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Abstract. Let G be the product of finitely many trees T1 × T2 × · · · × TN , each of which is regular with degree at least three.
We consider Bernoulli bond percolation and the Ising model on this graph, giving a short proof that the model undergoes a second
order phase transition with mean-field critical exponents in each case. The result concerning percolation recovers a result of Kozma
(2013), while the result concerning the Ising model is new.

We also present a new proof, using similar techniques, of a lemma of Schramm concerning the decay of the critical two-point
function along a random walk, as well as some generalizations of this lemma.

Résumé. Soit G le produit d’un nombre fini d’arbres T1 × T2 × · · · × TN ayant chacun un degré constant supérieur à trois, nous
étudions la percolation de Bernoulli et le modèle d’Ising sur ce graphe et présentons une preuve simple de l’existence d’une
transition de phase de second ordre ayant les mêmes exposants critiques que le modèle en champs moyen. Le résultat pour la
percolation est une preuve alternative d’un résultat de Kozma (2013), tandis que le résultat pour le modèle d’Ising est nouveau.

Nous présentons également une nouvelle preuve, reposant sur des techniques similaires, du lemme de Schramm concernant la
vitesse de décroissance de la fonction à deux points le long de la marche aléatoire, ainsi que des généralisations de ce lemme.
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1. Introduction

In [20], Gady Kozma proved that the triangle condition holds for critical Bernoulli bond percolation on the Cartesian
product of two 3-regular trees. (His result also follows from our recent work [18].) The triangle condition is a well-
known signifier of mean-field critical behaviour, originally introduced by Aizenman and Newman [6], and can be used
to deduce that various critical exponents take their mean-field values. For example, it implies that the expected cluster
volume at p = pc − ε scales like ε−1 [6], that the density of the infinite cluster at p = pc + ε scales like ε [8], and
that the probability at criticality that the cluster of the origin has volume at least n scales like n−1/2 [8]. See e.g. [16]
and [18, Sections 1.3 and 7] for an overview. For background on percolation see e.g. [10,15,21].

In this note, we give a short and elementary proof of (a slight generalisation of) his result, together with the
existence of a non-uniqueness phase for percolation on the same graph, using ideas similar to those used in [17–
19]. Our proof uses only a few basic properties of percolation and is also applicable to e.g. the Ising model, see
Section 1.1. We denote by τp(x, y) the probability that x is connected to y in Bernoulli bond percolation with retention
probability p. As usual, pc and pu denote the thresholds for the appearance of an infinite cluster and a unique infinite
cluster respectively.

Theorem 1.1 (Non-uniqueness). Let G = T1 ×T2 ×· · ·×TN be the Cartesian product of finitely many trees Ti , each
of which is regular with some degree ki ≥ 3. Then pc(G) < pu(G).
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We use 0 to denote an arbitrarily chosen root vertex of G. We have not optimized the upper bound on ∇pc appearing
below.

Theorem 1.2 (Triangle condition). Let G = T1 × T2 × · · · × TN be the Cartesian product of finitely many trees Ti ,
each of which is regular with some degree ki ≥ 3. Then

∇pc :=
∑
x,y

τpc (0, x)τpc (x, y)τpc (y,0) ≤
N∏

i=1

(ki − 1)3

(
√

ki − 1 − 1)6
< ∞.

Theorems 1.1 and 1.2 both follow from the following estimate on critical connectivity probabilities. Given x, y ∈ V ,
we write d(x, y) = (di(xi, yi))

N
i=1 for the vector of distances between the coordinates of x and y. We also write δ for

the vector δ = (log(ki − 1))Ni=1.

Theorem 1.3. Let G = T1 ×T2 ×· · ·×TN be the Cartesian product of finitely many trees Ti , each of which is regular
with some degree ki ≥ 3. Then

τpc (x, y) ≤
N∏

i=1

(ki − 1)−di (xi ,yi ) = exp
[−δ · d(x, y)

]
. (1.1)

Remark 1.4. The inequality (1.1) is an equality in the case N = 1. In [20], Kozma proved the slightly weaker in-
equality

τpc (x, y) � ∥∥d(x, y)
∥∥3 exp

[−δ · d(x, y)
]

in the case N = 2, d1 = d2 = 3.

Remark 1.5. Kozma’s proof relied upon an unpublished lemma of Schramm giving an upper bound on the probability
that the two endpoints of a random walk are connected in critical percolation. We give a new proof of this estimate in
Section 3 using techniques similar to those used to prove Theorem 1.3.

Remark 1.6. The proof of Theorem 1.1 yields explicit lower bounds on pu − pc. In particular, it shows that

pu − pc ≥ 1 − pc

2
∑N

i=1
√

ki − 1

N∏
i=1

(
√

ki − 1 − 1)2

ki − 1
.

Again, this constant has not been optimized.

Remark 1.7. If one instead considers anisotropic percolation, in which there is a different retention probability as-
sociated to each tree in the product G = T1 × T2 × · · · × TN , our proof shows that the estimate (1.1) holds uniformly
along the entire critical surface for the existence of an infinite cluster. It follows that the triangle sum is uniformly
bounded on the existence critical surface and that the existence critical surface and the uniqueness critical surface are
bounded away from each other.

Remark 1.8. If pc,λ is defined as in [18], then the proof of Theorem 1.3 shows more generally that if G is a connected,
locally finite graph, and � is a transitive nonunimodular subgroup of Aut(G) with modular function �, then we have
the bound

τpc,λ(x, y) = τpc,1−λ
(x, y) ≤ �λ(x, y)

for every λ ∈ R and x, y ∈ V . In particular, if G = T1 × T2 × · · · × TN is a product of finitely many trees Ti , each of
which is regular with some degree ki ≥ 3, and � is the group of automorphisms of G fixing some specified end of
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each tree T1, . . . , TN , then it follows that

τpc,λ(x, y) ≤
N∏

i=1

(ki − 1)−max{λ,1−λ}di (xi ,yi ) = exp
[−max{λ,1 − λ}δ · d(x, y)

]

for every λ ∈R and x, y ∈ V , generalizing Theorem 1.3. Using this estimate one can easily prove that pc,λ is a strictly
increasing function of λ on (−∞,1/2], verifying [18, Conjecture 8.4] for this example.

The large amount of symmetry enjoyed by a product of trees would seem to make it an excellent example with
which to develop a deeper understanding of percolation at the non-uniqueness threshold.

Question 1.9. It follows from the work of Peres [23] that there is not a unique infinite cluster at pu on G = T N ,
where T is a k-regular tree for some k ≥ 3 and N ≥ 2. Does the triangle condition hold at pu in this example? Do we
have that

τpu(x, y) ≤ C exp

[
−1

2
δ · d(x, y)

]

for some constant C? What if N is large? Might we even have that

τpu(x, y) ≤ C
∥∥d(x, y)

∥∥−γN exp

[
−1

2
δ · d(x, y)

]

for some constant C and some γN > 0?

1.1. The Ising model

The proof of Theorems 1.2 and 1.3 is not particularly specific to percolation: It relies only on the positive associativity
property (i.e. the Harris–FKG inequality), the monotonicity and left-continuity in p of the random subgraph measures
under consideration, and on the sharpness of the phase transition (in the sense that the susceptibility is finite below pc).
As a result, it can also be applied immediately to the Ising model in the same setting (equivalently, the random cluster
model with q = 2), for which sharpness was established by Aizenman, Barsky, and Fernandez [3] (see also [13]).
Here, the relevant signifier of mean-field behaviour at criticality is the convergence of the bubble diagram rather than
the triangle diagram.

We use 〈·〉β to denote expectations with respect to the free-boundary-condition Ising model with inverse tempera-
ture β (with no external field) and use 〈·〉β,h to denote expectations with respect to the free-boundary-condition Ising
model with inverse temperature β and external field h. For background on the Ising model see e.g. [10].

Theorem 1.10. Let G = T1 × T2 × · · · × TN be the Cartesian product of finitely many trees Ti , each of which is
regular with some degree ki ≥ 3, and consider the ferromagnetic Ising model on G. Then

〈σxσy〉βc ≤
N∏

i=1

(ki − 1)−di (xi ,yi ) = exp
[−δ · d(x, y)

]

for every x, y ∈ V , and hence

Bβc =
∑
x

〈σ0σx〉2
βc

≤
N∏

i=1

(ki − 1)2

(
√

ki − 1 − 1)4
< ∞.

The fact that the following corollary can be deduced from Theorem 1.10 is essentially contained in the papers
[1,3,5,26]; see also [25, Section 4.2]. We write ‘f (x) � g(x) as x ↗ x0’ to mean that lim supx↑x0

f (x)/g(x) < ∞
and lim infx↑x0 f (x)/g(x) > 0. The meaning of ‘f (x) � g(x) as x ↘ x0’ is similar.
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Corollary 1.11 (Mean-field critical exponents). Let G = T1 × T2 × · · · × TN be the Cartesian product of finitely
many trees Ti , each of which is regular with some degree ki ≥ 3, and consider the ferromagnetic Ising model on G.
Then we have that

χβ := 〈σ0σx〉β � (βc − β)−1 β ↗ βc, (1.2)

Mβc,h := 〈σ0〉βc,h � h1/3 h ↘ 0, (1.3)

lim
h↓0

Mβ,h := lim
h↓0

〈σ0〉β,h � (β − βc)
1/2 β ↘ βc. (1.4)

In particular, the spontaneous magnetization is continuous at βc .

Remark 1.12. Unlike for percolation, it is not yet known that the spontaneous magnetization is continuous at βc

for the Ising model on every transitive nonamenable graph, even in the unimodular case. (The method of Ben-
jamini, Lyons, Peres, and Schramm [9] only implies that the free FK-Ising model does not have any infinite
clusters at criticality.) Previously, continuity of the spontaneous magnetization had been established for Z

d with
d ≥ 2 along with some other Euclidean lattices [4,5,22,27], and for amenable quasi-transitive graphs of exponen-
tial growth [24].

Remark 1.13. In recent work by Duminil-Copin, Tassion, and Raoufi [11,12], a general methodology has been es-
tablished to prove exponential decay of connectivity probabilities for many subcritical models with the positive asso-
ciativity property (e.g. the FK-random cluster model for q ≥ 1). Michael Aizenman has recently announced a proof,
using related methods, that these models also have finite susceptibility in their subcritical phases. This will allow one
to deduce analogues of Theorem 1.3 and Theorem 1.10 for these models on a product of trees via our methods. We
believe that similar methods should also enable one to analyze e.g. Voronoi percolation in hyperbolic spaces (which,
like trees, are distance-transitive), and plan to address this in future work.

2. Proof

The most important input to the proof of Theorem 1.3 is that the phase transition is sharp, i.e., that

χp :=
∑
x∈V

τp(0, x) < ∞ for every p < pc.

This was originally proven for all transitive graphs by Aizenman and Barsky [2]. A beautiful new proof was recently
obtained by Duminil-Copin and Tassion [13].

We will also make crucial use of Fekete’s Lemma [14] in the following form: If (an)n≥0 is a sequence of positive
real numbers satisfying the supermultiplicative estimate an+m ≥ anam, then

lim
n→∞a

1/n
n = sup

n≥1
a

1/n
n ∈ (0,∞].

In particular, the limit on the left exists, and an ≤ (limm→∞ a
1/m
m )n for every n ≥ 0.

Proof of Theorem 1.3. Recall that for any two vertices x, y ∈ V , the connection probability τp(x, y) can be written as
the supremum of the continuous functions τ r

p(x, y) giving the probability that x is connected to y by a path of length
at most r , so that τp(x, y) is lower-semicontinuous in p. Since τp(x, y) is an increasing function of p, it follows that
it is left-continuous in p. Thus, it suffices to prove the claim for all p < pc.

Observe that for any two vertices x and y of G and p ∈ [0,1], the connection probability τp(x, y) depends only
on p and on the vector of distances d(x, y) := (di(xi, yi))

N
i=1. (Indeed, the isomorphism class of the doubly-rooted

graph (G,x, y) depends only on this vector of distances.) For each vector of non-negative integers n = (ni)
N
i=1, we
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define

Vn(x) = {
y ∈ V : d(x, y) = n

}
and

νp(n) = τp(x, y) y ∈ Vn(x).

Given m ≥ 1, we write mn = (mni)
N
i=1. Observe that if r, � ≥ 0 then there exists y, z ∈ V such that d(x, y) = rn,

d(y, z) = �n and d(x, z) = (r + �)n. Indeed, simply choose z ∈ V(r+�)n(x) arbitrarily and take yi to be the r th vertex
on the geodesic in Ti from xi to zi for each 1 ≤ i ≤ N . Thus, it follows from the Harris–FKG inequality that the
submultiplicative estimate

νp

(
(r + �)n

) ≥ νp(rn)νp(�n)

holds for every k, � ≥ 0. If p < pc then it follows by Fekete’s Lemma that

νp(n) ≤ lim
r→∞νp(rn)1/r ≤ lim inf

r→∞

[
χp

|Vrn(x)|
]1/r

= lim inf
k→∞

∣∣Vrn(x)
∣∣−1/r

.

The result now follows by observing that

∣∣Vrn(x)
∣∣ ≥

N∏
i=1

(ki − 1)rni

and hence that

νp(n) ≤ lim
r→∞

∣∣Vrn(x)
∣∣−1/r =

N∏
i=1

(ki − 1)−ni .
�

For each 1 ≤ i ≤ N , let ξi be a fixed end of Ti . The parent of a vertex xi ∈ Ti is the unique neighbour of xi

that is closer to ξi than xi is. We call the other vertices of xi its children. Given this information, we can partition
each of the trees Ti into levels (Li,n)n∈Z such that for every n ∈ Z, every vertex in Ln has its parent in Ln+1 and its
children in Ln−1. This partition is unique up to re-indexing. Let hi(xi, yi) denote the height difference between two
vertices xi, yi ∈ Ti , so that hi(xi, yi) = k if and only if there exists n ∈ Z such that xi ∈ Li,n and yi ∈ Li,n+k . Note that
this definition does not depend on the choice of index used when defining the levels Li,n. Define1 � : V 2 → (0,∞)

by

�(x,y) =
N∏

i=1

(ki − 1)hi(xi ,yi ) = exp
[
δ · h(x, y)

]
.

Note that �(x, z) = �(x,y)�(y, z) and that �(x,y) = �(y,x)−1 for every three vertices x, y, z. We define the
critically tilted susceptibility to be

χp,1/2 =
∑
x

τp(0, x)�(0, x)1/2.

Lemmas 2.1 and 2.2, below, are special cases of [18, Lemma 7.1 and Proposition 1.9] respectively.

Lemma 2.1. ∇p ≤ (χp,1/2)
3. In particular, if χp,1/2 is finite then so is ∇p .

1�(x,y) is equal to the modular function of G with respect to the group of automorphisms �1 × · · · × �N ⊆ Aut(T1 × · · · × Tn), where �i is the
group of automorphisms of Ti fixing the end ξi .
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Proof. We have that

∇p =
∑
x,y

τp(0, x)τp(x, y)τp(y,0) ≤
∑
x,y,z

τp(0, x)τp(x, y)τp(y, z)�(0, z)1/2

and using the identity �(0, z)1/2 = �(0, x)1/2�(x,y)1/2�(y, z)1/2 yields that

∇p ≤
∑
x

τp(0, x)�(0, x)1/2
∑
y

τp(x, y)�(x, y)1/2
∑

z

τp(y, z)�(y, z)1/2 = (χp,1/2)
3.

�

Lemma 2.2. The set {p ∈ [0,1] : χp,1/2 < ∞} is open in [0,1].

Proof. Let p ∈ [0,1) be such that χp,1/2 < ∞, and let 0 < ε < 1−p. Suppose each edge of G is open with probability
p and, independently, blue with probability ε/(1 − p). Note that the subgraph spanned by the open-or-blue edges is
exactly p + ε percolation. Let τ̃ i (x, y) be the probability that x and y are connected by an open-or-blue path that
crosses each edge at most once and contains exactly i blue edges, and let

χ̃ i =
∑
x

τ̃ i (0, x)�(0, x)1/2

so that

τp+ε(x, y) ≤
∑
i≥0

τ̃ i (x, y) and hence χp+ε,1/2 ≤
∑
i≥0

χ̃ i .

It follows from the BK inequality that

τ̃ i+1(0, x) ≤ ε

1 − p

∑
y

τ̃ i (0, y)
∑
z∼y

τp(z, x),

and hence that

χ̃ i+1 ≤ ε

1 − p

∑
y

τ̃ i (0, y)
∑
z∼y

∑
x

τp(z, x)�(0, x)1/2

= ε

1 − p

∑
y

τ̃ i (0, y)�(0, y)1/2
∑
z∼y

�(y, z)1/2
∑
x

τp(z, x)�(z, x)1/2

= ε

1 − p
χ̃iχp,1/2

∑
z∼0

�(0, z)1/2.

Thus, it follows by induction that

χ̃ i ≤ χp,1/2

(
ε

1 − p
χp,1/2

∑
z∼0

�(0, z)1/2
)i

,

and hence that

χp+ε,1/2 ≤ χp,1/2

1 − ε
1−p

χp,1/2
∑

z∼0 �(0, z)1/2
< ∞

for every sufficiently small ε > 0, concluding the proof. �

Lemma 2.3. χpc,1/2 < ∞.
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Proof. Observe that for every 1 ≤ i ≤ N , m ≥ 0 and n ≥ 0 we have that

∣∣{xi ∈ Vi : hi(0, xi) = m − n, |xi | = m + n
}∣∣ =

⎧⎨
⎩

(ki − 1)n, m = 0, n ≥ 0
1, m ≥ 1, n = 0
(ki − 1)n−1(ki − 2), m ≥ 1, n ≥ 1

⎫⎬
⎭ ≤ (ki − 1)n

Given m = (mi)
N
i=1,n = (ni)

N
i=1,∈N

N , define

Vm,n = {
x ∈ V : hi(0, xi) = mi − ni, |xi | = mi + ni for all i = 1, . . . ,N

}
,

so that |Vm,n| ≤ ∏N
i=1(ki − 1)ni . Thus, applying Theorem 1.3, we can compute that

χpc,1/2 =
∑

n∈NN

∑
m∈NN

∑
x∈Vm,n

τpc (0, x)

N∏
i=1

(ki − 1)(mi−ni)/2

≤
∑

n∈NN

∑
m∈NN

N∏
i=1

(ki − 1)−(mi+ni)/2

≤
N∏

i=1

ki − 1

(
√

ki − 1 − 1)2
< ∞ (2.1)

as claimed. �

Proof of Theorems 1.1 and 1.2. Theorem 1.1 follows immediately from Lemma 2.3 and Lemma 2.2, while Theo-
rem 1.2 follows immediately from Lemma 2.3 and Lemma 2.1, and in particular the bound (2.1). �

3. A pedestrian proof of Schramm’s random walk lemma

As mentioned in the introduction, Kozma’s work [20] relied upon a lemma of Schramm, which states that if G =
(V ,E) is a nonamenable transitive unimodular graph and X is the simple random walk on G, then

E
[
τpc (X0,Xn)

] ≤ ρn, (3.1)

where ρ = limn→∞ p2n(0,0)1/2n is the spectral radius of G. (The proof of this lemma appears in [20].) This shows in
particular that connection probabilities for critical percolation on nonamenable Cayley graphs are exponentially small
in the distance for at least some choices of vertices (this also follows from [17, Theorem 1.2]). It is conjectured that
they are exponentially small in the distance uniformly over all pairs of vertices.

Schramm’s proof of (3.1) relies on an ingenious use of the mass-transport principle; unimodularity of G and
reversibility of X are essential to the argument. In this section, we show that the following more general form of
Schramm’s Lemma, without these restriction. We also prove a quenched version of Schramm’s Lemma that also
applies to amenable non-Liouville graphs such as the lamplighter group. The proofs of these generalizations are
obtained from very simple supermultiplicativity considerations, following the same strategy as [17] and the proof of
Theorem 1.3, and do not use the mass-transport principle.

Theorem 3.1. Let G be a connected, locally finite graph, let � ⊆ Aut(G) be transitive, and let X be a Markov
process on G whose transition probabilities P(x, y) are invariant under the diagonal action of � in the sense that
P(x, y) = P(γ x, γy) for every γ ∈ �. Then

E
[
τpc (X0,Xn)

] ≤
(

lim
m→∞

(
sup
y∈V

P m(x, y)
)1/m)n

(3.2)
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for every n ≥ 1. If we have furthermore that E[d(X0,X1)] < ∞, then

1

n
E

[
log τpc (X0,Xn)

] ≤
[

lim
m→∞

1

m

∑
y∈V

P m(x, y) logP m(x, y)

]
(3.3)

for every n ≥ 1, and

lim
n→∞

1

n
log τpc (X0,Xn) = lim

n→∞
1

n
E

[
log τpc (X0,Xn)

] ≤ lim
n→∞

1

n

∑
y∈V

P n(x, y) logP n(x, y) (3.4)

almost surely.

Remark 3.2. The limits appearing on the right-hand sides of (3.2), (3.3) and (3.4) exist by Fekete’s Lemma. If P is
reversible then the right hand side of (3.2) is its spectral radius, so that Schramm’s Lemma follows as a special case
of (3.2) by taking X to be the simple random walk on G. The limit appearing on the right-hand side of (3.3) and (3.4)
is exactly the negative of the Avez entropy of X; if X is reversible and has E[d(X0,X1)] < ∞ then it has non-zero
Avez entropy if and only if it has positive asymptotic speed [21, Theorem 14.20].

Remark 3.3. The same proof also yields analogous bounds for the critical free-boundary-condition Ising model.

Remark 3.4. Despite the excitement generated by Schramm’s initial discovery of the inequality (3.1), as of yet it has
failed to lead to much further progress besides the aforementioned work of Kozma. In fact, we suspect that the bound
(3.1) continues to hold at pu for certain transitive nonamenable graphs, which would partly explain this inefficacy.
We present our generalization, together with our new proof, primarily as a matter of historical interest.

Proof. By the Harris–FKG inequality, we have that

τp(X0,Xn+m) ≥ τp(X0,Xn)τp(Xn,Xn+m) (3.5)

for every n,m ≥ 0. Since � is transitive and the transition probabilities P are �-invariant, we have that

E
[
τp(X0,Xn)τp(Xn,Xn+m)

] = E
[
τp(X0,Xn)

]
E

[
τp(X0,Xm)

]
.

We deduce that the sequences logE[τp(X0,Xn)] and E[log τp(X0,Xn)] are both superadditive. Furthermore, we
have as before that τp(x, y) is left-continuous in p for each x, y ∈ V , and it follows by dominated convergence that
E[τp(X0,Xn)] is left-continuous in p for each n ≥ 1. Similarly, since τp(x, y) ≥ pd(x,y) for every x, y ∈ V , it follows
by dominated convergence that E[log τp(X0,Xn)] is left-continuous in p for each n ≥ 1 under the assumption that
E[d(X0,X1)] < ∞, which implies that E[d(X0,Xn)] < ∞ for every n ≥ 1.

Now, observe that if p < pc then

E

[
τp(X0,Xn)

P n(X0,Xn)

]
=

∑
x∈V

τp(0, x)1
[
P n(0, x) > 0

] ≤ χp. (3.6)

Thus, by (3.6) and Fekete’s Lemma, we have that

sup
n≥1

E
[
τp(X0,Xn)

]1/n = lim
n→∞E

[
τp(X0,Xn)

]1/n

≤ lim sup
n→∞

[
χp sup

y∈V

P n(x, y)
]1/n

= lim
n→∞

[
sup
y∈V

P n(x, y)
]1/n

for every p < pc. The claimed inequality eq. (3.2) follows by left-continuity of E[τp(X0,Xn)].
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Now suppose that E[d(X0,X1)] < ∞. Jensen’s inequality implies that

E
[
log τp(X0,Xn)

] ≤ logE

[
τp(X0,Xn)

P n(X0,Xn)

]
+E

[
logP n(X0,Xn)

] ≤ logχp +E
[
logP n(X0,Xn)

]
,

and it follows by Fekete’s Lemma that

sup
n≥1

1

n
E

[
log τp(X0,Xn)

] = lim
n→∞

1

n
E

[
log τp(X0,Xn)

] ≤ lim
n→∞

1

n
E

[
logP n(X0,Xn)

]

for every p < pc. The inequality eq. (3.3) follows from this together with the left-continuity of E[log τp(X0,Xn)].
The almost sure equality (3.4) follows from (3.3), (3.5), ergodicity of random walk in i.i.d. random scenery (see e.g.
[7, Theorem 4.6]), and Kingman’s subadditive ergodic theorem. �
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