performs the best in the comparison—at the cost of
more computational overhead. It exploits the data from the neighboring sites, and
decides the subset to use when making prediction; which requires some level of
data writing process. So it should be viewed as a reference accuracy assuming

TABLE 5
Root mean squared prediction error comparison for out-of-sample sites

Multilevel Global laGP

RMSPE 0.619 (0.395) 0.639 (0.411) 0.676 (0.008)
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that more resources are available rather than a comparator. Compared to the site-
by-site level model, there are extra benefits of using the multilevel model besides
improved accuracy. First, there is no clear way to make a prediction for an unob-
served site from the site-by-site model, while the group level inference can be used
from the multilevel approach. The global model approach allows a prediction for
this case but at the cost of accuracy. Second, the site-by-site level model cannot
incorporate non-varying site-specific information, such as geographic or climate
information. Site specific information can be useful when different sites are com-
pared.

Lastly, it is also beneficial to compare the computation between different meth-
ods. Since it is difficult to conduct a controlled experiment to compare methodolo-
gies in our setting due to many sources that affect the process, such as database
access and writing processes, we provide some metric as a reference. As site-by-
site and global models have little appeal, we focus on the comparison between
laGP and multilevel models.

There are two major differences. First, laGP model requires the data be trans-
ferred to form a single file, while our multilevel model only transfers the sum-
mary version of the data. As such, in the case study, laGP transfers the total of
12.929 Megabyte, while multilevel transfers 0.113 Megabyte for both bottom-up
and top-down direction. Second, computation for laGP model depends on the num-
ber of predictions. For making 1000 predictions, laGP takes 70 seconds with four
OpenMP threads. On the contrary, estimation for multilevel model takes up to three
seconds at level one and two, respectively, and 20 seconds for level three, while
the prediction takes one second for each site. Computational demand of multilevel
estimation and prediction depends on the number of sites and groups, while that of
laGP depends on the number of total data points.

5. Conclusion. With the advances in remote sensing and storage technology,
data are now collected over automated monitoring networks at an unprecedented
scale. A simple yet efficient modeling approach that can reliably handle such data
is of great need.

In this paper, we have developed a general framework using a multilevel mod-
eling approach, which utilizes monitoring data collected to manage a large-scale
system. It is presented with a solar energy application, although it can be flexibly
modified to incorporate the data structure or overall goal. The computation can be
automated with deterministic criteria, and be easily distributed. It has been shown
that the method can provide improved inference compared to naive approaches.
Our methodology can also be extended to incorporate discrete measurements.

We would like to conclude with a remark on potential topics for future research.
First, the proposed method is illustrated using a parametric regression model ap-
proach. Extension of the method to more general models is also possible, with a
modification on the assumptions of the multilevel structure. Second, a data-driven
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clustering method that can establish a group structure combined with our multi-
level model approach will have potential impact in many industrial applications.
Third, we believe that, expectation propagation [Gelman et al. (2014)] is closely
related to our approach and can be used widely in settings similar to ours. Devel-
oping an easy-to-implement framework for EP will have an impact in industrial
applications.

APPENDIX

We present the details of parameter estimation and prediction under the model
setup in Section 4.

A. Parameter estimation. Let ζ h = (βh,�h) and ξ = (μ,�). From (3.11),
we may assume θ̂hi |θhi ∼ N(θhi,V hi), where V hi = {I (θhi)}−1 = (ν̂hi + 3)/

(ν̂hi + 1)(X�
hiXhi)

−1σ̂ 2
hi . For the details of the parameter estimation in level one,

see Lange, Little and Taylor (1989). Then

(A.1) θhi |θ̂hi ∼ N
(
θ∗

hi,V
∗
hi

)
,

where

θ∗
hi = [{

V (θ̂hi)
}−1 + �−1

h

]−1[{
V (θ̂hi)

}−1
θ̂hi + �−1

h β̂h

]
,

V ∗
hi = [{

V (θ̂hi)
}−1 + �−1

h

]−1
.

Hence, with the given ξ
(t)
h , E-step of the level one model gives

Q
(t)
1,hi � E

{
θhi | θ̂hi; β̂(t)

h , �̂
(t)

h

} = θ∗
hi

(
β̂

(t)

h , �̂
(t)

h

)
,

Q
(t)
2,hi � E

{
θhiθ

�
hi | θ̂h; β̂(t)

h , �̂
(t)

h

} = V ∗
hi

(
�̂

(t)

h

) + Q
(t)
1,hi

(
Q

(t)
1,hi

)�
.

Then the M-step is

β̂
(t+1)

h = 1

mh

mh∑
i=1

Q
(t)
1,hi,

�̂
(t+1)

h = 1

mh

mh∑
i=1

Q
(t)
2,hi − β̂

(t+1)

h

(
β̂

(t+1)

h

)�
.

When the EM algorithm of the level two model converges, we proceed to the level
three. Let ψ = (μ, τ, ρ) collectively denote the parameters associated with the
group 3 model. From (3.11), we can derive

β̂ | β ∼ N(β,V ),

where V is a H ×H is covariance matrix from the sampling distribution g2(β̂ | β).
With given ψ (t),

(A.2)
(
β | β̂;ψ (t)) ∼ N

(
β̃

(t)
, Ṽ

(t))
,
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where β̃
(t) = V −1β̂ + (�(t))−1Fμ(t) and Ṽ = (V −1 + (�(t))−1)−1. In the E step,

the conditional expectation of the log likelihood with respect to ψ is

E
{
logf3(ψ;β) | β̂; ψ̂ (t)}

= −{
Tr

(
�−1

ψ Ṽ
) + (

β̃
(t) − Fμ(t))��−1

ψ

(
β̃

(t) − Fμ(t) + log |�ψ |)}/2.

(A.3)

Then M step first finds the estimates for μ and τ 2 in a closed form,

μ̂(t+1) ← (
F�(

�̂
(t))−1

F
)−1(

F�(
�̂

(t))−1
β̃

(t+1))
,

τ̂ 2
(t+1) ← (

β̃
(t+1) − Fμ̂(t+1))�(

�̂
(t))−1(

β̃
(t+1) − Fμ̂(t+1))

/H.

Then the estimate for ρ can be found by minimizing

ρ̂(t+1) ← arg min
ρ

Tr
(
�−1

ρ Ṽ
) + (

β̃ − Fμ̂(t+1))��−1
ρ

(
β̃ − Fμ̂(t+1))

/τ̂ 2
(t+1)

+ log |�ρ |.
Then the E-M steps iterate until convergence. The spatial covariance parameter ρ

is chosen by evaluating (A.3) with values over a pre-specified range and selecting
the maximizing value.

B. Prediction. The best prediction for θhi is E(θhi |θ̂hi, ζ̂ h; ξ̂) given by
(3.15). From (3.8) and (A.1), the best prediction for θhi is

E(θhi |θ̂hi, ζ̂ h; ξ̂)

= E
(
E(θhi |θ̂hi, ζ h)|ζ̂ h; ξ̂

)
= (

V −1
hi + �̂

−1
h

)−1(
V −1

hi θ̂hi + �̂
−1
h β̃h

)
,

where �̂h, �̂ are the MLE obtained from the EM algorithm, and β̃h is from (A.2).
The prediction interval can be obtained using Monte Carlo samples.

C. Simulation study. In this section we conduct a simulation study to show
validity and robustness of the proposed method. The main purpose of the simu-
lation is to check the unbiasedness of the proposed estimators. We consider two
simulation setups: (1) estimation under the correct model specification; (2) esti-
mation under a modest departure from the correct model specification. The first
setup is to show the proposed method works well under the ideal situation, while
the second setup is to show whether the proposed method is robust to departures
from the assumptions in the model. Note that since too many possibilities exist for
model violation, we only consider a simple case.

To generate the data, we consider a three-level model. For the first setup, the
level three model is βh = (βh1, βh2, βh3) ∼ N(μ,�) with p = 3, where μ =
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(μ1,μ2,μ3) = (0,0,0), � = I . The level two model is θhi = (θhi1, θhi2, θhi3) ∼
N(βh,�h) and level one model is yhij ∼ N(xhijθhi, σ

2), with �h = I and σ 2 = 1.
For the second setup, the level three model is βh ∼ t5(μ,�), where μ and � are
the same as the first setup and tν represents the multivariate t distribution with
degrees of freedom ν. The level two model is θhi ∼ t5(βh,�h) and the level one
model is yhij ∼ N(xhijθhi, σ

2), with �h = I and σ 2 = 1.
The sample sizes of each level are chosen to be H = 20 and nh = 40, nhi = 700

for all h and i; that is, 560,000 data points are generated in total for each simulation
run, and simulation is replicated for 500 times. Specifically, for the r th simulation
under the first setup, the level two parameter β

(r)
h = (β

(r)
h1 , β

(r)
h2 , β

(r)
h3 ) is generated

from N(μ,�) for the hth group. Then given β
(r)
h , the level three parameters θ

(r)
hi =

(θ
(r)
hi1, θ

(r)
hi2, θ

(r)
hi3) are generated from N(β

(r)
h ,�h). Given θ

(r)
hi and xhij , the level one

observations yhij can be generated from N(xhijθ
(r)
hi , σ 2). The simulation under the

second setup is generated similarly.
Results from the simulation for two setups are summarized in Tables 6–7. Al-

though only the level three parameters are fixed, the generated “true” parameters
can be traced over the simulation, and compared with the estimates. First, define
the error of the best predictor θ̂

(r)
hi1 for θ

(r)
hi1, the first coefficient of the ith sensor in

the hth group, to be

e(r)
hi1 = θ̂

(r)
hi1 − θ

(r)
hi1.

Then the mean bias from the 500 simulations is calculated by

ē = N−1
T

500∑
r=1

H∑
h=1

nh∑
i=1

e(r)
hi1

with NT = 500 × ∑H
h=1 nh, and the standard deviation is calculated by

(500∑
r=1

H∑
h=1

nh∑
i=1

(
e(r)
hi1 − ē

)2
/(NT − 1)

)1/2

.

The summary statistics at the other levels can be calculated similarly, but with
different number of elements at each level, because more samples are generated
for the lower level parameters for one simulation run.

We can see that the proposed estimators possess unbiasedness from Table 6.
Table 7 shows that the estimators are reasonably robust.
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TABLE 6
Mean bias and standard deviation under correct model specification

Level 3 parameter μ1 μ2 μ3

Mean 0.001 −0.011 0.001
sd 0.468 0.465 0.453

Level 2 parameter βh1 βh2 βh3

Mean −0.012 0.001 0.001
sd 0.813 0.834 0.818

Level 1 parameter θhi1 θhi2 θhi3

Mean −0.012 0.003 0.001
sd 1.182 1.195 1.188

This report was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor any agency
thereof, nor any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represented
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States government or any agency thereof.

TABLE 7
Mean bias and standard deviation under incorrect model specification

Level 3 parameter μ1 μ2 μ3

Mean −0.002 0.010 0.006
sd 0.590 0.595 0.568

Level 2 parameter βh1 βh2 βh3

Mean 0.001 0.002 0.005
sd 1.067 1.072 1.094

Level 1 parameter θhi1 θhi2 θhi3

Mean 0.003 −0.002 0.004
sd 1.546 1.543 1.572
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