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Abstract. This article investigates second order intertwinings between semigroups of birth–death processes and discrete gradients
on N. It goes one step beyond a recent work of Chafaï and Joulin which establishes and applies to the analysis of birth–death
semigroups a first order intertwining. Similarly to the first order relation, the second order intertwining involves birth–death and
Feynman–Kac semigroups and weighted gradients on N, and can be seen as a second derivative relation. As our main application,
we provide new quantitative bounds on the Stein factors of discrete distributions. To illustrate the relevance of this approach, we
also derive approximation results for the mixture of Poisson and geometric laws.

Résumé. Cet article établit l’existence d’entrelacements au second ordre entre semi-groupes relatifs aux processus de naissance-
mort et gradients discrets sur N, allant ainsi un pas plus loin que les travaux récents de Chafaï et Joulin, qui concernent les entrela-
cements au premier ordre et leur application à l’analyse des semi-groupes de naissance-mort. Comme la relation du premier ordre,
l’entrelacement de second ordre fait intervenir des semi-groupes de naissance-mort et de Feynman–Kac et des gradients à poids sur
N, et peut s’interpréter comme une relation de dérivation à l’ordre deux. Comme application principale, nous établissons des nou-
velles bornes sur les facteurs de Stein relatifs aux distributions discrètes, et nous donnons également des résultats d’approximation
pour le mélange de lois géométriques et le mélange de lois de Poisson, qui illustrent la pertinence de notre approche.
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1. Introduction

A birth–death process is a continuous-time Markov process with values in N = {0,1, . . . } which evolves by jumps of
two types: onto the integer just above (birth) or just below (death). We denote by BDP(α,β) the birth–death process
with positive birth rate α = (α(x))x∈N and non-negative death rate β = (β(x))x∈N satisfying to β(0) = 0. Its generator
is defined for every function f :N→ R as

Lf (x) = α(x)
(
f (x + 1) − f (x)

) + β(x)
(
f (x − 1) − f (x)

)
, x ∈N.

For a generator L, associated to a semigroup (Pt )t≥0 and a Markov process (Xt )t≥0 on N, and a function V on N

(usually called a potential), the Schrödinger operator L − V is defined for every function f as

(L − V )f (x) = (Lf )(x) − V (x)f (x), x ∈ N,
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and is associated to the Feynman–Kac semigroup (P V
t )t≥0 defined for all bounded or non-negative functions f on N

as (
P V

t f
)
(x) = E

[
f

(
Xx

t

)
e− ∫ t

0 V (Xx
s ) ds

]
, x ∈N, t ≥ 0.

The starting point of our work is the recent article [11] which establishes a first order intertwining relation involving
birth–death and Feynman–Kac semigroups, and discrete gradients on N. For example, it reads as

∂Pt = P̃ Ṽ
t ∂, (1)

where ∂ is the discrete gradient defined by ∂f (x) = f (x + 1)−f (x), the notation (P̃ Ṽ
t )t≥0 standing for an alternative

Feynman–Kac semigroup. Actually, the precise result holds more generally for weighted gradients and allows to
derive known as well as new results on the analysis of birth–death semigroups.

According to this observation, the aim of the present article is to extend this work by stating a second order
intertwining relation. More precisely, let us define the backward gradient ∂∗ by

∂∗f (x) = f (x − 1) − f (x), x ∈N
∗ = {1,2, . . . }; ∂∗f (0) = −f (0).

Under some appropriate conditions on the potential Ṽ , we derive a formula of the type

∂∗∂Pt = P̂ V̂
t ∂∗∂, (2)

where (P̂ V̂
t )t≥0 is a new Feynman–Kac semigroup. Similarly to the first order, this second order intertwining relation,

which is our main result, is given in the more general case of weighted gradients.
Once our second order relation is established, it reveals to have many interesting consequences. In particular, we

derive results on the estimation of the so-called Stein factors. Stein’s factors, also known as Stein’s magic factors, are
upper bounds on derivatives of the solution to Stein’s equation and a key point in Stein’s method, introduced by Stein
in [27], which consists in evaluating from above distances between probability distributions. Among the important
results appearing more or less recently in this very active field of research, let us cite some references within the
framework of discrete probabilities distributions. Stein’s factors related to the Poisson approximation in total variation
and Wasserstein distances are studied in the seminal paper [12], in the reference book [6] and in the recent article
[5] for example. For the binomial negative approximation, one can cite [9] for the total variation distance and [5] for
the Wasserstein distance; for the geometric approximation in total variation distance, see [22] and [23]. An important
advance is made in [10], where a universal approach to evaluate Stein’s factors for the total variation distance is
developed. The work [17] provides Stein’s factors for the total variation distance when the target distribution is a
Gibbs distribution. While our approach relies on the so-called generator method, which characterizes the reference
distribution as the invariant measure of some Markov process, more general Stein operators have also been developed
([19]).

In the present article, we propose a universal technique to evaluate Stein’s factors related to the approximation
in total variation, Wasserstein and Kolmogorov distances. On the basis of some results derived in [10], the main
ingredients are the method of the generator and the intertwining relations presented above. To the authors’ knowledge,
the systematic use of this last ingredient, which comes from the functional analysis, seems to be new within the context
of Stein’s method. It allows to construct a unified framework for the derivation of Stein’s factors, which applies to a
wide range of discrete probability distributions-namely, distributions that are invariant with respect to some reversible
birth–death process on N with good properties. A similar approach might be developed similarly for continuous
distributions characterized as the invariant measure of some diffusion processes, for which a first order intertwining
relation already exists ([8,15]); or for other discrete distributions, such as compound Poisson distributions which are
invariant with respect to some downwards skip-free process.

A case-by-case examination of our general results in examples of interest reveals that our upper bounds sometimes
improve on the ones already known, and sometimes are not as sharp. For example, we improve the first Stein factor
related to the negative binomial approximation in total variation distance and we derive new Stein’s factors for the
geometric approximation in Wasserstein distance.
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As an additional part of independent interest, we study the approximation of mixture of discrete distributions in the
spirit of the Stein method. Combined with the Stein bounds, the obtained results have potential applications of which
we give a flavour through the following example. Denote NB(r,p) the negative binomial distribution of parameters
(r,p). It is a mixed Poisson distribution, converging in law towards the Poisson distribution Pλ in the regime p → 1,
r → ∞ and r(1−p)/p → λ. The following bound in Wasserstein distance W seems to be the first attempt to quantify
this well-known convergence:

W
(
NB(r,p),P r(1−p)

p

) ≤ 8

3
√

2e

√
r(1 − p)

p

(1 − p)

p
.

To conclude this introduction, let us announce the structure of the article. In Section 2, we state with Theorem 2.2
our main result about the second order intertwining, after having recalled the first order intertwining; we follow with an
application to the ergodicity of birth–death semigroups. In Section 3, we firstly present theoretical bounds on Stein’s
factors derived from the intertwinings, and secondly we investigate the approximation of mixture of distributions. In
Section 4, our results are applied to a wide range of examples, including M/M/∞ process and Poisson approximation,
Galton–Watson process with immigration and negative binomial approximation, and M/M/1 process and geometric
approximation. The three last sections are devoted to the various proofs of the results previously stated: Section 5
deals with the preparation and proof of our main result Theorem 2.2, Section 6 gathers the proofs of the bounds on
Stein’s factors and finally, a useful upper bound related to the pointwise probabilities of the M/M/∞ process is proved
in Section 7.

2. Main result

Before stating our main result Theorem 2.2, let us introduce some notation. The set of positive integers {1,2, . . . }
is denoted N

∗. For all real-valued functions f on N and sets A ⊂ N, we define ‖f ‖∞,A = sup{|f (x)|, x ∈ A} and
‖f ‖∞ = ‖f ‖∞,N. For all sequences u on N, the shift-forward and shift-backward of u are defined as:

→
u (x) = u(x + 1), x ∈N; ←

u (x) = u(x − 1), x ∈ N
∗; ←

u (0) = 0.

The symbol P stands for the set of probability measures on N and we denote by L(W) the distribution of the random
variable W . For all real-valued functions f on N and μ ∈P , we use indifferently the notation∫

f dμ = μ(f ) =
∑
x∈N

f (x)μ(x).

Recall that the discrete forward and backward gradients are defined for all real-valued functions f on N by

∂f (x) = f (x + 1) − f (x), x ∈N; ∂∗f (x) = f (x − 1) − f (x), x ∈N
∗; ∂∗f (0) = −f (0),

the convention chosen for ∂∗ in 0 being interpreted as a Dirichlet-type condition (implicitly we set f (−1) = 0).
Letting u be a positive sequence, we define the weighted gradients ∂u and ∂∗

u respectively by

∂u = 1

u
∂, ∂∗

u = 1

u
∂∗.

With this notation, the generator of the BDP(α,β) reads for every function f :N→ R as

Lf = α∂f + β∂∗f.

Let us assume that the birth rate α is positive on N and that the death rate β is positive on N
∗ with moreover β(0) = 0.

Hence the process is irreducible; to ensure that the process is ergodic and non-explosive we further assume respectively
that ([16], [14, Corollary 3.18])

+∞∑
x=1

α(0)α(1) · · ·α(x − 1)

β(1)β(2) · · ·β(x)
< ∞,

∞∑
x=1

(
1

α(x)
+ β(x)

α(x)α(x − 1)
+ · · · + β(x) · · ·β(1)

α(x) · · ·α(0)

)
= ∞.
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The measure π defined on N as

π(0) =
(

1 +
∑
x≥1

x∏
y=1

α(y − 1)

β(y)

)−1

, π(x) = π(0)

x∏
y=1

α(y − 1)

β(y)
, x ∈N, (3)

is then the invariant, and symmetric, probability measure for the associated semigroup.
Recall that if (Pt )t≥0 is a Markov semigroup on N associated to the process (Xt )t≥0 and if the potential V : N→R

is bounded from below, the Feynman–Kac semigroup (P V
t )t≥0 is defined for all bounded or non-negative functions f

on N as(
P V

t f
)
(x) = E

[
f

(
Xx

t

)
e− ∫ t

0 V (Xx
s ) ds

]
, x ∈N, t ≥ 0. (4)

When V is positive, the formula (4) admits an interpretation involving a killed, or extended, Markov process. Add a
new state a to N and extend functions f on N to N∪ {a} by f (a) = 0. Then, we have:

P V
t f (x) = E

[
f

(
Yx

t

)
1{Yx

t 
=a}
]
,

where the process (Y x
t )t≥0 is absorbed in a with rate V (Y x

t ). The generator of the process (Y x
t )t≥0 acts on real-valued

functions on N∪ {a} by the formula

(Kf )(x) = (Lf |N)(x) + V (x)
(
f (a) − f (x)

)
. (5)

This interpretation can be extended to the case where V is bounded from below by adding and subtracting a constant
to V inside the exponential.

The Kolmogorov equations associated to the Schrödinger operator L−V and the Feynman–Kac semigroup defined
in the introduction read for all functions f in the domain of L as

∂tP
V
t f = (L − V )P V

t f = P V
t (L − V )f, t ≥ 0. (6)

Here ∂t denotes the derivative in time. In the following, when using a Feynman–Kac semigroup, we will always
assume that the equation (6) stands for all bounded real-valued functions on N. It is the case for example when L is
the generator of a birth–death process with rates (α,β), and α,β,V are Pt -integrable for all t ≥ 0.

In order to state the first intertwining relation, we associate to any positive sequence u a modified birth–death
process on N with semigroup (Pu,t )t≥0, generator Lu, and potential Vu. For all functions f :N→ R set

Luf = αu∂f + βu∂
∗f, Vu = α − αu + →

β − βu,

αu(x) = u(x + 1)

u(x)
α(x + 1), βu(x) = u(x − 1)

u(x)
β(x)1x∈N∗ , x ∈N.

Under the compacted form Vu = ∂u(
←
uβ −uα) one can see the parallel with the analogous formulas in the diffusion

setting ([3,8]).
We recall now the first order intertwining relation, due to [11].

Theorem 2.1 (First order intertwining relation). If Vu is bounded from below, it holds for every real-valued function
on N such that ‖∂uf ‖∞ < +∞ that:

∂uPtf = P
Vu
u,t ∂uf, t ≥ 0. (7)

Although we will not prove this result in full generality, a new proof is proposed in Section 5.2 when the weight is
u = 1, the birth rates α are non-increasing and the death rates β are non-decreasing. This proof is based on a coupling
argument and gives a probabilistic interpretation of the semigroup (and its jump rates) in the right-hand side of (7).
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We now turn to the main theorem of this article. Let u and v be positive sequences and assume that the potential Vu

defined above is non-increasing on N. We define a modified process on N with semigroup (Pu,∗v,t )t≥0 and generator
Lu,∗v as follows: for all real-valued functions f on N, set

(Lu,∗vf )(x) = αu,∗v(x)∂f (x) + βu,∗v(x)∂∗f (x)

+ (
∂∗
v Vu

)
(x)

(
x−2∑
j=0

v(j)

)
x−2∑
k=0

v(k)

(
∑x−2

j=0 v(j))

(
f (k) − f (x)

)
, x ≥ 2,

(Lu,∗vf )(x) = αu,∗v(x)∂f (x) + βu,∗v(x)∂∗f (x), x = 0,1,

αu,∗v(x) = v(x + 1)

v(x)

u(x + 1)

u(x)
α(x + 1), x ∈ N,

βu,∗v(x) = v(x − 1)

v(x)

u(x − 2)

u(x − 1)
β(x − 1) + v(x − 1)∂∗

v Vu(x), x ≥ 2,

βu,∗v(1) = v(0)∂∗
v Vu(1), βu,∗v(0) = 0.

In contrast with the previous semigroups, this modified process is not a birth–death process in general. Indeed, if
the process starts at a point x ≥ 2, it can jump on the set {0, . . . , x − 2} with rate (∂∗

v Vu)(x)(
∑x−2

j=0 v(j)). Remark
that both this quantity and the death rate in 1, βu,∗v(1) = (∂∗Vu)(1), are non-negative thanks to the hypothesis Vu

non-increasing on N. We also define the potential Vu,∗v as

Vu,∗v(x) =
(

1 + u(x)

u(x − 1)

)
α(x) −

(
1 + v(x + 1)

v(x)

)
u(x + 1)

u(x)
α(x + 1)

+ β(x + 1) − v(x − 1)

v(x)

u(x − 2)

u(x − 1)
β(x − 1) −

(
x−1∑
j=0

v(j)

)
∂∗
v Vu(x), x ≥ 1,

Vu,∗v(0) = α(0) −
(

1 + v(1)

v(0)

)
u(1)

u(0)
α(1) + β(1).

We are ready to state our main result.

Theorem 2.2 (Second order intertwining relation). Assume that Vu is non-increasing, bounded from below, that
infx∈N v(x) > 0 and that Vu,∗v is bounded from below. Then for every real-valued function on N such that ‖∂uf ‖∞ <

+∞, we have

∂∗
v ∂u(Ptf ) = P

Vu,∗v

u,∗v,t

(
∂∗
v ∂uf

)
, t ≥ 0.

Since some preparation is needed, the proof of Theorem 2.2 is postponed to Section 5.

Remark 2.3 (Propagation of convexity?). Under the assumptions of Theorem 2.2, if ∂∗
v ∂uf is non-negative, so is

∂∗
v ∂uPtf for all t ≥ 0. A similar property for the first order intertwining admits an interpretation in terms of prop-

agation of monotonicity ([11, Remark 2.4]): the intertwining relation (7) implies that if a function f : N → R is
non-decreasing, then so is Ptf for every t ≥ 0. However, it is not clear whether there is an analogous nice interpreta-
tion for the second order intertwining because, in contrast to the continous space case, the condition ∂∗

v ∂uf ≥ 0 is not
equivalent to the convexity of f (even for u = v = 1).

Let us comment further on Theorem 2.2. The interpretation of a Feynman–Kac semigroup as an extended Markov
semigroup sheds light on various aspects of Theorem 2.2. As the first-order potential Vu is bounded from below, recall
that the Feynman–Kac semigroup (P

Vu
u,t )t≥0 appearing in the right-hand side of equation (7) can be represented as a

Markov semigroup (St )t≥0 related to the process (Yt )t≥0 on N∪ {−1} by adding a point a = −1. The Markov process
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(Yt )t≥0 is then non-irreducible and absorbed in −1. To differentiate again in the equation (7) amounts to differentiate
the Markov semigroup (St )t≥0.

Firstly, this explains intuitively the use of the backward weighted gradient ∂∗
u instead of the regular weighted

gradient ∂u. Indeed, to deal with the absorption of the Markov process in −1, additional information at the boundary
is needed. The use of ∂∗ gives the missing information, since the knowledge of ∂∗g is equivalent to the knowledge of
∂g in addition with the knowledge of g(0) = −∂∗g(0).

Secondly, this allows to understand the hypotheses required for Theorem 2.2 to apply. The main assumption of
this theorem is Vu to be non-increasing. As noticed before, this assumption is necessary in order to have well-defined
objects. The following remark provides another justification.

Remark 2.4 (Around the monotonicity assumption). On the one hand, the second intertwining relation is equivalent
to a first intertwining relation for the extended Markov semigroup (St )t≥0. On the other hand, if a first intertwining
relation holds for (St )t≥0, then (St )t≥0 propagates the monotonicity. Set f = 1N = 1 − 1{−1}. Then for all x, y ∈ N,
S0f (x) = S0f (y) = 1 and by formula (5),

∂t (Stf )(x)|t=0 = (Luf |N)(x) + Vu(x)
(
f (−1) − f (x)

) = −Vu(x),

∂t

(
Stf (x) − Stf (y)

)∣∣
t=0 = Vu(y) − Vu(x).

The function f is non-decreasing on N∪ {−1} and a necessary condition for Stf to be non-decreasing for all t ≥ 0
is, in the light of the preceding equation, that Vu(y) − Vu(x) ≤ 0 whenever x ≤ y, i.e. Vu is non-increasing on N.

If Vu is constant, then Theorem 2.2 admits a variant involving the gradient ∂v∂u instead of ∂∗
v ∂u, which is stated

in Theorem 2.5 below for the sake of completeness. In the applications, when Vu is constant, we choose to invoke
Theorem 2.5 in lieu of Theorem 2.2, because the underlying arguments are much simpler. Indeed, in this case the
equation (7) reduces to

∂uPtf = e−VutPu,t ∂uf, t ≥ 0,

and it is no longer required to extend artificially the Markov process, nor to add information at the boudary, in order
to differentiate a second time. As a matter of fact, one can notice that if Vu is constant, then the BDP associated to the
semigroup (Pu,∗v,t )t≥0 of Theorem 2.2 do not visit the state 0 unless it starts there.

In order to state the theorem, a new birth–death semigroup (Pu,v,t )t≥0 with generator Lu,v and a potential Vu,v is
introduced. Set for all real-valued functions on N:

Lu,vf (x) = αu,v∂f (x) + βu,v∂
∗f (x), x ∈N,

αu,v(x) = v(x + 1)

v(x)

u(x + 2)

u(x + 1)
α(x + 2), βu,v(x) = v(x − 1)

v(x)

u(x − 1)

u(x)
β(x), x ∈N,

Vu,v(x) = α(x) − v(x + 1)

v(x)

ux+2

u(x + 1)
α(x + 2) +

(
u(x)

u(x + 1)
+ 1

)
β(x + 1)

−
(

1 + v(x − 1)

v(x)

)
u(x − 1)

u(x)
β(x), x ∈N.

In contrast to the Markov semigroup (Pu,∗v,t )t≥0, the semigroup (Pu,v,t )t≥0 is always a birth–death semigroup.

Theorem 2.5 (Alternative version of the second intertwining relation). Assume that Vu is constant on N and that
Vu,v is bounded from below. For all real-valued functions on N such that ‖∂uf ‖∞ < +∞ and ‖∂v∂uf ‖∞ < +∞, we
have:

∂v∂u(Ptf ) = P
Vu,v

u,v,t (∂v∂uf ), t ≥ 0.
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Remark 2.6 (Link between the two versions of the second intertwining). Surprisingly, it is only possible to deduce
directly Theorem 2.5 from Theorem 2.2 in the case where the sequence v is constant. When v = 1 for instance, one
can write that ∂∗∂uf (· + 1) = −∂∂uf , yielding under the appropriate assumptions on f :N→ R that:

Pu,1,t f (x) = Pu,∗1,t
←−
f (x + 1), x ∈N, t ≥ 0.

At the level of the processes, this equation can be reformulated into the equality in law:

Xx
1,u,t = Xx+1

1,∗u,t − 1, x ∈N, t ≥ 0,

where (Xx
1,∗u,t )t≥0 and (Xx

1,u,t )t≥0 are the Markov processes corresponding respectively to the semigroups
(Pu,∗1,t )t≥0 and (Pu,1,t )t≥0. If v is not constant, no similar relation holds in general.

Remark 2.7 (Other versions). It is possible to derive similar theorems for other gradients. For example, if the
gradient ∂� is defined as ∂�f = ∂∗f on N

∗ and with the Neumann-like boundary condition in 0, ∂�f (0) = 0, then the
analogous theorem to Theorem 2.2 holds for ∂v∂

�
u . It is also possible to derive intertwining relations in the case where

the semigroup lives on �0, n�, although the underlying structures are rather different: for instance, the condition Vu

non-increasing is no longer necessary.

Let us turn to our first application of Theorem 2.2 and its variant Theorem 2.5. The first order intertwining relation
recalled in Theorem 2.1 yields a contraction property in Wasserstein distance. Precisely, under the assumptions of
Theorem 2.1, by [11, Corollary 3.1], we have for all μ,ν ∈P ,

Wdu(μPt , νPt ) ≤ e−σ(u)tWdu(μ, ν), (8)

where the distance du on N and the related Wasserstein distance Wdu on P are defined in the forthcoming section,
Section 3.1. Similarly, Theorems 2.2 and 2.5 lead to a contraction property for the distances ζu,∗v and ζu,v , defined
respectively for two sequence of positive weights u and v by

ζu,∗v = sup
f ∈Fu,∗v

∣∣μ(f ) − ν(f )
∣∣, Fu,∗v = {

f :N→ R,‖∂uf ‖∞ < ∞,
∥∥∂∗

v ∂uf
∥∥∞ ≤ 1

}
,

ζu,v = sup
f ∈Fu,v

∣∣μ(f ) − ν(f )
∣∣, Fu,v = {

f : N→ R,‖∂uf ‖∞ < ∞,‖∂v∂uf ‖∞ ≤ 1
}
.

We call ζu,∗v and ζu,v second order Zolotarev-type distances since they are simple metric distances in the sense of
Zolotarev ([29]) and can be seen as the discrete counterparts of the distance ζ2 defined on the set of real probability
distributions (the distance ζ2, introduced in [29] and further studied in [25], is associated to the set of continuously
differentiable functions on R whose derivative is Lipschitz). The contraction property reads as follows:

Theorem 2.8 (Contraction of the BDP in second order distances).

• Under the same hypotheses as in Theorem 2.2, we set σ(u,∗v) = infVu,∗v . Then, for all μ,ν ∈ P , we have:

ζu,∗v(μPt , νPt ) ≤ e−σ(u,∗v)t ζu,∗v(μ, ν). (9)

• Under the assumptions of Theorem 2.5, define σ(u, v) = infVu,v . Letting μ,ν ∈ P , it stands that:

ζu,v(μPt , νPt ) ≤ e−σ(u,v)t ζu,v(μ, ν). (10)

Proof. The proof is done in the first case, the second one being similar. For all real-valued functions f on N such that
‖∂uf ‖∞ < ∞ and ‖∂∗

v ∂uf ‖∞ ≤ 1, Theorem 2.2 implies that∥∥∂∗
v ∂uPtf

∥∥∞ ≤ e−σ(u,∗v)t
∥∥∂∗

v ∂uf
∥∥∞ ≤ e−σ(u,∗v)t , t ≥ 0.
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Hence,

ζu,∗v(μPt , νPt ) = sup

{∣∣∣∣∫ Ptf dμ −
∫

Ptf dν

∣∣∣∣,∥∥∂∗
v ∂uf

∥∥∞ ≤ 1

}
≤ sup

{∣∣∣∣∫ g dμ −
∫

g dν

∣∣∣∣,‖g‖∞ ≤ e−σ(u,∗v)t

}
= e−σ(u,∗v)t ζu,∗v(μ, ν). �

If the quantity σ(u,∗v) (resp. σ(u, v)) is positive, the first bound (resp. the second) is a contraction. In particular, if
we take ν = π the invariant measure of the BDP, then Theorem 2.8 gives the rate of convergence of the BDP towards
its invariant measure in a second order distance.

Remark 2.9 (Generalization and optimality).

• The proof of Theorem 2.8 can be generalized to the Zolotarev-type distance associated to the set of functions
f :N→ R such that ‖Df ‖∞ ≤ 1 as soon as we have an inequality of the type ‖DPtf ‖∞ ≤ e−σ t‖Df ‖∞ for every
t ≥ 0, some σ > 0 and some finite difference operator D. In Section 4 below, we detail such convergences in higher
order Zolotarev-type distances.

• By arguments similar to those developed in [11, corollary 3.1], one can prove that the constants σ(u,∗v) and
σ(u, v) in the equations (9) and (10) are optimal. Indeed, the argument of [11] relies on the propagation of the
monotonicity and we have the analogous property at the second order (cf. Remark 2.3).

• Using [14, Theorem 9.25], we see that, choosing a good sequence u, it is possible to obtain the contraction in the
Wasserstein distance (8) at a rate corresponding to the spectral gap (even if there is no corresponding eigenvector).
For the second order, we do not know if it is always possible to find sequences u,v such that σ(∗u,v) or σ(u, v) is
equal to the second smallest positive eigenvalue of −L.

In the following section we focus our attention on our main application of intertwining relations, Stein’s factors.

3. Application to Stein’s magic factors

3.1. Distances between probability distributions

First of all, we introduce the distances between probability measures used to measure approximations in the sequel.
They are of the form

ζF (μ, ν) = sup
{∣∣μ(f ) − ν(f )

∣∣, f ∈ F
}
,

where F is a subset of the set of real-valued functions on N. The distances ζu,∗v , ζu,v presented at the end of the
preceding section were examples of such distances; we now recall the definition of three classical distances on P .

Total variation distance. The total variation distance dTV is the distance associated to the set FTV of real-valued
functions on N such that 0 ≤ f ≤ 1. In contrast to the continous space case, the topology induced by the total variation
distance on N is exactly the convergence in law. Some authors prefer to define the total variation distance as the
distance associated to the set F = {f :N→ R,‖f ‖∞ ≤ 1}. The two definitions vary by a factor 1

2 :

dTV(μ, ν) = sup
0≤f ≤1

∣∣μ(f ) − ν(f )
∣∣ = 1

2
sup

‖f ‖∞≤1

∣∣μ(f ) − ν(f )
∣∣ = 1

2

∑
x∈N

∣∣μ(x) − ν(x)
∣∣.

Wasserstein distance. For a distance d on N let us call Lip(d) the set of real-valued functions on N such that∣∣f (x) − f (y)
∣∣ ≤ d(x, y), x, y ∈ N.
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The Wasserstein distance between two probability measures μ and ν of P is defined as

Wd(μ,ν) = inf
∫

d(x, y) d�(x, y),

where the infimum is taken over all probability measures � on N
2 whose first marginal is μ and second marginal is ν.

By Kantorovich-Rubinstein theorem (see e.g. [28]),

Wd(μ,ν) = ζLip(d)(μ, ν).

For a positive sequence u, define the distance du on N as

du(x, y) =
y−1∑
k=x

u(k), x < y; du(x, y) = du(y, x), x > y; du(x, y) = 0, x = y.

Let us observe that Lip(du) = {f : N→R,‖∂uf ‖∞ ≤ 1}. Hence

Wdu(μ, ν) = sup
f ∈Lip(du)

∣∣μ(f ) − ν(f )
∣∣ = sup

‖∂uf ‖∞≤1

∣∣μ(f ) − ν(f )
∣∣.

The distance associated to the constant sequence equal to 1 is the usual distance d1(x, y) = |x − y|. We denote by
W = Wd1 the associated Wasserstein distance.

Kolmogorov distance. The Kolmogorov distance is defined as the metric distance associated to the set FK of
indicator functions of intervals [0, x]:

dK(μ, ν) = sup
x∈N

∣∣μ([0, x]) − ν
([0, x])∣∣.

Comparison between distances. For all μ,ν ∈P ,

dK(μ, ν) ≤ dTV(μ, ν) ≤ 1

infN u
Wdu(μ, ν).

Indeed, both inequalities are consequences of the inclusions

FK ⊂FTV ⊂ 1

infN u
Lip(du).

The second inclusion follows from the implication

0 ≤ f ≤ 1 ⇒ ‖∂f ‖∞ ≤ 1

infN u
.

The total variation distance is invariant by translation, whereas intuitively the Wasserstein distance gives more
weight to the discrepancy between μ(x), ν(x) if it occurs for a large integer x. The Kolmogorov distance may be used
as an alternative to the total variation distance when the latter is too strong to measure the involved quantities.

3.2. Basic facts on Stein’s method

Given a probability measure μ and a target probability measure π of P , the Stein–Chen method provides a way to
estimate the distances of the type ζF (μ,π). More precisely, consider a Stein’s operator S:

Sf (x) = α(x)f (x + 1) − β(x)f (x), x ∈N;β0 = 0,
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characterizing the probability measure π (meaning that
∫

Sf dμ = 0 for every function f : N → R in a sufficiently
rich class of functions if and only if μ = π ) and the associated Stein equation

Sgf = f −
∫

f dπ. (11)

We call gf a solution to Stein’s equation. The interest of such solutions comes from the following error bound:

ζF (μ,π) = sup
f ∈F

∣∣μ(f ) − π(f )
∣∣ = sup

f ∈F

∣∣∣∣∫ Sgf dμ

∣∣∣∣. (12)

As a consequence, if it can be shown that∣∣∣∣∫ Sgf dμ

∣∣∣∣ ≤ ε0‖gf ‖∞ + ε1‖∂gf ‖∞,

then it follows that

ζF (μ,π) ≤ ε0 sup
f ∈F

‖gf ‖∞ + ε1 sup
f ∈F

‖∂gf ‖∞.

This strategy of proof is widely used, for example in the references about Stein’s method provided in the introduction.
A key point of this approach consists then in evaluating the so-called first and second Stein factors, also known as

magic factors:

sup
f ∈F

‖gf ‖∞, sup
f ∈F

‖∂gf ‖∞.

Observe that the equation (11) does not determine the value of gf (0). When evaluating the first Stein factor
supf ∈F ‖gf ‖∞, we pick for every f ∈ F the solution gf of (11) such that gf (0) = 0. Hence, it is sufficient to
consider the quantity

sup
f ∈F

‖gf ‖∞,N∗ = sup
f ∈F

‖−→
gf ‖∞.

Similarly, for the second Stein factor, picking solutions gf to (11) satisfying to gf (0) = gf (1), i.e. ∂gf (0) = 0, allows
to consider only the quantity

sup
f ∈F

‖∂gf ‖∞,N∗ = sup
f ∈F

‖∂−→
gf ‖∞.

To evaluate the above quantities, we use a method known as method of the generator and the semigroup repre-
sentation deriving from it. Set L the generator and (Pt )t≥0 the semigroup associated to the BDP(α,β) and assume
that (Pt )t≥0 is invariant with respect to the target probability distribution π . The operators S and L are linked by the
relation

Lh = S
(−∂∗h

)
.

The Poisson equation reads as

Lhf = f − μ(f ),

the centered solution hf being given by the expression

hf = −
∫ ∞

0

(
Ptf − μ(f )

)
dt.



Intertwinings and Stein’s magic factors for birth–death processes 351

Then, we obtain a solution gf to Stein’s equation (11) under the so-called semigroup representation:

gf = −∂∗hf =
∫ ∞

0
∂∗Ptf dt. (13)

3.3. Bounds on Stein’s magic factors

In this section, theoretical bounds on the first and second order Stein factors are proposed for the approximation
in total variation, Wasserstein and Kolmogorov distances. Proofs are postponed to Section 6 in order to clarify the
presentation. Before turning to the results, a few general comments are made.

1. Our method evaluates Stein factors by quantities of the form∫ ∞

0
e−κt sup

i∈N
P
(
X̃i

t = i
)
dt,

∫ ∞

0
e−κt sup

i∈N∗

(
P
(
X̃i

t = i
) − P

(
X̃i

t = i − 1
))

dt.

The Markov process (X̃t )t≥0 which occurs is an alternative process and is not necessarily the same as the
BDP(α,β) with semigroup (Pt )t≥0 appearing in the semigroup representation (13). To our knowledge, this is
new and makes the originality of our work.

2. While the detailed demonstrations of the forthcoming results are given in Section 6, the scheme of proof is briefly
explained here. Firstly, the argmax fi of the pointwise Stein factor

sup
f ∈F

∣∣∂kgf (i)
∣∣, i ∈ N

∗, k ∈ {0,1},

is obtained by resuming and generalizing results from [10]. Secondly, the function fi is plugged in the semigroup
representation:

∂kgfi
(i) =

∫ ∞

0
∂k∂∗Ptfi dt, k ∈ {0,1}.

The intertwining relations of Section 2 are then used to rewrite the term ∂k∂∗Pt .
This technique is already employed for Poisson approximation in some works, [4] and [7] for example. In that

context, the intertwining relation reads as:

∂Pt = e−tPt ∂, t ≥ 0,

where the semigroup (Pt )t≥0 is the same on the left and on the right. The use of the intertwining relations permits
to go beyond this case and to construct a universal method to derive Stein’s factors.

3. For the sake of clarity, the present section only includes results on the uniform Stein factors. However, it can be
seen in Section 6 that our upper bounds on the pointwise Stein factors are often sharp.

4. For the second order Stein factor, two sets of assumptions are used:

Assumptions 3.1 (Assumptions).
H1: The potential V1 is non-increasing and non-negative, the potential V1,∗u is bounded from below, and the

sequence u is bounded from below by a positive constant. In this case, we define σ(1,∗u) = infN V1,∗u and
denote by (Xi

1,∗u,t )t≥0 the Markov process of generator L1,∗u such that Xi
1,∗u,0 = i.

H2: The potential V1 is a non-negative constant and the potential V1,u is bounded from below. In this case, set
σ(1, u) = infN V1,u and call (Xi

1,u,t )t≥0 the birth–death process of generator L1,u such that Xi
1,u,0 = i.

This comes from the fact that the double intertwining relation is given by the main result Theorem 2.2 under H1
and by its analogous Theorem 2.5 under H2.

5. Stein’s factors related to the different distances compare between each other through the inequalities:

sup
f =1[0,m],m∈N

∥∥∂kgf

∥∥∞ ≤ sup
0≤f ≤1

∥∥∂kgf

∥∥∞ ≤ 1

infN u
sup

f ∈Lip(du)

∥∥∂kgf

∥∥∞, k ∈ N.
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We now state the main results of this section, formulated for each distance of interest.
Approximation in total variation distance.

Theorem 3.2 (First Stein’s factor for bounded functions). Assume that Vu is bounded from below by some positive
constant σ(u). Then, we have:

sup
0≤f ≤1

‖gf ‖∞ ≤
∫ ∞

0
e−σ(u)t sup

i∈N
P
(
Xi

u,t = i
)
dt.

This theorem is applied to the negative binomial approximation in Proposition 4.5.

Theorem 3.3 (Second Stein’s factor for bounded functions I). Under H1,

sup
0≤f ≤1

‖∂gf ‖∞ ≤ 2
∫ ∞

0
e−σ(1,∗u)t sup

i∈N∗
P
(
Xi

1,∗u,t = i
)
dt.

If the sequence is chosen to be u = 1, we have:

sup
0≤f ≤1

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,∗u)t sup

i∈N∗

(
P
(
Xi

1,∗u,t = i
) − P

(
Xi

1,∗u,t = i − 1
)

+ P
(
Xi

1,∗u,t = i
) − P

(
Xi

1,∗u,t = i + 1
))

dt.

The analogue of Theorem 3.3 under the alternative set of hypotheses reads as:

Theorem 3.4 (Second Stein’s factor for bounded functions II). Under H2,

sup
0≤f ≤1

‖∂gf ‖∞ ≤ 2
∫ ∞

0
e−σ(1,u)t sup

i∈N
P
(
Xi

1,u,t = i
)
dt.

If the sequence is chosen to be u = 1, we have:

sup
0≤f ≤1

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,u)t sup

i∈N
(
P
(
Xi

1,u,t = i
) − P

(
Xi

1,u,t = i − 1
)

+ P
(
Xi

1,u,t = i
) − P

(
Xi

1,u,t = i + 1
))

dt.

Remark 3.5 (Alternative versions). By the same techniques, it is possible to upper bound the quantities

sup
0≤f/u≤1

‖gf ‖∞, sup
0≤f/u≤1

‖∂ugf ‖∞.

It could be useful if one is interested in the approximation in V -norm ([21]) rather than in total variation distance.

Approximation in Wasserstein distance.

Theorem 3.6 (First Stein’s factor for Lipschitz functions). If Vu is bounded from below by some positive constant
σ(u), then we have:

sup
f ∈Lip(du)

‖−→
gf /u‖∞ ≤ 1

σ(u)
.

Moreover, if Vu is constant, then the preceding inequality is in fact an equality.
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Theorem 3.7 (Second Stein’s factor for Lipschitz functions I). Under H1,

sup
f ∈Lip(du)

‖∂ugf ‖∞ ≤ 1

σ(1,∗u)
sup
x∈N∗

(
1 + u(x − 1)

u(x)

)
.

If we assume that u(x) = qx on N with q ≥ 1, then it stands that:

sup
f ∈Lip(du)

‖∂ugf ‖∞ ≤
∫ ∞

0
e−σ(1,∗u)t

(
1 − 1

q
+ 2

1

q
sup
i∈N∗

P
(
Xi

1,∗u,t = i
))

dt.

An instance of Theorems 3.6 and 3.7 in the context of geometric approximation is given by Proposition 4.7. The
following theorem is the analogue of Theorem 3.7 under the alternative set of hypotheses.

Theorem 3.8 (Second Stein’s factor for Lipschitz functions II). Under H2,

sup
f ∈Lip(du)

∥∥∥∥ 1

u
∂

−→
gf

∥∥∥∥∞
≤ 1

σ(1, u)
sup
x∈N

(
1 + u(x + 1)

u(x)

)
.

If the sequence is chosen to be u(x) = qx on N with q ≥ 1, then the following result holds:

sup
f ∈Lip(du)

∥∥∥∥ 1

u
∂

−→
gf

∥∥∥∥∞
≤

∫ ∞

0
e−σ(1,u)t

(
q − 1 + 2 sup

i∈N
P
(
Xi

1,u,t = i
))

dt.

As an illustration of this theorem, we derive Proposition 4.4 in the case of negative binomial approximation.
Approximation in Kolmogorov distance. The first theorem indicates that the inequality

sup
1[0,m],m∈N

‖gf ‖∞ ≤ sup
0≤f ≤1

‖gf ‖∞

is actually an equality. This comes from the fact that the function achieving the argmax of the pointwise factor for
bounded functions is actually of the form f = 1[0,m]. As a consequence, our upper bounds for the first Stein factor are
identical for the approximation in total variation and Kolmogorov distances.

Theorem 3.9 (First Stein’s factor for indicator functions). If Vu is bounded from below and infN Vu = σ(u), it
stands that:

sup
1[0,m],m∈N

‖gf ‖∞ = sup
0≤f ≤1

‖gf ‖∞ ≤
∫ ∞

0
e−σ(u)t sup

i∈N
P
(
Xi

u,t = i
)
dt.

The two following theorems deal with the second Stein factor under the two set of hypotheses.

Theorem 3.10 (Second Stein’s factor for indicator functions I). Under H1,

sup
f =1[0,m],m∈N

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,∗u)t sup

i∈N
P
(
Xi

1,∗u,t = i
)
dt.

If the sequence is chosen to be u = 1, we have:

sup
f =1[0,m],m∈N

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,∗u)t sup

i∈N∗

∣∣P(
Xi

1,∗u,t = i
) − P

(
Xi

1,∗u,t = i − 1
)∣∣dt.

Comparing this second bound with the second bound obtained in Theorem 3.3 for the total variation approximation,
one notices the fact that the second Stein factor for the total variation approximation involves the second derivative
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of the function fi(x) = P(Xi
1,∗u,t = x), whereas the second Stein factor for the Kolmogorov approximation involves

only its first derivative.
Finally, we state the analogous of Theorem 3.10 under the alternative set of hypotheses.

Theorem 3.11 (Second Stein’s factor for indicator functions II). Under H2,

sup
f =1[0,m],m∈N

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,u)t sup

i∈N
P
(
Xi

1,u,t = i
)
dt.

If the sequence is chosen to be u = 1, we have:

sup
0≤f ≤1

‖∂gf ‖∞ ≤
∫ ∞

0
e−σ(1,u)t sup

i∈N

∣∣P(
Xi

1,u,t = i
) − P

(
Xi

1,u,t = i − 1
)∣∣dt.

3.4. Stein’s method and mixture of distributions

As another part of our work within the context of Stein’s method, we present in the current section theoretical error
bounds for the approximation of mixture of distributions. This section is independent from our study of Stein’s factors
contained in Section 3.3. Results from both sections are combined in Section 4 and applied to Poisson and geometric
mixture approximation.

Let ϕ be a non-negative function on N such that ϕ(0) = 0. For λ > 0, we denote by Iϕ(λ) the probability distribu-
tion on N whose Stein’s operator is

Sλg(x) = λg(x + 1) − ϕ(x)g(x), x ∈N.

By letting ϕ vary, one finds back for Iϕ(λ) every probability distribution supported on N. In particular, the choice
ϕ(x) = x gives the Poisson law and is studied in [6]. The choice ϕ(x) = r + x and ϕ(x) = 1 leads respectively to the
binomial negative and geometric laws. A less classical example is ϕ(x) = x2, for which Iϕ(λ) is a distribution with
pointwise probabilities Cλλ

x/(x!)2 for x ∈N (Cλ is the renormalizing constant).
The first theorem of this section reads as follows.

Theorem 3.12 (Closeness of two Iϕ(λ) distributions). Set λ,λ′ > 0. We have:

dF
(
Iϕ

(
λ′),Iϕ(λ)

) ≤ ∣∣λ − λ′∣∣ sup
f ∈F

‖gλ,f ‖∞,

where gf is the solution of the Stein’s equation Sλgf = f − ∫
f dIϕ(λ). More generally, for any positive sequence u,

if X ∼ Iϕ(λ) and X′ ∼ Iϕ(λ′), then:

dF
(
Iϕ

(
λ′),Iϕ(λ)

) ≤ ∣∣λ − λ′∣∣ sup
f ∈F

‖gf /u‖∞E
[
u
(
X′ + 1

)]
.

Proof. By the usual Stein error bound (12),

dF
(
Iϕ

(
λ′),Iϕ(λ)

) = sup
f ∈F

∣∣∣∣∫ f dIϕ

(
λ′) −

∫
f dIϕ(λ)

∣∣∣∣ = sup
f ∈F

∣∣E[
Sλgf

(
X′)]∣∣,

where X′ ∼ Iϕ(λ′). We know that E[Sλ′gf (X′)] = 0; this yields:∣∣E[
Sλgf

(
X′)]∣∣ = ∣∣E[(

λ − λ′)gf

(
X′ + 1

)]∣∣ = ∣∣(λ − λ′)
E

[
u
(
X′ + 1

)
gf

(
X′ + 1

)
/u

(
X′ + 1

)]∣∣
≤ ∣∣λ − λ′∣∣‖gf /u‖∞E

[
u
(
X′ + 1

)]
. �

Note that the right hand side of both inequalities stated in Theorem 3.12 is not symmetric in (λ,λ′) due to the
dependence of gf on λ and one can slightly improve it by taking the minimum over the symmetrized form. The first
inequality corresponds to the constant sequence u = 1.
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Let W be a mixture of law Iϕ(λ); namely there exists a random variable � on R
+ such that

L(W |�) = Iϕ(�).

(Recall that L(W) denotes the distribution of the random variable W .) A consequence of Theorem 3.12 is the following
corollary.

Corollary 3.13 (Biased approximation of mixed Iϕ(λ) laws). With the preceding notation, we have:

dF
(
L(W),Iϕ(λ)

) ≤ E
[|λ − �|] sup

f ∈F
‖gf ‖∞.

Proof. Indeed,

dF
(
L(W),Iϕ(λ)

) ≤ E
[
dF

(
L(W |�),Iϕ(λ)

)] ≤ E
[|λ − �|] sup

f ∈F
‖gf ‖∞.

�

However, one actually has the following better bound using the mixture property of W :

Theorem 3.14 (Unbiased approximation of mixed Iϕ(λ) distributions). For every positive sequence u, letting
λ = E[�], we have:

dF
(
L(W),Iϕ(λ)

) ≤ sup
f ∈F

‖∂ugf ‖∞ sup
f ∈Lip(d→

u
)

‖gf ‖∞ Var(�).

More generally, the following upper bound holds for all positive sequences u,v:

dF
(
L(W),Iϕ(λ)

) ≤ sup
f ∈F

‖∂ugf ‖∞ sup
r∈Lip(d→

u
)

‖gr/v‖∞E
[|λ − �|2E[

v(W + 1)|�]]
.

Proof. For every real-valued function g on N, E[S�(g)(W)|�] = 0. Hence, by taking g = gf the solution to Stein’s
equation associated with any fixed function f : N→ R,

E
[
Sλgf (W)

] = E
[
E

[
(Sλ − S�)gf (W)|�]] = E

[
(λ − �)gf (W + 1)

]
= E

[
(λ − �)

(
gf (W + 1) − gf (Z + 1)

)]
,

where Z ∼ Iϕ(λ). For two random variables Z,Z′ on N, by the Kantorovich-Rubinstein theorem recalled at the
beginning of this section,∣∣E[

g
(
Z′ + 1

) − g(Z + 1)
]∣∣ ≤ ‖∂ug‖∞Wdu

(
L

(
Z′ + 1

)
,L(Z + 1)

) = ‖∂ug‖∞ infE
[
du

(
Z′ + 1,Z + 1

)]
= ‖∂ug‖∞Wd→

u

(
L

(
Z′),L(Z)

)
,

where the infimum is taken on the set of couplings with first marginal L(Z) and second marginal L(Z′). Now, by
Theorem 3.12,

E
[
Sλgf (W)

] ≤ ‖∂ug‖∞E[|λ − �|E[
Wd→

u

(
L(W),L(Z)

)|�]
≤ ‖∂ug‖∞ sup

r∈Lip(d→
u

)

‖gr/v‖∞E
[
(λ − �)2

E
[
v(W + 1)|�]]

.

As in Theorem 3.12, the first inequality is an instance of the second one in the case v = 1. �

Remark 3.15 (Alternative bound via coupling). In the previous proof, we used Theorem 3.12 in order to bound
Wd→

u
(Iϕ(�),Iϕ(λ)). It is also possible to bound this distance via another method (for instance a coupling argument)

instead of using a bound on Stein’s solution.
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4. Examples

In this section we illustrate our results on some examples. The classical examples of the M/M/∞ and M/M/1 process
come from the queueing theory. We also apply the results to the Galton–Watson process with immigration. Other
explicit examples of birth–death processes for which a “good choice” of sequence u is known are given in [14,
Table 9.1, p. 351] and in [13]. For the sake of conciseness we defer the proof of Lemma 7.1 about the pointwise
probabilities of the M/M/∞ queue to Section 7.

4.1. The M/M/∞ process and the Poisson approximation

Let (Xt )t≥0 be a BDP with constant birth death λ and linear death rate x �→ x. Its invariant measure is the Poisson
law Pλ. Let us set u = v = 1 on N. By application of Theorem 2.1 we find that V1 = 1 and that (P1,t )t≥0 = (Pt )t≥0.
Applying Theorem 2.5 (or re-applying Theorem 2.1) yields V1,1 = 2 and (P1,1,t )t≥0 = (Pt )t≥0. By a straightforward
induction, for all positive or bounded functions f : N→ R,

∂kPtf = e−ktPt ∂
kf, t ≥ 0, k ∈ N. (14)

Combined with Theorem 2.8 and Remark 2.9, the equation (14) implies the following contraction in Zolotarev-type
distance: for all μ ∈ P ,

sup
‖∂kf ‖∞≤1

∣∣μ(Ptf ) −Pλ(f )
∣∣ ≤ e−kt sup

‖∂kf ‖∞≤1

∣∣μ(f ) −Pλ(f )
∣∣, k ∈N

∗.

Formula (14) is already known and often proved using Mehler’s formula which reads, for any bounded function f ,
as:

Ptf (x) = E
[
f

(
X0

t + Bt

)]
, x ∈ N, t ≥ 0, (15)

where (X0
t )t≥0 is a M/M/∞ process starting from 0 and Bt is an independent random variable distributed as a bino-

mial random variable with parameters (x, e−t ). It is also known that X0
t is distributed as a Poisson distribution with

parameter λ(1 − e−t ) at every time t ≥ 0. Conversely, the proof of the formula (15) can be deduced from Theorem 2.1
with similar (but simpler) arguments than those developed in Lemma 4.2 below.

We now turn to the subject of Poisson approximation and the associated Stein factors. Let gf be the solution to
Stein’s equation (11) with Stein’s operator Sf (x) = λf (x +1)−xf (x). The target measure is the Poisson distribution
Pλ. The following lemma allows to estimate from above the pointwise probabilities of the process (Xt )t≥0.

Lemma 4.1 (Upper bounds of the instantaneous probabilites of the M/M/∞ queue). Let (Xx
t )t≥0 be a

BDP(λ, x)x∈N. For all x ∈N and t ≥ 0,

sup
x∈N

P
(
Xx

t = x
) ≤ 1 ∧ c√

λ(1 − e−t )
, c = 1√

2e
,

sup
x∈N∗

∣∣P(
Xx

t = x
) − P

(
Xx

t = x − 1
)∣∣ ≤ 1 ∧ C

λ(1 − e−t )
, C = 1√

2π
e

1√
2 ≤ 1.

The first upper bound is very classical, it derives from Mehler’s formula (15) and an upper bound on the pointwise
probabilitites of the Poisson distribution ([6, Proposition A.2.7]). The second one is new and is proved in Section 7,
since it is rather technical and can be omitted at first reading.

By applying Theorems 3.2, 3.6, 3.8 jointly with the first bound of Lemma 4.1, one finds back (and by the same
techniques) the following upper bounds ([4,7]):

sup
0≤f ≤1

‖gf ‖∞ ≤ 1 ∧
√

2

λe
, sup

f ∈Lip(d1)

‖gf ‖∞ = 1, sup
f ∈Lip(d1)

‖∂gf ‖∞ ≤ 1 ∧ 8

3
√

2eλ
.
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Of course, one may want to derive other known Stein’s factors for Poisson approximation by our techniques, as for
instance the second Stein factor for approximation in the total variation distance with rate 1 ∧ (1/λ) ([6]). However,
when applying Theorem 3.4 with the second bound of Lemma 4.1, the non-integrability in 0 of the term 1/(1 − e−t )

leads to sub-optimal results (namely, after some careful computations, we recover the known rate, up to a multiplica-
tive factor logλ).

Let us now combine the Stein bounds with our results on the mixture of distributions. If ϕ(x) = x then Iϕ(λ) =Pλ.
In particular, Theorem 3.12 and the preceding bounds give

dTV
(
P(λ),P

(
λ′)) ≤ 1

1 ∧ √
λ ∨ λ′

∣∣λ − λ′∣∣, W(Pλ,Pλ′) ≤ ∣∣λ − λ′∣∣.
The first bound is (almost) the result of [6, Theorem 1.C, p. 12]. The second one is in fact an equality and can also

be proved via a coupling approach ([20]). Theorem 3.14 yields

W
(
L(W),Iϕ(λ)

) ≤
(

1 ∧ 8

3
√

2eλ

)
Var(�), dTV

(
L(W),Iϕ(λ)

) ≤ 1

λ
Var(�).

While the second bound is exactly the same as in [6, Theorem 1.C, p. 12], the bound in Wasserstein distance seems
to be new. Let us see an instance of it. We denote by NB(r,p) the negative binomial distribution of parameters (r,p),
i.e.,

NB(r,p)(x) = �(r + x)

�(r)x! (1 − p)rpx, x ∈ N,

where � denotes the usual � function. The negative binomial law is a mixed Poisson distribution with � distributed
as a Gamma law with parameters r and 1−p

p
. Consequently, we obtain

W
(
NB(r,p),Pr(1−p)/p

) ≤ 8

3
√

2e

√
r(1 − p)

p

(1 − p)

p
,

which is the upper bound announced in the introduction. A similar approximation in total variation distance holds.
Although the convergence of the binomial negative distribution towards a Poisson law in the regime p → 1, r → ∞
and r(1 − p)/p → c for a positive constant c is a well-known fact, the preceding upper bound seems to be the first
attempt to quantify this convergence.

4.2. The GWI process and the negative binomial approximation

We consider the BDP with rates α(x) = p(r + x), β(x) = x on N with r > 0 and 0 < p < 1. The coefficient pr can
be interpreted as a rate of immigration, while the birth rate per capita is p and the death rate per capita is 1. Without
the immigration procedure, this is a Galton–Watson process whose individuals have only one descendant (or simply
a linear birth–death process). The invariant measure of this process is the negative binomial distribution NB(r,p) just
defined. Remark that for the particular choice r = 1 it is nothing else than the geometric law of parameter p. If X is a
NB(r,p) random variable then X + r follows the so-called Pascal distribution; it represents the number of successes
in a sequence of independent and identically distributed Bernoulli trials (with parameter p) before r failures when r

is a positive integer.
Let us take u = v = 1 on N. Theorem 2.1 shows that:

∂Pt = P
V1
1,t , t ≥ 0,

where (P1,t )t≥0 is a birth–death process with rates defined as

α1(x) = p(r + 1 + x), β1(x) = x, x ∈ N.
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It is again a Galton–Watson process with immigration. The birth and death rates are unchanged and the immigration
rate is increased by p. The potential V1 is constant and takes the value V1 = 1 − p. By Theorem 2.5, we find that
(Pt )t≥0 and ∂2 are intertwined via the Feynman–Kac semigroup composed of a birth–death semigroup with rates
(α1,1, β1,1) and of potential V1,1, with:

α1,1(x) = p(r + 2 + x), β1,1(x) = x, V1,1(x) = 2(1 − p), x ∈N.

Let us call (Pk,t )t≥0 the semigroup associated to a BDP with rates (p(r + k + x), x) on N. By a straightforward
induction, for all positive or bounded functions f : N→ R, the following intertwining relation holds:

∂kPtf = e−(1−p)ktPk,t ∂
kf, t ≥ 0, k ∈N. (16)

As indicated in Remark 2.9, the previous equality gives the following improvement of Theorem 2.8: for every
μ ∈ P ,

sup
‖∂kf ‖∞≤1

∣∣μ(Ptf ) − π(f )
∣∣ ≤ e−(1−p)kt sup

‖∂kf ‖∞≤1

∣∣μ(f ) − π(f )
∣∣.

Another consequence of the formula (16) is the invariance of polynomials under the action of (Pt )t≥0: if Q is a
polynomial of degree k, then for all t ≥ 0, ∂kPtQ is constant, hence PtQ is still a polynomial of degree k. This
property also holds for the M/M/∞ process.

Intertwining relations can be seen in certain cases as consequences of Mehler-type formulas. Here, conversely, we
are able to derive a Mehler-type formula from the first order intertwining relation. To our knowldedge, this formula is
new, though another Mehler-type formula is proved in [5].

Lemma 4.2 (A Mehler’s formula for the Galton–Watson process with immigration). Set 0 < p < 1, s > 0 and
q = 1 − p. For all x ∈ N let (Y x

t )t≥0 be a birth–death process starting at x and with rates (p(s + k), k)k∈N. Let Wt

be a random variable following the Poisson distribution P(p(1 − e−t )) and define the sequence (w(k))k∈N as

w(0) = 1 − e−qt
P(Wt = 0) and ∀k ∈N

∗, w(k) = e−qt
(
P(Wt = k − 1) − P(Wt = k)

)
.

For all t ≥ 0, let the random variables (Zi,t )i∈N be independent, identically distributed and independent of Y 0
t , with

distribution given by the pointwise probabilities (w(k))k∈N. Then we have the equality in law

Yx
t = Y 0

t +
x∑

i=1

Zi,t .

Proof. This proof is a corollary of the intertwining formula (16) for k = 1. Indeed, for every bounded real-valued
function on N, Theorem 2.1 implies that

E
[
f

(
Yx+1

t

)] = E
[
f

(
Yx

t

)] + e−qt
E

[
f

(
Ỹ x

t + 1
) − f

(
Ỹ x

t

)]
, x ∈N, t ≥ 0,

where (Ỹ x
t )t≥0 is a BDP (p(s + 1 + k), k)k∈N. We notice that (Ỹ x

t )t≥0 = (Y x
t + Wt)t≥0, where (Wt)t≥0 is a birth–

death process independent of (Y x
t )t≥0 with rates (p, k)k∈N such that W0 = 0. The process (Wt )t≥0 is a M/M/∞ queue

starting from 0 at time 0. It is distributed as a Poisson law Pλt , λt = p(1 − e−t ) at all times t ≥ 0. We use below the
observation that as λt < 1 for all t ≥ 0, the sequence (P(Wt = k))k∈N is non-increasing on N. We have:

E
[
f

(
Yx+1

t

)] = E
[
f

(
Yx

t

)] + e−qt
∞∑

k=0

P(Wt = k)E
[
f

(
Yx

t + k + 1
) − f

(
Yx

t + k
)]

= (
1 − e−qt

P(Wt = 0)
)
E

[
f

(
Yx

t

)] + e−qt

∞∑
k=1

(
P(Wt = k − 1) − P(Wt = k)

)
E

[
f

(
Yx

t + k
)]

=
∞∑

k=0

w(k)E
[
f

(
Yx

t + k
)]

,
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where the sequence (w(k))k∈N is defined in the statement of the lemma. It is easy to check that
∑∞

k=0 w(k) = 1,
and that the sequence (w(k))k∈N is non-negative thanks to the observation above. For all t ≥ 0, we define a random
variable St such that St is independent of (Y x

t )t≥0 and that for all non-negative integer P(St = k) = w(k). This yields
the equality in law Yx+1

t = Yx
t + St . The lemma follows by induction. �

Let us turn to the study of Stein’s factors associated to the negative binomial approximation. We recall a lemma
from [5] on the instantaneous probabilities of a Galton–Watson process with immigration, and give an outline of the
proof for the sake of completeness. One could also use Lemma 4.2 jointly with Lemma 7.1 to upper-bound these
instantaneous probabilities, but the majoration obtained by doing so does not reveal practical to use.

Lemma 4.3 (Upper bound of the instantaneous probabilities of a GWI process). Set (Xx
t )t≥0 be a

BDP(p(r + k), k)k∈N. Then:

sup
x∈N

P
(
Xx

t = x
) ≤ 1 ∧ 1√

2e

(
1 − p

p(1 − e−(1−p)t )

)1/2
K(r)√

r
, t ≥ 0,p ∈ (0,1), r >

1

2
,

with K(r) = √
r�(r − 1/2)/�(r).

Proof. By Lemma 4.2,

sup
x∈N

P
(
Xx

t = x
) ≤ sup

x∈N
P
(
X0

t = x
)
, t ≥ 0.

By a result of [18], cited as Lemma 2.2 in [5], it is known that for all t ≥ 0, X0
t is distributed as a negative binomial

distribution of parameters (r, θt (p)), with

θt (p) = 1 − 1 − p

1 − pe−(1−p)t
.

Now [24] shows that when X is distributed as a negative binomial distribution with parameters (r, θ), and if r > 1
2 ,

then

sup
k∈N

P(X = k) ≤ 1√
2e

√
1 − θ

θ

K(r)√
r

,

which achieves the proof. �

For the Stein factor associated with Lipschitz function, Theorem 3.6 and equation (16) yield

sup
f ∈Lip(d)

‖gf ‖∞ = 1

σ(1)
= 1

1 − p
,

recovering [5, Theorem 1.1, equation (1.3)].
The following proposition on the second Stein factor associated to Lipschitz function improves on the known upper

bounds.

Proposition 4.4 (Estimation of the second Stein’s factor for Lipschitz function and NB-approximation). Let
r > 0 and 0 < p < 1. For a real-valued function f on N, let gf be the (centered) solution to Stein’s equation

p(r + x)∂gf (x) + x∂∗gf (x) = f (x) −
∫

f d NB(r,p), x ∈N.

Then,

sup
f ∈Lip(d)

‖∂gf ‖∞ ≤ min

{
1

1 − p
,

D√
(r + 2)p(1 − p)

}
, D = 2

√
π

3
√

e
� 0.72.
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Proof. By application of Theorem 6.8 and formula (16), we find that

sup
f ∈Lip(d)

‖∂gf ‖∞ = 2
∫ ∞

0
e−2(1−p)t sup

i∈N
P
(
Xi

1,1,t = i
)
dt,

where (Xi
1,1,t )t≥0 is a BDP (p(r + 2 + x), x)x∈N. Applying Lemma 4.3,

sup
f ∈Lip(d)

‖∂gf ‖∞ ≤ 2
∫ ∞

0
e−2(1−p)t dt ∧ 2

√
1 − p

p

K(r + 2)√
(2e)(r + 2)

∫ ∞

0

e−2(1−p)t

√
1 − e−(1−p)t

dt.

The function K is decreasing on ( 1
2 ,∞), hence K(r + 2) ≤ K(2). (The function K is bounded from below by a

positive constant on ( 1
2 ,∞), hence by writing this majoration we do not lose the rate in r .) Furthermore,∫ ∞

0

e−2(1−p)t

√
1 − e−(1−p)t

dt = 4

3(1 − p)
.

Finally,

sup
f ∈Lip(d)

‖∂gf ‖∞ ≤ min

{
1

1 − p
,

D√
(r + 2)p(1 − p)

}
,

with D = 8K(2)

3
√

2e
= 4�(3/2)

3
√

e
= 2

√
π

3
√

e
. �

The Proposition 4.4 might be compared to [5, Theorem 1.1, equation (1.4)], which states the inequality

sup
f ∈Lip(d)

‖∂gf ‖∞ ≤ min

{
2

1 − p
,

1 + p

(1 − p)2
,

1.5√
rp(1 − p)3

}
. (17)

We observe that:

• The numerical constant in front of 1/(1 − p) is improved.
• As D√

(r+2)p(1−p)
≤ 0.8√

rp(1−p)
and 0.8 ≤ 1.5

1−p
, we have:

D√
(r + 2)p(1 − p)

≤ 1.5√
rp(1 − p)3

.

Note that the proofs are similar up to the formula

sup
f ∈Lip(d)

∣∣∂gf (i)
∣∣ = −

∫ ∞

0
∂∂∗Pt1i dt.

We then apply the second order intertwining formula, whereas [5] use another technique. In both cases, a bound of
the type supi P(Y i

t = i) is needed, but not for the same process (Yt )t≥0.
For the Stein factor associated to bounded functions, at the order 1 we find the following result.

Proposition 4.5 (Estimation of the first Stein factor for bounded functions and NB-approximation). With the
same assumptions as in Theorem 4.4, we have:

sup
0≤f ≤1

‖gf ‖∞ ≤ 1

1 − p
∧

√
π√

(r + 1)p(1 − p)
.



Intertwinings and Stein’s magic factors for birth–death processes 361

We do not detail the proof which is very similar to the one of Proposition 4.4.
This result improves on a result of [9, Lemma 3] which states

sup
0≤f ≤1

‖gf ‖∞ ≤ 1

p ∨ (1 − p)1r≥1
.

We do not develop the case of the second Stein factor of bounded functions, where the upper bound given by
Theorem 3.3 recovers the simple inequality

sup
0≤f ≤1

‖∂gf ‖∞ ≤ sup
f ∈Lip(d1)

‖∂gf ‖∞.

Results about this factor can be found in [10, Theorem 2.10], in [17, Example 2.12] for the case r = 1, and in [9,
Lemma 5].

If ϕ : x �→ r + x, r ∈ N and λ ∈ (0,1) then Iϕ(λ) = NB(r, λ). The variable W + r then represents the number of
trials that are necessary to obtain r successes in a Bernoulli experiment with a random probability of gain.

To conclude this section, we observe that the Stein operator associated to a probability measure is not unique,
and that resulting Stein’s factors depend on the choice of the operator. When r = 1, we recover the geometric law
as the invariant distribution, similarly to the forthcoming example. This is the choice of [17] to study the geometric
distribution. In the next section we choose another Stein’s operator.

4.3. The M/M/1 process and the geometric approximation

Let (Xx
t )t≥0 be a BDP(α,β) with rates α(x) = α,β(x) = β1x∈N∗ on N. We suppose that ρ := α

β
< 1. We denote

by (Pt )t≥0 the associated semigroup. Its invariant distribution is the geometric law G(ρ) with pointwise probabilities
p(k) = (1 − ρ)ρk for k ∈ N. Notice that this is the definition of the geometric law with support N and not N∗. Let
us choose u(x) = rx, v(x) = qx for x ∈ N with r > 0, q ≥ 1. Theorem 2.1 gives rise to a Feynman–Kac semigroup
composed of a birth–death semigroup (Pu,t )t≥0 with rates (αu,βu) and a potential Vu, which are defined as

αu(x) = rα, βu(x) = 1

r
β, Vu(x) = (1 − r)α +

(
1 − 1

r
1x∈N∗

)
β, x ∈N.

The semigroup (P
Vu
u,t )t≥0 is still a semigroup associated to a M/M/1 queue, only with modified rates. The potential Vu,

while non-constant, is non-increasing on N. By Theorem 2.2, we find a Feynman–Kac semigroup (P
Vu,∗v

u,∗v,t )t≥0 where
(Pu,∗v,t )t≥0 is again a semigroup corresponding to a M/M/1 queue. The rates and potential are defined on N as

αu,∗v(x) = qrα, βu,∗v(x) = 1

qr
β1x∈N∗ , x ∈N,

Vu,∗v(x) = (1 − qr)α +
(

1 − 1

qr

)
β, x ∈N

∗, Vu,∗v(0) = α − (1 + q)rα + β.

Remark that, in contrast with the general case of Theorem 2.2, the semigroup (Pu,∗v,t )t≥0 is again a birth–death
semigroup. This is due to the fact that Vu is constant on N

∗. The potential Vu is not constant on N, which prevents us
to apply Theorem 2.5, but it is almost constant which explains heuristically why we find again a birth–death process
when applying Theorem 2.2.

Set σ(u,∗v) = infx∈N Vu,∗v(x) = min(Vu,∗v(0),Vu,∗v(1)). A few calculations show that

max
{
σ(u,∗v)|u(x) = rx, v(x) = qx, r > 0, q ≥ 1

} = (
√

β − √
α)2,

and the arg max is realized for all r ≤ √
β/α = ρ−1 and q = ρ−1/r . This means that there is a range of choice for the

parameters (r, q) allowing to recover the spectral gap (
√

β − √
α)2 of the process in the convergence of Theorem 2.8.

However, contrary to the two preceding examples, notice that the second order intertwining does not allow to improve
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on the spectral gap and that the rate of convergence in the distance ζu,∗v is the same as the rate of convergence in the
Wasserstein distance Wdu for the best choices of u,v.

This example is maybe the most important because, in contrast with the two previous processes, the M/M/1 queue
is not known to satisfy a Mehler formula of the type (15), which would make it rather difficult to differentiate directly.
A Mehler-like formula can nevertheless be deduced from Theorem 2.1: choosing u = 1 in this theorem, we derive

E
[
f

(
Xx+1

t

) − f
(
Xx

t

)] = E
[
e− ∫ t

0 V (Xx
s ) ds

(
f

(
Xx

t + 1
) − f

(
Xx

t

))]
,

where (Xx
t )t≥0 is M/M/1 process starting from x and V (x) = β1x=0. As a consequence, if Bt is a Bernoulli random

variable verifying

P
(
Bt = 1|(Xx

s

)
s≤t

) = e− ∫ t
0 V (Xx

s ) ds, t ≥ 0,

then,

E
[
f

(
Xx+1

t

)] = E
[
(f

(
Xx

t + Bt

)]
, t ≥ 0,

and by induction there exists a random variable Yx
t such that

E
[
f

(
Xx

t

)] = E
[
(f

(
X0

t + Yx
t

)]
, t ≥ 0.

This formula seems to be new (even if the instantaneous distribution of the M/M/1 process is known, see [2]).
Unfortunately, the random variable Yx

t is not independent from X0
t and this makes this formula less powerful than

(15). This approach is generalizable for every BDP with constant birth rate (so that the processes (X1,t )t≥0 and (Xt )t≥0
have the same law).

As in the preceding examples, we state a lemma related to the instantaneous probabilities of the modified process
before turning to the Stein factors for geometric approximation.

Lemma 4.6 (Upper bound of the instantaneous probabilities of a M/M/1 queue). Let (Yt )t≥0 be a M/M/1 queue
with rates (λ,λ1N∗). Then for all t ≥ 0,

sup
i∈N∗

P
(
Y i

t = i
) ≤ 1√

λt
.

Proof. Let us consider the BDP (Ỹt )t≥0 with rates (1,1x∈N∗). Then for all t ≥ 0, the equality in law Yt = Ỹλt holds,
hence it is enough to prove that supi∈N∗ P(Ỹ i

t = i) ≤ 1√
t
. By [1, Corollary 1 (d)], the sequence (P(Ỹ i

t = i))i≥0 is

non-increasing for every t ≥ 0. Hence supi∈N P(Ỹ i
t = i) = P(Ỹ 0

t = 0). By [1, formula (9) and Corollary 2 (a)],

P
(
Ỹ 0

t = 0
) =

∞∑
j=1

j

t
P
(
Z0

t = j
) = 1

t
E

[
Z0

t 1Z0
t >0

]
,

where (Z0
t )t≥0 is a birth–death process with constant birth rate 1 and constant death rate 1 on the whole integer line

Z; namely this is the continuous-time simple random-walk. This process can be represented as

∀t ≥ 0, Z0
t = N+

t − N−
t ,

where (N+
t )t≥0 and (N−

t )t≥0 are two independent Poisson processes with intensity 1. So, using that N1 and N2 have
the same law and Cauchy–Schwarz’s inequality

E
[
Z0

t 1Z0
t >0

] = E
[(

N+
t − N−

t

)
1N+

t >N−
t

] = E
[(

N−
t − N+

t

)
1N−

t >N+
t

]
= 1

2
E

[∣∣N+
t − N−

t

∣∣] ≤ 1

2
Var

(
N+

t − N−
t

)1/2 =
√

t

2
.
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This yields

sup
i∈N∗

P
(
Ỹ i

t = i
) ≤ P

(
Ỹ 0

t = 0
) ≤ 1√

2t
,

which achieves the proof. �

Up to the knowledge of the authors, Stein’s factors associated to the Wasserstein distance have not been studied
yet. The following proposition provides upper bounds on these factors.

Proposition 4.7 (Estimation of the Stein’s factors for Lipschitz function and geometric approximation). For all

0 < α < β , set u(x) = qx on N with q =
√

β
α

= ρ−1/2. Then,

sup
f ∈Lip(du)

∥∥∥∥gf

u

∥∥∥∥∞
= 1

σ(u)
= 1

(
√

β − √
a)2

,

sup
f ∈Lip(du)

‖∂vgf ‖∞ ≤ 1

(
√

β − √
a)2

(
1 +

√
α

β
min

{
1,

2
√

π

(αβ)1/4
(
√

β − √
a) − 1

})
.

Proof. By application of Theorem 3.6, one has immediately the first equation. By Theorem 3.7 with u(x) = qx, q =
ρ−1/2 =

√
β
α

, we have:

sup
f ∈Lip(du)

‖∂vgf ‖∞ ≤
∫ ∞

0
e−(

√
β−√

a)2t

(
1 −

√
α

β
+ 2

√
α

β
sup
i∈N∗

P
(
Xi

1,∗u,t = i
))

dt,

where (Xi
1,∗u,t )t≥0 is a M/M/1 queue with rates (

√
αβ,

√
αβ1N∗). On the one hand, this yields directly

sup
f ∈Lip(du)

‖∂vgf ‖∞ ≤ 1

(
√

β − √
a)2

(
1 +

√
α

β

)
.

On the other hand, as a consequence of Lemma 4.6, one has

sup
f ∈Lip(du)

‖∂vgf ‖∞ ≤
∫ ∞

0
e−(

√
β−√

a)2t

(
1 −

√
α

β
+ 2

1

(αβ)1/4

√
α

β

1√
t

)
dt

= 1

(
√

β − √
a)2

(
1 −

√
α

β

)
+ 1

(
√

β − √
α)

√
α

β

2

(αβ)1/4

∫ ∞

0
e−t dt√

t

= 1

(
√

β − √
a)2

(
1 −

√
α

β

)
+ 1

(
√

β − √
α)

√
α

β

2
√

π

(αβ)1/4
. �

Remark 4.8 (On the best upper bound). The expression 2
√

π

(αβ)1/4 (
√

β − √
a) − 1 is smaller than 1 as soon as

√
β − √

a

(αβ)1/4
<

1√
π

,

so there is a range of values of the parameters α and β , for example if they are close to each other, for which the factor
inside the min is actually a better upper bound than 1.

We now turn to the subject of the mixture of geometric laws. Set ϕ = 1 and ρ < 1, then Iϕ(ρ) = G(ρ). We choose
u(k) = qk on N, hence du(x, y) = |qx − qy |/|q − 1|. The preceding theorem put together with Theorem 3.12 gives
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for q = ρ−1/2 and in the case where ρ′ < √
ρ,

Wdu

(
G(ρ),G

(
ρ′)) ≤ ∣∣ρ − ρ′∣∣ × 1

(1 − √
ρ)2

× 1 − ρ′
√

ρ − ρ′ .

The case ρ′ > √
ρ is similar.

By the same reasoning as the one used in the proof of Theorem 3.14, for a random variable R such that E[R] = ρ,
and a random variable such that L(W |R) = G(R), we have the inequality:

dF
(
L(W),G(ρ)

) ≤ sup
f ∈F

‖∂ugf ‖∞E
[
(ρ − R)du(W + 1,G + 1)

]
,

where G ∼ G(ρ). Let G′ ∼ G(ρ′). With the interpretation of the geometric laws as the number of repetitions of a
binary experiment before the first success, it is easy to find a coupling such that a.s. G ≤ G′ when ρ ≤ ρ′. This yields

E
[
du

(
G,G′)] = 1

|1 − q|
∣∣∣∣ 1 − ρ

1 − qρ
− 1 − ρ′

1 − qρ′

∣∣∣∣ = |ρ − ρ′|
|(1 − qρ)(1 − qρ′)| .

Hence, if a.s. R < 1
q

, by Remark 3.15:

dF
(
L(W),G(ρ)

) ≤ sup
f ∈F

‖∂ugf ‖∞
q

1 − qρ
E

[ |ρ − R|2
(1 − qR)

]
.

Finally, by taking q = ρ−1/2, one finds that for two random variables R,S such that E[R] = ρ and a.s. R < 1√
ρ

,

and L(W |R) = G(R), the following upper bound holds:

dF
(
L(W),G(ρ)

) ≤
1 + 1√

ρ

(1 − √
ρ)3

E

[ |ρ − R|2
(1 − R√

ρ
)

]
.

4.4. Another example

Let us consider the BDP(α,β) with α(x) = x + 2, β(x) = x2 on N. Its invariant measure is a Poisson size-biased type
distribution, defined as

π(x) = 1

2e

(x + 1)

x! , x ∈ N.

Here size-biased means that if X ∼ π and Y ∼P(1) then:

P(X = x) = E[(Y + 1)1Y=x]
E[(Y + 1)] = (x + 1)P(Y = x)∑

j≥0(j + 1)P(Y = j)
, x ∈N.

Choosing the weight u such that u(x + 1)/u(x) = (x + 1)/(x + 3) for all x ∈ N, i.e. for example

u(x) = 1

(x + 1)(x + 2)
, x ∈N,

we find that Vu is constant. By Theorem 2.5 with v = 1, we have an intertwining with potential Vu,v(x) = 2x + 1
on N. Moreover, by Theorem 2.8, we have convergence of the semigroup towards π in the distance ζu,1 at rate 1.

The three next sections are devoted to the omitted proofs of the previous results.
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5. Proofs of Section 2

5.1. First order intertwining for the backward gradient ∂∗
u

First of all, let us state the analogous of Theorem 2.1 for the backward gradient ∂∗. Let (P∗u,t )t≥0 be the birth–death
semigroup associated to the generator L∗u, where for all non-negative or bounded function f : N→R and x ∈ N,

L∗uf = α∗u∂f + β∗u∂
∗f, V∗u = ←

α − α∗u + β − β∗u,

α∗u(x) = u(x + 1)

u(x)
α(x), β∗u(x) = u(x − 1)

u(x)
β(x − 1)1x∈N∗ .

The potential V∗u can be rewritten under the compacted form V∗u = ∂∗
u(

→
uα − uβ). We can also notice that V∗u = ←−

V→
u

on N
∗.

Theorem 5.1 (First-order intertwining relation for the backward gradient). If V∗u is bounded from below, then
for every real-valued function on N such that ‖∂∗

uf ‖∞ < +∞, and for all t ≥ 0,

∂∗
uPtf = P

V∗u∗u,t ∂
∗
uf. (18)

Let us call (Xx∗u,t )t≥0 the birth–death process of generator L∗u such that Xx
∗u,0 = x. The process (Xx∗u,t )t≥0 is not

irreducible, although it is indecomposable, i.e. it possesses only one recurrent class. Indeed if x ∈ N
∗ then (Xx∗u,t )t≥0

never visits the state 0 as β∗u(1) = 0 and if x = 0 the process (X0∗u,t )t≥0 leaves 0 almost surely.

Proof of Theorem 5.1. The core of the proof relies on the intertwining relation at the level of generators:

∂∗
uLf = L∗u∂

∗
uf − V∗u∂

∗
uf, (19)

which derives by easy computations. The intertwining at the level of the semigroups follows by the same argu-
ments as in the proof of Theorem 2.1 of [11]. We briefly recall these arguments. For all s ∈ [0, t] let us set
J (s) = P

V∗u∗u,s(∂
∗
uPt−sf ). If the function ∂∗

uPt−sf is bounded on N, then the Kolmogorov equations (6) for the
Feynman–Kac semigroup (P

V∗u∗u,t )t≥0 hold and

J ′(s) = P V∗u∗u,s

(
(L∗u − V∗u)∂

∗
uPt−sf − ∂∗

uLPt−sf
)
.

Thanks to the formula (19) this gives J ′(s) = 0. Hence J (0) = J (t) which is exactly the identity (18).
Let us show that ∂∗

uPt−sf is bounded on N. Indeed, recall that V∗u(x + 1) = V→
u
(x) on N. Furthermore

∂∗
uf (x + 1) = ∂→

u
f (x) on N. Hence V→

u
and ∂→

u
f are bounded on N, which implies that ∂→

u
Pt−sf is bounded ([13]).

For all positive integer ∂→
u
Pt−sf (x) = ∂∗

uPt−sf (x + 1), so ∂∗
uPt−sf is bounded. �

5.2. Alternative proof of first order intertwining theorems

This section aims to give a sample path interpretation of the first order intertwining relations (7) and (18), at least in a
particular case. It is independent of the other sections.

We focus on the case where the weight is u = 1 with non-increasing birth rates (α(x))x∈N and non-decreasing
death rates (β(x))x∈N. When intertwining the birth–death semigroup with the forward gradient ∂ , one obtains a new
birth–death semigroup with shifted birth rate and unchanged death rate

α1 = →
α , β1 = β,

whereas when intertwining the birth–death semigroup with the backward gradient ∂∗, one obtains a new birth–death
semigroup with shifted death rate and unchanged birth rate:

α∗1 = α, β∗1 = ←
β .
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In order to explain this fact, we will give a probabilistic proof of the formulae (7) and (18). Recall that for all real-
valued bounded functions on N and x ∈N,

∂Ptf (x) = E
[
f

(
Xx+1

t

) − f
(
Xx

t

)]
,

∂∗Ptf (x + 1) = E
[
f

(
Xx

t

) − f
(
Xx+1

t

)]
.

At time t = 0, Xx+1
t = Xx

t +1. We construct a process (St )t≥0 such that for all t ≥ 0, Xx+1
t = Xx

t +St and St ∈ {0,1}.
If for a time t , St = 0, then we choose the sticking coupling between (Xx

t+s)s≥0 and (Xx+1
t+s )s≥0 (i.e. the process

(St )t≥0 is absorbed in 0). If St = 1, it is natural to construct the following coupling:

1. with rate α(Xx
t + 1) = α(Xx+1

t ), Xx
t and Xx+1

t jump upwards together and St remains equal to 1,
2. with rate β(Xx

t ) = β(Xx+1
t − 1), Xx

t and Xx+1
t jump downwards together and St remains equal to 1,

3. with rate α(Xx
t ) − α(Xx

t + 1) = α(Xx+1
t − 1) − α(Xx+1

t ), Xx
t jumps upwards, Xx+1

t does not jump and St jumps
from 1 to 0,

4. with rate β(Xx+1
t )−β(Xx

t ) = β(Xx+1
t )−β(Xx+1

t − 1), Xx+1
t jumps downwards, Xx

t does not jump and St jumps
from 1 to 0.

This implies in particular that for all t ≥ 0 the process St jumps from 1 to 0 with rate

α
(
Xx

t

) − α
(
Xx

t + 1
) + β

(
Xx+1

t

) − β
(
Xx

t

) = V1
(
Xx

t

) = V∗1
(
Xx+1

t

)
.

Moreover, conditionally to {St = 1}, (Xx
t )t≥0 evolves as a BDP(

→
α ,β) and (Xx+1

t )t≥0 evolves as a BDP(α,
←
β )).

Indeed, as long as St = 1, the steps (3) and (4) do not occur.
To exploit rigorously the preceding facts, let us introduce the BDP(

→
α ,β) starting from x denoted by (Xx

1,t )t≥0,

whose standard filtration is (Ft )t≥0. The processes (Xx
t )t≥0 and (Xx

1,t )t≥0, as well as (Xx+1
t )t≥0 and (Xx

1,t + 1)t≥0,
can be coupled as follows:

1. Let E be an exponential with parameter 1 and T such that T = inf{t ≥ 0,
∫ t

0 V (Xx
1,s ) ds > E}.

2. Set St = 1 if t < T and St = 0 otherwise.
3. Set Xx

t = Xx
1,t for t ≤ T .

4. At time T , sample a random variable Z satisfying to

P
(
Z = Xx

1,T + 1|FT

) = α(Xx
1,T ) − α(Xx

1,T + 1)

V (Xx
1,T )

,

P
(
Z = Xx

1,T |FT

) = β(Xx
1,T + 1) − β(Xx

1,T )

V1(X
x
1,T )

.

5. Let evolve the process (Xx
t )t≥T as a BDP(α,β) starting from Z.

The coupling (Xx
t ,Xx

1,t , St )t≥0 satisfy to

Xx
t 1St=1 = Xx

1,t1St=1, Xx+1
t 1St=1 = (

Xx
1,t + 1

)
1St=1, P

(
St = 1|(Xx

1,s

)
0≤s≤t

) = e
− ∫ t

0 V1(X
x
1,s ) ds

.

This allows to find back the formula (7):

∂Ptf (x) = E
[
f

(
Xx+1

t

) − f
(
Xx

t

)] = E
[(

f
(
Xx+1

t

) − f
(
Xx

t

))
1St=1

]
= E

[(
f

(
Xx

1,t + 1
) − f

(
Xx

1,t

))
e
− ∫ t

0 V1(X
x
1,s ) ds] = P

V1
1,t (∂f )(x).

Similarly it is possible to construct a coupling (Xx+1
t ,Xx+1

∗1,t , St )t≥0 such that (Xx+1
∗1,t )t≥0 is a BDP(α,

←
β ) starting

from x + 1 and satisfying to

Xx+1
t 1St=1 = Xx+1

∗1,t 1St=1, Xx
t 1St=1 = (

Xx+1
∗1,t − 1

)
1St=1, P

(
St = 1|(Xx+1

∗1,s

)
0≤s≤t

) = e
− ∫ t

0 V∗1(X
x+1
∗1,s ) ds

,
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leading to the formula (18):

∂∗Ptf (x + 1) = E
[
f

(
Xx

t

) − f
(
Xx+1

t

)] = E
[(

f
(
Xx

t

) − f
(
Xx+1

t

))
1St=1

]
= E

[(
f

(
Xx+1

∗1,t − 1
) − f

(
Xx+1

∗1,t

))
e
− ∫ t

0 V∗1(X
x+1
∗1,s ) ds] = P

V∗1∗1,t

(
∂∗f

)
(x + 1).

It is interesting to remark that conversely, the intertwining formula (7) can in certain cases yield a coupling between
(Xx

t )t≥0 and (Xx+1
t )t≥0. The proof of Lemma 4.2 above is based on this idea.

5.3. Proof of Theorems 2.2 and 2.5

Proof of Theorem 2.2. Let us begin by showing the following intertwining relation at the level of the generators:

∂∗
v ∂uLf = Lu,∗v∂

∗
v ∂uf − Vu,∗v∂

∗
v ∂uf.

By application of Theorem 2.1 and Theorem 5.1 we find that

∂∗
v (∂uLf ) = ∂∗

v

(
Lu(∂uf ) − Vu∂uf

)
= (Lu)∗v∂

∗
v ∂uf − (Vu)∗v∂

∗
v ∂uf + ∂∗

v (−Vu∂uf ),

where (Lu)∗v and (Vu)∗v stand for the generator, respectively the potential, obtained by intertwining the BDP(αu,βu)

and the ∂∗v gradient. The generator (Lu)∗v is the generator of a BDP((αu)∗v, (βu)∗v) such that for all x ∈ N,

(αu)∗v(x) = v(x + 1)

v(x)
αu(x) = v(x + 1)

v(x)

u(x + 1)

u(x)
α(x + 1)

(βu)∗v(x) = v(x − 1)

v(x)
βu(x − 1) = v(x − 1)

v(x)

u(x − 2)

u(x − 1)
β(x − 1)1x∈N∗ .

The potential (Vu)∗v writes on N

(Vu)∗v(x) = αu(x − 1)1x∈N∗ − (αu)∗v(x) + βu(x) − (βu)∗v(x).

The next step is to rewrite the expression ∂∗
v (−Vu∂uf ) in terms of ∂∗

v ∂uf . Let us denote g = ∂uf in the following
lines. For every x ∈N

∗, ∂∗
u(fg)(x) = f (x)∂∗

ug(x) + ∂∗
uf (x)g(x − 1) and f (x) = −∑x

k=0 u(k)∂∗
uf (k) so that

∂∗
v (−Vug)(x) = −Vu(x)∂∗

v g(x) − ∂∗
v Vu(x)g(x − 1)

= −Vu(x)∂∗
v g(x) + ∂∗

v Vu(x)

x−1∑
k=0

v(k)∂∗
v g(k)

= ∂∗
v Vu(x)

x−1∑
k=0

v(k)
(
∂∗
v g(k) − ∂∗

v g(x)
) −

(
Vu(x) −

(
x−1∑
k=0

v(k)

)
∂∗
v Vu(x)

)
∂∗
v g(x).

Besides, ∂∗
v (−Vug)(0) = 1

v0
Vu(0)g(0) = −Vu(0)∂∗

v g(0). We do indeed find ∂∗
v ∂uL = (Lu,∗v − Vu,∗v)∂

∗
v ∂u with

Lu,∗vf (x) = (Lu)∗vf (x) + ∂∗
v Vu(x)v(x − 1)

(
f (x − 1) − f (x)

)
+ ∂∗

v Vu(x)

(
x−2∑
j=0

v(j)

)
x−2∑
k=0

v(k)

(
∑x−2

j=0 v(j))

(
f (k) − f (x)

)
,

Vu,∗v(x) = (Vu)∗v(x) + Vu(x) −
(

x−1∑
k=0

v(k)

)
∂∗
v Vu(x).
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The generator Lu,∗v has a birth–death component and a component making the process at point x jumping on the set
{0, . . . , x −2}. The birth rates are αu,∗v = (αu)∗v . The death rates come from (Lu)∗v and from the term ∂∗

v Vu(x)v(x −
1)(f (x − 1) − f (x)), so that

βu,∗v(x) = (βu)∗v + ∂∗
v Vu(x)v(x − 1)1x∈N∗ .

Remembering that Vu(x) = α(x) − αu(x) + β(x + 1) − βu(x) we get that for all positive integer x

(Vu)∗v(x) + Vu(x) = α(x) + αu(x − 1) − (
αu(x) + (αu)∗v(x)

) + β(x + 1) − (βu)∗v(x)

=
(

1 + u(x)

u(x − 1)

)
α(x) −

(
1 + v(x + 1)

v(x)

)
u(x + 1)

u(x)
α(x + 1)

+ β(x + 1) − v(x − 1)

v(x)

u(x − 2)

u(x − 1)
β(x − 1),

and

(Vu)∗v(0) + Vu(0) = −(αu)∗v(0) + Vu(0) = α(0) − (
αu(0) + (αu)∗v(0)

) + β(1)

= α(0) −
(

1 + v(1)

v(0)

)
u(1)

u(0)
α(1) + β(1).

The same reasoning as in the proof of Theorem 5.1 allows to deduce the relation at the level of the semigroups from
the relation at the level of the generators, provided that we can show that for all t ≥ 0 the function ∂∗

v ∂uPtf is bounded
on N. It is the case; indeed, by Theorem 2.1, ∂uPtf = P

Vu
u,t ∂uf is bounded and ∂∗

v |∂uPtf | ≤ 2
infx∈N v(x)

|P Vu
u,t ∂uf |. �

Proof of Theorem 2.5. Surprisingly, Theorem 2.5 cannot be deduced from Theorem 2.2 when u 
= 1. However, its
proof goes along the same lines as the proof of Theorem 2.2, only easier because ∂v∂u(Vu∂uf ) = Vu∂v∂uf , so that
the intertwining relation at the level of the generators follows directly. �

6. Proofs of Section 3

The semigroup representation (13) of the solution of Stein’s equation gf can be rewritten as:

→
gf = −u

∫ ∞

0
∂uPtf dt, (20)

∂gf = u

∫ ∞

0
∂u∂

∗Ptf dt, (21)

−→
∂gf = −u

∫ ∞

0
∂u∂Ptf dt. (22)

The left-hand side of an intertwining relation between a weighted gradient and a birth–death semigroup appears
under the integral. This fact suggests to apply the intertwining relations shown previously. However, it leads to sharper
results to first identify the function f ∈F that realizes the maximum in the pointwise Stein’s factors

max
f ∈F

∣∣gf (i)
∣∣, max

f ∈F
∣∣∂gf (i)

∣∣
for every i ∈ N. This first step is based on Lemma 6.1 and Lemma 6.2 below. Indeed, Lemma 6.1 gives an alternative
formulation of the solution of Stein’s equation.
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Lemma 6.1 ([10, Lemma 2.3]). For all i ∈N, let us define gj := g1j
and

e+
i = 1

α(i)π(i)

i∑
k=0

π(k), i ∈N; e−
i = 1

β(i)π(i)

∞∑
k=i

π(k), i ∈N
∗.

Then, for all i ∈N
∗, j ∈N,

gj (i) = π(j)
(−e+

i−11i≤j + e−
i 1i≥j+1

)
(23)

∂gj (i) = π(j)
((

e+
i−1 − e+

i

)
1j≥i+1 + (

e−
i+1 + e+

i−1

)
1i=j + (

e−
i+1 − e−

i

)
1j≤i−1

)
. (24)

Lemma 6.2 ([10, Lemma 2.4]). If V1 ≥ 0 then (e+
i ) is non-decreasing and (e−

i ) is non-increasing.

6.1. Approximation in total variation distance

We begin by describing the argmax of the pointwise quantities. To the knowledge of the authors, equation (25) is not
explicitly stated in preceding works. Equation (26) is proved in [10]. We briefly recall the arguments used for the sake
of completeness.

Lemma 6.3 (Argmax of the pointwise Stein’s factor). For all i ∈N,

g1[0,i](i) = sup
0≤f ≤1

−→
gf (i). (25)

Moreover if V1 ≥ 0, then for all i ∈N
∗

∂g1i
(i) = max

0≤f ≤1

∣∣∂gf (i)
∣∣. (26)

Proof. By replacing f by 1 − f if necessary

sup
0≤f ≤1

∣∣gf (i)
∣∣ = sup

0≤f ≤1
gf (i), sup

0≤f ≤1

∣∣∂gf (i)
∣∣ = sup

0≤f ≤1
∂gf (i).

By Lemma 6.1,

gf (i + 1) = e−
i+1

i∑
j=0

π(j)f (j) − e+
i

∞∑
j=i+1

π(j)f (j) ≤ e−
i+1

i∑
j=0

f (j),

with equality for f = 1[0,i] which proves (25). On the other hand,

∂gj (i) = πj

((
e+
i−1 − e+

i

)
1i≤j−1 + (

e−
i+1 + e+

i−1

)
1i=j + (

e−
i+1 − e−

i

)
1i≥j+1

)
,

so by Lemma 6.2 the quantity ∂gj (i) is non-negative if and only if i = j . Hence, if f is a function on N with values
in [0,1],

∂gf (i) =
∞∑

j=0

f (j)∂gj (i) ≤ ∂gi(i),

and there is equality if f = 1i . This shows (26). �

As a consequence, we have the following lemma of which Theorem 3.2 is a direct application.
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Lemma 6.4 (Pointwise first Stein’s factor for bounded functions). If Vu is bounded from below by σ(u) then for
all i ∈ N,

sup
0≤f ≤1

∣∣gf (i + 1)
∣∣ ≤

∫ ∞

0
e−σ(u)t

P
(
Xi

u,t = i
)
dt.

Moreover if Vu is constant then the preceding inequality is in fact an equality.

Proof. By the equation (20), Theorem 2.1 and Lemma 6.3, and because ∂u1[0,i] = − 1
u(i)

1i , we have for all function
f such that 0 ≤ f ≤ 1∣∣gf (i + 1)

∣∣ ≤ g1[0,i](i + 1) = −u(i)

∫ ∞

0
P

Vu
u,t (∂u1[0,i]) =

∫ ∞

0
P

Vu
u,t (1i ) ≤

∫ ∞

0
e−σ(u)t

P
(
Xi

u,t = i
)
dt. �

We now state results for the second pointwise Stein factor.

Lemma 6.5 (Pointwise second Stein’s factor for bounded functions).

• Under H1, for all integer i ∈N
∗, the quantity sup0≤f ≤1 |∂gf (i)| is bounded by∫ ∞

0
e−σ(1,∗u)t

(
− u(i)

u(i − 1)
P
(
Xi

1,∗u,t = i − 1
) + 2P

(
Xi

1,∗u,t = i
) − u(i)

u(i + 1)
P
(
Xi

1,∗u,t = i + 1
))

dt.

• Under H2, for all integer i ∈N, the quantity sup0≤f ≤1 |∂gf (i + 1)| is bounded by∫ ∞

0
e−σ(1,u)t

(
− u(i)

u(i − 1)
P
(
Xi

1,u,t = i − 1
) + 2P

(
Xi

1,u,t = i
) − u(i)

u(i + 1)
P
(
Xi

1,u,t = i + 1
))

dt.

Moreover, if the potential V1,∗u (respectively V1,u) is constant, then the first (respectively the second) upper bound is
in fact an equality.

Proof. For every positive integer i, let fi = 1i . By the equation (21), Theorem 2.2 and Lemma 6.3, under H1,

sup
0≤f ≤1

∣∣∂gf (i)
∣∣ = ∂gfi

(i) = u(i)∂ugfi
(i) ≤ u(i)

∫ ∞

0
e−σ(1,∗u)t

E
[
∂∗
u∂fi

(
X̃i

t

)]
dt.

As ∂∗
u∂fi = − 1

u(i−1)
1i−1 + 2 1

u(i)
1i − 1

u(i+1)
1i+1, we get the announced inequality.

Similarly the result under H2 derives from the equation (22), Theorem 2.5, Lemma 6.3 and the computation
−∂u∂fi+1 = − 1

u(i−1)
1i−1 + 2 1

u(i)
1i − 1

u(i+1)
1i+1. �

Theorem 3.3 and 3.4 are direct consequences of Lemma 6.5.

6.2. Approximation in Wasserstein distance

In contrast with the first order in total variation distance, the bound of Theorem 3.6 does not require a preliminary
bound on pointwise Stein’s factor.

Proof of Theorem 3.6. By Theorem 2.1,∣∣∣∣ 1

u
gf (· + 1)

∣∣∣∣ = |∂uhf | =
∣∣∣∣∫ ∞

0
∂uPtf dt

∣∣∣∣
=

∣∣∣∣∫ ∞

0
E

[
e− ∫ t

0 Vu(Xu,s) ds∂uf (Xu,t )
]
dt

∣∣∣∣ ≤ 1

σ(u)
‖∂uf ‖∞.
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Now to prove the sharpness if Vu is constant, it is enough to consider the map f : x �→ −∑x
k=1 u(x − 1) for which

the previous inequalities are in fact equalities. �

Remark 6.6 (Variant of Theorem 3.6). We can also derive an upper bound for

sup
f ∈Lip(du)

‖gf /u‖∞,

under the condition that V∗u is bounded by below, by using alternatively to equation (20) the equation

gf = −u

∫ ∞

0
∂∗
uPtf dt,

and Theorem 5.1 instead of Theorem 2.1.

For the second Stein factor, we begin by focusing on the pointwise quantity supf ∈F ∂ugf (i). For all i ∈ N, let us
introduce two functions ψi and �i defined for all j ∈ N as

ψi(j) =
(

1 − u(j − 1)

u(j)

)
1j≤i−1 +

(
1 + u(j − 1)

u(j)

)
1j=i +

(
u(j − 1)

u(j)
− 1

)
1j≥i+1,

�i(j) =
(

1 − u(j + 1)

u(j)

)
1j≤i−1 +

(
1 + u(j + 1)

u(j)

)
1j=i +

(
u(j + 1)

u(j)
− 1

)
1j≥i+1.

The following lemma allows to determine the functions that realize the supremum in the second pointwise Stein
factor. This lemma is a generalization of a lemma of [7], which addressed the case where u = 1 and (α(x),β(x))x∈N =
(λ, x)x∈N. Its proof depends on the already cited results of [10].

Lemma 6.7 (Argmax of the pointwise Stein’s factor). If V1 ≥ 0, then for all i ∈ N
∗

∂gϕi
= max

f ∈Lip(du)

∣∣∂gf (i)
∣∣, ϕi = −du(i, ·). (27)

Proof. If f and f̃ are two real-valued functions on N, then gf +f̃ = gf + gf̃ and that if f is constant, then gf = 0.
As a consequence, by replacing f by −f and f − f (i) if necessary,

sup
f ∈Lip(du)

∣∣∂gf (i)
∣∣ = sup

f ∈Lip(du),
f (i)=0

∂gf (i).

Recall that gj := g1j
for j ∈ N. For all real-valued function f on N,

gf =
∑
j∈N

f (j)gj , ∂gf (i) =
∑
j∈N

f (j)∂gj (i), i ∈ N.

By Lemmas 6.1 and 6.2, if f ∈ Lip(du) and f (i) = 0 then

∂gf (i) =
∞∑

j=0

f (j)∂gj (i)

= (
e+
i−1 − e+

i

) ∑
j≤i−1

πjf (j) + (
e−
i+1 − e−

i

) ∑
j≥i+1

πjf (j)

≤ ∣∣∂gϕi
(i)

∣∣ = (
e+
i − e+

i−1

) ∑
j≤i−1

πjdu(i, j) + (
e−
i − e−

i+1

) ∑
j≥i+1

πjdu(i, j).
�
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Lemma 6.8 (Pointwise second Stein’s factor for Lipschitz functions).

• Under H1, for all integer i ∈N
∗,

sup
f ∈Lip(du)

∣∣∂ugf (i)
∣∣ ≤

∫ ∞

0
e−σ(1,∗u)t

E
[
ψi

(
Xi

1,∗u,t

)]
dt. (28)

Moreover if V1,∗u is constant then the preceding inequality is in fact an equality.
• Under H2, for all integer i ∈N

sup
f ∈Lip(du)

∣∣∣∣ 1

u(i)
∂gf (i + 1)

∣∣∣∣ ≤
∫ ∞

0
e−σ(1,u)t

E
[
�i

(
Xi

1,u,t

)]
dt. (29)

Moreover if V1,u is constant then the preceding inequality is in fact an equality.

Proof of Lemma 6.8. Let us assume that H1 holds true. By the equation (21), Theorem 2.2 and Lemma 6.7, for every
positive integer i,

sup
f ∈Lip(du)

∣∣∂ugf (i)
∣∣ = 1

u(i)
sup

f ∈Lip(du)

∣∣∂gf (i)
∣∣ = 1

u(i)
∂gϕi

(i) = ∂ugϕi
(i) =

∫ ∞

0
∂∗
u∂Ptϕi dt

=
∫ ∞

0
P

V1,∗u

1,∗u,t

(
∂∗
u∂ϕi

)
dt ≤

∫ ∞

0
e−σ(1,∗u)t

E
[
∂∗
u∂ϕi

(
Xi

1,∗u,t

)]
dt.

It is easy to check that ψi = ∂∗
u∂ϕi , which proves (28).

Now, if H2 holds true, by the equation (22), Theorem 2.5 and Lemma 6.7, for all integer i,

sup
f ∈Lip(du)

∣∣∣∣ 1

u(i)
∂gf (i + 1)

∣∣∣∣ = 1

u(i)
sup

f ∈Lip(du)

∣∣∂gf (i + 1)
∣∣ = 1

u(i)
∂gϕi+1(i + 1)

= −
∫ ∞

0
∂u∂Ptϕi+1(i) dt

= −
∫ ∞

0
P

V1,u

1,u,t ∂u∂ϕi+1(i) dt.

As −∂u∂ϕi+1 = �i , the equation (29) holds true. �

We deduce from Lemma 6.8 both Theorem 3.7 and Theorem 3.8. We only give the proof of Theorem 3.7 because
Theorem 3.8 is similar.

Proof of Theorem 3.7. First of all let us notice that for all function f :N→ R,

‖∂uf ‖∞ ≤ sup
x∈N

(
1 + u(x + 1)

u(x)

)
‖f/u‖∞,

∥∥∂∗
uf

∥∥∞,N∗ ≤ sup
x∈N∗

(
1 + u(x − 1)

u(x)

)
‖f/u‖∞. (30)

Under H1, as ‖∂uϕi‖∞ ≤ 1, it implies that

sup
x∈N∗

∣∣∂u∂
∗ϕi(x)

∣∣ ≤ sup
x∈N∗

(
1 + u(x − 1)

u(x)

)
.

Plugging this in the equation (28) yields the first upper bound of the theorem.
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On the other hand, if u(x) = qx on N with q ≥ 1, then by using that 1[0,i] = 1 − 1i − 1[i+1,∞), we write

∂∗
u∂ϕi(j) =

(
1 − u(j − 1)

u(j)

)
+ 2

u(j − 1)

u(j)
1j=i + 2

(
u(j − 1)

u(j)
− 1

)
1j≥i+1

≤ 1 − 1

q
+ 2

1

q
1j=i

which proves the second upper bound. �

6.3. Approximation in Kolmogorov distance

Proof of Theorem 3.9. As one can see in Lemma 6.3, the function that realizes the maximum in the first Stein
factor associated to bounded functions, f = 1[0,i], is also an element of the class of the half-line indicator functions.
Hence without further analysis the analogous of Lemma 6.4 and Theorem 3.2 hold by replacing F = {0 ≤ f ≤ 1} by
F = {1[0,m],m ∈ N}. �

For the second Stein factor, we begin by determining the argmax of the pointwise factor, as we did previously.

Lemma 6.9 (Argmax of the pointwise Stein factor). For all i ∈N

max
{−∂g1[0,i−1](i), ∂g1[0,i](i)

} = sup
f =1[0,m],m∈N

∣∣∂gf (i)
∣∣.

Proof. Let f = 1[0,m] for an integer m. By Lemma 6.1, if m ≤ i − 1,

∂gg(i) =
m∑

j=0

π(j)
(
e−
i+1 − e−

i

)
.

Hence by Lemma 6.2,

∣∣∂gf (i)
∣∣ = −∂gg(i) = (

e−
i − e−

i+1

) m∑
j=0

π(j),

so the maximum when m browses the interval [0, i − 1] is attained in m = i − 1.
Now, if m ≥ i, let us call F = 1 − f = 1[m+1,∞). By the same lemmas,

∣∣gf (i)
∣∣ = ∣∣gF (i)

∣∣ = ∣∣e+
i − e+

i−1

∣∣ ∞∑
j=m+1

π(j) = (
e+
i − e+

i−1

) ∞∑
j=m+1

π(j) = gf (i),

so the maximum when m browses the interval [i,+∞) is attained in m = i. �

Lemma 6.10 (Second pointwise Stein’s factor for indicator functions).

• Under H1, for all integer i ∈N
∗, the quantity supf =1[0,m],m∈N ∂gf (i) is bounded by the maximum of∫ ∞

0
e−σ(1,∗u)t

(
P
(
Xi

1,∗u,t = i
) − u(i)

u(i − 1)
P
(
Xi

1,∗u,t = i − 1
))

dt

and∫ ∞

0
e−σ(1,∗u)t

(
P
(
Xi

1,∗u,t = i
) − u(i)

u(i + 1)
P
(
Xi

1,∗u,t = i + 1
))

dt.
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• Under H2, for all integer i ∈N, the quantity supf =1[0,m],m∈N ∂gf (i + 1) is bounded by the maximum of∫ ∞

0
e−σ(1,u)t

(
P
(
Xi

1,u,t = i
) − u(i)

u(i − 1)
P
(
Xi

1,u,t = i − 1
))

dt

and∫ ∞

0
e−σ(1,u)t

(
P
(
Xi

1,u,t = i
) − u(i)

u(i + 1)
P
(
Xi

1,u,t = i + 1
))

dt.

Moreover, if the potential V1,∗u (respectively V1,u) is constant, then the first (respectively the second) upper bound is
in fact an equality.

Proof. If f = 1[0,m] then ∂∗
u∂fm = 1

u(m)
1m − 1

u(m+1)
1m+1. Under H1, by equation (21) and Theorem 2.2,

−∂g1[0,i−1](i) = u(i)

∫ ∞

0
P

V1,∗u

1,∗u,t

(
− 1

u(i − 1)
1i−1 + 1

u(i)
1i

)
dt

≤
∫ ∞

0
e−σ(1,∗u)t

(
P
(
Xi

1,∗u,t = i
) − u(i)

u(i − 1)
P
(
Xi

1,∗u,t = i − 1
))

dt.

Similarly,

∂g1[0,i](i) ≤
∫ ∞

0
e−σ(1,∗u)t

(
P
(
Xi

1,∗u,t = i
) − u(i)

u(i + 1)
P
(
Xi

1,∗u,t = i + 1
))

dt.

We get the conclusion by Lemma 6.9. The proof is analogous under H2, using this time equation (22) and Theo-
rem 2.5. �

Finally, Theorem 3.10 and 3.11 are simple consequences of the previous lemma.

7. Proof of Section 4

The second upper bound of Lemma 4.1 derives by classical arguments from Mehler’s formula (15) and the following
lemma.

Lemma 7.1 (Upper bound on differences of the pointwise probabilities of the Poisson distribution).

sup
x∈N

∣∣Pλ(x) −Pλ(x − 1)
∣∣ ≤ 1 ∧ C

λ
, C := 1√

2π
e

1√
2 ≤ 1. (31)

Proof of Lemma 7.1. Set

q(λ, x) = λ
∣∣Pλ(x) −Pλ(x − 1)

∣∣, x ∈N, λ > 0.

Let us show that

sup
x∈N,λ>0

q(λ, x) < +∞.

Firstly,

q(λ, x) = λxe−λ

x! |λ − x|, x ∈N, λ > 0.
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We first deal with the case where x ∈N
∗. By a formula of Robbins ([26]), we know that for all x ∈N

∗,

x! > √
2πxxxe−x+ 1

12x ≥ √
2πe

1
2 logx+x logx−x.

Hence, q(λ, x) ≤ 1√
2π

ef (λ,x) with

f (λ, x) = x − λ + log |x − λ| − 1

2
logx + x log

λ

x
,

∂λf (λ, x) = −1 + x

λ
+ 1

λ − x
.

In the sequel we derive upper bounds of f (λ, x) on relevant subsets of (0,∞) × [1,∞). One finds that

∂λf (λ, x) = 0 ⇔ (λ − x)(x − λ + √
λ)(x − λ − √

λ) = 0.

Let us call λ1(x) the solution of the equation x = λ + √
λ and λ2(x) the solution of the equation x = λ − √

λ. We
have 0 < λ1(x) < x < λ2(x).

If λ ≤ x, then at x fixed the function f (λ, x) is increasing on (0, λ1(x)] and decreasing on [λ1(x), x]. Hence,

sup
x≥1,0<λ≤x

f (λ, x) = sup
x≥1

f
(
λ1(x), x

) = sup
λ>0

f (λ,λ + √
λ).

Moreover, using that ∀u ≥ 0, log(1 + u) ≥ u − u2/2, we find that

f (λ,λ + √
λ) = √

λ + 1

2
log

λ

λ + √
λ

+ (λ + √
λ) log

λ

λ + √
λ

= √
λ −

(
λ + √

λ + 1

2

)
log

(
1 + 1√

λ

)
≤ √

λ −
(

λ + √
λ + 1

2

)(
1√
λ

− 1

2λ

)
= −1

2

(
1 − 1

2λ

)
. (32)

Hence, if λ ≥ 1
2 then f (λ,λ + √

λ) ≤ 0. If λ ≤ 1
2 , by going back up to the equation (32),

f (λ,λ + √
λ) ≤ √

λ ≤ 1√
2
.

At the end,

sup
x∈N∗,0<λ≤x

f (λ, x) ≤ 1√
2
.

Let us call C1 := 1√
2π

e
1√
2 ∼ 0,8.

Now let us deal with the case where λ ≥ x. We apply a different strategy for small integers x as for large integers x.
First of all, for all x ∈N

∗ and for all λ ≥ x,

q(λ, x) = 1

x!e
−λλx(λ − x) ≤ 1

x!e
−λλx+1

and it is easy to see that at x fixed the maximum of the right-hand expression is attained at λ = x + 1. Hence

q(λ, x) ≤ 1

x!e
−(x+1)(x + 1)x+1.
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Hence

sup
x∈{1,2,3},λ≥x

q(λ, x) ≤ C2 := max
x∈{1,2,3}

1

x!e
−(x+1)(x + 1)x+1 ∼ 0.7.

On the other hand, by the same reasoning as below, we find that

sup
x∈[4,+∞),λ≥x

f (λ, x) = sup
x∈[4,+∞)

f
(
λ2(x), x

) = sup
λ≥4

f (λ,λ − √
λ).

Now, for all λ > 1,

f (λ,λ − √
λ) = −√

λ −
(

1

2
+ λ − √

λ

)
log

(
1 − 1√

λ

)
.

We use that ∀u ∈ [0, 1
2 ],− log(1 − u) ≤ u + u2. As λ ≥ 4 implies 1√

λ
≤ 1

2 ,

f (λ,λ − √
λ) ≤ −√

λ +
(

1

2
+ λ − √

λ

)(
1√
λ

+ 1

λ

)
= − 1

2
√

λ

(
1 − 1√

λ

)
≤ 0.

At the end,

sup
λ≥x≥4

f (λ, x) ≤ C3 := 1√
2π

∼ 0.4.

It remains the case where x = 0, for which it is trivial to see that

q(λ,0) = λe−λ ≤ C4 = e−1, λ > 0.

The final result follows with C = max{C1,C2,C3,C4} = C1. �
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