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OPTIMAL MEAN-BASED ALGORITHMS FOR TRACE
RECONSTRUCTION1,2

BY ANINDYA DE, RYAN O’DONNELL AND ROCCO A. SERVEDIO

Northwestern University, Carnegie Mellon University and Columbia University

In the (deletion-channel) trace reconstruction problem, there is an un-
known n-bit source string x. An algorithm is given access to independent
traces of x, where a trace is formed by deleting each bit of x independently
with probability δ. The goal of the algorithm is to recover x exactly (with
high probability), while minimizing samples (number of traces) and running
time.

Previously, the best known algorithm for the trace reconstruction prob-
lem was due to Holenstein et al. [in Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms 389–398 (2008) ACM]; it
uses exp(Õ(n1/2)) samples and running time for any fixed 0 < δ < 1. It is
also what we call a “mean-based algorithm,” meaning that it only uses the
empirical means of the individual bits of the traces. Holenstein et al. also
gave a lower bound, showing that any mean-based algorithm must use at least

n�̃(logn) samples.
In this paper, we improve both of these results, obtaining matching up-

per and lower bounds for mean-based trace reconstruction. For any con-
stant deletion rate 0 < δ < 1, we give a mean-based algorithm that uses
exp(O(n1/3)) time and traces; we also prove that any mean-based algo-
rithm must use at least exp(�(n1/3)) traces. In fact, we obtain matching
upper and lower bounds even for δ subconstant and ρ = 1 − δ subcon-
stant: when (log3 n)/n � δ ≤ 1/2 the bound is exp(−�(δn)1/3), and when
1/

√
n � ρ ≤ 1/2 the bound is exp(−�(n/ρ)1/3).

Our proofs involve estimates for the maxima of Littlewood polynomials
on complex disks. We show that these techniques can also be used to perform
trace reconstruction with random insertions and bit-flips in addition to dele-
tions. We also find a surprising result: for deletion probabilities δ > 1/2, the
presence of insertions can actually help with trace reconstruction.

1. Introduction. Consider a setting in which a string x of length n over an
alphabet � is passed through a deletion channel that independently deletes each
coordinate of x with probability δ. The resulting string, of length somewhere be-
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tween 0 and n, is referred to as a trace of x, or as a received string; the origi-
nal string x is referred to as the source string. The trace reconstruction problem
is the task of reconstructing x (with high probability) given access to indepen-
dent traces of x. This is a natural and well-studied problem, dating back to the
early 2000s [2, 13, 14], with some combinatorial variants dating even to the early
1970s [10]. However, perhaps surprisingly, much remains to be discovered both
about the information-theoretic and algorithmic complexity of this problem. In-
deed, in a 2009 survey [17], Section 7, Mitzenmacher wrote that “the study of
[trace reconstruction] is still in its infancy.”

Before discussing previous work, we briefly explain why one can assume a
binary alphabet without loss of generality. In case of a general �, drawing O(

logn
1−δ

)

traces will with high probability reveal the entire alphabet �′ ⊆ � of symbols that
are present in x. For each symbol σ ∈ �′, we may consider the binary string x|σ
whose ith character is 1 iff xi = σ ; a trace of x is easily converted into a trace of
x|σ , so the trace reconstruction problem for x can be solved by solving the binary
trace reconstruction problem for each x|σ and combining the results in the obvious
way. For this reason, our work (and most previous work) focuses on the case of a
binary alphabet.

1.1. Prior work. As described in [17], the trace reconstruction problem can
arise in several natural domains, including sensor networks and biology. How-
ever, the apparent difficulty of the problem means that there is not too much pub-
lished work, at least on the problem of “worst-case” trace reconstruction problem
(“worst-case” in the sense that the source string may be any element of {0,1}n).
Because of this, several prior authors have considered an “average-case” version
of the problem in which the source string is assumed to be uniformly random over
{0,1}n and the algorithm is required to succeed with high probability over the
random draw of the traces and over the uniform random choice of x. This average-
case problem seems to have first been studied by Batu et al. [2], who showed that
a simple efficient algorithm, which they call Bitwise Majority Alignment, suc-
ceeds with high probability for sufficiently small deletion rates δ = O(1/ logn)

using only O(logn) traces. Subsequent work of Kannan and McGregor [11] gave
an algorithm for random x that can handle both deletions and insertions [both at
rates O(1/ log2 n)] as well as bit-flips (with constant probability bounded away
from 1/2) using O(logn) traces. Viswanathan and Swaminathan [24] sharpened
this result by improving the deletion and insertion rates that can be handled to
O(1/ logn). Finally, [8] gave a poly(n)-time, poly(n)-trace algorithm for random
x that succeeds with high probability for any deletion rate δ that is at most some
sufficiently small absolute constant.

Several researchers have considered, from an information-theoretic rather than
algorithmic perspective, various reconstruction problems that are closely related
to the (worst-case) trace reconstruction problem. Kalashnik [10] showed that any
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n-bit string is uniquely specified by its k-deck, which is the multiset of all its
length-k subsequences, when k = �n/2	; this result was later reproved by Manvel
et al. [15]. Scott [22] subsequently showed that k = (1+o(1))

√
n logn suffices for

reconstruction from the k-deck for any x, and simultaneously and independently
Krasnikov and Roditty [12] showed that k = �16

7

√
n	+5 suffices. (McGregor et al.

observed in [16] that the result of [22] yields an information-theoretic algorithm
using exp(Õ(n1/2)) traces for any deletion rate δ ≤ 1 − O(

√
log(n)/n), but did

not discuss the running time of such an algorithm.) On the other side, successively
larger �(logn) lower bounds on the value of k that suffices for reconstruction of an
arbitrary x ∈ {0,1}n from its k-deck were given by Manvel et al. [15] and Choffrut
and Karhumäki [5], culminating in a lower bound of 2�(

√
logn) due to Dudík and

Schulman [7].
Surprisingly, few algorithms have been given for the worst-case trace recon-

struction problem as defined in the first paragraph of this paper. Batu et al. [2]
showed that a variation of their Bitwise Majority Alignment algorithm succeeds
efficiently using O(n logn) traces if the deletion rate δ is quite low, at most
O(1/n1/2+ε). Holenstein et al. [8] gave a “mean-based” algorithm (we explain
precisely what is meant by such an algorithm later) that runs in time exp(Õ(

√
n))

and uses exp(Õ(
√

n)) traces for any deletion rate δ that is bounded away from 1
by a constant; this is the prior work that is most relevant to our main positive result.
Holenstein et al. [8] also gave a lower bound showing that for any δ bounded away

from 0 by a constant, at least n
�(

logn
log logn

) traces are required for any mean-based
algorithm. Since the result of [8], several researchers (such as [19]) have raised the
question of finding (potentially inefficient) algorithms which have a better sample
complexity; however, no progress had been made until this work.

One may also ask for trace reconstruction for more general channels, such as
those that allow deletions, insertions and bit-flips which are correlated. The only
work we are aware of along these lines is that of Andoni et al. [1], which gives re-
sults for trace reconstruction for average-case words in the presence of insertions,
deletions and substitutions on a tree.

1.2. Our results.

THEOREM 1.1 (Deletion channel positive result). There is an algorithm
for the trace reconstruction problem which, for any constant 0 < δ < 1, uses
exp(O(n1/3)) traces and running time.

Theorem 1.1 significantly improves the running time and sample complexity
of the [8] algorithm, which is exp(Õ(n1/2)) for fixed constant δ. Furthermore,
we can actually extend Theorem 1.1 to the case of δ = o(1) or δ = 1 − o(1); see
Theorem 1.3 below.
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The algorithm of Theorem 1.1 is a “mean-based” algorithm, meaning that it uses
only the empirical mean of the trace vectors it receives. We prove an essentially
matching lower bound for such algorithms.

THEOREM 1.2 (Deletion channel negative result). For any constant 0 < δ < 1,
every mean-based algorithm must use at least exp(�(n1/3)) traces.

As mentioned, we can also treat δ = o(1) and δ = 1 − o(1).

THEOREM 1.3 (Deletion channel general matching bounds). The matching
bounds in Theorems 1.1 and 1.2 extend as follows: For �(log3 n)/n ≤ δ ≤ 1/2,
the matching bound is exp(�(δn)1/3) [and for any smaller δ we have a poly(n)

upper bound]. Writing ρ = 1 − δ for the “retention” probability, for �(1/n1/2) ≤
ρ ≤ 1/2 the matching bound is exp(�(n/ρ)1/3).

For simplicity in the main portion of the paper, we consider only the deletion
channel and prove the above results. In the Appendix, we consider a more general
channel that allows for deletions, insertions and bit-flips, and prove the follow-
ing result, which extends Theorem 1.1 to that more general channel and includes
Theorem 1.1 as a special case.

THEOREM 1.4 (General channel positive result). Let C be the general channel
described in Section A.1 with deletion probability δ = 1 − ρ, insertion probability
σ and bit-flip probability γ /2. Define

r = ρ + δσ

1 + σ
.

Then there is an algorithm for C-channel trace reconstruction using samples and
running time bounded by

poly
(

1

1 − δ
,

1

1 − σ
,

1

1 − γ

)

×
{

exp
(
O(n/r)1/3)

if C/n1/2 ≤ r ≤ 1/2,

exp
(
O

(
(1 − r)n

)1/3)
if O

(
log3 n

)
/n ≤ 1 − r ≤ 1/2.

Since some slight technical and notational unwieldiness is incurred by dealing
with the more general channel, we defer the proof of Theorem 1.4 to the Ap-
pendix; however, we note here that the main core of the proof is unchanged from
the deletion-only case. We additionally note that, as discussed in the Appendix,
a curious aspect of the upper bound given by Theorem 1.4 is that having a con-
stant insertion rate can make it possible to perform trace reconstruction in time
exp(O(n1/3)) even when the deletion rate is much higher than Theorem 1.3 could
handle in the absence of insertions. A possible intuitive explanation for this is that
having random insertions could serve to “smooth out” worst-case instances that
are problematic for a deletion-only model.
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1.3. Independent and concurrent work. Simultaneously and independently of
the conference publication of this work [6], Fedor Nazarov and Yuval Peres have
obtained results [20] that are substantially similar to Theorems 1.1 and 1.2, using
very similar techniques. In subsequent recent work, Yuval Peres and Alex Zhai
[21] have shown that in the deletion-only setting, for any deletion rate bounded
below 1/2 by a constant there is an algorithm that reconstructs a uniform random
source string with high probability using exp(O(log1/2 n)) traces.

Also, Elchanan Mossel has informed us [18] that around 2008, Mark Braver-
man, Avinatan Hassidim and Elchanan Mossel had independently proven (unpub-
lished) superpolynomial lower bounds for mean-based algorithms.

1.4. Our techniques. For simplicity of discussion, we restrict our focus in this
section to the question of upper bounding the sample complexity of trace recon-
struction for the deletion channel, where every bit gets deleted independently with
probability δ. (As discussed above, generalizing the results to channels which also
allow for insertions and flips is essentially a technical exercise that does not re-
quire substantially new ideas.) As we discuss in Section 3.2, an efficient algorithm
follows easily from a sample complexity upper bound via the observation that the
minimization problem whose solution yields a sample complexity upper bound in
fact extends to a slightly larger convex set. Given this, one can use convex (in fact,
linear) programming to get an algorithmic result. Hence the technical meat of the
argument lies in upper bounding the sample complexity.

The key enabling idea for our work is to take an analytic view on the com-
binatorial process defined by the deletion channel. More precisely, consider two
distinct strings x, x′ ∈ {−1,1}n. A necessary (and sufficient) condition to upper
bound the sample complexity of trace reconstruction is to lower bound the statis-
tical distance between the two distributions of traces of x versus x′ [let us write
C(x) and C(x′) to denote these two distributions]. Since analyzing the statistical
distance dTV(C(x),C(x′)) between the distributions C(x) and C(x′) turns out to be
a difficult task, we approach it by considering a limited class of statistical tests.

In [8], the authors consider “mean-based” algorithms; such algorithms corre-
spond to statistical tests that only use 1-bit marginals of the distribution of the
received string. More precisely, for any 0 ≤ j ≤ n − 1, consider the quantities
Pry←C(x)[yj = 1] and Pry′←C(x′)[y′

j = 1]. [Here and throughout the paper, the
notation “Pry←C(x)” indicates that the random variable y is distributed accord-
ing to C(x).] The difference |Pry←C(x)[yj = 1] − Pry′←C(x′)[y′

j = 1]| is a lower
bound on dTV(C(x),C(x′)).

Let us define the vector βx,x′ = (βx,x′(1), . . . , βx,x′(n)) ∈ [−1,1]n by

βx,x′(j) = Pr
y←C(x)

[
y′

j = 1
] − Pr

y′←C(x′)
[yj = 1].

In this terminology, giving a sample complexity upper bound on mean-based algo-
rithms correspond to showing a lower bound on minx �=x′∈{−1,1}n ‖βx,x′‖1. A central
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idea in this paper is to analyze ‖βx,x′‖1 by studying the Z-transform of the vector
βx,x′ . More precisely, for z ∈ C, we consider β̂x,x′(z) := ∑n

j=1 βx,x′(j) ·zj−1. Ele-
mentary complex analysis can be used to show the following (see Proposition 3.5):

sup
|z|=1

∣∣β̂x,x′(z)
∣∣ ≤ ‖βx,x′‖1 ≤ √

n · sup
|z|=1

∣∣β̂x,x′(z)
∣∣.

Thus, for our purposes, it suffices to study sup|z|=1 |β̂x,x′(z)|. By analyzing the
deletion channel and observing that β̂x,x′(z) is a polynomial in z, we are able to
characterize this supremum as the supremum of a certain polynomial (induced by
x and x′) on a certain disk in the complex plane. Thus giving a sample complexity
upper bound amounts to lower bounding sup|z|=1 |β̂x,x′(z)| across all polynomials
β̂x,x′ induced by distinct x, x′ ∈ {−1,1}n (essentially, across a class of polynomials
closely related to Littlewood polynomials: those polynomials with all coefficients
in {−1,0,1}). The technical heart of our sample complexity upper bound is in
establishing such a lower bound. Finally, similar ideas and arguments are used to
lower bound the sample complexity of mean-based algorithms by establishing the
existence of distinct x, x ′ ∈ {−1,1}n for which sup|z|=1 |β̂x,x′(z)| is small.

2. Preliminaries and terminology. Throughout this paper, we will use two
slightly nonstandard notational conventions. Bits will be written as {−1,1} rather
than {0,1}, and strings will be indexed starting from 0 rather than 1. Thus the
source string will be denoted x = (x0, x1, . . . , xn−1) ∈ {−1,1}n; this is the un-
known string that the reconstruction algorithm is trying to recover.

We will write C for the channel through which x is transmitted. In the main
body of the paper, our main focus will be on the deletion channel C = Delδ , in
which each bit of x is independently deleted with probability δ < 1. We will also
often consider ρ = 1 − δ > 0, the retention probability of each coordinate. In the
Appendix, we will see that a more general channel that also involves insertions
and bit-flips can be handled in a similar way.

We will use boldface to denote random variables. We typically write y ← C(x)

to denote that y = (y0,y1, . . . ,yn−1) is a random trace (or received string or sam-
ple), obtained by passing x through the channel C. Notice the slight inconvenience
that the length of y is a random variable (for the deletion channel this length is
always between 0 and n); we denote this length by n.

We define a trace reconstruction algorithm for channel C to be an algorithm
with the following property: for any unknown source string x ∈ {−1,1}n, when
given access to independent strings y(1),y(2), . . . each distributed according to
C(x), it outputs x with probability at least (say) 99%. The sample complexity of
the trace reconstruction algorithm is the number of draws from C(x) that it uses
[in the worst case across all x ∈ {−1,1}n and all draws from C(x)]. We are also
interested in the algorithm’s (worst-case) running time.

As mentioned earlier, we will use basic complex analysis. The following nota-
tion will be useful.
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NOTATION 2.1. We write Dr(c) for the closed complex disk of radius r cen-
tered at c; that is, {z ∈ C : |z − c| ≤ r}. We write ∂Dr(c) for the boundary of this
disk; thus, for example, ∂D1(0) = {z ∈ C : |z| = 1} is the complex unit circle.

3. Mean traces. We now come to a key definition, that of the mean trace.
For now, we restrict our focus to C being the deletion channel Delδ (we consider a
more general channel in the Appendix).

Although a random trace y ← Delδ(x) does not have a fixed length, we can
simply define the mean trace of a source string x ∈ {−1,1}n to be

(3.1) μDelδ (x) = E
y←Delδ(x)

[
y′] ∈ [−1,1]n,

where y′ is y padded with zeros so as to be of length exactly n. Here, “0” has a
natural interpretation as a “uniformly random bit” [indeed, a trace reconstruction
algorithm could always pad deletion-channel traces with random bits by itself, and
this would not change the definition of the mean trace μDelδ (x)].

The following is immediate.

PROPOSITION 3.1. Viewing the domain of μDelδ as the real vector space R
n,

μDelδ (x) is a (real-)linear function of x; that is, each μDelδ (x)j can be written as∑
i ai,j xi for some constants ai,j ∈ R.

3.1. The mean-based (deletion-channel) trace reconstruction model. One of
the most basic things that a trace reconstruction algorithm can do is calculate
an empirical estimate of the mean trace. A simple Chernoff/union bound shows
that, with poly(n/ε) samples and time, an algorithm can compute an estimator
μ̂Delδ (x) ∈ [−1,1]n satisfying ‖μ̂Delδ (x) − μDelδ (x)‖1 ≤ ε with very high prob-
ability. The algorithm might then proceed to base its reconstruction solely on
μ̂Delδ (x), without relying on further traces. We call such algorithms “mean-based
trace reconstruction algorithms” (Holenstein et al. [8] called them algorithms
based on “summary statistics”). We give a formal definition.

DEFINITION 3.2. An algorithm in the mean-based (deletion-channel) trace
reconstruction model works as follows. Given an unknown source string x ∈
{−1,1}n, the algorithm first specifies a parameter T ∈ N. The algorithm is then
given an estimate μ̂Delδ (x) ∈ [−1,+1]n of the mean trace satisfying

(3.2)
∥∥μ̂Delδ (x) − μDelδ (x)

∥∥
1 ≤ 1/T .

We define the “cost” of this portion of the algorithm to be T . Having been
given μ̂Delδ (x), the algorithm has no further access to x, but may do further “post-
processing” computation involving μ̂Delδ (x). The algorithm should end by out-
putting x.
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From the above discussion, we see that an algorithm in the mean-based trace
reconstruction model with cost T1 and postprocessing time T2 may be con-
verted into a normal trace reconstruction algorithm using poly(n,T1) samples and
poly(n,T1) + T2 time.

3.2. The complexity of mean-based (deletion-channel) trace reconstruction.
As discussed in [8], the sample complexity of mean-based trace reconstruction is
essentially determined by the minimum distance between the mean traces μDelδ (x)

and μDelδ (x
′) of two distinct source strings x, x′ ∈ {−1,1}n. Furthermore, one can

get an upper bound on the time complexity of mean-based trace reconstruction if
a certain “fractional relaxation” of this minimum mean trace distance is large. We
state these observations from [8] here, using slightly different notation.

DEFINITION 3.3. Given n and 0 ≤ δ < 1, we define:

εDelδ (n) := min
x,x′∈{−1,1}n

x �=x′

∥∥μDelδ (x) − μDelδ
(
x′)∥∥

1

= 2 min
b∈{−1,0,+1}n

b �=0

∥∥μDelδ (b)
∥∥

1;

εfrac
Delδ (n) := min

0≤i<n
min

x,x′∈[−1,+1]n
xj=x′

j∈{−1,1} ∀j<i

xi=−x′
i∈{−1,1}

∥∥μDelδ (x) − μDelδ
(
x′)∥∥

1

= 2 min
d∈[n] min

b∈{0}d−1×{1}×[−1,+1]n−d

∥∥μDelδ (b)
∥∥

1.

In both cases, the equality on the right uses Proposition 3.1.

It is easy to see that in the mean-based trace reconstruction model, it is
information-theoretically possible for an algorithm to succeed if and only if its
cost T exceeds 2/εDelδ (n). Thus characterizing the sample complexity of mean-
based trace reconstruction essentially amounts to analyzing εDelδ (n). For ex-
ample, to establish our lower bound Theorem 1.2, it suffices to prove that the
εDelδ (n) ≤ exp(−�(n1/3)) for constant 0 < δ < 1.

Furthermore, as observed in [8], given an εfrac
Delδ

(n)/4-accurate estimate of
μDelδ (x), as well as the ability to compute the linear function μDelδ (x

′) for any x′ ∈
[−1,+1]n [or even estimate it to εfrac

Delδ
(n)/4-accuracy], one can recover x exactly

in poly(n, log(1/εfrac
Delδ

(n))) time by solving a sequence of n linear programs.3 Thus

to establish our Theorem 1.1, it suffices to prove that εfrac
Delδ

(n) ≥ exp(−O(n1/3))

for constant 0 < δ < 1.

3If the algorithm “knows” δ, it can efficiently compute μDelδ (x
′) exactly. But even if it doesn’t

“know” δ, it can estimate δ to sufficient accuracy so that μDelδ (x
′) can be estimated to the necessary

accuracy, with no significant algorithmic slowdown.
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3.3. Reduction to complex analysis. Our next important definition is of a poly-
nomial that encodes the components of μC(x) in its coefficients—kind of a gener-
ating function for the channel. We think of its parameter z as a complex number.

DEFINITION 3.4. Given x ∈ {−1,1}n and 0 ≤ δ < 1, we define the deletion-
channel polynomial:

PDelδ,x(z) = ∑
j<n

μDelδ (x)j · zj ,

a polynomial of degree less than n. We extend this definition to x ∈ [−1,+1]n
using the linearity of μDelδ .

We now make the step to elementary complex analysis, by relating the size of a
mean trace difference μDelδ (b) to the maximum modulus of PDelδ,b(z) on the unit
complex circle (or equivalently, the unit complex disk, by the maximum modulus
principle).

PROPOSITION 3.5. For any b ∈ [−1,1]n, we have

max
z∈∂D1(0)

∣∣PDelδ,b(z)
∣∣ ≤ ∥∥μDelδ (b)

∥∥
1 ≤ √

n max
z∈∂D1(0)

∣∣PDelδ,b(z)
∣∣.

PROOF. Recall that μDelδ (b) is the length-n vector of coefficients for the poly-
nomial PDelδ,b(z). The lower bound above is immediate from the triangle inequal-
ity. For the upper bound, we use∥∥μDelδ (b)

∥∥2
1 ≤ n

∥∥μDelδ (b)
∥∥2

2

= n avg
z∈∂D1(0)

∣∣PDelδ,b(z)
∣∣2

≤ n
(

max
z∈∂D1(0)

∣∣PDelδ,b(z)
∣∣)2

.

Here, the first inequality is Cauchy–Schwarz, the equality is an elementary fact
about complex polynomials (or Fourier series), and the final inequality is obvious.

�

Let us reconsider Definition 3.3. As a factor of
√

n is negligible compared to
the bounds, we will prove [which are of the shape exp(−�(n1/3))], we may as
well analyze maxz∈∂D1(0) |PDelδ,b(z)| rather than ‖μDelδ (b)‖1 in the definition of
εDelδ (n) and εfrac

Delδ
(n). We therefore take a closer look at the deletion-channel poly-

nomial.
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4. The deletion-channel polynomial. In this section, we compute the
deletion-channel polynomial. When the deletion channel is applied to some source
string x, each bit xi is either deleted with probability δ or else is transmitted at
some position j ≤ i in the received string y. Let us introduce (nonindependent)
random variables J 0, . . . ,J n−1, where J i = ⊥ if xi is deleted and otherwise J i

is the position in y at which xi is transmitted. We thus have

PDelδ,x(z) = ∑
j<n

E
y←C(x)

[yj ] · zj = ∑
j<n

zj · ∑
i<n

Pr[J i = j ]xi

= ∑
i<n

xi · ∑
j<n

Pr[J i = j ]zj = ∑
i<n

xi · E
[
zJ i · 1[J i �= ⊥]].

Observing that Pr[J i �= ⊥] equals the retention probability ρ = 1− δ, if we define
the conditional random variable

J̃ i = (J i | J i �= ⊥)

(so J̃ i is an N-valued random variable), then we have

(4.1) PDelδ,x(z) = ρ
∑
i<n

xi · E
[
zJ̃ i

]
.

Observing that J̃ i is distributed as Binomial(i, ρ), and letting B1, . . . ,Bi denote
independent Bernoulli random variables with “success” probability ρ, we easily
compute

E
[
zJ̃ i

] = E
[
zB1+···+Bi

] = E
[
zB1

]i = (
(1 − ρ) + ρz

)i
.

Denoting

w = 1 − ρ + ρz,

we conclude that

PDelδ,x(z) = ρ
∑
i<n

xiw
i.

As z ranges over the unit circle ∂D1(0), w ranges over the radius-ρ circle
∂Dρ(1 − ρ). Recalling Definition 3.3 and Proposition 3.5, we are led to consider
the following two quantities for 0 < ρ < 1 [note that by the maximum modulus
principle, these quantities are unchanged whether the max is over Dρ(1 − ρ) or
∂Dρ(1 − ρ)]:

κLittlewood(ρ,n)

= min

{
max

w∈Dρ(1−ρ)

∣∣P(w)
∣∣ : P(w) =

n−1∑
i=0

biw
i, bi ∈ {0,±1} not all 0

}
,
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κ frac
bounded(ρ, d)

= min

{
max

w∈Dρ(1−ρ)

∣∣P(w)
∣∣ : P(w) = wd

+
N∑

j=d+1

bjw
j ,N ≥ d, bi ∈ D1(0)

}
.

Observe that both κLittlewood(ρ,n) and κ frac
bounded(ρ, d) are nondecreasing functions

of 0 < ρ < 1. It’s also easy to see that both are nonincreasing functions of their
second argument for all 0 < ρ < 1 [for κ frac

bounded(ρ, d), consider replacing P(w)

by wP(w)] and observe that |wP(w)| ≤ |P(w)| for all w ∈ Dρ(1 − ρ). It thus
follows that

κ frac
bounded(ρ, d) ≤ κLittlewood(ρ,n).

Our main technical theorems are the following.

THEOREM 4.1. There is a universal constant C ≥ 1 such that

for 1/d ≤ δ ≤ 1/2, κ frac
bounded(1 − δ, d) ≥ exp

(−C(δd)1/3);
for 1/d1/2 ≤ ρ ≤ 1/2, κ frac

bounded(ρ, d) ≥ exp
(−C(d/ρ)1/3)

.

THEOREM 4.2. There is a universal constant C ≥ 1 such that

for C
(
log3 n

)
/n ≤ δ ≤ 1/2, κLittlewood(1 − δ, n) ≤ exp

(−�(δn)1/3);
for C/n1/2 ≤ ρ ≤ 1/2, κLittlewood(ρ,n) ≤ exp

(−�(n/ρ)1/3)
.

By Definition 3.3, Proposition 3.5 and the discussion at the end of Section 3.2,
we have that Theorem 4.2 implies both Theorem 1.2 and the more general sample
complexity lower bound in Theorem 1.3. Regarding the algorithmic upper bounds
in Theorems 1.1 and 1.3, again from Definition 3.3 and Proposition 3.5 we get that

εfrac
Delδ (n) ≥ 2ρ · min

0≤d<n

{
max

w∈Dρ(1−ρ)

∣∣P(w)
∣∣ : P(w) = wd

+
n−1∑

i=d+1

biw
i, bi ∈ [−1,+1]

}

≥ 2ρ · min
0≤d<n

κ frac
bounded(ρ, d) ≥ 2ρ · κ frac

bounded(ρ,n).

Thus the upper bounds Theorems 1.1 and 1.3 likewise follow from Theorem 4.1
and the discussion at the end of Section 3.2. [Note that if δ ≤ O(log3 n)/n, we can
always pay the bound for the larger value δ = �(log3 n)/n, which is poly(n).]
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5. Proof of Theorem 4.1. We will need the following:

THEOREM 5.1 ([3], Corollary 3.2, M = 1 case). Let Q(w) be a polynomial
with constant coefficient 1 and all other coefficients bounded by 1 in modulus. Fix
any 0 < θ ≤ π , and let A be the arc {eit : −θ ≤ t ≤ θ}. Then supw∈A |Q(w)| ≥
exp(−C1/θ) for some universal constant C1.

We remark that for any 0 < r < 1, Theorem 5.1 holds for the arc A = {reit :
−θ ≤ t ≤ θ} with no change in the constant C1. This is immediate by applying the
theorem to Q̃(w) = Q(rw).

PROOF OF THEOREM 4.1. Fix d ≥ 2 (else the hypotheses are vacuous) and
δ, ρ ∈ (0,1) with δ + ρ = 1. We call Case I when 1/d ≤ δ < 1/2, and we call
Case II when 1/d1/2 ≤ ρ ≤ 1/2. Select

θ =

⎧⎪⎪⎨⎪⎪⎩
1

2(δd)1/3 in Case I,(
ρ

d

)1/3
in Case II.

In Case I, we have θ ≤ 1/2, and in Case II we have θ ≤ ρ ≤ 1/2.
Let P(w) = wd ·Q(w), where Q(w) is a polynomial with constant coefficient 1

and all other coefficients bounded by 1 in modulus. We need to show

(5.1) max
w∈Dρ(δ)

∣∣P(w)
∣∣ ≥

{
exp

(−C(δd)1/3)
in Case I,

exp
(−C(d/ρ)1/3)

in Case II.

In Case I, the ray {reiθ : r > 0} intersects ∂Dρ(δ) at a unique point, call it w0.
In Case II, the same ray intersects ∂Dρ(δ) twice (this uses θ ≤ ρ); call the point
of larger modulus w0. In either case, consider the triangle formed in the complex
plane by the points 0, δ, and w0; it has some acute angle α at w0 and an angle of θ

at 0. By the law of sines,

ρ

sin θ
= δ

sinα

= |w0|
sin(π − θ − α)

= |w0|
sin(θ + α)

= |w0|
sin θ cosα + sinα cos θ

,
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which implies that

|w0| = δ cos θ + ρ cosα

= δ cos θ + ρ

√
1 −

(
δ

ρ

)2
sin2 θ

≥ δ
(
1 − θ2) + ρ

(
1 −

(
δ

ρ

)2
θ2

)

= 1 − δ

ρ
θ2.

(Note that in Case II, while we have δ
ρ

≥ 1, we also have θ ≤ ρ so the quantity in-
side the square root above is indeed nonnegative.) Writing r0 = |w0|, Theorem 5.1
(and the subsequent remark) implies that

(5.2) max
w∈A

∣∣Q(w)
∣∣ ≥ exp(−C1/θ) for A = {

r0e
it : −θ ≤ t ≤ θ

} ⊂ Dρ(δ).

Thus

max
w∈Dρ(δ)

∣∣P(w)
∣∣ ≥ max

w∈A

∣∣P(w)
∣∣

≥ rd
0 · exp(−C1/θ)

≥ (
1 − (δ/ρ)θ2)d · exp(−C1/θ)

≥ exp
(−2(δ/ρ)θ2d − C1/θ

)
(the last inequality again using θ ≤ ρ in Case II). Substituting in the value of θ

yields (5.1). �

5.1. An improved version. Although we do not need it for our application, we
can actually provide a stronger version of the results in the previous section that is
also self-contained, that is, it does not rely on Borwein and Erdélyi’s theorem 5.1.
We used that theorem to establish (5.2); but more strongly than (5.2), we can show
there exists an arc A ⊂ Dρ(δ) such that

GMw∈A

∣∣Q(w)
∣∣ ≥ exp

(−O(1/θ)
)
,

where the left-hand side here denotes the geometric mean of |Q| along A. (Of
course, this is at most the max of |Q| along A.) To keep the parameters simpler,
we will assume ρ ≤ 1/3 (this is the more interesting parameter regime anyway,
and it is sufficient to yield our Theorem 1.1). Our alternate arc A will be

A = {
1/3 + reit : −θ ≤ t ≤ θ

}
,

where 0 < r < 2/3 is the larger real radius such that 1/3 + re±iθ ∈ ∂Dρ(δ). We
remark that still A ⊂ Dρ(δ), by virtue of θ ≤ ρ ≤ 1/3, and it is not hard to show
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that the the endpoint of A; call it w′ = 1/3 + reiθ ∈ ∂Dρ(δ), again satisfies |w′| ≥
1 − �( δ

ρ
θ2). Thus instead of using Theorem 5.1 as a black box, we could have

completed our proof of Theorem 4.1 using the following.

THEOREM 5.2. Let Q(w) be a polynomial with constant coefficient 1 and all
other coefficients in D1(0). Fix any 0 < θ ≤ π , 0 ≤ r ≤ 2/3, and let A be the arc
{1/3 + reit : −θ ≤ t ≤ θ}. Then GMw∈A(|Q(w)|) ≥ 9

18π/θ .

Our proof will require one standard fact from the theory of “Mahler measures.”

FACT 5.3. Let Q be a complex polynomial and let O be a circle in the complex
plane with center c. Then GMw∈O(|Q(w)|) ≥ |Q(c)|.

PROOF. By a linear transformation, we may assume O is the unit circle
∂D1(0). Express Q(w) = a0

∏
i (w − αi), where the αi’s are the roots of Q.

Then GMw∈O(|Q(w)|)—known as Q’s Mahler measure (see, e.g., [23])—is
exactly equal to |a0|∏i∈I |αi |, where I = {i : |αi | ≥ 1}. [Since GMw∈O(| ·
|) is multiplicative, this statement follows immediately from the elementary
fact that GMw∈O(|w − α|) = max{|α|,1}.] But clearly we have |a0|∏i∈I |αi | ≥
|a0|∏i |αi | = |Q(0)|. �

We can now establish Theorem 5.2:

PROOF OF THEOREM 5.2. Using the bounds on Q’s coefficients, we have∣∣Q(w)
∣∣ ≤ 1 + |w| + |w|2 + · · · = 1

1 − |w| for w ∈ D1(0);(5.3)

∣∣Q(1/3)
∣∣ ≥ 1 − |1/3| − |1/3|2 − · · · = 1/2.(5.4)

Let us apply Fact 5.3 with O = ∂Dr(1/3) ⊃ A, writing A′ for the complementary
arc to A in O. We get

(5.5) 1/2 ≤ GMw∈O
(∣∣Q(w)

∣∣) = GMw∈A

(∣∣Q(w)
∣∣)θ/π · GMw∈A′

(∣∣Q(w)
∣∣)1−θ/π

.

And by (5.3) we have

(5.6)

GM
w∈A′

(∣∣Q(w)
∣∣) ≤ GM

w∈A′

(
1

1 − |w|
)

≤ GM
w∈O

(
1

1 − |w|
)

≤ GM
w∈∂D2/3(1/3)

(
1

1 − |w|
)
,
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where the second inequality is because the points w ∈ A only have larger 1
1−|w|

than the points in A′, and the third inequality is because increasing the radius of O
from r to 2/3 only increases the value of 1

1−|w| for points on O. But now for −π <

t ≤ π , the point w = 1/3 + (2/3)eit ∈ D2/3(1/3) has |w|2 = 1 − 4
9(1 − cos t), and

hence

1

1 − |w| = 1

1 −
√

1 − 4
9(1 − cos t)

≤ 9

2(1 − cos t)
.

Thus

GM
w∈∂D2/3(1/3)

(
1

1 − |w|
)

≤ exp
(

1

2π

∫ π

−π
ln

(
9

2(1 − cos t)

)
dt

)

= 9

2
exp

(
− 1

2π

∫ π

−π
ln(1 − cos t) dt

)
= 9,

(5.7)

the last integral being known. [One can get a much easier integral, with a slightly
worse constant, by lower-bounding 1 − cos t ≥ (2/π2)t2.] Combining (5.5), (5.6),
(5.7) yields the theorem. �

6. Proof of Theorem 4.2. The key ingredient is the following theorem from
[4]. (Recall that a Littlewood polynomial has all nonzero coefficients either −1 or
1.)

THEOREM 6.1 ([4], Theorem 3.3). For all k ≥ 2, there is a nonzero Littlewood
polynomial Qk of degree at most k satisfying |Qk(t)| ≤ exp(−c0

√
k) for all real

0 ≤ t ≤ 1. Here, c0 > 0 is a universal constant.

By a simple use of the Hadamard three-circle theorem and maximum modulus
principle, Borwein and Erdélyi proved in [3] that the polynomials in Theorem 6.1
establish tightness of their Theorem 5.1 (up to the constant C1). We quote a result
that appears within their proof.

THEOREM 6.2 ([3], in the first proof of Theorem 3.3 in the “special case,”
page 11). There are universal constants c1, c2, c3 > 0 such that the follow-
ing holds: For all 0 < a ≤ c1, there exists an integer 2 ≤ k ≤ c2/a

2 such that
maxw∈D6a(1) |Qk(w)| ≤ exp(−c3/a), where Qk is the nonzero Littlewood polyno-
mial from Theorem 6.1.

REMARK 6.3. Actually, Borwein and Erdélyi proved this with an elliptical
disk Ea in place of D6a(1), where Ea has foci at 1 − 8a and 1 and major axis
[1 − 14a,1 + 6a]. It is easy to see that D6a(1) ⊂ Ea ⊂ D14a(1), so we wrote
D6a(1) in Theorem 6.2 for simplicity and because it loses almost nothing.
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We can now prove Theorem 4.2. We state here a slightly more precise version.

THEOREM 6.4. Using the notation δ = 1 − ρ, we have

κLittlewood(ρ,n) ≤
{

exp
(−�

(
(δn)1/3))

in Case I: C
(
log3 n

)
/n ≤ δ ≤ 1/2,

exp
(−�

(
(n/ρ)1/3))

in Case II: C/n1/2 ≤ ρ ≤ 1/2,

provided n ≥ n0. Here, n0,C ≥ 1 are universal constants.

PROOF OF THEOREM 4.2. With C,C1 ≥ 1 universal constants to be specified
later, select

a =
{
C1/(δn)1/3 in Case I: C

(
log3 n

)
/n < δ ≤ 1/2,

C1(ρ/n)1/3 in Case II: 1/n1/2 < ρ < 1/2.

Assuming n0 = n0(C1) is sufficiently large we get that a ≤ c1, where c1 is as in
Theorem 6.2. Applying that theorem, we obtain

(6.1)
max
w∈A

∣∣Qk(w)
∣∣ ≤ exp

(−�(1/a)
)

where A := D6a(1), k ≤ c2/a
2 < n/2.

Here, the inequality c2/a
2 < n/2 holds in Case I by assuming n0 = n0(C1, c2)

large enough, and in Case II by taking C1 = C1(c2) large enough. Now define

P(w) = w�n/2	 · Qk(w),

a nonzero Littlewood polynomial of degree less than n.

We wish to bound

max
w∈R

∣∣P(w)
∣∣, R := Dρ(δ)

by the expression in the theorem statement. For the points w ∈ R ∩A, we are done
by (6.1) (and the fact that |w�n/2	| ≤ 1). For the points in w ∈ R \A, we claim that

(6.2) |w|2 ≤ 1 − 36
δ

ρ
a2 ≤ exp

(
−36

δ

ρ
a2

)
∀w ∈ R \ A.

Assuming (6.2), we get

max
w∈R\A

∣∣P(w)
∣∣ ≤ max

w∈R\A |w|�n/2	 · max
w∈R\A

∣∣Qk(w)
∣∣

≤ exp
(
−18

δ

ρ
a2

)�n/2	
· (n/2 + 1)

≤ exp
(
−�

(
n

δ

ρ
a2

))
· (n/2 + 1),
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where the factor n/2 + 1 is an upper bound on |Qk(w)| over all of D1(0) (recall
that Qk is a Littlewood polynomial of degree less than n/2). By inspection, this is
sufficient to complete the proof in both Case I and Case II [in Case I we need to
assume C large enough to absorb the factor of (n/2 + 1)].

It remains to establish (6.2). For this, we first note that ρ > 3a in both Case I
and Case II [Case I is easier to check; for Case II we need to use that C = C(C1) is
sufficiently large]. This in particular means that R \ A �= ∅. Writing w0 for either
of the intersection points of ∂R and ∂A, we have maxw∈R\A |w| ≤ |w0|. Thus it
suffices to upper-bound |w0|2.

In the complex plane, consider the triangle formed by δ, 1, and w0. Note that w0
has distance ρ from δ and distance 6a from 1. Let θ denote the triangle’s angle at δ.
By the cosine law, (6a)2 = ρ2 + ρ2 − 2ρ2 cos θ , and hence cos θ = 1 − 18a2/ρ2.
Now consider the triangle formed by δ, 0 and w0. Its angle at δ is π − θ and the
adjacent sides have length δ, ρ. Thus by the cosine law,

|w0|2 = δ2 + ρ2 − 2δρ cos(π − θ)

= δ2 + ρ2 + 2δρ cos θ

= (δ + ρ)2 − 36δρa2/ρ2

= 1 − 36
δ

ρ
a2,

as needed for (6.2). �

7. Conclusions. A natural direction for future work is to go beyond mean-
based algorithms. For example, an efficient algorithm can estimate the covariances
of all pairs of trace bits. If different source strings lead to sufficiently different
trace-covariances, one could potentially get a more efficient trace reconstruction
algorithm. Analyzing this strategy is equivalent to analyzing a certain problem
concerning the maxima of Littlewood-like polynomials on C

2; however, we could
not make any progress on this problem. It would also be interesting to develop
lower bound techniques that apply to a broader class of algorithms than just mean-
based algorithms.

Finally, we mention that the authors have applied the techniques in this paper
(specifically, the technique used in Section 5.1) to several aspects of the population
recovery problem. Details will appear in a forthcoming work.

APPENDIX: RESULTS ON CHANNELS THAT ALLOW INSERTIONS,
DELETIONS AND FLIPS

A.1. Defining the general channel. We now describe the most general chan-
nel C that we analyze, which we subsequently refer to as “the general channel.”
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As stated earlier, this channel allows for three different types of corruptions: dele-
tions with probability δ, insertions with probability σ and bit-flips with probabil-
ity γ /2. We comment that for mean-based algorithms, the presence of bit-flips
makes hardly any difference; thus the reader may focus just on the combination of
deletions and insertions.

Our definition of this general channel is essentially the same as that of Kannan
and McGregor [11]. More precisely, for parameters δ, σ, γ ∈ [0,1), we define how
the channel acts on a single source bit b ∈ {−1,1}:

1. First, the channel performs “insertions”; that is, it repeatedly does the oper-
ation “with probability σ , transmit a uniformly random bit; with probability 1−σ ,
stop.”

2. Having stopped, the channel “deletes” (completes transmission without
sending b or −b) with probability δ.

3. Otherwise (with probability 1 − δ), the channel transmits one more bit:
namely, b with probability 1 − γ /2, or −b with probability γ /2.

As usual, the channel operates on an entire source string x ∈ {−1,1}n by operating
on its individual bits independently, concatenating the results. That is,

C(x) = C(x0)C(x1) · · ·C(xn−1) ∈ {−1,1}∗.
Of course, if we set σ = γ = 0, we get the deletion channel Delδ that was analyzed
in the main body of the paper.

An alternative description of the channel’s operation on a single bit xi is as
follows:

(A.1) C(xi) =

⎧⎪⎪⎨⎪⎪⎩
w with probabilityδ,

(w,a) with probability (1 − δ) · γ,

(w, xi) with probability (1 − δ) · (1 − γ ),

where a ∈ {−1,1} is a uniformly random bit, and where w ∈ {−1,1}G is a uni-
formly random string of G bits, with G in turn being a Geometric random variable
of parameter 1 − σ .4 From this description, one can see that in a received word
y ← C(x), each received bit either “comes from a properly transmitted source
bit xi ,” or else is uniformly random. [The probability each xi comes through is
(1 − δ)(1 − γ ).] As a consequence, we have that Proposition 3.1 continues to hold
for C: for every j ∈ N, the mean value Ey←C(x)[yj ] is a (real-)linear function of x.

Note that when the insertion probability σ is positive, the received word y ←
C(x) does not have an a priori bounded length. This is a minor annoyance that can
be handled in several different ways; we choose one way in the next section.

4Here, we use the convention that Geometric random variables take values 0,1,2, . . . (equal to the
number of “failures”); that is, Pr[G = t] = σ t (1 − σ) for each t ≥ 0.
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A.2. Mean traces for the general channel. We revisit some of our defini-
tions and observations about mean traces from Section 3, in our new context of
the general channel. We begin with (3.1), the definition of the mean trace. Since
the length of a received word may now be arbitrarily large, the mean trace is now
an infinite vector. We deal with this by truncating it at what we call the “effective
trace length bound N .”

DEFINITION A.1. For the general channel C with insertion probability 0 ≤
σ < 1, we define the effective trace length bound N = N(σ) to be N = �10 ×
n+ln(1/(1−σ))

1−σ
� ≤ poly(n, 1

1−σ
).

DEFINITION A.2. For the general channel C and a source string x ∈ {−1,1}n,
we define the idealized mean trace to be the infinite sequence

μideal
C (x) = E

y←C(x)

[
(y,0,0,0, . . . )

] ∈ [−1,+1]N.

We define just the mean trace to be its truncation to length N :

μC(x) = (
μideal
C (x)0,μ

ideal
C (x)1, . . . ,μ

ideal
C (x)N−1

) ∈ [−1,+1]N.

Recalling (A.1), we see that the length n of a received word is stochastically
dominated by (G1 +1)+· · ·+ (Gn +1), where the Gi’s are i.i.d. random variables
distributed as Geometric(1 − σ). We upper bound this using Janson’s bound on
the sum of independent Geometric random variables (Theorem 2.1 of [9]), noting
that his Geometric random variables count the number of “trials,” which aligns
precisely with our (Gi + 1)’s. His bound gives that Pr[n ≥ N + j ] ≤ exp(−(N +
j)(1−σ)/2) for any j ≥ 0, and hence we have the following: for any x ∈ [−1,1]n,∥∥μC(x) − μideal

C (x)
∥∥

1

=
∞∑

�=N

∣∣μideal
C (x)�

∣∣ ≤
∞∑

�=N

Pr[n ≥ �]

=
∞∑

j=0

Pr[n ≥ N + j ]

= exp
(−N(1 − σ)/2

) · 1

1 − exp(−(1 − σ)/2)

<
4 exp(−N(1 − σ)/2)

1 − σ

≤ 4 exp(−n) by our choice of N.

(A.2)
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The mean-based trace reconstruction model for the general channel. Defi-
nition 3.2 has a natural analogue for the general channel: an algorithm in the mean-
based general-channel model specifies a cost parameter T ∈ N and is given an es-
timate μ̂C(x) ∈ [−1,1]N of the mean trace satisfying ‖μ̂C(x) − μC(x)‖1 ≤ 1/T .
It is clear that an algorithm in the mean-based general-channel trace reconstruc-
tion model with cost T1 and postprocessing time T2 may be converted into a nor-
mal trace reconstruction algorithm using poly(N,T1) = poly(n, 1

1−σ
, T1) samples

and poly(n, 1
1−σ

, T1) + T2 time. Note that since we will be studying algorithms
with cost T � 2n, by (A.2) there is no real difference between getting an estimate
of μC(x) or of μideal

C (x).

The complexity of mean-based trace reconstruction for the general chan-
nel. Regarding the complexity of mean-based trace reconstruction, for the gen-
eral channel we define εC(n) and εfrac

C (n) in the obvious way, replacing each oc-
currence of the length-n vector μDelδ (·) in Definition 3.3 with the length-N vector
μC(·). As in Section 3.2, to show that trace reconstruction can be performed under
the general channel in time poly(N,M) = poly(n, 1

1−σ
,M) it suffices to show that

εfrac
C (n) ≥ 1/M .5

Reduction to complex analysis for the general channel. For x ∈ {−1,1}n
the general-channel polynomial is defined entirely analogously to Definition 3.4:

PC,x(z) = ∑
j<N

μC(x)j · zj ;

note that this is a polynomial of degree less than N . This definition extends to
x ∈ [−1,+1]n using the linearity of μC . Similarly, we may define the idealized
general-channel “polynomial” by

P ideal
C,x (z) = ∑

j∈N
μideal
C (x)j · zj ;

this will actually be a rational function of z.
Entirely analogous to Proposition 3.5, we get that for every b ∈ [−1,1]n,

max
z∈∂D1(0)

∣∣PC,b(z)
∣∣ ≤ ∥∥μC(b)

∥∥
1 ≤ √

N max
z∈∂D1(0)

∣∣PC,b(z)
∣∣.

Similar to Section 3.3, a factor of
√

N = poly(n, 1
1−σ

) is negligible compared
to the bounds we will prove, so it suffices to analyze maxz∈∂D1(0) |PC,b(z)| rather
than ‖μC(b)‖1 in the definitions of εC(n) and εfrac

C (n). Moreover, since by (A.2)
we have that |P ideal

C,b (z) − PC,b(z)| ≤ 2−n for all b ∈ [−1,1]n and all z ∈ ∂D1(0), it

suffices to analyze maxz∈∂D1(0) |P ideal
C,b (z)|; we do this in the next subsection.

5Again, to carry out the linear-programming algorithm, we can either assume that the channel
parameters δ, σ , γ are known to the algorithm, or else they should estimated; we omit the details
here.
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A.3. Channel polynomial for general channels. We now compute the ideal
channel polynomial for the general channel defined in Section A.1, using the
same technique as in Section 4 and recalling the discussion around the alterna-
tive channel description (A.1). As usual, let ρ = 1 − δ. Let J i be the random
variable whose value is ⊥ if xi is either deleted (probability δ) or is replaced by
a random bit [probability (1 − δ) · γ ], or else is the position j such that coor-
dinate xi of the source string ends up in coordinate j in the received string y. As
before, we let J̃ i denote the random variable J i conditioned on not being ⊥. Since
Pr[J i �= ⊥] = (1 − δ) · (1 − γ ), a derivation identical to that of (4.1) yields

(A.3) P ideal
C,x (z) = (1 − δ)(1 − γ )

∑
i<n

xi · E
[
zJ̃ i

]
.

To compute E[zJ̃ i ], it is straightforward to see that each coordinate xi′ with
i ′ < i independently generates a random number of received positions distributed
as G + B , where G ∼ Geometric(1 − σ) and independently B ∼ Bernoulli(ρ).
Further, conditioned on xi not being deleted, xi generates a number of received
positions distributed as G + 1, where the final “+1” is for xi (or −xi) itself. Thus
J̃ i is distributed as

G0 + · · · + Gi + B0 + · · · + Bi−1,

where the Gk’s are independent copies of G and the Bk’s are independent copies
of B . We therefore obtain

E
[
zJ̃ i

] = E
[
zG]i+1 · E

[
zB]i = (

E
[
zG] · E

[
zB])i · E

[
zG]

.

Let FG(z) denote E[zG] and let FB(z) denote E[zB]. It is easy to calculate that
FG(z) = 1−σ

1−σz
, and we saw earlier that FB(z) = (1−ρ)+ρz = δ+ρz. For brevity,

let us write

w = FG(z)FB(z) = (1 − σ) · (δ + ρz)

1 − σz
,

which is a Möbius transformation of z. Thus w ranges over a complex circle as z

ranges over ∂D1(0). More specifically, as z ranges over ∂D1(0) we have that w

ranges over ∂Dr(1 − r), where

r = ρ + δσ

1 + σ
.

Plugging this back into (A.3) using E[zJ̃ i ] = FG(z) · wi , we obtain

P ideal
C,x (z) = (1 − δ) · (1 − γ ) · FG(z) · ∑

i<n

xi · wi

= (1 − γ ) · (1 − δ) · 1 − σ

1 − σz
· ∑
i<n

xi · wi.
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We use the bound | 1−σ
1−σz

| ≥ 1−σ
2 for z ∈ ∂D1(0). Now by the analysis of

κ frac
bounded(r, d) given in Section 4 we get the following algorithmic result for

general-channel trace reconstruction, which is our most general positive result.

THEOREM 1.4, RESTATED. Let C be the general channel described in Sec-
tion A.1 with deletion probability δ = 1 − ρ, insertion probability σ , and bit-flip
probability γ /2. Define

r := ρ + δσ

1 + σ
.

Then there is an algorithm for C-channel trace reconstruction using samples and
running time bounded by

poly
(

1

1 − δ
,

1

1 − σ
,

1

1 − γ

)

·
{

exp
(
O(n/r)1/3)

if C/n1/2 ≤ r ≤ 1/2,

exp
(
O

(
(1 − r)n

)1/3)
if O

(
log3 n

)
/n ≤ 1 − r ≤ 1/2.

Let us make some observations about this result. First, our Theorem 1.1 for the
deletion channel is the special case of Theorem 1.4 obtained by setting σ = γ = 0.
Next, for fixed δ,

if δ ≤ 1/2, r ranges from 1 − δ down to 1/2 as σ ranges from 0 up to 1;

if δ ≥ 1/2, r ranges from 1 − δ up to 1/2 as σ ranges from 0 up to 1.

The second statement is rather peculiar: it implies that when the deletion rate is
high, the ability to perform trace reconstruction actually improves, the more in-
sertions there are. Indeed, when we have deletions only, our ability to do trace
reconstruction in time exp(O(n1/3)) is limited to retention probability ρ ≥ �(1).
But as soon as the insertion rate σ satisfies σ ≥ �(1), we can do trace recon-
struction in time exp(O(n1/3)) as long as the retention rate ρ = 1 − δ satisfies
ρ ≥ exp(−O(n1/3)). While the authors find this result quite counterintuitive, we
note that we cannot simulate the insertion plus deletion channel given access to
traces from the deletion channel. Thus, one cannot immediately obtain better trace
reconstruction bounds for the deletion channel by artificially adding insertions.
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