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Abstract. Stochastic homogenization is achieved for a class of elliptic and parabolic equations describing the lifetime, in large
domains, of stationary diffusion processes in random environment which are small, statistically isotropic perturbations of Brownian
motion in dimension at least three. Furthermore, the homogenization is shown to occur with an algebraic rate. Such processes were
first considered in the continuous setting by Sznitman and Zeitouni (Invent. Math. 164 (2006) 455–567), upon whose results the
present work relies strongly.

Résumé. On effectue l’homogénéisation stochastique d’une certaine classe d’équations elliptiques et paraboliques. Ces équa-
tions décrivent la durée de vie, dans des domaines grands, de processus de diffusion stationnaire en environnement aléatoire qui
sont des petites perturbations statistiquement isotropes du mouvement brownien, en dimension au moins trois. On démontre que
l’homogénéisation a lieu à vitesse algébrique. De tels processus ont été étudiés dans un cadre continu en premier lieu par Snitzman
et Zeitouni (Invent. Math. 164 (2006) 455–567), sur les résultats desquels le présent travail s’appuie fortement.
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1. Introduction

The purpose of this paper is to characterize, in dimensions greater than two, the lifetime of diffusion processes in large
domains which are associated to generators of the form

1

2

d∑
i,j=1

aij (x,ω)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x,ω)
∂

∂xi

, (1)

where the uniformly elliptic diffusion matrix A = (aij ) and drift b = (bi) are bounded and Lipschitz continuous. These
are assumed to describe a stationary, strongly mixing random environment, as indexed by an underlying probability
space (�,F,P), which corresponds to a small, statistically isotropic perturbation of Brownian motion.

Precisely, the stationarity is quantified by a measure preserving transformation group {τx}x∈Rd of the probability
space which satisfies, for each x, y ∈ R

d and ω ∈ �,

A(x + y,ω) = A(x, τyω) and b(x + y,ω) = b(x, τyω). (2)
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The coefficients are statistically isotropic in the sense that, for every orthogonal transformation r of Rd which pre-
serves the coordinate axes, for each x ∈R

d , the random variables(
A(rx,ω), b(rx,ω)

)
and

(
rA(x,ω)rt , rb(x,ω)

)
have the same law. (3)

The environment is strongly mixing in the way of a finite range dependence. Whenever subsets A,B of R
d are

sufficiently separated in space, the sigma algebras

σ
(
A(x, ·), b(x, ·)|x ∈ A

)
and σ

(
A(x, ·), b(x, ·)|x ∈ B

)
are independent. (4)

Finally, there exists a constant η > 0 to be chosen small such that, for every x ∈R
d and ω ∈ �,∣∣A(x,ω) − I

∣∣ < η and
∣∣b(x,ω)

∣∣ < η. (5)

Condition (5) implies that the stochastic process determined by (1) is a small perturbation of Brownian motion. Such
environments were first considered in the continuous setting by Sznitman and Zeitouni [20], and correspond to the
analogue of the discrete framework studied by Bricmont and Kupiainen [5].

The lifetime of these processes in large domains will be understood, for small ε > 0 and bounded subsets U ⊂ R
d

satisfying an exterior ball condition, in terms of solutions to the associated elliptic equation{
1
2 tr(A(x,ω)D2vε) + b(x,ω) · Dvε = ε2g(εx) on U/ε,

vε = f (εx) on ∂U/ε,
(6)

which admit the representation

vε(x) = Ex,ω

(
f (εXτε ) − ε2

∫ τ ε

0
g(εXs) ds

)
on U/ε, (7)

for the canonical process (Xs)s≥0, for the expectation Ex,ω associated to the diffusion in environment ω beginning
from x, and for τ ε the exit time from U/ε. Since the rescaling uε(x) = vε( x

ε
) satisfies

{
1
2 tr(A(x

ε
,ω)D2uε) + 1

ε
b( x

ε
,ω) · Duε = g(x) on U,

uε = f (x) on ∂U,
(8)

it follows from a change of variables in the final integral of (7) that

uε(x) = vε

(
x

ε

)
= Ex

ε
,ω

(
f (εXε2τε

ε2
) −

∫ ε2τ ε

0
g(εXs/ε2) ds

)
on U, (9)

for the stopping time

ε2τ ε quantifying the exit of the rescaled process εX ·
ε2

from U.

The limiting behavior of the rescaling εX·/ε2 was characterized almost surely in [20], where it was shown that,
provided the perturbation η in (5) is sufficiently small, there exists a deterministic α > 0 for which, on a subset of full
probability, as ε → 0,

εX ·
ε2

converges in law on R
d to a Brownian motion with variance α. (10)

The purpose of this paper is to obtain the analogous result for the lifetime (i.e. for the exit time and exit distribution) of
such processes in large domains, and the result is stated in terms of the stochastic homogenization of (8) for continuous
data on the boundary and interior.
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Theorem 1. There exists a subset of full probability on which, for every bounded domain U ⊂ R
d satisfying an

exterior ball condition, the solutions of (8) converge uniformly on U , as ε → 0, to the solution{
α
2 
u = g(x) on U,

u = f (x) on ∂U.
(11)

Furthermore, the convergence is shown to occur with an algebraic rate. The rate is first established for boundary
data which is the restriction of a bounded, uniformly continuous function and interior data which is the restriction of
a bounded, Lipschitz function.

Assume f ∈ BUC
(
R

d
)

and g ∈ Lip
(
R

d
)
. (12)

For the modulus of continuity σf and gradient Dg satisfying, for each x, y ∈R
d ,∣∣f (x) − f (y)

∣∣ ≤ σf

(|x − y|) and
∣∣g(x) − g(y)

∣∣ ≤ ‖Dg‖L∞(Rd )|x − y|,
the result is the following.

Theorem 2. Assume (12). There exists a subset of full probability and c1, c2, c3, c4 > 0 such that, for all ε > 0
sufficiently small depending upon ω, the respective solutions uε and u of (8) and (11) satisfy, for C > 0 independent
of ω and ε,∥∥uε − u

∥∥
L∞(U)

≤ C
(‖f ‖L∞(Rd )ε

c1 + σf

(
εc2

) + ‖g‖L∞(Rd )ε
c3 + ‖Dg‖L∞(Rd )ε

c4
)
.

Condition (12) can be relaxed in the case that the domain is smooth via a standard extension argument.

Assume f ∈ C(∂U), g ∈ Lip(U), and that the domain U is smooth. (13)

Then, the rate obtained in Theorem 2 is preserved up to a domain dependent factor.

Theorem 3. Assume (13). There exists a subset of full probability, c1, c2, c3, c4 > 0 and C1 = C1(U) > 0 such that,
for all ε > 0 sufficiently small depending upon ω, the respective solutions uε and u of (8) and (11) satisfy, for C > 0
independent of ω and ε,∥∥uε − u

∥∥
L∞(U)

≤ C
(‖f ‖L∞(∂U)ε

c1 + σf

(
C1ε

c2
) + ‖g‖L∞(U)ε

c3 + ‖Dg‖L∞(U)ε
c4

)
.

The methods of this paper also apply to the analogous parabolic equation{
uε

t = 1
2 tr(A(x

ε
,ω)D2uε) + 1

ε
b( x

ε
,ω) · Duε + g(x) on U × (0,∞),

uε = f (x) on U × {0} ∪ ∂U × [0,∞),
(14)

whose solutions admit the representation

uε(x, t) = Ex
ε
,ω

(
f (εX(ε2τ ε∧t)/ε2) +

∫ (ε2τ ε∧t)

0
g
(
εX s

ε2

)
ds

)
on U × [0,∞).

In this case, on a subset of full probability, the solutions of (14) are shown to convergence uniformly, as ε → 0, to the
solution{

ut = α
2 
u + g(x) on U × (0,∞),

u = f (x) on U × {0} ∪ ∂U × (0,∞).
(15)

Since the proof follows by combining the techniques used in this paper and the author’s work [8], the details are
omitted.
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Theorem 4. There exists a subset of full probability on which, for every bounded domain U ⊂ R
d satisfying an

exterior ball condition, the respective solutions uε and u of (14) and (15) satisfy

lim
ε→0

∥∥uε − u
∥∥

L∞(U×[0,∞))
= 0.

Furthermore, the convergence occurs with an algebraic rate in exact analogy with Theorems 2 and 3.

The essential novelty of this paper is to handle the case g �= 0, since when g = 0 the results of [8] proved, on a
subset of full probability, as ε → 0, the solutions of (8) converge uniformly on U to the solution{


u = 0 on U,

u = f on ∂U.

The simplification is that, when dealing with merely the exit distribution, events of vanishing probability necessarily
pose a vanishing threat. Or, in terms of the analysis, solutions of (8) are uniformly bounded in ε > 0, and satisfy the
estimate∥∥uε

∥∥
L∞(U)

≤ ‖f ‖L∞(∂U) whenever g = 0.

In the case g �= 0, it is not a priori obvious that even such L∞-estimates are obtainable, since the statistical isotropy
(3) imposes no symmetry, in general, on the quenched environments. More precisely, in Section 2 the diffusion be-
ginning from x in environment ω will be described in the space of continuous paths by a measure and expectation
denoted respectively

Px,ω and Ex,ω.

It is manifestly not the case that these objects are, in any sense, translationally or rotationally invariant in space or that
they are in any way symmetric.

The invariance implied by the stationarity (2) and isotropy (3) is seen only after averaging with respect to the entire
collection of environments. That is, the annealed measures and expectations, which are defined as the semi-direct
products

Px = P� Px,ω and Ex = E�Ex,ω,

do satisfy a translational and rotational invariance in the sense that, for all x, y ∈R
d ,

Ex+y(Xt ) = Ey(x + Xt) = x +Ey(Xt ), (16)

and, for all orthogonal transformations r preserving the coordinate axis, for every x ∈ R
d ,

Ex(rXt ) = Erx(Xt ). (17)

While this fact plays an important role in [20] to preclude, with probability one, the emergence of ballistic behavior
of the rescaled process in the asymptotic limit, it does not yield an immediate control, with respect to the quenched
expectations, for the exit time of the process from large domains. And, therefore, it does not readily imply that the
solutions of (8) are uniformly bounded as ε approaches zero.

The proof of Theorem 1 is founded strongly in the results of [20], which in particular establish, on scales of order
1
ε

in space and 1
ε2 in time and with high probability, a comparison between solutions

{
vε
t = tr(A(x,ω)D2vε) + b(x,ω) · Dvε on R

d × (0,∞),

vε = f (εx) on R
d × {0}, (18)
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and the solution of the homogenized problem{
vε

t = α
2 
vε on R

d × (0,∞),

vε = f (εx) on R
d × {0}, (19)

with respect to rescaled Hölder-norms defined in (49). This comparison is used in Section 4.1, similar to its use in [20,
Proposition 3.1] and later in [8, Proposition 5.1], to establish a global coupling, on larges scales in space and time and
with high probability, between the diffusion in random environment associated to the generator

1

2

d∑
i,j=1

aij (x,ω)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x,ω)
∂

∂xi

(20)

and a Brownian motion with variance approximately α. See Proposition 10 and, in particular, Corollary 11.
This coupling will be achieved along a discrete sequence of time steps which, while small with respect to the scale

1
ε2 , are typically insufficient to characterize the asymptotic behavior of solutions of (6) due to the emergence of the

singular in 1
ε

drift. The difficulties are twofold.
First, the drift can trap the particle in the domain to create, in expectation, an exponentially in 1

ε
increasing exit

time. To counteract this, the probability that the exit time is large is first controlled by Proposition 12 in Section 4.2.
Essentially, it is shown that there exists a small a1 > 0 and a constant a2 > 0 such that the exit time τ ε from U/ε

satisfies, for C > 0 independent of ε,

sup
x∈U/ε

Px,ω

(
τ ε >

1

ε2+a1

)
≤ Cεa2 . (21)

Note that although this estimate is an improvement upon the generic behavior of processes associated to generators
like (20), it remains far from implying a uniform in ε control for the expectation of the rescaled exit times ε2τ ε .

Second, the drift can repel the process from the boundary, and thereby make impossible the existence of barriers
which are effective except at scales much smaller than ε. To overcome this, a proxy for a barrier is essentially obtained
by Propositions 15 and 17 of Section 5. The proof relies upon the coupling established in Corollary 11 and estimates
for the exit time of Brownian motion from Proposition 13 of Section 4.3. The latter of these follows from the exterior
ball condition and an explicit formula for the exit time of Brownian motion in annular domains.

The primary argument of the paper comes in Theorem 19 of Section 5, and a precise outline is presented between
lines (75) and (86). The idea is to introduce a discretely stopped version of the process, and to consider the correspond-
ing discrete version of the representation (7). The efficacy of this approximation follows from localization estimates
obtained in [20, Proposition 2.2], see Control 7, and the substitute for boundary barriers implied by Propositions 15
and 17. The discrete proxy is then compared with the analogous approximation defined by a Brownian motion of vari-
ance α using the coupling from Corollay 11. Finally, the results from Section 4.3 together with standard exponential
estimates for Brownian motion allow for the recovery of the homogenized solution (11) from its discrete representa-
tion and thereby complete the proof. The rate is presented in Section 6, and the proof is a straightforward consequence
of the methods used to prove Theorem 19.

Diffusion processes in the stationary ergodic setting were first considered in the case b(x,ω) = 0 by Papanicolaou
and Varadhan [17]. Furthermore, in the case that (6) can be rewritten in divergence form or in the case that b(x,ω) is
divergence free or the gradient of a stationary field, such processes and various boundary value problems have been
studied by Papanicolaou and Varadhan [16], De Masi, Ferrari, Goldstein and Wick [6], Kozlov [11], Olla [14] and
Osada [15]. However, outside of this framework, much less is understood.

In the continuous setting, the results of [20], which apply to the isotropic, perturbative regime described above, are
the only such available. These have been more recently extended by the author in [7–9]. In particular, the results of [8]
prove that the exit distributions of such processes from large domains converge to that of a Brownian motion, a result
which is the continuous analogue of work in the discrete setting by Bolthausen and Zeitouni [4], who characterized
the exit distributions from large balls (so, for U = B1) of random walks in random environment which are small,
isotropic perturbations of a simple random walk. Their work was later refined by Baur and Bolthausen [3] under a
somewhat less stringent isotropy assumption.
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The almost-sure characterization of the exit time and the general homogenization statement contained in Theo-
rem 1 remain open in the discrete case. However, under the assumptions of [3], and by using an additional quenched
symmetry assumption along a single coordinate direction, Baur [2] has obtained a quenched invariance principle anal-
ogous to (10) and a characterization of the exit times from large balls. The symmetry with respect to the quenched
measures Px,ω allows for the exit of the one-dimensional projection Xt · e1 to be estimated by standard martingale
methods, and yields an effective a priori control of the rescaled exit times ε2τ ε . Therefore, when dealing with the
continuous analogue of such environments, many of the arguments in this paper can be simplified.

It should be noted that the techniques presented here differ substantially from [2–4], which employ renormalization
schemes to propagate estimates controlling the convergence of the exit law of the diffusion in random environment to
the uniform measure on the boundary of the ball. The arguments of this paper begin instead from the parabolic results
of [20], and apply immediately to general domains.

The organization of the paper is as follows. Section 2 contains the notation and assumptions. Section 3 reviews
those aspects of [20] most relevant to this work and presents the primary probabilistic statement concerning the
random environment. In Section 4, necessary results from [8] are recalled and improved for the arguments of this
paper. The global coupling is presented in Section 4.1 and a tail estimate for the exit time associated to the process
in random environment is obtained in Section 4.2. Section 4.3 controls the expectation of the exit time of Brownian
motion near the boundary. The proof of homogenization is presented in Section 5 and the rate of convergence is
established in Section 6.

2. Preliminaries

2.1. Notation

The elements of Rd and [0,∞) are written x or y and t respectively and (x, y) denotes the standard inner product. The
spacial gradient and derivative in time of a scalar function v are written Dv and vt , while D2v denotes the Hessian
matrix. The spaces of k × l and k × k symmetric matrices with real entries are written Mk×l and S(k) respectively. If
M ∈ Mk×l , then Mt is its transpose and |M| is the norm defined by |M| = tr(MMt)1/2. The trace of a square matrix
M is written tr(M). The distance between subsets A,B ⊂R

d is

d(A,B) = inf
{|a − b||a ∈ A,b ∈ B

}
and, for an index A and a family of measurable functions{

fα :Rd × � → R
nα

}
α∈A,

the sigma algebra generated by the random variables fα(x,ω), for x ∈ A and α ∈ A, is denoted

σ
(
fα(x,ω)|x ∈ A,α ∈A

)
.

For domains U ⊂ R
d , BUC(U ;Rd), C(U ;Rd), Lip(U ;Rd), C0,β(U ;Rd) and Ck(U ;Rd) are the spaces of bounded

continuous, continuous, Lipschitz continuous, β-Hölder continuous and k-continuously differentiable functions on U

with values in R
d . Furthermore, C∞

c (Rd) denotes the space of smooth, compactly supported functions on R
d . The

closure and boundary of U ⊂ R
d are denoted U and ∂U . The support of a function f : Rd → R is written Supp(f ).

The open balls of radius R centered at zero and x ∈ R
d are respectively written BR and BR(x). For a real number

r ∈ R, the notation [r] denotes the largest integer less than or equal to r . Finally, throughout the paper C represents a
constant which may change within a line and from line to line but is independent of ω ∈ � unless otherwise indicated.

2.2. The random environment

A probability space (�,F,P) indexes the random environment, and the elements ω ∈ � correspond to realizations
described by the coefficients A(·,ω) and b(·,ω) on R

d . Their stationarity is quantified by an

ergodic group of measure-preserving transformations {τx : � → �}x∈Rd (22)
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such that A : Rd × � → S(d) and b : Rd × � → R
d are bi-measurable stationary functions satisfying, for each

x, y ∈ R
d and ω ∈ �,

A(x + y,ω) = A(x, τyω) and b(x + y,ω) = b(x, τyω). (23)

The diffusion matrix and drift are bounded, Lipschitz functions on R
d for each ω ∈ �. There exists C > 0 such

that, for all x ∈ R
d and ω ∈ �,

∣∣b(x,ω)
∣∣ ≤ C and

∣∣A(x,ω)
∣∣ ≤ C, (24)

and, for all x, y ∈ R
d and ω ∈ �,

∣∣b(x,ω) − b(y,ω)
∣∣ ≤ C|x − y| and

∣∣A(x,ω) − A(y,ω)
∣∣ ≤ C|x − y|. (25)

In addition, the diffusion matrix is uniformly elliptic. There exists ν > 1 such that, for all x ∈R
d and ω ∈ �,

1

ν
I ≤ A(x,ω) ≤ νI. (26)

The environment is strongly mixing in the sense that the coefficients satisfy a finite range dependence. There exists
R > 0 such that, for every A,B ⊂R

d satisfying d(A,B) ≥ R, the sigma algebras

σ
(
A(x, ·), b(x, ·)|x ∈ A

)
and σ

(
A(x, ·), b(x, ·)|x ∈ B

)
are independent. (27)

The environment is statistically isotropic in the sense that, for every orthogonal transformation r : Rd → R
d which

preserves the coordinate axes, for every x ∈ R
d ,

(
A(rx,ω), b(rx,ω)

)
and

(
rA(x,ω)rt , rb(x,ω)

)
have the same law. (28)

Finally, the diffusion is a small perturbation of Brownian motion. There exists η0 > 0, to be fixed small in line (52) of
Section 3, such that, for all x ∈R

d and ω ∈ �,

∣∣b(x,ω)
∣∣ ≤ η0 and

∣∣A(x,ω) − I
∣∣ ≤ η0. (29)

The remaining two assumptions concern the domain. First, the domain

U ⊂R
d is open and bounded. (30)

Second, U satisfies an exterior ball condition. There exists r0 > 0 so that, for each x ∈ ∂U there exists x∗ ∈ R
d

satisfying

Br0

(
x∗) ∩ U = {x}. (31)

To avoid lengthy statements, a steady assumption is made.

Assume (22), (23), (24), (25), (26), (27), (28), (29), (30) and (31). (32)

Observe that (24), (25) and (26) guarantee, for every environment ω ∈ � and initial distribution x ∈ R
d , the well-

posedness of the martingale problem associated to the generator

1

2

d∑
i,j=1

aij (x,ω)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x,ω)
∂

∂xi

,
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see Strook and Varadhan [19, Chapters 6,7]. The associated probability measure and expectation on the space of
continuous paths C([0,∞);Rd) will be respectively denoted Px,ω and Ex,ω where, almost surely with respect to
Px,ω , paths Xt ∈ C([0,∞);Rd) satisfy the stochastic differential equation

{
dXt = b(Xt ,ω)dt + σ(Xt ,ω)dBt ,

X0 = x,
(33)

for A(x,ω) = σ(x,ω)σ (x,ω)t and for Bt a standard Brownian motion under Px,ω with respect to the canonical
right-continuous filtration on C([0,∞);Rd).

Define as well, for each n ≥ 0 and x ∈ R
d , the Wiener measure Wn

x and expectation EWn
x on C([0,∞);Rd)

corresponding to Brownian motion on R
d with variance αn beginning from x. Almost surely with respect to Wn

x ,
paths Xt ∈ C([0,∞);Rd) satisfy the stochastic differential equation

{
dXt = √

αn dBt ,

X0 = x,
(34)

for Bt some standard Brownian motion under Wn
x with respect to the canonical right-continuous filtration on

C([0,∞);Rd).

2.3. A remark on existence and uniqueness

The boundedness, Lipschitz continuity and ellipticity of the coefficients, see (24), (25) and (26), together with the
boundedness and regularity of the domain, see (30) and (31), guarantee the well-posedness, for every ω ∈ �, of
equations like{

1
2 tr(A(x,ω)D2w) + b(x,ω) · Dw = g(x) on U,

u = f (x) on ∂U,

for every f ∈ C(∂U) and g ∈ C(U) in the class of bounded continuous functions. See, for instance, Friedman [10,
Chapter 3]. Furthermore, if τ denotes the exit time from U , then the solution admits the representation

u(x) = Ex,ω

(
f (Xτ ) −

∫ τ

0
g(Xs) ds

)
on U,

see Øksendal [13, Exercise 9.12].
The same assumptions ensure the well-posedness of parabolic equations like

{
wt = 1

2 tr(A(x,ω)D2w) + b(x,ω) · Dw on R
d × (0,∞),

w = f (x) on R
d × {0},

for continuous initial data f (x) satisfying, for instance and to the extent that it will be applied in this paper, |f (x)| ≤
C(1 + |x|2) on R

d , in the class of continuous functions satisfying a quadratic estimate of the same form locally in
time. See [10, Chapter 1]. Furthermore,

w(x, t) = Ex,ω

(
f (Xt )

)
on R

d × (0,∞),

see [13, Exercise 9.12].
Analogous formulas hold for the constant coefficient elliptic and parabolic equations associated to Brownian mo-

tion and the measures Wn
x . Since these facts are well-known, and since the solution to every equation encountered in

this paper admits an explicit probabilistic description, the presentation will not further emphasize these points.
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3. The inductive framework and probabilistic statement

In this section, the aspects of [20] most relevant to this work are briefly explained. A complete description of the
inductive framework can be found in [20], and it was later reviewed in the introduction of [9].

Assume the dimension d satisfies

d ≥ 3, (35)

and fix a Hölder exponent

β ∈
(

0,
1

2

]
and a scaling constant a ∈

(
0,

β

1000d

]
. (36)

The following constants will come to define the scales in length and time along which the induction scheme is
propagated. Let L0 be integer multiple of five which will later be fixed large in (52). For each n ≥ 0, define inductively


n = 5

[
La

n

5

]
and Ln+1 = 
nLn, (37)

where it follows that, for every L0 sufficiently large, 1
2L1+a

n ≤ Ln+1 ≤ 2L1+a
n . For c0 > 0 to be fixed small in (52),

for each n ≥ 0, define

κn = exp
(
c0

(
log log(Ln)

)2) and κ̃n = exp
(
2c0

(
log log(Ln)

)2)
, (38)

and observe that, as n → ∞, the constants κn are eventually dominated by every positive power of Ln. Furthermore,
for each n ≥ 0, define

Dn = Lnκn and D̃n = Lnκ̃n, (39)

where, using the preceding remark, the scales Dn and D̃n are larger but grow comparably with the previously defined
scales Ln.

The remaining constants enter into the primary probabilistic statement, see Theorem 8, and the Hölder estimates
governing the convergence of solutions to the parabolic equation (43), see Theorem 5 and Control 6. Fix m0 ≥ 2
satisfying

(1 + a)m0−2 ≤ 100 < (1 + a)m0−1, (40)

and δ > 0 and M0 > 0 satisfying

δ = 5

32
β and M0 ≥ 100d(1 + a)m0+2. (41)

In what follows, it is essential that δ and M0 are sufficiently larger than a.
In order to exploit the environment’s mixing properties, it will be frequently necessary to introduce a stopped

version of the process. Define for every element Xt ∈ C([0,∞);Rd) the path

X∗
t = sup

0≤s≤t

|Xs − X0|, (42)

and, for each n ≥ 0, the stopping time

Tn = inf
{
s ≥ 0|X∗

s ≥ D̃n

}
.

The effective diffusivity of the ensemble at scale Ln is defined by

αn = 1

2dL2
n

E0
(|XL2

n∧Tn
|2),
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where the localization ensures that the αn are local quantities on scale D̃n. The convergence of the αn to a limiting
diffusivity α is proven in [20, Proposition 5.7].

Theorem 5. Assume (32). There exists L0 and c0 sufficiently large and η0 > 0 sufficiently small such that, for all
n ≥ 0,

1

2ν
≤ αn ≤ 2ν and |αn+1 − αn| ≤ L

−(1+ 9
10 )δ

n ,

which implies the existence of α > 0 satisfying

1

2ν
≤ α ≤ 2ν and lim

n→∞αn = α.

The results of [20] obtain an effective comparison on the parabolic scale (Ln,L
2
n) in space and time, with improving

probability as n → ∞, between solutions{
ut = 1

2 tr(A(x,ω)D2u) + b(x,ω) · Du on R
d × (0,∞),

u = f (x) on R
d × {0}, (43)

and solutions of the approximate limiting equation{
un,t = αn

2 
un on R
d × (0,∞),

un = f (x) on R
d × {0}. (44)

To simplify the notation, for each n ≥ 0, define the operators

Rnf (x) = u
(
x,L2

n

)
and Rnf (x) = un

(
x,L2

n

)
, (45)

and the difference

Snf (x) = Rnf (x) − Rnf (x). (46)

Since solutions of (43) are not, in general, effectively comparable with solutions of (44) globally in space, it is
necessary to localize using a cutoff function. For each v > 0, define

χ(y) = 1 ∧ (
2 − |y|)+ and χv(y) = χ

(
y

v

)
, (47)

and, for each x ∈R
d and n ≥ 0,

χn,x(y) = χ30
√

dLn
(y − x). (48)

Furthermore, since the comparison of the solutions must necessarily respect the scaling associated to (6) and (8), it is
obtained with respect to the rescaled global Hölder-norms defined, for each n ≥ 0, by

|f |n = ‖f ‖L∞(Rd ) + sup
x �=y

Lβ
n

|f (x) − f (y)|
|x − y|β . (49)

See, for instance, the introductions of [9,20] for a more complete discussion concerning the necessity of these norms
as opposed, perhaps, to attempting a generically false L∞-contraction.

The following estimate is the statement propagated by the arguments of [20], and expresses a comparison between
solutions of (43) and (44). Observe that this statement is not true, in general, for all triples x ∈ R

d , ω ∈ � and n ≥ 0.
However, as described in Theorem 8 below, it is shown in [20, Proposition 5.1] that such controls are available for
large n, with high probability and on a large portion of space.
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Control 6. Fix x ∈ R
d , ω ∈ � and n ≥ 0. Then, for each f ∈ C0,β(Rd),

|χn,xSnf |n ≤ L−δ
n |f |n.

In order to account for the error introduced by localization, it is necessary to obtain tail-estimates for the diffusion
in random environment. The type of control propagated in [20] is an exponential estimate for the probability under
Px,ω that the maximal excursion X∗

L2
n

defined in (42) is large with respect to the time elapsed. As with Control 6, it

is simply false in general that this type of estimate is satisfied for every triple (x,ω,n). However, it is shown in [20,
Proposition 2.2] that such controls are available for large n, with high probability, on a large portion of space.

Control 7. Fix x ∈ R
d , ω ∈ � and n ≥ 0. For each v ≥ Dn, for all |y − x| ≤ 30

√
dLn,

Py,ω

(
X∗

L2
n
≥ v

) ≤ exp

(
− v

Dn

)
.

The primary result of [20] proved that, provided the perturbation η0 is sufficiently small, Controls 6 and 7 are
available with high probability on a large portion of space. Precisely, for each n ≥ 0 and x ∈R

d , define the event

Bn(x) = {
ω ∈ �| Controls 6 and 7 hold for the triple (x,ω,n)

}
, (50)

and notice that, in view of (23), for all x ∈R
d and n ≥ 0,

P
(
Bn(x)

) = P
(
Bn(0)

)
. (51)

Furthermore, observe that Bn(0) does not include the control of traps described in [20, Proposition 3.3], which play
an important role in propagating Control 6, and from which the arguments of this paper have no further need. The
following theorem proves that the complement of Bn(0) approaches zero as n tends to infinity, see [20, Theorem 1.1].

Theorem 8. Assume (32). There exist L0 and c0 sufficiently large and η0 > 0 sufficiently small such that, for each
n ≥ 0,

P
(
� \ Bn(0)

) ≤ L−M0
n .

Henceforth, the constants L0, c0 and η0 are fixed to satisfy the requirements of Theorems 5 and 8.

Fix constants L0, c0 and η0 satisfying the hypothesis of Theorems 5 and 8. (52)

The events which come to define, following an application of the Borel–Cantelli lemma, the event on which The-
orem 1 is obtained are chosen to ensure that Controls 6 and 7 are available at a sufficiently small scale in comparison
to 1

ε
. Fix the smallest integer m > 0 satisfying

m > 1 − log(1 − 12a − a2)

log(1 + a)
, (53)

and notice that the definition of Ln in (37) implies that, for C > 0 independent of n ≥ m,

Ln+1D̃n−m ≤ CL2−10a
n−1 .

Observe as well that this definition is stronger than was necessary for the arguments of [8].
Theorem 8 is now used to obtain Control 6 and Control 7 at scale Ln−m on the entirety of the rescaled domain

U/ε whenever Ln ≤ 1
ε

< Ln+1. It follows from the boundedness of U and the definition of Ln that, for all n ≥ 0
sufficiently large, whenever Ln ≤ 1

ε
< Ln+1, the rescaled domain U/ε is contained in what becomes the considerably

larger set [− 1
2L2

n+2,
1
2L2

n+2]d . Therefore, for each n ≥ m, define

An = {
ω ∈ �|ω ∈ Bm(x) for all x ∈ LmZ

d ∩ [−L2
n+2,L

2
n+2

]d and n − m ≤ m ≤ n + 2
}
. (54)
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The following proposition proves that, as n → ∞, the probability of the events {An}∞n=1 rapidly approaches one, since
the exponent

2d(1 + a)2 − M0

2
< 0,

owing to (36) and (41). Up to a change of exponent, the proof is identical to [8, Proposition 3.5].

Proposition 9. Assume (32) and (52). For each n ≥ m, for C > 0 independent of n,

P(� \ An) ≤ CL
2d(1+a)2− 1

2 M0
n .

4. A review of [8]

In this section, some results from [8] are briefly recalled and adapted to the arguments of this paper.

4.1. The global coupling

The purpose of this section is to construct with high probability a coupling between the diffusion in random environ-
ment and a Brownian motion with variance αn−m. This will be achieved along the discrete sequence of time steps
{kL2

n−m}∞k=0 through the comparison implied by Control 6.
The choice of m from (53) is made to ensure that the discretization scale Ln−m is sufficiently fine with respect to

scales ε satisfying Ln ≤ 1
ε

< Ln+1. It is not obvious a priori that such a discretization exists, since the trapping and
ballistic effects of the drift make it necessary in general to employ a discretization on a unit scale in order to accurately
represent the process in the asymptotic limit.

Since the construction of the coupling follows closely [20, Proposition 3.1] and [8, Section 5], only the final
conclusions will be summarized here. Recall that solutions of (43) with initial condition f (x) admit a representation
using the Green’s function

pt,ω(x, y) : [0,∞) ×R
d ×R

d →R,

which represents the density of the diffusion beginning from x in environment ω at time t . See [10, Chapter 1] for a
detailed discussion of the existence and regularity of these densities, which follow from assumptions (24), (25) and
(26). The corresponding representation then takes the form

u(x, t) = Ex,ω

(
f (Xt )

) =
∫
Rd

pt,ω(x, y)f (y) dy.

Analogously, solutions of (44) with initial data f (x) admit the heat kernel representation

un(x, t) = EWn−m
x

(
f (Xt )

) =
∫
Rd

(4παn−mt)−
d
2 exp

(
−|y − x|2

4αn−mt

)
f (y)dy.

For each n ≥ m, the Green’s function on scale Ln−m will be denoted by

pn−m,ω(x, y) = pL2
n−m

,ω(x, y),

and the heat kernel on scale Ln−m will be denoted by

pn−m(x, y) = (
4παn−mL2

n−m

)− d
2 exp

(
− |y − x|2

4αn−mL2
n−m

)
.

The following proposition constructs a Markov process (Xk,Xk) on the state space (Rd × R
d)N such that the

transition probabilities of the first coordinate Xk are determined by pn−m,ω(·, ·) and, such that those of the second
coordinate Xk are determined by pn−m(·, ·). The proof follows closely [20, Proposition 3.1] and can be found as [8,
Proposition 5.1].
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Proposition 10. Assume (32) and (52). For every ω ∈ �, for every x ∈R
d , there exists a measure Qn,x on the canon-

ical sigma algebra of the space (Rd ×R
d)N such that, under Qn,x , the coordinate processes Xk and Xk respectively

have the law of a Markov chain on R
d , starting from x, with transition kernels pn−m,ω(·, ·) and pn−m(·, ·).

Furthermore, for every n ≥ m, ω ∈ An and x ∈ [− 1
2L2

n+2,
1
2L2

n+2]d , for C > 0 independent of n,

Qn,x

(
|Xk − Xk| ≥ γ | for some 0 ≤ k ≤ 2

(
Ln+2

Ln−m

)2)
≤ C

(
Ln−m

γ

)β(
Ln+2

Ln−m

)4

κ̃n−mL−δ
n−m. (55)

The following corollary follows immediately by choosing γ = Ln−m in Proposition 10. Notice that the exponent
16a − δ < 0 owing to definitions (36) and (41).

Corollary 11. Assume (32) and (52). For every n ≥ m, ω ∈ An and x ∈ [− 1
2L2

n+2,
1
2L2

n+2]d , for C > 0 independent
of n,

Qn,x

(
|Xk − Xk| ≥ Ln−m| for some 0 ≤ k ≤ 2

(
Ln+2

Ln−m

)2)
≤ Cκ̃n−mL16a−δ

n−m .

4.2. Tail estimates and an upper bound in probability for the exit time

The purpose of this section is to obtain certain tail estimates for the exit time in probability. Namely, whenever the
scale ε satisfies Ln ≤ 1

ε
< Ln+1, the diffusion associated to the generator

1

2

d∑
i,j=1

aij (x,ω)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x,ω)
∂

∂xi

is shown to exit the rescaled domain U/ε prior to time L2
n+2 in overwhelming fashion. The corresponding estimate

is then propagated inductively forward in time. Observe, however, that these estimates remain far from the ultimate
goal, since the exit time of a Brownian motion from the rescaled domain U/ε is expected to be of order 1

ε2 which, as

n approaches infinity, is much smaller than L2
n+2. Therefore, Proposition 12 alone does not imply the boundedness of

solutions to the rescaled equation (8), and this will not be achieved until Theorem 19 of Section 5.
The following argument is virtually identical to [8, Proposition 4.1]. However, for the arguments of this paper it

is necessary to make the estimate from [8] more precise in ε and then to iterate it inductively forward in time. Only
these changes are explained in the proof.

Proposition 12. Assume (32) and (52). For all n sufficiently large, for every ω ∈ An, for all ε > 0 satisfying Ln ≤
1
ε

< Ln+1, for C > 0 independent of n,

sup
x∈U

Px
ε
,ω

(
τ ε > L2

n+2

) ≤ C(εLn+2)
−3.

And, for each k ≥ 0,

sup
x∈U

Px
ε
,ω

(
τ ε > kL2

n+2

) ≤ C(εLn+2)
−3k.

Proof. Using the boundedness of the domain, choose R ≥ 1 such that U ⊂ BR and choose n1 ≥ 0 so that, whenever
n ≥ n1,

Ln+1U ⊂ Ln+1BR ⊂
[
−1

2
L2

n+2,
1

2
L2

n+2

]d

. (56)

Henceforth, fix n ≥ n1, ω ∈ An and Ln ≤ 1
ε

< Ln+1.
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It follows from the line preceding [8, Line (4.7)] and [8, Lines (4.6), (4.7)] that

sup
x∈U

Px
ε
,ω

(
τ ε > L2

n+2

) ≤ C(εLn+2)
−3, (57)

which completes the argument for the first statement.
The final statement is a consequence of the Markov property and induction. The case k = 0 is immediate, and the

case k = 1 is (57). For the inductive step, assume that, for k ≥ 1,

sup
x∈U

Px
ε
,ω

(
τ ε > kL2

n+2

) ≤ C(εLn+2)
−3k.

Then by the Markov property, for each x ∈ U ,

Px
ε
,ω

(
τ ε > (k + 1)L2

n+2

) = Ex
ε
,ω

(
PX

kL2
n+2

,ω

(
τ ε > L2

n+2

)
, τ ε > kL2

n+2

)
.

Therefore, from the inductive hypothesis and (57), for each x ∈ U ,

Px
ε
,ω

(
τ ε > (k + 1)L2

n+2

) ≤
(

sup
x∈U

Px
ε
,ω

(
τ ε > L2

n+2

))
Px,ω

(
τ ε > kL2

n+2

) ≤ C(εLn+2)
−3(k+1),

which completes the argument. �

4.3. Estimates for the exit time of Brownian motion near the boundary

In this section estimates are obtained, in expectation and near the boundary of the domain, for the exit time of Brownian
motion. These estimates will be shown in Section 5 to be inherited with high probability by the diffusion in random
environment using the coupling developed in Section 4.1. Since the results of this section are identical to [8, Section 6],
the details are omitted. Observe, however, that they are the only such that rely directly upon the exterior ball condition
imposed on the domain.

Define, for each δ > 0, the enlargement

Uδ = {
x ∈R

d |d(x,U) < δ
}
, (58)

and, for each δ > 0, define the C([0,∞);Rd) exit times

τ = inf{t ≥ 0|Xt /∈ U} and τ δ = inf{t ≥ 0|Xt /∈ Uδ}. (59)

The following Proposition controls the expectation of τ and τ δ in what is essentially the δ-neighborhood of the
respective boundaries of U and Uδ . Recall from assumption (31) the radius r0 > 0 quantifying the exterior ball
condition. The proof can be found as [8, Corollary 6.2].

Proposition 13. Assume (32) and (52). For every 0 < δ <
r0
2 , for every n ≥ 0, for C > 0 independent of n and δ,

sup
d(x,∂U)≤δ

EWn
x (τ ) ≤ Cδ and sup

d(x,∂Uδ)≤2δ

EWn
x
(
τ δ

)
< Cδ.

The analogous estimates for the rescaled the domains U/ε and Uδ/ε are then immediate. For each ε > 0, define
the C([0,∞);Rd) exit time

τ ε = inf{t ≥ 0|Xt /∈ U/ε} = inf{t ≥ 0|εXt /∈ U}, (60)

whose expectation EWn
x (τ ε) can be obtained as the rescaling

EWn
x
(
τ ε

) = ε−2EWn
εx (τ ) on U/ε.
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And, for each ε > 0 and δ > 0, define the exit time

τ ε,δ = inf{t ≥ 0|Xt /∈ Uδ/ε} = inf{t ≥ 0|εXt /∈ Uδ},
which has expectation equal to the rescaling

EWn
x
(
τ ε,δ

) = ε−2EWn
εx

(
τ δ

)
on Uδ/ε.

These two equalities and Proposition 13 then immediately yield the following corollary.

Corollary 14. Assume (32) and (52). For every ε > 0, 0 < δ <
r0
2ε

and n ≥ 0, for C > 0 independent of ε, δ and n,

sup
d(x,∂U/ε)≤δ

EWn
x
(
τ ε

) ≤ Cε−1δ and sup
d(x,∂Uδ/ε)≤2δ

EWn
x
(
τ ε,δ

)
< Cε−1δ.

5. The discrete approximation and proof of homogenization

In this section, stochastic homogenization is established for solutions{
1
2 tr(A(x

ε
,ω)D2uε) + 1

ε
b( x

ε
,ω) · Duε = g(x) on U,

uε = f (x) on ∂U,
(61)

which are, on a subset of full probability, shown to converge uniformly, as ε → 0, to the solution{
α
2 
u = g(x) on U,

u = f (x) on ∂U.
(62)

The result will be obtained by analyzing the lifetime of the diffusion process associated to the generator

1

2

d∑
i,j=1

aij (x,ω)
∂2

∂xi ∂xj

+
d∑

i=1

bi(x,ω)
∂

∂xi

(63)

in the large domains U/ε.
The discrete coupling developed in Section 4.1 will play an essential role in the proof, and suggests the introduction

of a discretely stopped version of the diffusion. Namely, whenever the scale satisfies Ln ≤ 1
ε

< Ln+1, a discrete version

of the process with time steps L2
n−m will be introduced, and stopped as soon as it hits the D̃n−m neighborhood of the

complement of the dilated domain U/ε.
Note carefully, however, that this type of discrete approximation does not generally provide an accurate description

of processes associated to generators like (1), since a continuous diffusion beginning in the D̃n−m neighborhood of
the boundary may be compelled by the drift to exit the domain in a region far removed from the stopping point of its
discrete proxy. This fact can be readily observed by considering a locally constant, nonzero drift, which is a situation
that can occur within the framework of this paper with a rapidly vanishing but nonzero probability on all scales. In
essence, therefore, Propositions 15 and 17 effectively establish a boundary barrier for equation (61) of a quality which
is generically impossible to obtain.

The discrete C([0,∞);Rd) stopping time is defined, for each ε > 0 and n ≥ m, by

τ
ε,n
1 = inf

{
kL2

n−m ≥ 0|d(
XkL2

n−m
, (U/ε)c

) ≤ D̃n−m

}
, (64)

and represents the first time XkL2
n−m

enters the D̃n−m neighborhood of the complement of U/ε. Since it is not true

that τ ε,n ≤ τ ε for every path Xt , the failure of this inequality will need to be controlled in probability with respect to
Px,ω by the exponential localization estimate implied by Control 7.
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Similarly, for each ε > 0, and for each n ≥ m, define the C([0,∞);Rd) stopping times

τ
ε,n
2 = inf

{
kL2

n−m ≥ 0|d(
XkL2

n−m
, (U/ε)

) ≥ D̃n−m

}
. (65)

These stopping times quantify the first time that the discrete process XkL2
n−m

exits the D̃n−m neighborhood of (U/ε).

The definitions imply τ
ε,n
1 ≤ τ

ε,n
2 and, whenever τ

ε,n
1 ≤ τ ε , it is immediate that τ

ε,n
1 ≤ τ ε ≤ τ

ε,n
2 .

Proposition 15 will use Corollary 14 to obtain an effective tail estimate with respect to the Wiener measure Wn
x for

τ
ε,n
2 near the boundary of U/ε. This estimate, together with the coupling constructed in Proposition 10, then yield on

the event An an upper bound for the probability

Px,ω

(
τ ε − τ

ε,n
1 ≥ L2

n−1

)
for x ∈ U/ε.

It is this estimate that effectively acts as a barrier by ensuring that, with high probability and following an application
of the exponential estimate implied by Control 7, a diffusion beginning in the D̃n−m neighborhood of the complement
(U/ε)c exits the true domain U/ε in a small neighborhood of its starting position, with respect to the 1

ε
scale.

In what follows, recall that m is the smallest integer satisfying

m > 1 − log(1 − 12a − a2)

log(1 + a)
, (66)

which ensures that, by the choice of constants Ln in (37) and D̃n in (39), for C > 0 independent of n ≥ m,

Ln+1D̃n−m ≤ CL2−10a
n−1 . (67)

Further, observe by using the definitions of Ln in (37) and κ̃n in (38) that there exists C > 0 independent of n ≥ m

satisfying

κ̃n−mL16a−δ
n−m ≤ CL−10a

n−1 . (68)

The following proposition is the control of the second discrete exit time, in terms of Brownian motion and near the
boundary of U/ε. The proof is a refinement of the estimate obtained in [8, Proposition 7.1], and only the new elements
are explained.

Proposition 15. Assume (32) and (52). For all n ≥ 0 sufficiently large, for every ε > 0 satisfying Ln ≤ 1
ε

< Ln+1, for
C > 0 independent of n,

sup
d(x,(U/ε)c)≤2D̃n−m

Wn−m
x

(
τ

ε,n
2 ≥ L2

n−1

) ≤ CL−10a
n−1 .

Proof. Fix n1 ≥ 0 such that, whenever n ≥ n1, for r0 from the exterior ball condition (31),

2D̃n−m ≤ r0Ln

2
. (69)

And, therefore, whenever n ≥ n1 and d(x, (U/ε)c) ≤ 2D̃n−m, the conditions of Proposition 14 are satisfied.
Let n ≥ n1, ε > 0 satisfying Ln ≤ 1

ε
< Ln+1 and x ∈ R

d such that d(x, (U/ε)c) ≤ 2D̃n−m. The stopping time τ ε,δ

is the exit time from the δ-neighborhood of (U/ε), and for δ = 2D̃n−m Proposition 14 states, for C > 0 independent
of n,

EWn
x
(
τ ε,2D̃n−m

) ≤ C(2D̃n−m)ε−1 < CD̃n−mLn+1.

So, owing to (67), for C > 0 independent of n,

EWn
x
(
τ ε,2D̃n−m

) ≤ CL2−10a
n−1 .
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Therefore, by Chebyshev’s inequality, for C > 0 independent of n,

Wn
x

(
τ ε,2D̃n−m ≥ 1

2
L2

n−1

)
≤ CL−10a

n−1 . (70)

The remainder of the proof follows exactly [8, Proposition 7.1] beginning from [8, Line (7.11)]. �

Before proceeding, recall the events {An}∞n=1 defined, for each n ≥ 0, as

An = {
ω ∈ �|ω ∈ Bm(x) for all x ∈ LmZ

d ∩ [−L2
n+2,L

2
n+2

]d and n − m ≤ m ≤ n + 2
}
. (71)

In particular, for every environment ω ∈ An and point x ∈ [−L2
n+2,L

2
n+2]d , the following localization estimates is

satisfied.

Control 16. Fix x ∈R
d , ω ∈ � and n ≥ 0. For each v ≥ Dn, for all |y − x| ≤ 30

√
dLn,

Py,ω

(
X∗

L2
n
≥ v

) ≤ exp

(
− v

Dn

)
.

The following establishes, on the event An with respect to Px,ω , a comparison between the continuous exit time
τ ε and discrete stopping time τ

ε,n
1 . The estimate will be achieved on scales ε satisfying Ln ≤ 1

ε
< Ln+1 for all n

sufficiently large. The proof is a consequence of the global coupling from Corollary 11 and the estimates for Brownian
motion from Proposition 15. The estimate improves upon [8, Proposition 7.3] by using Proposition 12, which is itself
an improvement of [8, Proposition 4.1]. However, since aside from the application of Proposition 12 (respectively, [8,
Proposition 4.1]) the proof is identical to the proof of [8, Proposition 7.3], the details are omitted.

Proposition 17. Assume (32) and (52). For each n ≥ m sufficiently large, for every ε > 0 satisfying Ln ≤ 1
ε

< Ln+1
and for every ω ∈ An, for C > 0 independent of n,

sup
x∈U/ε

Px,ω

(
τ ε − τ

ε,n
1 ≥ L2

n−1

) ≤ CL−10a
n−1 + C(εLn+2)

−3.

Stochastic homogenization for solutions of (61) is now established. Because the case of zero right-hand side and
nonzero boundary data was considered in [8], by linearity it remains only to prove homogenization for solutions of
(61) with nonzero righ-thand side which vanish along the boundary. Precisely, it will first be shown that, on a subset
of full probability, the solutions{

1
2 tr(A(x

ε
,ω)D2uε) + 1

ε
b( x

ε
,ω) · Duε = g(x) on U,

uε = 0 on ∂U,
(72)

converge uniformly, as ε → 0, to the solution{
α
2 
u = g(x) on U,

u = 0 on ∂U.
(73)

The proof will analyze the behavior of solutions to the rescaled equation{
1
2 tr(A(x,ω)D2vε) + b(x,ω) · Dvε = ε2g(εx) on U/ε,

vε = 0 on ∂U/ε,
(74)

which admit the representation

uε(x) = vε

(
x

ε

)
= Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds

)
on U,
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for the exit time τ ε from U/ε. The first step will be to apply a sub-optimal bound for the exit time through the use of
Proposition 12. Precisely, for scales Ln ≤ 1

ε
< Ln+1, it will be shown on the event An that, up to an error vanishing

with ε, the solution vε is well-approximated by the quantity

vε

(
x

ε

)
� Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
. (75)

Since the exit time of a corresponding Brownian motion is expected to be of order 1
ε2 which, as n → ∞, is significantly

smaller than L2
n+2, this estimate does not imply an effective upper bound for the exit time of the diffusion in random

environment. However, it does allow for the application of the global coupling established in Corollary 11.
The second step replaces the continuous exit time τ ε with its discrete proxy τ

ε,n
1 , where the exponential estimates

guaranteed by Control 16 and Proposition 17 will be used to show that the discretely stopped version of (75) is a good
approximation for the solution vε . Namely,

Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
� Ex

ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)
. (76)

The integral will then be shown to be accurately represented by its discrete approximation on scale L2
n−m in the sense

that, up to an error vanishing with ε,

Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)

� Ex
ε
,ω

(
−ε2

(τ
ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
1 ≤ L2

n+2

)
. (77)

This will follow from the localization estimates contained in Control 16.
The global coupling established in Section 4.1 now plays its role. It follows from the definition of the measure

Qn, x
ε

and process (Xk,Xk) on (Rd ×R
d)N that, writing E

Qn, x
ε for the expectation with respect to the measure Qn, x

ε
,

Ex
ε
,ω

(
−ε2

(τ
ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
1 ≤ L2

n+2

)

= E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

, (78)

for the discrete stopping time

T
ε,n
1 = inf

{
k ≥ 0|(Xk,Xk) satisfies d

(
Xk, (U/ε)c

) ≤ D̃n−m

}
,

which is the analogue of τ
ε,n
1 for the first coordinate of (Xk,Xk). The coupling estimates stated in Corollary 11 are

then used to obtain a comparison with Brownian motion of variance αn−m and to prove, up to an error vanishing
with ε,

E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

� E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

. (79)
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The remainder of the proof is then essentially an unwinding of the above outline in terms of Brownian motion. For
the discrete stopping time

T
ε,n

2 = inf
{
k ≥ 0|(Xk,Xk) satisfies d

(
Xk, (U/ε)

) ≥ D̃n−m

}
,

which acts as τ
ε,n
2 defined for the second coordinate of the process (Xk,Xk), it is first shown that, up to an error

vanishing with ε,

E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

� E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n

2 ≤
(

Ln+2

Ln−m

)2
)

, (80)

where, by the definition of Qn, x
ε
,

E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n

2 ≤
(

Ln+2

Ln−m

)2
)

= E
Wn−m

x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
2 ≤ L2

n+2

)
. (81)

It will then be shown that, in view of standard exponential estimates for Brownian motion, the control of the {αn}∞n=0
from Theorem 5 and the upper bound for the exit time in probability obtained in Proposition 15, up to an error
vanishing with ε,

E
Wn−m

x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg

(
εX

2
kLn−m

)
, τ

ε,n
2 ≤ L2

n+2

)

� E
Wn−m

x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)
. (82)

The same estimates then replace τ
ε,n
2 with τ ε and remove the cutoff to provide

E
Wn−m

x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)
� E

Wn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)
. (83)

The final step comes in approximating the solution of the homogenized equation (73) by solutions of the approxi-
mate equations{

αn−m

2 
un−m = g(x) on U,

un−m = 0 on ∂U,
(84)

which admit the representation

un−m(x) = E
Wn−m

x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)
= E

Wn−m
x
ε

(
−

∫ ε2τ ε

0
g
(
εX s

ε2

)
ds

)
on U, (85)

and coincide with the right-hand side of (83).
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Proposition 18. For each n ≥ m, for C = C(U,α) > 0 independent of n, the solutions of (73) and (84) satisfy

‖u − un−m‖L∞(U) ≤ C‖g‖L∞(U)L
−(1+ 9

10 )δ

n−m .

Proof. Fix n ≥ m. For the respective solutions u and un−m of (73) and (84), the difference

wn−m = u − un−m

solves the equation{
α
2 
wn−m = (1 − α

αn−m
)g(x) on U,

wn−m = 0 on ∂U.

Therefore, using Theorem 5, for C > 0 independent of n, writing W∞
x for the Wiener measure defining Brownian

motion beginning from x with variance α, and writing τ for the exit time from U ,

‖wn−m‖L∞(U) ≤ C‖g‖L∞(U)|αn−m − α| sup
x∈U

EW∞
x (τ ) ≤ C‖g‖L∞(U)L

−(1+ 9
10 )δ

n−m ,

which completes the argument. �

Therefore, returning to the representation (85) and Proposition 18, up to an error vanishing with ε,

E
Wn−m

x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)
� E

W∞
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)
. (86)

In combination, lines (75)–(86) complete the proof. Furthermore, because the estimates in each step are quantified,
they will yield a rate for the homogenization in Section 6.

The stochastic homogenization will be obtained on a subset of full probability defined by the events {An}∞n=1 and
an application of the Borel–Cantelli lemma. Since Proposition 9 implies that, for each n ≥ m, for C ≥ 0 independent
of n,

P(� \ An) ≤ CL
2d(1+a)2− 1

2 M0
n ,

the definition of Ln in (37) and the negative exponent 2d(1 + a)2 − 1
2M0 < 0 guarantee the sum

∞∑
n=m

P(� \ An) ≤ C

∞∑
n=m

L
2d(1+a)2− 1

2 M0
n < ∞.

The Borel–Cantelli lemma therefore implies the event

�0 = {
ω ∈ �| There exists n = n(ω) such that ω ∈ An for all n ≥ n

}
(87)

satisfies P(�0) = 1. Note particularly that the subset of full probability �0 is independent of the domain and the
right-hand side. It is on this event that homogenization is achieved following the outline presented between lines (75)
to (86).

The result is first established for functions which are the restriction of a smooth, compactly supported function
on R

d .

Assume g(x) ∈ C∞
c

(
R

d
)
. (88)

This assumption is removed by a standard approximation argument in Theorem 20.
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Theorem 19. Assume (32), (52) and (88). For every ω ∈ �0, the respective solutions uε and u of (72) and (73) satisfy

lim
ε→0

∥∥uε − u
∥∥

L∞(U)
= 0.

Proof. Fix ω ∈ �0 and n0 ≥ m such that, for all n ≥ n0, for r0 the constant quantifying the exterior ball condition,

2D̃n−m <
r0Ln

2
and ω ∈ An.

Then, fix ε0 > 0 sufficiently small so that, whenever 0 < ε < ε0 satisfies Ln ≤ 1
ε

< Ln+1 it follows that n ≥ n0.
Furthermore, using the boundedness of the domain U , choose 0 < ε1 < ε0 such that, whenever 0 < ε < ε1 and Ln ≤
1
ε

< Ln+1,

Ln+1U ⊂
[
−1

2
L2

n+2,
1

2
L2

n+2

]d

.

These conditions guarantee that whenever 0 < ε < ε1 the conclusions of Propositions 15 and 17 are satisfied, and that
Controls 6 and 16 are available on scales Ln−m to Ln+2 for the entirety of the domain U/ε.

Henceforth, fix x ∈ U and 0 < ε < ε1. Write uε for the solution of (72) and vε for the solution of the rescaled (74),
and recall the representation

uε(x) = vε

(
x

ε

)
= Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds

)
. (89)

In order to apply the coupling estimates obtained in Section 4.1, it is necessary to restrict the above integral to the
event {τ ε ≤ L2

n+2}.
The proof of (75). First, observe that∣∣∣∣Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds

)
− Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)∣∣∣∣
≤ ε2‖g‖L∞(Rd )

∞∑
k=1

(k + 1)L2
n+2Px

ε
,ω

(
kL2

n+2 < τε ≤ (k + 1)L2
n+2

)

≤ ε2‖g‖L∞(Rd )

∞∑
k=1

(k + 1)L2
n+2Px

ε
,ω

(
τ ε > kL2

n+2

)
. (90)

Therefore, since Ln ≤ 1
ε

< Ln+1, and because Proposition 12 proved that, on the event An, for each k ≥ 0, for C > 0
independent of n and k,

Px
ε
,ω

(
τ ε > kL2

n+2

) ≤ C(εLn+2)
−3k,

it follows from the definition of Ln in (37) and properties of the geometric series that, for C > 0 independent of n,

ε2‖g‖L∞(U)

∞∑
k=1

(k + 1)L2
n+2Px

ε
,ω

(
τ ε > kL2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
2

∞∑
k=1

(k + 1)(εLn+2)
−3k

≤ C‖g‖L∞(Rd )(εLn+2)
−1. (91)

Notice that this estimate relies upon the assumption d ≥ 3. Furthermore, since Ln ≤ 1
ε

< Ln+1, for C > 0 independent
of n, ∣∣∣∣Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds

)
− Ex

ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε < L2

n+2

)∣∣∣∣ ≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
, (92)

which completes the proof of (75).
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The proof of (76). Recall the discrete C([0,∞);Rd) stopping time

τ
ε,n
1 = inf

{
kL2

n−m ≥ 0|d(
XkL2

n−m
, (U/ε)c

) ≤ D̃n−m

}
.

First, decompose the second term of (92) as

Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε < L2

n+2

)

= Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε < L2

n+2, τ
ε + L2

n−m ≤ τ
ε,n
1

)

+ Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)
. (93)

Since ω ∈ An and because the definitions imply that on the event{
τ ε + L2

n−m ≤ τ
ε,n
1

}
the diffusion undergoes an excursion of size at least D̃n−m in time L2

n−m, the exponential estimates guaranteed by
Control 16 act to bound the first term of this equality, and yield

∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m ≤ τ
ε,n
1

)∣∣∣∣
≤ ε2L2

n+2‖g‖L∞(U)Ex
ε
,ω

(
PXτε ,ω

(
X∗

L2
n−m

≥ D̃n−m

))

≤
(

Ln+2

Ln

)2

‖g‖L∞(Rd ) exp(−κ̃n−m). (94)

The second term of (93) is further decomposed according to

Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)

= Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2,0 ≤ τ
ε,n
1 − τ ε < L2

n−m

)

+ Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > 0

)
. (95)

In comparing the left-hand side of (95) with the discretely stopped version

Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)
, (96)

the decomposition (95) implies that the difference is bounded by

∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds + ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)∣∣∣∣
≤ ε2‖g‖L∞(Rd )Ex

ε
,ω

(
τ

ε,n
1 − τ ε, τ ε ≤ L2

n+2,0 ≤ τ
ε,n
1 − τ ε < L2

n−m

)
+ ε2‖g‖L∞(Rd )Ex

ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > 0

)
. (97)
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The event describing the first term of the right-hand side of (97) allows for the immediate L∞-estimate of the integrand

ε2Ex
ε
,ω

(
τ

ε,n
1 − τ ε, τ ε ≤ L2

n+2,0 ≤ τ
ε,n
1 − τ ε < L2

n−m

) ≤ ε2L2
n−m ≤

(
Ln−m

Ln

)2

. (98)

The second term of the right-hand side of (97) is bounded using Proposition 17. Form the decomposition

ε2Ex
ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > 0

)
= ε2Ex

ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2,0 < τε − τ
ε,n
1 ≤ L2

n−1

)
+ ε2Ex

ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > L2

n−1

)
. (99)

The event defining the first term of the right-hand side of (99) admits the immediate L∞-estimate

ε2Ex
ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2,0 < τε − τ
ε,n
1 ≤ L2

n−1

) ≤ ε2L2
n−1 ≤

(
Ln−1

Ln

)2

. (100)

Then, Proposition 17 is applied to the second term of (99) to obtain by estimating the integrand in L∞, for C > 0
independent of n,

ε2Ex
ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > L2

n−1

) ≤ ε2L2
n+2Px

ε
,ω

(
τ ε − τ

ε,n
1 ≥ L2

n−1

)
≤ C(εLn+2)

2(L−10a
n−1 + (εLn+2)

−3). (101)

Therefore, owing to the definition of Ln in (37), since Ln ≤ 1
ε

< Ln+1, for C > 0 independenet of n,

ε2Ex
ε
,ω

(
τ ε − τ

ε,n
1 , τ ε ≤ L2

n+2, τ
ε − τ

ε,n
1 > L2

n−1

) ≤ C

(
L

4a+2a2− 10a
1+a

n + Ln+1

Ln+2

)
, (102)

where the exponent

4a + 2a2 − 10a

1 + a
< 0

owing to definition (36).
In combination, (98), (100) and (102) imply using (97) the bound, for C > 0 independent of n,

∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds + ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)∣∣∣∣
≤ C‖g‖L∞(Rd )

((
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + Ln+1

Ln+2

)
. (103)

And, since the definitions (37) and (38) imply that, for C > 0 independent of n,

(
Ln+2

Ln

)2

exp(−κ̃n−m) ≤ C

((
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + Ln+1

Ln+2

)
,

equation (93) and estimates (94) and (103) combine to yield, for C > 0 independent of n,

∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
− Ex

ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)∣∣∣∣
≤ C‖g‖L∞(Rd )

((
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + Ln+1

Ln+2

)
. (104)
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To obtain (76), it remains only to estimate the difference between the discretely stopped quantity within the absolute
value of (104) and

Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)
. (105)

First, notice with the aid of Proposition 12 that, for C > 0 independent of n,∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ ε ≤ L2

n+2, τ
ε + L2

n−m > τ
ε,n
1

)

− Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 < L2

n+2 + L2
n−m

)∣∣∣∣
≤ Cε2‖g‖L∞(Rd )L

2
n+2Px

ε
,ω

(
τ ε > L2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
−1 ≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (106)

Then, again using Proposition 12 and in particular [8, Line (4.7)] which applies equally to the discrete sequence, it
follows that, for C > 0 independent of n,∣∣∣∣Ex

ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 < L2

n+2 + L2
n−m

)
− Ex

ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)∣∣∣∣
≤ Cε2‖g‖L∞(Rd )L

2
n+2Px

ε
,ω

(
τ

ε,n
1 > L2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
−1 ≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (107)

Therefore, in view of (104), (106) and (107), for C > 0 independent of n,∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
− Ex

ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)∣∣∣∣
≤ C‖g‖L∞(Rd )

((
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + Ln+1

Ln+2

)
, (108)

which completes the proof of (76).
The proof of (77). The discrete approximation of the integral is a result of the Lipschitz continuity of g and the

exponential estimates implied by Control 16. Observe that, for C > 0 independent of n,∣∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)

− Ex
ε
,ω

(
−ε2

(τ
ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
1 ≤ L2

n+2

)∣∣∣∣∣
≤ C‖g‖L∞(Rd )(εLn−m)2Ex

ε
,ω

(
I1(X·)

) + C(εLn−m)2‖Dg‖L∞(Rd )εD̃n−mEx
ε
,ω

(
I2(X·)

)
, (109)

for the random variables

I1(X·) =
((τ

ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

PX
kL2

n−m
,ω

(
X∗

L2
n−m

> D̃n−m

))
1{τ ε,n

1 ≤L2
n+2}

and

I2(X·) =
((τ

ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

PX
kL2

n−m
,ω

(
X∗

L2
n−m

≤ D̃n−m

))
1{τ ε,n

1 ≤L2
n+2},
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where 1A denotes the indicator function of a subset A ⊂ C([0,∞);Rd). Therefore, Control 16, the event {τ ε,n
1 ≤

L2
n+2}, and Ln ≤ 1

ε
< Ln+1 imply that, for C > 0 independent of n,

∣∣∣∣∣Ex
ε
,ω

(
−ε2

∫ τ
ε,n
1

0
g(εXs) ds, τ

ε,n
1 ≤ L2

n+2

)

− Ex
ε
,ω

(
−ε2

(τ
ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
1 ≤ L2

n+2

)∣∣∣∣∣
≤ C‖g‖L∞(Rd )

(
Ln+2

Ln

)2

exp(−κ̃n−m) + C‖Dg‖L∞(Rd )ε
3L2

n+2D̃n−m. (110)

Since the definitions (37), (38) and (39), the choice of m in (66), and Ln ≤ 1
ε

< Ln+1 ensure that, for C > 0 indepen-
dent of n,(

Ln+2

Ln

)2

exp(−κ̃n−m) ≤ Cε3L2
n+2D̃n−m ≤ CL−3+2(1+a)2+(1+a)−m

n ≤ CL−5a
n ,

the left-hand side of (110) is bounded, for C > 0 independent of n, by

C
(‖g‖L∞(Rd ) + ‖Dg‖L∞(Rd )

)
L−5a

n , (111)

which completes the proof of (77).
The proof of (79). Recall the stopping time

T
ε,n

1 = inf
{
k ≥ 0|(Xk,Xk) satisfies d

(
Xk, (U/ε)c

) ≤ D̃n−m

}
,

which is the discrete version of τ
ε,n
1 defined for the first coordinate of the process (Xk,Xk) described by the measure

Qn, x
ε

constructed in Section 4.1. The definition of Qn, x
ε

and the Markov property imply that

Ex
ε
,ω

(
−ε2

(τ
ε,n
1 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
1 ≤ L2

n+2

)

= E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

, (112)

and therefore, to recap the progress to this point, in combination (89), (92), (104), (108) (111) imply that, for C > 0
independent of n,

∣∣∣∣∣uε(x) − E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(U)

(
Ln+1

Ln+2
+

(
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + L−5a

n

)
+ C‖Dg‖L∞(Rd )L

−5a
n . (113)

This estimate effectively proves the efficacy of the discrete approximation scheme. The next step in the proof will
follow from the global coupling estimates established by Corollary 11 and standard estimates for Brownian motion.

Define the event

Cn =
{
|Xk − Xk| ≥ Ln−m| for some 0 ≤ k ≤ 2

(
Ln+2

Ln−m

)2}
,
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and observe by Corollary 11 that, for C > 0 independent of n,

Qn, x
ε
(Cn) ≤ Cκ̃n−mL16a−δ

n−m . (114)

The goal now is to estimate the magnitude of the difference

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)∣∣∣∣∣. (115)

Form the decomposition with respect to the event Cn and use the triangle inequality to bound (115) by the sum of the
differences∣∣∣∣∣EQn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

,Cn

)∣∣∣∣∣
+

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

,Cc
n

)∣∣∣∣∣. (116)

The first term of (116) is bounded using (114) and the event{
T

ε,n
1 ≤

(
Ln+2

Ln−m

)2}
,

which imply, for C > 0 independent of n, using the definitions of Ln in (37) and κ̃n−m in (38),

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

,Cn

)∣∣∣∣∣
≤ C‖g‖L∞(Rd )(εLn+2)

2κ̃n−mL16a−δ
n−m ≤ C‖g‖L∞(Rd )L

21a− δ
2

n , (117)

where the exponent

21a − δ

2
< 0

owing to definitions (36) and (41).
The second term of (116) is bounded using the Lipschitz continuity of g, the upper bound for T

ε,n
1 and the definition

of Cc
n. Namely, for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

,Cc
n

)∣∣∣∣∣
≤ C‖Dg‖L∞(Rd )(εLn+2)

2εLn−m ≤ C‖Dg‖L∞(Rd )L
−5a
n , (118)

where the final inequality is obtained as in the arguments leading from (110) to (111). Therefore, in view of (116),
estimates (117) and (118) combine to form the estimate, for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−m

(
g(εXk) − g(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(Rd )L
21a− δ

2
n + C‖Dg‖L∞(Rd )L

−5a
n , (119)

and to complete the proof of (79).
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The proof of (80). Recall the discrete exit time

T
ε,n

2 = inf
{
k ≥ 0|(Xk,Xk) satisfies d

(
Xk, (U/ε)

) ≥ D̃n−m

}
,

which is acts as τ
ε,n
2 for the second coordinate of the process (Xk,Xk). The purpose now is to replace T

ε,n
1 with T

ε,n

2

for the second term of the difference (119). First, an upper bound is imposed for T
ε,n

2 , and the difference is bounded,
for C > 0 independent of n, by

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

− E
Qn, x

ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(Rd )(εLn+2)
2Qn, x

ε

(
T

ε,n

2 >

(
Ln+2

Ln−m

)2)
. (120)

Since Proposition 12 applies to the discrete sequence and stopping time after increasing R to 2R and increasing the
constant, it follows from the definition of Qn, x

ε
and the stopping times that, for C > 0 independent of n,

Qn, x
ε

(
T

ε,n

2 >

(
Ln+2

Ln−m

)2)
= Wn−m

x
ε

(
τ

ε,n
2 > L2

n+2

) ≤ C(εLn+2)
−3. (121)

Therefore, for C > 0 independent of n, the left-hand side of (120) is bounded by

C‖g‖L∞(Rd )(εLn+2)
−1 ≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (122)

Note that a better estimate can be achieved in (121) for Brownian motion, however any improvement at this stage will
not improve the overall rate of homogenization.

The next step replaces T
ε,n
1 in the sum with T

ε,n

2 following a decomposition in terms of the event Cn and an
application of the triangle inequality. Using (114) and the bounds for the exit times, on the event Cn the expectation
of the difference

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cn

)

− E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cn

)∣∣∣∣∣ (123)

is bounded, for C > 0 independent of n, by

C(εLn+2)
2‖g‖L∞(Rd )Qn, x

ε
(Cn) ≤ C‖g‖L∞(Rd )

(
Ln+2

Ln

)2

κ̃n−mL16a−δ
n−m ≤ C‖g‖L∞(Rd )L

21a− δ
2

n , (124)

where the final inequality is obtained identically to (117).
It follows immediately from the definitions that T

ε,n
1 ≤ T

ε,n

2 on the event

{
T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cc
n

}
. (125)
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Therefore, on the event Cc
n, the expectation of the difference

∣∣∣∣∣EQn, x
ε

((
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk) + ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk)

)
, T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

,

T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cc
n

)∣∣∣∣∣ (126)

is bounded by

(εLn−m)2‖g‖L∞(Rd )E
Qn, x

ε

(
T

ε,n

2 − T
ε,n
1 , T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cc
n

)
. (127)

To estimate the right-hand side of (127), first notice that on the event (125) the definitions of T
ε,n

1 and Cc
n imply

d
(
XT

ε,n
1

, (U/ε)c
) ≤ D̃n−m which guarantees d

(
XT

ε,n
1

, (U/ε)c
) ≤ 2D̃n−m.

Therefore, the definition of Qn, x
ε
, the Markov property, standard exponential estimates for Brownian motion [18,

Chapter 2, Proposition 1.8], and Proposition 14 imply that, using the definitions of (37), (38) and (39), for C > 0
independent of n,

E
Qn, x

ε

(
T

ε,n

2 − T
ε,n
1 , T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cc
n

)

≤ sup
d(y,(U/ε)c)≤2D̃n−m

EWn−m
y

(
τ

ε,n
2

L2
n−m

)
≤ C

κ̃n−m

εLn−m

. (128)

Therefore, combining (126), (127) and (128) and using Ln ≤ 1
ε

< Ln+1, for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk) + ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk)

)
,

T
ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2

,Cc
n

∣∣∣∣∣
≤ C‖g‖L∞(Rd )

D̃n−m

Ln

. (129)

So, with (123), (124) and (129), conclude using the triangle inequality that, for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2
)

− E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(Rd )

(
L

21a− δ
2

n + D̃n−m

Ln

)
. (130)
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Finally, analogously to the arguments (120) to (122), for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2

, T
ε,n

2 ≤
(

Ln+2

Ln−m

)2
)

− E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n

2 ≤
(

Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(Rd )(εLn+2)
2Qn, x

ε

(
T

ε,n
1 >

(
Ln+2

Ln−m

)2)
. (131)

Since the exponential estimates implied by Control 16 and Proposition 12 yield, for C > 0 independent of n,

Qn, x
ε

(
T

ε,n
1 >

(
Ln+2

Ln−m

)2)
≤ C(εLn+2)

−3,

the left-hand side of (131) is bounded, for C > 0 independent of n, by

C‖g‖L∞(Rd )(εLn+2)
−1 ≤ ‖g‖L∞(Rd )

Ln+1

Ln+2
. (132)

In total then, the collection (122), (130) and (132) yield, for C > 0 independent of n,

∣∣∣∣∣EQn, x
ε

(
−ε2

T
ε,n
1 −1∑
k=0

L2
n−mg(εXk), T

ε,n
1 ≤

(
Ln+2

Ln−m

)2
)

− E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n

2 ≤
(

Ln+2

Ln−m

)2
)∣∣∣∣∣

≤ C‖g‖L∞(Rd )

(
L

21a− δ
2

n + D̃n−m

Ln

+ Ln+1

Ln+2

)
, (133)

and complete the proof of (80).
The definition of Qn, x

ε
and the Markov property imply

E
Qn, x

ε

(
−ε2

T
ε,n
2 −1∑
k=0

L2
n−mg(εXk), T

ε,n

2 ≤
(

Ln+2

Ln−m

)2
)

= E
Wn−m

x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
2 ≤ L2

n+2

)
. (134)

Therefore, to recap the progress, the collection of estimates (113), (119), (133) and (134) produce the bound, for
C > 0 independent of n,

∣∣∣∣∣uε(x) − E
Wn−m

x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
2 ≤ L2

n+2

)∣∣∣∣∣
≤ C‖g‖L∞(Rd )

(
Ln+1

Ln+2
+

(
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + L

21a− δ
2

n + D̃n−m

Ln

+ L−5a
n

)

+ C‖Dg‖L∞(Rd )L
−5a
n . (135)
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It remains to recover the integral with respect to Brownian motion from its discrete approximation.
The proof of (82). The proof follows, in reverse order, the arguments leading to the proof of (79) from (75). Observe

that, for C > 0 independent of n,

∣∣∣∣∣EWn−m
x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
2 ≤ L2

n+2

)

− E
Wn−m

x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)∣∣∣∣∣
≤ C(εLn−m)2‖g‖L∞(Rd )E

Wn−m
x
ε

(
I 1(X·)

)
+ (εLn−m)2‖Dg‖L∞(Rd )εD̃n−mE

Wn−m
x
ε

(
I 2(X·)

)
, (136)

for the random variables

I 1(X·) =
((τ

ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

Wn−m
X

kL2
n−m

,ω

(
X∗

L2
n−m

> D̃n−m

))
1{τ ε,n

2 ≤L2
n+2}

and

I 2(X·) =
((τ

ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

Wn−m
X

kL2
n−m

,ω

(
X∗

L2
n−m

≤ D̃n−m

))
1{τ ε,n

2 ≤L2
n+2}.

Standard exponential estimates for Brownian motion, see [18, Chapter 2, Proposition 1.8], and Ln ≤ 1
ε

< Ln+1

imply that the first term of (136) is bounded, for C > 0 independent of n, by

C‖g‖L∞(Rd )(εLn+2)
2 exp(−κ̃n−m) ≤ C‖g‖L∞(Rd )

(
Ln+2

Ln

)2

exp(−κ̃n−m). (137)

The L∞-estimate implied by the upper bound on τ
ε,n
2 ensures that the second term of (136) is bounded, for C > 0

independent of n, by

C‖Dg‖L∞(Rd )ε
3L2

n+2D̃n−m ≤ C‖Dg‖L∞(Rd )L
−5a
n , (138)

where the final inequality is obtained identically as in the arguments leading from (110) to (111).
In combination, lines (137) and (138) bound the left-hand side of (136), for C > 0 independent of n, by

∣∣∣∣∣EWn−m
x
ε

(
−ε2

(τ
ε,n
2 −L2

n−m
)/L2

n−m∑
k=0

L2
n−mg(εXkL2

n−m
), τ

ε,n
2 ≤ L2

n+2

)

− E
Wn−m

x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)∣∣∣∣∣
≤ C‖g‖L∞(Rd )

(
Ln+2

Ln

)2

exp(−κ̃n−m) + C‖Dg‖L∞(Rd )L
−5a
n , (139)

and complete the proof of (82).
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The proof of (83). Recall that τ ε denotes the exit time from U/ε. It follows form Theorem 5, Proposition 12 and
Ln ≤ 1

ε
< Ln+1 that, for C > 0 independent of n,

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)

− E
Wn−m

x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2, τ
ε ≤ L2

n+2

)∣∣∣∣
≤ C‖g‖L∞(Rd )(εLn+2)

2Wn−m
x
ε

(
τ ε > L2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
−1

≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (140)

Of course, estimate (140) can be improved for Brownian motion, but what is written is sufficient and does not nega-
tively effect the rate to be obtained in Section 6.

Since the definitions imply τ ε ≤ τ
ε,n
2 , the Markov property, Corollary 14, standard exponential estimates for Brow-

nian motion, see [18, Chapter 2, Proposition 1.8], and Ln ≤ 1
ε

< Ln+1 then produce the estimate, for C > 0 indepen-
dent of n,

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ
ε,n
2

τ ε

g(εXs) ds, τ
ε,n
2 ≤ L2

n+2, τ
ε ≤ L2

n+2

)∣∣∣∣
≤ ε2‖g‖L∞(Rd ) sup

y∈∂U

EWn−m
y

(
τ

ε,n
2

) ≤ C‖g‖L∞(Rd )εD̃n−m ≤ C‖g‖L∞(Rd )

D̃n−m

Ln

. (141)

Then, again using Proposition 12 (after replacing R with 2R and increasing the constant) and standard exponential
estimates for Brownian motion, see [18, Chapter 2, Proposition 1.8],

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2, τ
ε ≤ L2

n+2

)
− E

Wn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)∣∣∣∣
≤ C‖g‖L∞(Rd )(εLn+2)

2Wn−m
x
ε

(
τ

ε,n
2 > L2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
−1 ≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (142)

As before, estimate (141) is not optimal for Brownian motion, but is sufficient and does not negatively impact the rate.
It remains only to estimate the difference

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
− E

Wn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)∣∣∣∣. (143)

Since the control of the αn implied by Theorem 5 implies Proposition 12 applies equally to Brownian motion (though,
as before, a better estimate can be obtained to no effect on the rate), it follows as in (90) that, for C > 0 independent
of n,

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds, τ ε ≤ L2

n+2

)
− E

Wn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)∣∣∣∣
≤ Cε2‖g‖L∞(Rd )

∞∑
k=1

(k + 1)L2
n+2W

n−m
x
ε

(
τ ε > kL2

n+2

) ≤ C‖g‖L∞(Rd )(εLn+2)
−1

≤ C‖g‖L∞(Rd )

Ln+1

Ln+2
. (144)
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Therefore, in view of (141), (142) and (144), for C > 0 independent of n,

∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ
ε,n
2

0
g(εXs) ds, τ

ε,n
2 ≤ L2

n+2

)
− E

Wn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)∣∣∣∣
≤ C‖g‖L∞(Rd )

(
D̃n−m

Ln

+ Ln+1

Ln+2

)
, (145)

which completes the proof of (83).
Conclusion. Finally, writing u and un−m for the respective solutions of (73) and (84), Proposition 18 implies that,

for C > 0 independent of n,∣∣∣∣EWn−m
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)
− E

W∞
x
ε

(
−ε2

∫ τ ε

0
g(εXs) ds

)∣∣∣∣
= ∣∣un−m(x) − u(x)

∣∣ ≤ C‖g‖L∞(U)L
−(1+ 9

10 )δ

n−m . (146)

Since there exists C > 0 independent of n ≥ m such that

(
Ln+2

Ln

)2

exp(−κ̃n−m) ≤ CL
−(1+ 9

10 )δ

n−m ,

the combination of (135), (139), (145) and (146) results in the estimate, for C > 0 independent of n,∣∣uε(x) − u(x)
∣∣

≤ C‖g‖L∞(Rd )

(
L

−(1+ 9
10 )δ

n−m + Ln+1

Ln+2
+

(
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + L

21a− δ
2

n + D̃n−m

Ln

+ L−5a
n

)

+ C‖Dg‖L∞(Rd )L
−5a
n . (147)

Since definitions (36), (37), (39) and (41) imply the right-hand side of (147) vanishes as n approaches infinity, since n

approaches infinity and ε approaches zero, and since ω ∈ �0 and x ∈ U were arbitrary, this completes the argument. �

It remains to extend Theorem 19 to a general continuous right-hand side, which follows from a standard extension
argument.

Assume g ∈ C(U). (148)

Notice that the approximation argument relies upon the result of Theorem 19 for g = −1. That is, it relies upon the
fact that Theorem 19 already contains an almost sure control of the exit time in expectation.

Theorem 20. Assume (32), (52) and (148). For every ω ∈ �0, the respective solutions uε and u of (72) and (73)
satisfy

lim
ε→0

∥∥uε − u
∥∥

L∞(U)
= 0.

Proof. Use the Tietze Extension Theorem, see for example Armstrong [1, Theorem 2.15], to construct an extension
with compact support

g̃ ∈ BUC
(
R

d
)

satisfying g̃|U = g.

By convolution construct, for each δ > 0, a g̃δ ∈ C∞
c (Rd) such that∥∥g̃δ − g̃

∥∥
L∞(Rd )

≤ δ,
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and write uε,δ for the solution{
1
2 tr(A(x

ε
,ω)D2uε,δ) + 1

ε
b( x

ε
,ω) · Duε,δ = g̃δ(x) on U,

uε,δ = 0 on ∂U.

Similarly, write uδ for the solution{
α
2 
uδ = g̃δ(x) on U,

uδ = 0 on ∂U.

The representation formula for the solutions, the comparison principle and the triangle inequality imply that, for
the exit time τ from U , for each ω ∈ �0, δ > 0, and ε > 0,∥∥uε − u

∥∥
L∞(U)

≤ ∥∥uε − uε,δ
∥∥

L∞(U)
+ ∥∥uε,δ − uδ

∥∥
L∞(U)

+ ∥∥uδ − u
∥∥

L∞(U)

≤ δ sup
x∈U

Ex
ε
,ω

(
ε2τ ε

) + δ sup
x∈U

EW∞
x (τ ) + ∥∥uε,δ − uδ

∥∥
L∞(U)

.

Therefore, since Theorem 19 implies that

lim
ε→0

(
sup
x∈U

Ex
ε
,ω

(
ε2τ ε

)) = sup
x∈U

EW∞
x (τ ),

and because g̃δ satisfies the conditions of Theorem 19, for every ω ∈ �0 and δ > 0,

lim sup
ε→0

∥∥uε − u
∥∥

L∞(U)
≤ 2δ sup

x∈U

EW∞
x (τ ) + lim sup

ε→0

∥∥uε,δ − uδ
∥∥

L∞(U)
= 2δ sup

x∈U

EW∞
x (τ ).

Since δ > 0 is arbitrary, this completes the argument. �

The general homogenization statement for nonzero boundary data is now presented, after recalling the result of [8].
The purpose will be to show that, on the event �0, solutions{

1
2 tr(A(x

ε
,ω)D2uε) + 1

ε
b( x

ε
,ω) · Duε = g(x) on U,

uε = f (x) on ∂U,
(149)

converge uniformly, as ε → 0, to the solution{
α
2 
u = g(x) on U,

u = f (x) on ∂U,
(150)

whenever the right-hand side and boundary data are continuous.

Assume g ∈ C(U) and f ∈ C(∂U). (151)

Notice that, in the case g = 0, the variance α does not effect the exit distribution because it reflects only a time change
of the underlying Brownian motion. Or, in terms of the equation, for each n ≥ 0, the solution to the approximate
homogenized problem{

αn

2 
un = g(x) on U,

un = f (x) on ∂U,
(152)

satisfies (150).
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Proposition 21. Assume (32), (52), and g = 0. For each n ≥ 0, for u and un the respective solutions of (149)
and (152),

u = un on U.

The following theorem is then an immediate consequence of [8, Theorem 7.5], since the event on which the state-
ment was obtained in [8] contains the �0 defined in (87) as a subset.

Theorem 22. Assume (32), (52), (151) and g = 0. For every ω ∈ �0, the respective solutions uε and u of (149) and
(150) satisfy

lim
ε→0

∥∥uε − u
∥∥

L∞(U)
= 0.

The final theorem is then an immediate consequence of Theorem 20, Theorem 22, and linearity.

Theorem 23. Assume (32), (52), (151). For every ω ∈ �0, the respective solutions uε and u of (149) and (150) satisfy

lim
ε→0

∥∥uε − u
∥∥

L∞(U)
= 0.

6. The rate of homogenization

An algebraic rate for the convergence established in Theorem 23 is now obtained. The result will be shown first for
boundary data which is the restriction of a bounded, uniformly continuous function and interior data which is the
restriction of a bounded, Lipschitz function.

Assume f ∈ BUC
(
R

d
)

and g ∈ Lip
(
R

d
)
. (153)

The moduli of continuity will be denoted σf and Dg. Namely, for each x, y ∈ R
d ,∣∣f (x) − f (y)

∣∣ ≤ σf

(|x − y|) and
∣∣g(x) − g(y)

∣∣ ≤ ‖Dg‖L∞(Rd )|x − y|. (154)

A rate for the convergence in the case g = 0 was established in [8, Theorem 8.1].

Theorem 24. Assume (32), (52), (153) and g = 0. There exists C > 0 and c1, c2 > 0 such that, for every ω ∈ �0, for
all ε > 0 sufficiently small depending on ω, the respective solutions uε and u of (149) and (150) satisfy∥∥uε − u

∥∥
L∞(U)

≤ C‖f ‖L∞(Rd )ε
c1 + Cσf

(
εc2

)
.

The following establishes a similar result in the case f = 0, and follows quickly from the analysis carried out in
Theorem 19.

Theorem 25. Assume (32), (52), (153) and f = 0. There exists C > 0 and c3, c4 > 0 such that, for every ω ∈ �0, for
all ε > 0 sufficiently small depending on ω, the respective solutions uε and u of (149) and (150) satisfy∥∥uε − u

∥∥
L∞(U)

≤ C‖g‖L∞(Rd )ε
c3 + C‖Dg‖L∞(Rd )ε

c4 .

Proof. Fix ω ∈ �0 and n1 ≥ m such that, for all n ≥ n1 and for r0 > 0 the constant quantifying the exterior ball
condition,

2D̃n−m <
r0Ln

2
and ω ∈ An.
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Then, fix ε1 > 0 sufficiently small so that, whenever 0 < ε < ε1 satisfies Ln ≤ 1
ε

< Ln+1 it follows that n ≥ n1.
Furthermore, using the boundedness of the domain U , choose 0 < ε2 < ε1 such that, whenever 0 < ε < ε2 and Ln ≤
1
ε

< Ln+1,

Ln+1U ⊂
[
−1

2
L2

n+2,
1

2
L2

n+2

]d

.

These conditions guarantee, whenever 0 < ε < ε2, the conclusion of line (147) of Theorem 19.
Precisely, for every 0 < ε < ε2 satisfying Ln ≤ 1

ε
< Ln+1, for C > 0 independent of n,∥∥uε(x) − u(x)

∥∥
L∞(U)

≤ C‖g‖L∞(Rd )

(
L

−(1+ 9
10 )δ

n−m + Ln+1

Ln+2
+

(
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + L

21a− δ
2

n + D̃n−m

Ln

+ L−5a
n

)

+ C‖Dg‖L∞(Rd )L
−5a
n . (155)

The definitions (36), (37), (39) imply that, since Ln ≤ 1
ε

< Ln+1, there exists c3 > 0 satisfying, for C > 0 independent
of n,

L
−(1+ 9

10 )δ

n−m + Ln+1

Ln+2
+

(
Ln−1

Ln

)2

+ L
4a+2a2− 10a

1+a
n + L

21a− δ
2

n + D̃n−m

Ln

+ L−5a
n ≤ Cεc3 . (156)

Definitions (36) and (37) then imply, using Ln ≤ 1
ε

< Ln+1, the existence of c4 > 0 satisfying, for C > 0 independent
of n,

L−5a
n ≤ Cεc4 . (157)

Therefore, in combination (155), (156) and (157) yield, for all 0 < ε < ε2, for C > 0 independent of 0 < ε < ε2,∥∥uε(x) − u(x)
∥∥

L∞(U)
≤ C‖g‖L∞(Rd )ε

c3 + C‖Dg‖L∞(Rd )ε
c4 ,

which completes the argument. �

The following statement establishes an algebraic rate of convergence for boundary and interior data which are
respectively the restrictions of a bounded, uniformly continuous function and a bounded, Lipschitz function. This
requirement is removed for smooth domains in Theorem 27. The proof follows immediately from Theorem 24, The-
orem 25, and linearity.

Theorem 26. Assume (32), (52) and (153). There exists C > 0 and c1, c2, c3, c4 > 0 such that, for every ω ∈ �0, for
all ε > 0 sufficiently small depending on ω, the respective solutions uε and u of (149) and (150) satisfy∥∥uε − u

∥∥
L∞(U)

≤ C
(‖f ‖L∞(Rd )ε

c1 + σf

(
εc2

) + ‖g‖L∞(Rd )ε
c3 + ‖Dg‖L∞(Rd )ε

c4
)
.

Theorem 26 is now extended to general smooth domains up to a domain dependent factor. Observe that, in the case
of the ball U = Br , it follows by an explicit radial extension or, in the case that the domain U is smooth, it follows
from the Product Neighborhood Theorem, see Milnor [12, Page 46], that every continuous function f ∈ C(∂U) and
Lipschitz function g ∈ Lip(U) admit extensions

f̃ ∈ BUC
(
R

d
)

and g̃ ∈ Lip
(
R

d
)

satisfying, for a constant C = C(U) depending only upon the domain,

σ
f̃
(s) ≤ σf (Cs) for all s ≥ 0 sufficiently small
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and

|Dg̃| ≤ C|Dg| in a neighborhood of U.

That is, for smooth domains, assumption (153) can always be achieved up to a domain dependent factor.

Assume f ∈ C(∂U), g ∈ Lip(U), and that the domain U is smooth. (158)

The following statement is then an immediate consequence of Theorem 26 and the preceding remarks.

Theorem 27. Assume (32), (52) and (158). There exists C > 0, c1, c2, c3, c4 > 0 and C1 = C1(U) > 0 such that, for
every ω ∈ �0, for all ε > 0 sufficiently small depending on ω, the respective solutions uε and u of (149) and (150)
satisfy∥∥uε − u

∥∥
L∞(U)

≤ C
(‖f ‖L∞(∂U)ε

c1 + σf

(
C1ε

c2
) + ‖g‖L∞(U)ε

c3 + C1‖Dg‖L∞(U)ε
c4

)
.
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