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REGULARITY AND STABILITY FOR THE SEMIGROUP OF JUMP
DIFFUSIONS WITH STATE-DEPENDENT INTENSITY

BY VLAD BALLY, DAN GOREAC1 AND VICTOR RABIET

Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS

We consider stochastic differential systems driven by a Brownian mo-
tion and a Poisson point measure where the intensity measure of jumps de-
pends on the solution. This behavior is natural for several physical mod-
els (such as Boltzmann equation, piecewise deterministic Markov processes,
etc.). First, we give sufficient conditions guaranteeing that the semigroup as-
sociated with such an equation preserves regularity by mapping the space of
k-times differentiable bounded functions into itself. Furthermore, we give an
upper estimate of the operator norm. This is the key-ingredient in a quantita-
tive Trotter–Kato-type stability result: it allows us to give an upper estimate
of the distance between two semigroups associated with different sets of co-
efficients in terms of the difference between the corresponding infinitesimal
operators. As an application, we present a method allowing to replace “small
jumps” by a Brownian motion or by a drift component. The example of the
2D Boltzmann equation is also treated in all detail.

1. Introduction. We propose a quantitative analysis of the regularity of semi-
groups of operators associated with hybrid piecewise-diffusive systems

(1.1)

Xt = x +
∞∑
l=1

∫ t

0
σl(s,Xs) dBl

s +
∫ t

0
b(s,Xs) ds

+
∫
[0,t]×E×R+

c(s, z,Xs−)1{u≤γ (s,z,Xs−)}Nμ(ds, dz, du),

taking their values in some Euclidian space R
d . Here:

• (E,E) is a measurable space,
• Nμ(ds, dz, du) is a homogenous Poisson point measure on E × (0,∞) with

intensity measure μ(dz) × 1(0,∞)(u) du,
• Wt = (W l

t )l∈N is an infinite-dimensional Brownian motion (independent of Nμ)
and

• the coefficients σl, b : R+ × R
d → R

d and c : R+ × E × R
d → R

d , γ : R+ ×
E ×R

d → [0,∞) are assumed to be smooth enough.
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Whenever the jump intensity γ is constant, one deals with classical stochastic
differential systems with jumps. Regularity of the associated flow is then imme-
diate (see [26] or [30]). However, if γ is nonconstant, the position Xs− of the
solution plays an important part in the intensity of jumps. This latter framework
occurs in a wide variety of applications and it will receive our attention throughout
the paper.

Our first result (see Theorem 15), which is the core of the paper, consists in
proving that, under natural assumptions, the semigroup Pt f (x) = E(f (Xt(x))

propagates regularity in finite time T > 0, that is, for some constant Qk(T ,P)

[see (5.1)],

(1.2) sup
t≤T

‖Pt f ‖k,∞ ≤ Qk(T ,P)‖f ‖k,∞ ∀f ∈ Ck
b

(
Rd)

.

Here, ‖f ‖k,∞ is the infinite norm of f and its first k derivatives. In the case k = 0,
this implies that Pt is a Feller semigroup.

As we have already hinted, the main difficulty to overcome is due to the pres-
ence of the jump intensity γ (s, z,Xs−). In classical jump equation, the indi-
cator function 1{u≤γ (s,z,Xs−)} does not appear and one may construct a version
of the solution such that x → Xt(x) is k-times differentiable (see [30]). Next,
one proceeds with differentiating the associated semigroup and using chain rule
∂xi

Pt f (x) = ∑d
j=1 E[∂jf (Xt(x))∂xi

X
j
t (x)] and concludes that (1.2) holds for

k = 1 with Q1(T ,P ) = supt≤T supx E[|∇Xt(x)|]. Whenever the indicator func-
tion is present, the resulting stochastic differential representation of the solution
in (1.1) is no longer appropriate. We will employ the alternative representation in
(2.18) [known in the engineering literature as “real shock” representation, whereas
(1.1) is known as the “fictive shock” representation]. The specificity of our frame-
work is that the law of the jumps depends on the trajectory and this dependence is
quantified by γ . As a consequence, the constants Qk will depend on some quanti-
ties of type

∫
E |∂α lnγ (t, z, x)|pγ (t, z, x)μ(dz) (for appropriate p ≤ k and index

α; the presence of such terms is inspired by Malliavin calculus techniques).
A second result is a stability property in line with Trotter–Kato theorem (cf.

[35], Theorem 4.4). We consider a sequence (Pn
t )n∈N of semigroups of operators

with generators Ln and we assume that, for some q ∈ N,

(1.3)
∥∥(
Ln −L

)
f

∥∥∞ ≤ ε × ‖f ‖q,∞ for all f ∈ C
q
b

(
R

d)
.

Here, L stands for the infinitesimal operator associated with (1.1). In Theorem 16
we prove that, under suitable hypotheses, the previous inequality yields

(1.4)
∥∥(
Pn

t −Pt

)
f

∥∥∞ ≤ ε × Qq(T ,P)×‖f ‖q,∞ for all f ∈ C
q
b

(
R

d)
.

In order to understand the link between this result and the property (1.2), one writes

Pt f (x) −Pn
t f (x) =

∫ t

0
∂sPn

t−sPsf (x) ds =
∫ t

0
Pn

t−s

(
Ln −L

)
Psf (x) ds
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and notice that by (1.3) first and by (1.2) next∥∥Pn
t−s

(
Ln −L

)
Psf

∥∥∞ ≤ ∥∥(
Ln −L

)
Psf

∥∥∞ ≤ ε × ‖Psf ‖q,∞
≤ ε × Qq(T ,P)‖f ‖q,∞.

We finally mention that in the paper we deal with nonhomogenous semigroups and
the inequalities are written with weighted norms (for simplicity we have chosen to
present the results with usual infinity norms in this Introduction).

If μ is a finite measure and σ is null, the solution of the above equation (1.1)
relates to the class of Piecewise Deterministic Markov Process (abridged PDMP).
These equations have been introduced in [14] and studied in detail in [15]. A wide
literature is available on the subject of PDMP as they present an increasing amount
of applications: on/off systems (cf. [9]), reliability (e.g., [16]), simulations and ap-
proximations of reaction networks (e.g., [2, 13, 22], with some error bounds hinted
at in [28] or [21]), neuron models (e.g., [10, 11]), etc. The reader may equally take
a look at the recent book [12] for an overview of some applications. In the engi-
neering community, these equations are also known as “transport equations” (see
[33] or [29]).

To the best of our knowledge, in the general case (including a diffusion compo-
nent and an infinite number of jumps), under suitable assumptions, the first proof
of existence and uniqueness of the solution of equation (1.1) is given in [24].

Now assume that one aims at applying some kind of numerical algorithm in
order to simulate the solution of equation (1.1). Furthermore, assume for the mo-
ment, that σ = b = 0 such that

(1.5) Xt = x +
∫ t

0

∫
E

∫
(0,∞)

c(s, z,Xs−)1{u≤γ (s,z,Xs−)}Nμ(ds, dz, du).

If μ(E) is finite, then one deals with a finite number of jumps in any interval of
time, such that the solution X is given with respect to a compound Poisson process
that can be explicitly simulated (leading, in particular in chemistry-inspired set-
tings, to what is commonly known as Gillespie’s algorithm [22]; for other general
aspects on simulation, see also [17, 32, 33]). However, even in this rather smooth
case, the presence of a trajectory-triggered jump (i.e., dependence on x in the jump
intensity γ ) can lead, in certain regions (as γ gets large) to the accumulation of
many (possibly) small jumps. In this case, the algorithm becomes very slow. One
way of dealing with the problem is to replace these small jumps with an averaged
motion leading (piecewise) to an ordinary differential equation (e.g., in [1]). Within
the context of reaction networks, some intuitions on the partition of reactions and
species to get the hybrid behavior as well as qualitative behavior (convergence to
PDMP) are specified, for example, in [13]. Further heuristics can be found in [3].

In the general framework of infinite μ(E), this direct approach may fail to pro-
vide fast solutions (except particular situations, for example, in [36]). To provide



REGULARITY AND STABILITY FOR JUMP DIFFUSIONS 3031

an answer, the natural idea is to truncate the “small jumps” on some compatible
family of sets (En)n∈N and simulating Xn

t solution of

(1.6) Xn
t = x +

∫ t

0

∫
Ec

n

∫
(0,∞)

cn

(
s, z,Xn

s−
)
1{u≤γ (s,z,Xn

s−)}Nμ(ds, dz, du).

Here, as usual, we let Ec
n = E \ En, for all n ∈ N. This procedure leads to a large

error. To improve it, one might want to further replace the “small jumps” from En

by a Brownian diffusion term leading to

(1.7)

Xn
t = x +

∫ t

0

∫
En

σn

(
s, z,Xn

s−
)
Wμ(ds, dz) +

∫ t

0
bn

(
s,Xn

s

)
ds

+
∫ t

0

∫
Ec

n

∫
(0,∞)

cn

(
s, z,Xn

s−
)
1{u≤γn(s,z,Xn

s−)}Nμ(ds, dz, du),

where Wμ is a time-space Gaussian random measure [associated with L
2(μ); stan-

dard procedure allows interpreting Wμ as in equation (1.1)]. The specific form of
σn and bn is obtained by using a second-order Taylor development in the infinites-
imal operator of the initial equation.

This idea goes back to [4]. In the case of systems driven by a Lévy process
(with γ fixed), [18] gives a precise estimate of the error and compares the ap-
proximation obtained by truncation as in equation (1.6) with the one obtained by
adding a Gaussian noise as in equation (1.7). An enlightening discussion on the
complexity of the two methods is also provided. Similar results concerning Kac’s
equation are obtained in [19] and for a Boltzmann-type equation in [23]. For some
recent development on asymptotics of Boltzmann-type equation, we also mention
[25]. Finally, it is worth mentioning that the converse approach (replacing Brow-
nian with jump diffusions) may also be useful. The engineering literature is quite
abundant in overviews of numerical methods for (continuous) diffusion processes
using jump-type schemes. In this case, the stochastic integral with respect to the
Brownian motion is replaced by an integral with respect to a jump process.

The aim of the present paper is to provide quantitative estimates of the weak ap-
proximation error when substituting the original system (1.1) with hybrid [piece-
wise diffusive Markov system (1.7)] in the general case when γ is trajectory-
dependent (which constitutes the main difficulty to overcome). At intuitive level,
Trotter–Kato-type results (cf. [35], Theorem 4.4) give the qualitative behavior. If
Pn (resp., Ln) is the semigroup (resp., infinitesimal generator) associated with
(1.7) and P (resp., L) is the semigroup (resp., infinitesimal generator) associated
with (1.1), under Feller-type conditions, convergence of Ln to L will imply the
corresponding convergence of semigroups. This type of qualitative behavior can
be found, for instance, in [31] (leading to drift), [5] (leading to piecewise diffusive
processes). In order to get error bounds (leading to a quantitative estimate), one
employs (1.4).
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A somewhat different motivation for our work comes from a method intro-
duced in [8] (see also [7]) to study convergence to equilibrium for Markov chains.
Roughly speaking, instead of looking into the long-time behavior of the Markov
chain Yn, n ∈ N, one replaces this chain by a Markov process Xt sharing the same
asymptotics (t 	→ Xt being an “asymptotic pseudotrajectory”). In [34], the results
of our paper are used in order to extend this method (of [8]) to the piecewise de-
terministic Markov framework.

Finally, although many biological intuitions exist on the use of hybrid models
for reaction systems (e.g., [3]), the quantitative estimates in our paper may turn
out to provide a (purely mathematical) selection criterion for the components to be
averaged and the contributions to be kept within the jump component. The use of
diffusions punctuated by jumps (as mesoscopic approach) responds, on one hand,
to the question of speeding up algorithms and, on the other, of keeping a high
degree of stochasticity (needed, for example, to exhibit multistable regimes).

This paper is organized as follows. We begin with presenting the main notations
used throughout the paper. We proceed, in Section 2.1 with the main elements lead-
ing to the processes involved. First, we recall some classical results on cylindrical
diffusion-driven processes and the regularity of the induced flow (Section 2.1.1).
Next, in Section 2.1.2, we introduce the jumping mechanism as well as the stand-
ing assumptions. We proceed with the construction of hybrid systems (piecewise
diffusive with trajectory-triggered jumps) in Section 2.2. We begin with some lo-
calization estimates when the underlying measure is finite in Lemma 6. We also re-
call some elements on fictive and real shocks leading to some kind of Marked-point
process representation of our system. These elements turn out to be of particular
importance in providing the differentiability of the flow generated by our hybrid
system. The norm notations and the L

p-regularity of the solution (uniformly with
respect to the initial data) are given in Section 3.

The differentiability of the associated semigroup is studied in Section 4 (with
the main result being Theorem 14 whose uniform estimates extend to general un-
derlying measures in Theorem 15).

Section 5 gives quantitative results on the distance between semigroups asso-
ciated with such systems. The natural assumptions are presented in the first sub-
section. The main result Theorem 16 produces quantitative upper-bounds for the
distance between semigroups starting from the distance between infinitesimal op-
erators.

We present two classes of applications. In Section 6, we introduce a piecewise
deterministic Markov process presenting three regimes and leading to a hybrid
approximation with explicit distance on associated semigroups. First, we provide
a theoretical framework describing the model, the regimes, the assumptions and
the main qualitative behavior (in Theorem 19). Next, explicit measures make the
object of a simple example to which our result is applied.

The second class of examples is given by a two-dimensional Boltzmann equa-
tion (following the approach in [6]) in Section 7. We begin with describing the
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model, its probabilistic interpretation and the (cut off) approximation given in [6]
and leading to a pure-jump PDMP. In this approximated model, using our results,
we replace small jumps with either a drift term (first-order approximation pro-
vided in Theorem 23) or a diffusion term (second-order approximation provided
in Theorem 24).

2. Notation. Let (E,E) be a measurable space and μ be a (fixed) nonnegative
σ -finite measure on (E,E):

• Given a standard Euclidean state-space R
m, the spaces Lp(μ) (for 1 ≤ p ≤ ∞)

will denote the usual space of p-power integrable, Rm-valued functions defined
on E. This space is endowed with the usual norm

‖φ‖Lp(μ) =
(∫

E

∣∣φ(z)
∣∣pμ(dz)

) 1
p

,

for all measurable function φ : E →R
m. For notation purposes and by abuse of

notation, the dependence on m is dropped [one should write L
2(μ;Rm)]. The

norm | · | denotes the classical, Euclidian norm on R
m.

• The space C
q
b (Rm) is the space of real-valued bounded functions on R

m whose
partial derivatives up to order q exist and are bounded and continuous.

Given a (fixed) probability space (�,F,P) and a (fixed) time horizon T > 0:

• If ξ is an R
m-valued random variable on �, we denote, as usual, ‖ξ‖p =

(E[|ξ |p]) 1
p .

• If Y is an adapted real-valued process and Z is an L
2(μ)-valued process, then

we denote by

‖Y‖T ,p =
(
E

[
sup
t≤T

|Yt |p
]) 1

p and ‖Z‖T ,p =
(
E

[
sup
t≤T

‖Zt‖p

L2(μ)

]) 1
p
.

• We use MT to denote the space of the measurable functions f : [0, T ] × E ×
R

d → R (where metric space are endowed with usual Borel fields). For f ∈
MT , we consider the norm

(2.1) ‖f ‖(μ,∞) = sup
t≤T

sup
x∈Rd

∥∥f (t, ·, x)
∥∥
L2(μ).

• Similar norm can be induced on Md
T by replacing L

2(μ;R) with L
2(μ;Rd)

norms.
• For a multi-index α = (α1, . . . , αq) ∈ {1, . . . , d}q , we denote |α| = q the length

of α and ∂α
x = ∂xα1

· · · ∂xαq
the corresponding derivative. To simplify notation,

the variable x may be suppressed and we will use ∂α .
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• For k ∈ N
∗, we denote by R[k] the family of real-valued vectors indexed by

multi-indexes of at most k length, that is, R[k] = {y[k] = (yβ)1≤|β|≤k : yβ ∈ R}
and, for y[k] ∈ R[k] we denote

(2.2) |y[k]|R[k] = ∑
1≤|β|≤k

|yβ | k+1
|β| .

By convention, |y[0]|R[0] = 0. Similarly, Rd[k] is defined for vectors whose com-
ponents belong to R

d and |yβ | is then computed with respect to the usual Eu-
clidian norm on R

d .
• If x 	→ f (t, z, x) is a real-valued, q times differentiable function for every

(t, z) ∈ [0, T ] × E then, for every 1 ≤ l ≤ q we denote

(2.3)
‖f ‖l,q,(μ,∞) = ∑

l≤|α|≤q

∥∥∂α
x f

∥∥
(μ,∞) and

‖f ‖q,(μ,∞) = ‖f ‖(μ,∞) + ‖f ‖1,q,(μ,∞)

REMARK 1. We emphasize that in ‖f ‖l,q,(μ,∞), for l ≥ 1, only derivatives
are involved (‖f ‖(μ,∞) itself does not appear).

• For a measurable function g : [0, T ] × R
d → R we denote by ‖g‖∞ =

sup(t,x)∈[0,T ]×Rd |g(t, x)| and, if x 	→ g(t, x) is q times differentiable for ev-
ery t ∈ [0, T ], then

‖g‖l,q,∞ = ∑
l≤|α|≤q

∥∥∂α
x g

∥∥∞ and ‖g‖q,∞ = ‖g‖∞ + ‖g‖1,q,∞.

2.1. Preliminary results.

2.1.1. Continuous diffusion. We assume the fixed probability space (�,F,P)

to be endowed with a Gaussian noise Wμ based on μ, as introduced by Walsh in
[38]. We recall that Wμ is a family of centred Gaussian random variables Wμ(t, h)

indexed by (t, h) ∈ R+ × L
2(μ) with covariances E[Wμ(t, h)Wμ(s, g)] = (t ∧

s)〈h,g〉L2(μ). Note that whenever (el)l∈N ∈ L
2(μ) is an orthonormal basis, the

family (Wμ(t, el))l∈N is a sequence of independent standard Brownian motions.
We briefly recall the stochastic integral with respect to Wμ. One considers the

natural filtration FW
t = σ(Wμ(s,h) : s ≤ t, h ∈ L

2(μ)), for all t ≥ 0. For a process
φ : R+ × � → L

2(μ) which is adapted [i.e., 〈φt , h〉L2(μ) is FW
t measurable for

every h ∈ L
2(μ)] and for which E[∫ T

0 ‖φt‖2
L2(μ)

dt] < ∞, for every T > 0, one
defines

(2.4)
∫ t

0

∫
E

φs(z)Wμ(ds, dz) :=
∞∑
l=1

∫ t

0
〈φs, el〉L2(μ)Wμ(ds, el).
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Let 0 ≤ s ≤ T be fixed. A nonhomogeneous continuous diffusion process
�s,t (x), s ≤ t ≤ T driven by Wμ with (regular) coefficients σ and b is the solution
of the stochastic equation

(2.5)

�s,t (x) = x +
∫ t

s

∫
E

σ
(
u, z,�s,u(x)

)
Wμ(du, dz) +

∫ t

s
b
(
u,�s,u(x)

)
du

= x +
∞∑
l=1

∫ t

0
σl

(
u,�s,u(x)

)
dBl

u +
∫ t

s
b
(
u,�s,u(x)

)
du,

with Bl
s = Wμ(s, el) and σl(u, x) = 〈σ(u, ·, x), el〉L2(μ).

The following result is standard for finite-dimensional Brownian motions (e.g.,
[26, 30]) and its generalization to this setting is quite forward.

PROPOSITION 2. Let us assume the following norm condition to hold true:

(2.6) ‖∇σ‖(μ,∞) + ‖∇b‖∞ < ∞.

Then, for every initial datum x ∈ R
d , equation (2.5) has a unique strong solution.

Moreover, if ‖σ‖1,q+1,(μ,∞) + ‖b‖1,q,∞ < ∞, then there exists a version of this
solution such that x 	→ Xs,t (x) is q times differentiable.

REMARK 3. Let us note that the following (more popular) alternative repre-
sentation for this diffusion holds: let ai,j (t, x) = ∫

E σ iσ j (t, z, x)μ(dz), 1 ≤ i, j ≤
d and set σ̂ = a

1
2 . Then the law of �s,t coincides with the law of �̂s,t solution of

�̂s,t (x) = x +
d∑

j=1

∫ t

s
σ̂j

(
u, �̂s,u(x)

)
dBj

u +
∫ t

s
b
(
u, �̂s,u(x)

)
du,

where B = (B1, . . . ,Bd) is a standard Brownian motion. We prefer working with
the representation �s,t (and not with �̂s,t ) for two reasons. First, the stochastic
integral with respect to Wμ(du, dz) naturally appears in our problem. Moreover, if

one liked to work with �̂s,t , then one would have to compute σ̂ = a
1
2 and to derive

regularity properties for σ̂ from regularity properties for a, and this is more delicate
(one needs some ellipticity property for a). In contrast, if one starts with equation
(2.5), then the proof of the previous proposition is a straightforward extension of
the classical results.

2.1.2. Jump mechanism and further notation. We assume the space � to be
large enough to contain an independent Poisson point measure on E ×R+ denoted
by Nμ and having a compensator N̂μ(ds, dz, du) = dsμ(dz) du. (For further con-
structions and properties, the reader is referred to [26].) We just mention that,
whenever Al ×Il ∈ E×B(R+), l = 1, . . . ,m are disjoint sets, then t 	→ Nμ(t,Al ×
Il) are independent Poisson processes with parameters μ(Al) × Leb(Il). Here,
B(R+) stands for the family of Borel subsets of R+.
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We consider now the coefficients c ∈ Md
T and γ ∈ MT and we assume that

there exist some functions lc, lγ : E →R+ such that

(2.7) Cμ(γ, c) := sup
t≤T

sup
x∈Rd

∫
E

(
lγ (z)

∣∣c(t, z, x)
∣∣ + lc(z)γ (t, z, x)

)
μ(dz) < ∞

and such that, for every x, y ∈ R
d , every t ≥ 0 and z ∈ E,

(2.8)

∣∣c(t, z, x) − c(t, z, y)
∣∣ ≤ lc(z)|x − y|,∣∣γ (t, z, x) − γ (t, z, y)
∣∣ ≤ lγ (z)|x − y|.

Moreover, we assume that γ takes nonnegative values and

(2.9) � := sup
t≤T

sup
x∈Rd

sup
z∈E

γ (t, z, x) < ∞.

We also set, for any Borel set G ⊂ E,

(2.10) α(G) := sup
t≤T

sup
x∈Rd

∫
G

∣∣c(t, z, x)
∣∣γ (t, z, x)μ(dz)

and assume that α(E) < ∞.

2.2. The hybrid system. We are interested in the (hybrid) stochastic differen-
tial equation

Xs,t (x) = x +
∫ t

s

∫
E

σ
(
r, z,Xs,r(x)

)
Wμ(dr, dz) +

∫ t

s
b
(
r,Xs,r(x)

)
dr

+
∫ t

s

∫
E×[0,2�]

c
(
r, z,Xs,r−(x)

)
1{u≤γ (r,z,Xs,r−(x))}Nμ(dr, dz, du).

(2.11)

REMARK 4. The stochastic components Wμ and Nμ are assumed to be as-
sociated with the same measurable space (E,E,μ). This assumption is made in
order to avoid heavy notation. Alternatively, one may consider Wμ on (E,E,μ)

and Nν on some (independent) space (F,F, ν). For most examples, the space
E = {1, . . . , d} and the uniform measure μ(i) = 1

d
, for all i ∈ E play an important

role. In this setting, Wμ(dr, dz) = 1
d

∑d
i=1 dWi

r , such that one comes back to a
usual diffusion process driven by a finite-dimensional Brownian motion.

The following result gives the existence and uniqueness of the solution to our
hybrid system in the class of càdlàg processes in L

1.

THEOREM 5. Suppose that (2.7), (2.8), (2.9), (2.10) and (2.6) hold. Then
equation (2.11) has a unique L

1 solution [i.e., a cadlag process Xs,t (x), t ≥ s

with E(|Xs,t (x)|) < ∞ which verifies (2.11)].

The above theorem has been first proven in [24]. The main idea is that, in con-
trast with the standard approach to SDEs relying on L

2 norms, one has to work
here with L

1 norms. This is due to the indicator function appearing in the Poisson
noise. We shortly recall this argument in the following.
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2.2.1. Localization estimates for μ. For a set G ⊂ E, we denote by XG
s,t the

solution of the equation (2.11) in which the measure μ is restricted to G, that is,
substituted by 1G(z) dμ(z). The first step gives the behavior of such solutions for
different sets G.

LEMMA 6. We suppose that (2.7), (2.8), (2.9), (2.10) and (2.6) hold. Let
G1 ⊂ G2 ⊂ E be two measurable sets (the case G1 = G2 = E is included) and
let �Xs,t = X

G1
s,t − X

G2
s,t . There exists a universal constant C such that for every

T ≥ 0 one has

(2.12)
E

[
sup

s≤t≤T

|�Xt |
]
≤ (|�Xs,s | + T α(G2 \ G1)

)
× exp

(
CT

(‖∇σ‖(μ,∞) + ‖∇b‖∞ + Cμ(γ, c)
)2 + 1

)
.

The proof is quite straightforward. For our readers’ sake, the elements of proof
are gathered in Section 8.1.

Let us now discuss the construction of a solution of the equation (2.11) and
present two alternative representations of this solution.

2.2.2. Fictive shocks on increasing support sets. We fix G ⊂ E with μ(G) <

∞ and we recall that γ is upper-bounded by � [see (2.9)]. We also fix s ≥ 0 and
we will construct XG

s,t solution of the equation (2.11) associated with 1G(z)μ(dz)

using a compound Poisson process as follows.
One takes Jt to be a (usual) Poisson process of parameter 2�μ(G) and denotes

by Tk , k ∈ N the jump times of Jt . Moreover, one considers two sequences of
independent random variables Zk and Uk , k ∈ N (independent of Jt as well and
supported by the set � assumed to be large enough). These random variables are
distributed

(2.13) P(Zk ∈ dz) = 1

μ(G)
1G(z)μ(dz), P(Uk ∈ du) = 1

2�
1[0,2�](u) du.

Finally, one defines the continuous stochastic flow �s,t (x), 0 ≤ s ≤ t to be the
solution of the SDE (2.5). Then the solution XG

s,t of the equation (2.11) associated
with 1G(z)μ(dz) is constructed by setting XG

s,s(x) = x and

XG
s,t (x) = �Tk,t

(
XG

s,Tk
(x)

)
on Tk ≤ t < Tk+1

and

XG
s,Tk+1

(x) = XG
s,Tk+1−(x) + c

(
Tk+1,Zk+1,X

G
s,Tk+1−(x)

)
× 1G(Zk+1)1{Uk≤γ (Tk+1,Zk+1,X

G
s,Tk+1−(x))},
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where XG
s,Tk+1−(x) = �Tk,Tk+1(Xs,Tk

(x)). This gives the solution of the equation

(2.14)

XG
s,t = x +

∫ t

s

∫
E

σ
(
r, z,XG

s,r

)
Wμ(dr, dz) +

∫ t

s
b
(
r,XG

s,r

)
dr

+
Jt∑

k=Js+1

c
(
Tk,Zk,X

G
s,Tk−(x)

)
1G(Zk)1{Uk≤γ (Tk,Zk,X

G
s,Tk−(x))}

that is (2.11) associated with 1G(z)μ(dz). This is the so-called “fictive shock”
representation (see [33]).

REMARK 7. To construct the global solution, one begins with considering a
sequence En ↑ E with μ(En) < ∞. Then one constructs X

En
s,t as before and checks

[using (2.12)] that this is a Cauchy sequence. Passing to the limit, one obtains Xs,t

solution of the general equation (2.11). Uniqueness follows directly from (2.12).

For the simplicity of the notation, in the following we will work with s = 0. The
estimates for s > 0 are quite similar. As usual, we will denote XG

0,t (x) by XG
t (x).

2.2.3. Real shocks. We construct now the “real shock” representation X
G

t in
the following way. We define E∗ = E ∪ {z∗}, where z∗ is a point which does not
belong to E and we extend μ to E∗ by setting μ(z∗) = 1. We also extend c(t, z, x)

to E∗ by c(t, z∗, x) = 0, for every (t, x) ∈ R+ ×R
d . Given a sequence (zk)k∈N ⊂

E∗, one denotes zk = (z1, . . . , zk) and constructs xt (x, zJt ) as follows:

(2.15)
xt

(
x, zk) = �Tk,t

(
xTk

(
x, zk)) on Tk ≤ t < Tk+1,

xTk+1

(
x, zk+1) = xTk+1−

(
x, zk) + c

(
Tk+1, zk+1, xTk+1−

(
x, zk))1G(zk+1).

Next, we define, for every (t, z, x) ∈ R+ × E∗ ×R
d ,

(2.16)

qG(t, z, x) = �G(t, x)1{z∗}(z) + 1

2�μ(G)
1G(z)γ (t, z, x)

where �G(t, x) = 1 − 1

2�μ(G)

∫
G

γ (t, z, x) dμ(z).

We consider a sequence of random variables (Zk)k∈N with the laws constructed
recursively by

(2.17) E
(
Zk ∈ dz | xTk−

(
x,Z

k−1) = y
) = qG(Tk, z, y)μ(dz),
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where Z
k−1 = (Z1, . . . ,Zk−1). Finally, we define X

G

t (x) = xt (x,Z
Jt

). This
amounts to saying that

(2.18)

X
G

t (x) = x +
∫ t

0

∫
E

σ
(
s, z,X

G

s

)
dWμ(ds, dz)

+
∫ t

0
b
(
s,X

G

s

)
ds +

Jt∑
k=1

c
(
Tk,Zk,X

G

Tk−
)
1G(Zk).

Equation (2.18) is similar to equation (2.14) but now 1{Uk≤γ (Tk,Zk,XTk−(x))} no
longer appears.

REMARK 8. If σ and b are smooth functions, one can choose a variant of
x 	→ �s,t (x) that is almost surely differentiable. Moreover, if x 	→ c(t, z, x) is

also smooth, then x 	→ xt (x, zJt ) is smooth as well. So x 	→ X
G

t (x) will be also
differentiable. In contrast, if one represents XG

t (x) = yt (x,UJt ,ZJt ), then the ap-
plication x 	→ yt (x, zJt , uJt ) is generally no longer differentiable (which is due
to the presence of the indicator function 1{uk≤γ (Tk,zk,yTk− (x,zk,uk))}). This explains
why, in the following, we favor the real-shocks representation and we treat in a
separate way the derivatives of x 	→ xt (x, zJt ), respectively, the derivatives of the
law of Zk with respect to x (see the proof of Theorem 14).

Moreover, we have the following well-known identity of laws result.

LEMMA 9. The law of (X
G

t (x))t≥0 coincides with the law of (XG
t (x))t≥0 so-

lution to (2.14). In particular, PG
t f (x) := E[f (XG

t (x)] = E[f (X
G

t (x)].

3. Differentiability of the flow. We will now study the differentiability of the

application x 	→ X
G

t (x) when assuming μ(G) < ∞. Let us begin with introducing
some further notation. Given a regular function g : R+ × E × R

d → R that is
differentiable with respect to the space variable x ∈R

d we denote by

|g|G,p = sup
0≤t≤T

sup
x∈Rd

(∫
G

∣∣g(t, z, x)
∣∣pγ (t, z, x)μ(dz)

) 1
p

,(3.1)

[g]G,p = sup
1≤p′≤p

|g|G,p′,(3.2)

θq,p(G) = 1 + ‖σ‖2,q,(μ,∞) + ‖b‖2,q,∞ + ∑
2≤|α|≤q

[
∂α
x c

]
G,p,(3.3)

ap(G) = ‖∇σ‖2
(μ,∞) + ‖∇b‖∞ + [∇c]pG,p,(3.4)

αq,p(C,G) = Cθκ(q)
q,pq (G) exp

(
CTκ(q)apq(G)

)
.(3.5)
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Here, κ(q) = q
∑

1≤n≤q
1
n

is a universal constant increasing with q ≥ 1 and this
exact form is used in proofs by recurrence. In general, one easily notes that κ(q) ≤
q + lnq , for all q ≥ 1. Note that if q1 ≤ q2 and p1 ≤ p2 then θq1,p1(G) ≤ θq2,p2(G)

and ap1(G) ≤ ap2(G) (this is the reason of being of sup1≤p′≤p in [g]G,p).
Throughout the paper, unless mentioned otherwise, the constant C will be a

generic one (assumed to be independent of both the time horizon T ≥ 0 and the
coefficients). However, the reader is invited to note that the actual upper bounds
involving terms such as αq,p actually make use of T in an exponential factor and
terms such as |g|G,p , etc. depend on the behavior of coefficients on the entire time
interval [0, T ].

In the following, we suppose that μ(G) < ∞ and θq,p(G) < ∞ and consider

XG
t (x) and X

G

t (x), solutions of the equations (2.14) and (2.18) constructed in the
previous section. Under these hypotheses, one may choose a variant of x 	→ X

G

t (x)

which is q times differentiable. Our aim is to estimate the L
p norm of ∂αX

G

t (x).

LEMMA 10. Let α be a multi-index with |α| = k. For every p ≥ 2, the follow-
ing inequality holds true:

(3.6) sup
x∈Rd

E

[
sup
t≤T

∣∣∂αX
G

t (x)
∣∣p] 1

p ≤ αk,p(C,G).

The proof is postponed to Section 8.2.2. The main idea consists in providing
estimates for the chain rule distinguishing first-order and higher-order derivatives.
Subsequently, these estimates will be applied for the different components in the

differential formula of ∂αX
G

t (x). Next, one provides estimates for generic equa-
tions of this type (having a linear form) and uses a recurrence argument over |α|.

We give now some consequences of (3.6).

COROLLARY 11. A Let α be a multi-index with |α| = q ≥ 1 and let p ≥ 2 and
η > 0 be given. For every g : R+ ×R

d →R that is smooth with respect to x ∈ R
d ,

the following inequality holds true:

(3.7)

∥∥∥∥∥
Jt∑

k=1

∣∣∂αg
(
Tk,X

G

Tk−(x)
)∣∣∥∥∥∥∥

p

≤ C‖g‖1,q,∞�μ(G)(t ∨ 1)α
q
q,(1+η)pq(C,G).

B Let g : R+ × R
d → R be a function that is smooth with respect to x ∈ R

d .
Then

(3.8)

∥∥∥∥∥
Jt∑

k=1

1G(Zk)
∣∣∂αg

(
Tk,Zk,X

G

Tk−(x)
)∣∣∥∥∥∥∥

p

≤ C

( ∑
1≤|β|≤|α|

[
∂βg

]
G,(1+η)pα

q

q,
(1+η)

η
pq

(C,G)

)
.

For our readers’ sake, the proof is provided in Section 8.2.3.
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4. Differentiability of the semigroup. Before giving the main result on the

semigroup of operators, we recall that the law of Z
Jt = (Z1, . . . ,ZJt ) conditional

to Jt > 0 has, as density, pJt (x, zJt )μ(dz1), . . . ,μ(dzJt ) with

pJt

(
x, zJt

) =
Jt∏

k=1

qG

(
Tk, zk, xTk−

(
x, zk−1)).

By convention, on Jt = 0, we set pJt = 1. This explicit formulation allows one to
obtain a very important step in proving regularity of the semigroup.

LEMMA 12. Let us assume that �μ(G) ≥ 1 and αq,2qp(C,G) < ∞ for some
given q ∈ N and p ≥ 2. Let α be a multi-index with |α| = q ≥ 1. Then there exists
a universal constant C (depending on p and q but not on G) such that

(4.1)

∥∥∂α lnpJt

(
x,Z

Jt
)∥∥

p ≤ C(t ∨ 1) × α
q
q,2pq(C,G)

×
(
�G,q(γ ) + ∑

1≤|β|≤q

[
∂β lnγ

]
G,2p

)
with [lnγ ]G,2p defined in (3.2) and

(4.2) �G,q(γ ) = sup
t≤T

sup
x∈Rd

q∑
h=1

∑
1≤|ρ|≤h

(∫
G

∣∣∂ρ lnγ (t, z, x)
∣∣ h
|ρ| γ (t, z, x)μ(dz)

) q
h

.

Before going any further, we make the following elementary remark.

REMARK 13. For every smooth function φ : Rd → R
∗+ and any multi-index

ρ with |ρ| = q , one gets the existence of some function P
φ
ρ : Rd →R

∗+ such that

(4.3) ∂ρφ(x) = φ(x)P φ
ρ (x) and

∣∣P φ
ρ (x)

∣∣ ≤ C
∑

1≤|β|≤q

∣∣∂β lnφ(x)
∣∣ q

|β| ,

for all x ∈ R
d . In order to prove this, one first writes φ = exp(lnφ)) and then takes

derivatives. One obtains φ multiplied with a polynomial applied to terms of type
∂β lnφ, that is, some linear combination of products of type

∏r
i=1 ∂β(i) lnφ with∑r

i=1 |β(i)| = q . Using Young’s inequality with pi = q
|β(i)| , we obtain∣∣∣∣∣

r∏
i=1

∂β(i) lnφ

∣∣∣∣∣ ≤
r∑

i=1

|β(i)|
q

∣∣∂β(i) lnφ
∣∣ q

|β(i)| .

And this proves the upper bound for |P φ
ρ (x)| given in (4.3).

We are now able to proceed with the proof of Lemma 12.
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PROOF. We have

∂α lnpJt

(
x, zJt

) =
Jt∑

k=1

1{z∗}(zk)∂
α(

ln�G

(
Tk, xTk−

(
x, zk−1)))

+
Jt∑

k=1

1G(zk)∂
α(

lnγ
(
Tk, zk, xTk−

(
x, zk−1)))

=: s1
(
x, zJt

) + s2
(
x, zJt

)
.

In order to estimate s1(x, zJt ), we will use (3.7) for g = ln�G. Recalling that γ is
upper bounded by �, we have �G(t, x) ≥ 1

2 . Then, for every multi-index α with
|α| = q , one has∣∣∂α ln�G(t, x)

∣∣ ≤
q∑

r=1

∑
|β(1)|+···+|β(r)|=q

r∏
i=1

∣∣∂β(i)�G(t, x)
∣∣

≤
q∑

r=1

C

(�μ(G))r

∑
|β(1)|+···+|β(r)|=q

r∏
i=1

∫
G

∣∣∂β(i)γ (t, z, x)
∣∣μ(dz).

Using Young’s inequality and (4.3) (recall that �μ(G) ≥ 1), one proves
r∏

i=1

∫
G

∣∣∂β(i)γ (t, z, x)
∣∣μ(dz)

≤ C

r∑
i=1

(∫
G

∣∣∂β(i)γ (t, z, x)
∣∣dμ(z)

) q
|β(i)|

= C

r∑
i=1

(∫
G

∣∣P γ
β(i)(t, z, x)

∣∣γ (t, z, x)μ(dz)

) q
|β(i)|

≤ C
∑

1≤|ρ|≤h≤q

(∫
G

∣∣∂ρ lnγ (t, z, x)
∣∣ h
|ρ| γ (t, z, x)μ(dz)

) q
h ≤ C�G,q(γ ).

We conclude that |∂α ln�G(t, x)| ≤ C
�μ(G)

�G,q(γ ). As a consequence of (3.7)
(with η = 1), one gets(

E
[∣∣s1

(
x,Z

Jt
)∣∣p]) 1

p ≤ C(t ∨ 1)�G,q(γ )α
q
q,2pq(C,G).

To estimate the second term, we use (3.8) with g(t, z, x) = lnγ (t, z, x) and for
η = 1 to get an upper bound given by

E

[∣∣∣∣∣
Jt∑

k=1

1G(Zk)∂
α lnγ

(
Tk, zk,

(
XTk−(x)

))∣∣∣∣∣
p]

≤ Cα
q
q,2pq(C,G)

∑
1≤|β|≤q

[
∂β lnγ

]
G,2p.

The proof is now complete. �
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We now discuss the differentiability of the semigroup associated with our pro-
cess. To this purpose, we let for f regular enough

PG
t f (x) = E

[
f

(
XG

t (x)
)] = E

[
f

(
X

G

t (x)
)]

= E

[∫
EJt

f
(
xt

(
x, zJt

))
pJt

(
x, zJt

)
μ(dz1) · · ·μ(dzJt )

]
.

THEOREM 14. We assume (2.7), (2.8), (2.9), (2.10) and (2.6) to hold true.
Then, for every q ∈ N, there exists a constant C > 0 independent of G such that

(4.4)

∥∥PG
t f

∥∥
q,∞ ≤ C‖f ‖q,∞ × (t ∨ 1)q × α

2q
q,4q(C,G)

×
(

1 + �G,q(γ ) + ∑
1≤|β|≤q

[
∂β lnγ

]
G,4q

)q

.

PROOF. Let us begin with writing

E
[
f

(
X

G

t (x)
)] = E

[
f

(
X

G

t (x)
)
1Jt=0

] +E
[
f

(
X

G

t (x)
)
1Jt>0

]
.

For the first term, one notes that

E
[
f

(
X

G

t (x)
)
1Jt=0

] = E
[
�0,t (x)1Jt=0

] = E
[
�0,t (x)

]
P[Jt = 0].

Estimates on ∂α
E[f (X

G

t (x))1Jt=0] follow from standard arguments on diffusive
(continuous) flows. To conclude, we want to estimate, for a multi-index α such
that |α| ≤ q , the partial derivative

∂α
E

[
f

(
X

G

t (x)
)
1Jt>0

]
= ∑

(β,ρ)=α

E

[∫
EJt

∂βf
(
xt

(
x, zJt

)) × ∂ρpJt

(
x, zJt

)
μ(dz1) · · ·μ(dzJt )

]

= ∑
(β,ρ)=α

E

[∫
EJt

∂βf
(
xt

(
x, zJt

))
P

pJt (·,zJt )
ρ

(
x, zJt

)
× pJt

(
x, zJt

)
μ(dz1) · · ·μ(dzJt )

]
with P

pJt (·,zJt )
ρ (x, zJt ) given by (4.3). Using the Cauchy–Schwarz inequality, we

have ∣∣∂α
E

[
f

(
X

G

t (x)
)]∣∣ ≤ ∑

(β,ρ)=α

A
1
2
β × B

1
2
ρ

with

Aβ = E
[∣∣∂βf

(
X

G

t (x)
)∣∣2]

,

Bρ = E

[∫
EJt

∣∣P pJt (·,zJt )
ρ

(
x, zJt

)∣∣2 × pJt

(
x, zJt

)
μ(dz1) · · ·μ(dzJt )

]
.
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We have (recalling that 0 ≤ |β| ≤ |α| ≤ q),

|Aβ | ≤ C‖f ‖2
q,∞

(
1 + ∑

1≤|ρ|≤q

E
[∣∣∂ρXt(x)

∣∣2q]) ≤ C‖f ‖2
q,∞α

2q
q,2q(C,G).

If |ρ| = 0, then Bρ = 1. Moreover, using the estimates from (4.3) and (4.1), re-
spectively (with p = 2|ρ|

|β| ≥ 2), one gets

∑
1≤|ρ|≤q

B
1
2
ρ

≤ C
∑

1≤|ρ|≤q

∑
1≤|β|≤|ρ|

(
E

[∫
EJt

∣∣∂β lnpJt

(
x, zJt

)∣∣ 2|ρ|
|β|

× pJt

(
x, zJt

)
dμ(z1) · · · dμ(zJt )

]) 1
2

≤ C
∑

1≤|β|≤|ρ|≤q

(
E

[∣∣∂β lnpJt

(
x,Z

Jt
)∣∣ 2|ρ|

|β| ]) 1
2

≤ C × (t ∨ 1)q × α
q
q,4q(C,G)

(
1 + �G,q(γ ) + ∑

1≤|β|≤q

[
∂β lnγ

]
G,4q

)q

.

The assertion follows from these estimates. �

In the proof of the previous theorem, we need μ(G) < ∞ having to argue on

XG
t and X

G

t . We take an increasing sequence En ↑ E such that μ(En) < ∞ and
we use (4.4) and (2.12), to extend the result to (possibly) infinite total measure
μ(E). For simplicity, we will write Pt instead of PE

t .

THEOREM 15. We assume that the jump rate γ is bounded (2.9), the jump
coefficients are Lipschitz regular (2.8), respectively, the diffusion coefficients are
smooth (2.6). Moreover, we assume the integrability conditions on the jump mech-
anism (2.7) and (2.10).

Then Pt maps C
q
b (Rd) in C

q
b (Rd) and there exists C > 0 (independent of E)

such that

(4.5)

‖Pt f ‖q,∞ ≤ C‖f ‖q,∞(t ∨ 1)q × α
2q
q,4q(C,E)

×
(

1 + �E,q(γ ) + ∑
1≤|β|≤q

[
∂β lnγ

]
E,4q

)q

,

with αq,p(C,E), �E,q(γ ) and [∂β lnγ ]E,p defined in (3.5), (4.2) and (3.2).
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5. The distance between two semigroups. In this section, we consider two
sets of coefficients σ , b, c, γ and σ̂ , b̂, ĉ, γ̂ on measurable space (E,E,μ), re-
spectively, (Ê, Ê, μ̂) and we associate the stochastic equations in (2.11). The space
(�,F,P) is assumed to be large enough to support the (possibly mutually inde-
pendent) Poisson random measures Nμ and Nμ̂ as well as the cylindrical Brownian
processes Wμ and Wμ̂.

We denote by Xt0,t (x), respectively, by X̂t0,t (x) the solutions of the correspond-
ing equations and we consider the nonhomogeneous semigroups Pt0,tf (x) =
E[f (Xt0,t (x))] and P̂t0,tf (x) = E[f (X̂t0,t (x))]. Our aim is to estimate the dis-
tance between these two semigroups. To begin, we give the standing assumptions.

5.1. Standing assumptions.

ASSUMPTION H1(q). Given the coefficients σ , b, c, γ , we denote by

(5.1)

Qq(T ,P) := C(T ∨ 1)q × α
2q
q,4q(C,E)

×
(

1 + �E,q(γ ) + ∑
1≤|β|≤q

[
∂β lnγ

]
E,4q

)q

,

with αq,p(C,E), �E,q(γ ) and [∂β lnγ ]E,p defined in (3.5), (4.2) and (3.2) and the
constant C appearing in (4.4). We assume that all these quantities are well defined
and finite, so that Qq(T ,P) < ∞.

Whenever this assumption holds true, Theorem 15 yields

(5.2) sup
t0≤t≤T

‖Pt0,tf ‖q,∞ ≤ Qq(T ,P)‖f ‖q,∞.

We will also need a condition on the behavior of particular (polynomial) test
functions.

ASSUMPTION H2(k). For k ∈ N, we denote by ψk(x) = (1 + |x|2) k
2 and we

assume that one finds a constant Ck(T ,P) such that

(5.3) sup
t0≤t≤T

∥∥∥∥ 1

ψk

Pt0,tψk

∥∥∥∥∞
≤ Ck(T ,P) < ∞.

Finally, we will make an assumption on the gradient of the infinitesimal opera-
tors

(5.4)
Lt f (x) = 1

2
T r

[
a(t, x)∂2f (x)

] + b(t, x)∂f (x)

+
∫
E

(
f

(
x + c(t, z, x)

) − f (x)
)
γ (t, z, x)μ(dz),
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with

ai,j (t, x) =
∫
E

σ i(t, z, x)σ j (t, z, x)μ(dz),

for all x ∈ R
d , t ∈ [0, T ] and all 1 ≤ i, j ≤ d .

ASSUMPTION H3(k, q). We assume that there exists C ≥ 1 such that, for all
f ∈ C

q
b (Rd)

(5.5) sup
t≤T

∥∥∥∥ 1

ψk

∇Lt f

∥∥∥∥∞
≤ C‖f ‖q,∞.

5.2. Upper bounds on the distance between semigroups. We consider two sets
of coefficients σ , b, c, γ and σ̂ , b̂, ĉ, γ̂ and the corresponding semigroups Pt and
P̂t . We fix k, q ∈ N.

THEOREM 16. We assume that Pt satisfies H2(k) and H3(k, q) and that P̂t

verifies H1(q) and H3(k, q). Moreover, we assume (2.9), (2.8), (2.7) and (2.6)
to hold true for σ̂ , b̂, ĉ, γ̂ . Finally, we assume that there exists a function ε(·) :
R+ −→ R+ such that, for every 0 ≤ t ≤ T ,

(5.6)
∥∥∥∥ 1

ψk

(Lt − L̂t )f

∥∥∥∥∞
≤ ε(t)‖f ‖q,∞.

Then the following inequality holds true:

(5.7)
∥∥∥∥ 1

ψk

(Pt0,t − P̂t0,t )f

∥∥∥∥∞
≤ Ck(T ,P)Qq(T , P̂)‖f ‖q,∞ ×

∫ t

t0

ε(s) ds,

with Ck(P) the constant in (5.3) (with respect to σ , b, c, γ ) and Qq(T , P̂) is given
in (5.1) (with respect to the coefficients σ̂ , b̂, ĉ, γ̂ ).

PROOF. For n ∈ N, we set δ := t−t0
n

and ti = t0 + iδ, for all 0 ≤ i ≤ n. With
these notation,

1

ψk

(Pt0,t − P̂t0,t )f =
n−1∑
i=0

1

ψk

Pti+1,tψk

1

ψk

(Pti ,ti+1 − P̂ti ,ti+1)P̂t0,ti f.

We make the notation gi = P̂t0,ti f . Using (5.3) for Pti+1,t ,∥∥∥∥ 1

ψk

(Pt0,t − P̂t0,t )f

∥∥∥∥∞
≤ Ck(T ,P)

n−1∑
i=0

∥∥∥∥ 1

ψk

(Pti ,ti+1 − P̂ti ,ti+1)gi

∥∥∥∥∞
.

By Itô’s formula,

Pti ,ti+1gi(x)

= gi(x) +E

[∫ ti+1

ti

Lsgi

(
Xti,s(x)

)
ds

]
= gi(x) +

∫ ti+1

ti

Lsgi(x) ds + εi,
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with εi(x) := E[∫ ti+1
ti

(Lsgi(Xti ,s(x)) − Lsgi(x)) ds]. We write the same type of
formulae for P̂ti ,ti+1gi , take the difference between the two and use (5.6) in order
to get ∥∥∥∥ 1

ψk

(Pti ,ti+1 − P̂ti ,ti+1)gi

∥∥∥∥∞

≤
∫ ti+1

ti

∥∥∥∥ 1

ψk

(Ls − L̂s)gi

∥∥∥∥∞
ds +

∥∥∥∥ 1

ψk

εi

∥∥∥∥∞
+

∥∥∥∥ 1

ψk

ε̂i

∥∥∥∥∞

≤ ‖gi‖q,∞
∫ ti+1

ti

ε(s) ds +
∥∥∥∥ 1

ψk

εi

∥∥∥∥∞
+

∥∥∥∥ 1

ψk

ε̂i

∥∥∥∥∞
.

By (5.2), ‖gi‖q,∞ ≤ Qq(T , P̂)‖f ‖q,∞ so that, finally,∥∥∥∥ 1

ψk

(Pt0,t − P̂t0,t )f

∥∥∥∥∞

≤ Ck(T ,P)

[
Qq(T , P̂)‖f ‖q,∞

∫ t

t0

ε(s) ds +
n−1∑
i=0

(∥∥∥∥ 1

ψk

εi

∥∥∥∥∞
+

∥∥∥∥ 1

ψk

ε̂i

∥∥∥∥∞

)]
.

To conclude, one still needs to estimate the terms εi and prove that these errors
vanish as n increases. The assumption (5.5) yields∣∣Lsgi

(
Xti,s(x)

) −Lsgi(x)
∣∣

≤
∫ 1

0

∣∣〈∇Lsgi

(
λx + (1 − λ)Xti,s(x)

)
,Xti,s(x) − x

〉∣∣dλ

≤ C‖gi‖q,∞
∣∣Xti,s(x) − x

∣∣ ∫ 1

0
ψk

(
λx + (1 − λ)Xti,s(x)

)
dλ.

It follows that∣∣εi(x)
∣∣ ≤ CQq(T , P̂)‖f ‖q,∞

×
∫ ti+1

ti

∫ 1

0
E

[
ψk

(
λx + (1 − λ)Xti,s(x)

)∣∣Xti,s(x) − x
∣∣]dλds.

Using the standard trajectory estimates, E[|Xti,s(x)|k] ≤ C(1 + |x|k). Hence,

E
[
ψ2

k

(
λx + (1 − λ)Xti,s(x)

)] ≤ Cψ2
k (x).

Using the Cauchy–Schwarz inequality, we get

1

ψk(x)

∣∣εi(x)
∣∣ ≤ CQq(T , P̂)‖f ‖q,∞

∫ ti+1

ti

(
E

[∣∣Xti,s(x) − x
∣∣2]) 1

2 ds.

By setting τn(s) := ti for ti ≤ s < ti+1, we finally get

1

ψk(x)

n∑
i=1

∣∣εi(x)
∣∣ ≤ CQq(T , P̂)‖f ‖q,∞

∫ t

0

(
E

[∣∣Xτn(s),s(x) − x
∣∣2]) 1

2 ds
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and the right-hand term vanishes as n → ∞. Similar estimates are valid for ε̂ which
completes our proof. �

REMARK 17. 1. This assertion is to be interpreted in connection to Trotter–
Kato-type results (e.g., [35], Theorem 4.4) stating that, given Pt and (Pn

t )n∈N ho-
mogeneous Feller semigroups of infinitesimal operators L, respectively, Ln, if Ln

converges to L, then Pn
t → Pt (in an appropriate sense). The inequality (5.7) gives

not only a qualitative behavior, but a quantitative one by providing estimate of the
error within our framework.

2. The main difficulty and novelty in our approach is to provide (5.2). Whenever
γ is constant, one deals with a usual SDE with jumps and the proof of (5.2) follows
from the regularity of the flow x → Xt(x). However, since γ (t, z, x) depends on
x (which is the case for PDMP), the effort developed in the previous sections is
necessary. Note, however, that (5.2) is needed only on one of Pt and P̂t . Hence,
in a framework in which either γ or γ̂ does not depend on x, the proofs simplify
considerably.

6. PDMP with three regimes. In this section, we discuss piecewise diffusive
Markov processes in which three regimes are at work depending on the speed of
the jumps. The intermediate regime will be purely deterministic and replaced by
a drift term (corresponding to an application of the law of large numbers). The
fast regime will provide a diffusive term (associated with an application of the
central limit theorem). Finally, the slow regime is kept as jump-type contribution.
We do not aim at treating a completely general framework but only at presenting
an example in order to illustrate our approach.

6.1. Theoretical framework.

6.1.1. The model. Let us begin with fixing ε > 0 and a measurable space
(E,E,με) where με is a nonnegative finite measure. The space decomposes as fol-
lows E = Aε ∪ Bε ∪ Cε , where Aε , Bε , Cε are mutually disjoint Borel measurable
sets. Moreover, given �ε > 0, to some (smooth, time-homogeneous) coefficients
cε, γε : E ×R →R, bε :R →R, we associate the stochastic equation

(6.1)

Xε
t = x +

∫ t

0
bε

(
Xε

s

)
ds

+
∫ t

0

∫
Aε×[0,2�ε]

cε

(
z,Xε

s−
)
1{u≤γε(z,X

ε
s−)}Ñμε(ds, dz, du)

+
∫ t

0

∫
(Bε∪Cε)×[0,2�ε]

cε

(
z,Xε

s−
)
1{u≤γε(z,X

ε
s−)}Nμε(ds, dz, du),

where Nμε is a Poisson point measure on E × R+ associated with �ε and με and
Ñμε = Nμε − N̂με is the associated martingale measure.
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6.1.2. The regimes. The jumps in Aε are assumed to occur at high frequency.
They lead to a Brownian motion. The jumps in Bε represent an intermediary
regime which will be modeled by a drift term while the jumps in Cε are rather
rare and remain in the same regime. This model is expressed by the following
setting. We consider a finite measure μ and the coefficients σ, b : R → R and
c, γ : E ×R→R. We associate the equation

(6.2)

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs

+
∫ t

0

∫
E×[0,2�]

c(z,Xs−)1{u≤γ (z,Xs−)}Nμ(ds, dz, du),

0 ≤ t ≤ T .

Our aim is to give sufficient conditions in order to obtain the convergence of the
family Xε to X and to estimate the error.

6.1.3. Standing (sufficient) assumptions. Throughout the section, unless stated
otherwise, we assume the following.

ASSUMPTION Hε
0 . We assume that cε and γε satisfy integrability condition

(2.7), the Lipschitz regularity assumption (2.8) and the uniform upper-bound of γε

assumption (2.9) (written for �ε substituting �).

REMARK 18. Note that the constants which appear in these conditions de-
pend on ε (so they are not uniform with respect to ε). Under these hypothesis,
equation (6.1) has a unique solution (which may alternatively be constructed using
a compound Poisson process).

We also need an assumption on the limit coefficients.

ASSUMPTION H0. We assume that σ, b ∈ C3
b(R) and, for every z ∈ E, the

functions x 	→ c(z, x) and x 	→ lnγ (z, x) are three times differentiable and

(6.3)

∑
0≤|α|≤3

sup
x∈R

[∣∣∂ασ (x)
∣∣ + ∣∣∂αb(x)

∣∣ + sup
z∈E

∣∣∂αc(z, x)
∣∣ + sup

z∈E

∣∣∂α lnγ (z, x)
∣∣]

=: C∗ < ∞.

Under this hypothesis, equation (6.2) has a unique solution (see Remark 7).
Finally, we need some further assumptions in order to obtain convergence. We
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denote by νε(x, dz) := γε(z, x)με(dz) and set

σε(x) :=
(∫

Aε

c2
ε(z, x)νε(x, dz)

) 1
2
, bε(x) := bε(x) +

∫
Bε

cε(z, x)νε(x, dz),

δσ (ε) := ∥∥σ 2
ε − σ 2∥∥∞, δb(ε) = ‖bε − b‖∞,

δc,γ (ε) = sup
x∈R

∫
Cε

∣∣(c − cε)(z, x)
∣∣γ (z, x) + ∣∣(γ − γε)(z, x)

∣∣dμ(z).

Moreover, we denote the convenient moments by

δA(ε) = sup
x∈R

∫
Aε

∣∣cε(z, x)
∣∣3νε(x, dz), δB(ε) = sup

x∈R

∫
Bε

∣∣cε(z, x)
∣∣2νε(x, dz),

δC(ε) = sup
x∈R

∫
E−Cε

∣∣c(z, x)
∣∣γ (z, x)μ(dz)

ASSUMPTION H1. We assume that δ(ε) := δσ (ε)+ δb(ε)+ δc,γ (ε)+ δA(ε)+
δB(ε) + δC(ε) →ε→0 0.

ASSUMPTION H2. Finally, we assume that the restrictions of με and μ to Cε

coincide, that is, 1Cε(z)με(dz) = 1Cε(z)μ(dz).

6.1.4. The theoretical result. Under these assumptions, one can state and
prove the following.

THEOREM 19. We assume that Hε
0 , H0, H1 and H2 hold true. We let Pε

t and
Pt be the semigroups associated with Xε

t , respectively, with Xt . Then there exists
a universal constant C such that, for every f ∈ C3

b(R),

(6.4)
∥∥Pε

t f −Pt f
∥∥∞ ≤ (t ∨ 1)3CC42∗ exp

(
(t ∨ 1)CC36∗

) × δ(ε)‖f ‖3,∞.

The proof follows from Theorem 16 and, for our readers’ convenience a sketch
is presented in Section 8.3.

REMARK 20. The notation used in the previous theorem suggests that Pε
t is an

approximation of Pt . However, sometimes, the point of view is the exact opposite:
the physical phenomenon is modeled by Xε

t and Xt represents an approximation
which is easier to handle. Having this in mind one may also consider the following
optimization problem: given the dynamics of Xε

t , which are the best dynamics (co-
efficients) of type Xt which approximates Xε

t ? In order to formulate this problem
in a clean way, one has to give a criterion in order to precise the sense of “best”.
This would be another problem left for future work.
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6.2. A simple example. Let us now give an explicit example.

EXAMPLE 21. To this purpose, we consider c, γ ∈ C3
b(R) and

με(dz) = 1(ε,3ε](z)
dz

z2 + 1(3ε,4ε](z)
dz

z3/2 + 1(4ε,1](z)
dz

z
,

cε(z, x) = c(x)
√

z
(
1(2ε,1](z) − α1(ε,2ε](z)

)
with α =

√
3 − √

2√
6 − √

3
,

and we associate the equation

Xε
t = x +

∫ t

0

∫ 1

0

∫ 1

0
cε

(
z,Xε

s−
)
1{u≤γ (Xε

s−)}Nμε(ds, dz, du).

Note that, in contrast with equation (6.1), the measure Nμε is not compensated.
But, in fact, the activity of the small jumps in 1(ε,2ε](z) compensate the activity of
the small jumps in 1(2ε,3ε](z). The limit equation is

Xt = x +
∫ t

0
σ(Xs) dWs +

∫ t

0
b(Xs) ds

+
∫ t

0

∫ 1

0

∫ 1

0
c(Xs−)

√
z1{u≤γ (Xε

s−)}Nμ(ds, dz, du)

with μ(dz) = z−1 dz and σ(x) = β1c(x)
√

γ (x), b(x) = ∫
Bε

cε(z, x)νε(x, dz) =
β2c(x)γ (x). Here, β1 = ((α2 − 1) ln 2 + ln 3)

1
2 and β2 = ln 4

3 . Then, by applying
Theorem 19, it follows that∥∥Pt f −Pε

t f
∥∥∞ ≤ C

√
ε‖f ‖3,∞

with C depending on ‖c‖3,∞ and ‖ lnγ ‖3,∞. It also depends on the time interval
[0, T ]. To this purpose, one only needs to check the assumption H1 (see Section 8.3
for details on this step) and apply Theorem 19.

7. Boltzmann’s equation.

7.1. The model. Probabilistic interpretation. In this section, we use the pre-
vious results to construct an approximation scheme for the solution of the two-
dimensional Boltzmann equation taking the following form:

(7.1) ∂tft (v) =
∫
R2

dv∗
∫ π/2

−π/2
dθ |v − v∗|κθ−(1+ν)(ft

(
v′)ft

(
v′∗

) − ft (v)ft (v∗)
)
.

Here,

• ft (v) is a nonnegative measure on R
2 representing the density of particles with

velocity v in a model for a gas in dimension two.
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• Rθ is the rotation of angle θ and the new speeds after collision are v′ = v+v∗
2 +

Rθ(
v−v∗

2 ), respectively, v′∗ = v+v∗
2 − Rθ(

v−v∗
2 ).

• the parameters ν ∈ (0,1) and κ ∈ (0,1] are chosen for the cross section to model
the interaction in the spirit of the assumption A (γ, ν) in [6].

The rigorous sense of this equation is given by integrating it against a test
function [hence leading to weak solutions of (7.1)]. In [20], Corollary 2.3 and
Lemma 4.1, the authors have proven that, for every ν ∈ (0,1) and κ ∈ (0,1],
the above equation admits a unique weak solution as follows. One assumes
that there exists s ∈ (κ,2) such that

∫
e|v|s f0(dv) < ∞. Then there exists a

unique solution ft of (7.1) which starts from f0. Moreover, the solution satisfies

supt≤T

∫
e|v|s′ ft (dv) < ∞ for every s′ < s.

Using the Skorohod representation theorem, we find a measurable function vt :
[0,1] → R

2 such that for every ψ :R2 →R+:

(7.2)
∫ 1

0
ψ

(
vt (ρ)

)
dρ =

∫
R2

ψ(v)ft (dv).

Throughout the section, unless stated otherwise, we fix ν, κ and s ∈ (κ,2) and
the corresponding solution ft (v) [and, in particular, vt (ρ)].

In [37], the author gives a probabilistic interpretation for the solutions of the
classical Boltzmann equation (in dimension 3). A variant of this result in dimen-
sion two [so for the equation (7.1)], as well as an approximation result for it, is
given in [6], Section 2. We briefly recall these elements.

We emphasize that throughout the section, the time horizon T ≥ 0 is fixed and
the constants C depend on the time interval.

We let (�,F,P) be a probability space, the space E := [−π
2 , π

2 ]×[0,1] and let
N(dt, dθ, dρ, du) be a Poisson point measure on E ×R+ with intensity measure
θ−(1+ν) dθ × dρ × du. We also consider the matrix

A(θ) := 1

2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
= 1

2
(Rθ − I ).

Then we are interested in the equation

(7.3) Vt = V0 +
∫ t

0

∫
E×R+

A(θ)
(
Vs− − vs(ρ)

)
1{u≤|Vs−−vs(ρ)|κ }N(ds, dθ, dρ, du)

with P(V0 ∈ dv) = f0(dv).
In the spirit of [6], Section 2, one also constructs the following approximation.

One considers a C∞ even nonnegative function χ supported by [−1,1] and such
that

∫
R χ(x)dx = 1. We fix η0 ∈ (1

s
, 1

κ∨ν
). Given ε ∈ (0,1], we denote by �ε =

(ln 1
ε
)η0 and define

(7.4) ϕε(x) =
∫
R

(
(y ∨ 2ε) ∧ �ε

)χ(
x−y

ε
)

ε
dy.
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The reader is invited to note that 2ε ≤ ϕε(x) ≤ �ε , for every x ∈ R, ϕε(x) = x, for
x ∈ (3ε,�ε − 1), ϕε(x) = 2ε for x ∈ (0, ε) and ϕε(x) = �ε for x ∈ (�ε,∞).

To the cut off function ϕε , one associates the equation

(7.5)
V ε

t = V0 +
∫ t

0

∫
E×R+

A(θ)
(
V ε

s− − vs(ρ)
)

× 1{u≤ϕκ
ε (|V ε

s−−vs(ρ)|)}N(ds, dθ, dρ, du).

Proposition 2.1 in [6] provides the following probabilistic interpretation as well as
an approximation result.

PROPOSITION 22 ([6], Proposition 2.1). 1. The equation (7.3) has a unique
càdlàg adapted solution (Vt )t≥0 and its law P(Vt ∈ dv) = ft (dv).2

2. The equation (7.5) has a unique càdlàg solution V ε and

(7.6) sup
t≤T

E
[∣∣Vt − V ε

t

∣∣] ≤ CeC�κ
ε × ε1+κ .

Moreover, there exists ε0 > 0 such that, for every 0 < s′ < s,

(7.7) sup
ε≤ε0

E

[
sup
t≤T

(
e|Vt |s′ + e|V ε

t |s′ )] < ∞.

In the following, we assume that

(7.8)
∫

e|v|s f0(dv) < ∞ ∀s < 2.

In particular, this gives the restriction 1
2 < η0 < 1

κ∨ν
. Then, if p ≥ 1 is such that

κp < 2, we may choose η0 such that η0κp < 1. This guarantees that for every
a > 0 there exists εa such that the quantity a(ε) = (ln 1

ε
)−1+η0κp ≤ a, for every

0 < ε < εa . By the definition of �ε and the previous inequality, it follows that

(7.9) e�
κp
ε = ε−a(ε) ≤ ε−a ∀0 < ε < εa.

7.2. First-order approximation. The aim of this section is to construct an ap-
proximation of the solution Vt of equation (7.3) in which the small jumps, corre-
sponding to |θ | ≤ δ, are replaced by a drift term.

First, let us fix δ > 0, r = 2−3ν
3+κ

(≤ 1−ν
1−κ

), set ε = δr and consider the solution V ε
t

of the truncated equation (7.5) associated with this ε. The inequality (7.6) provides
a control of the distance between Vt and V ε

t . Second, for this solution V ε
t of (7.5)

we apply Lemma 16 in order to replace the small jumps by a convenient drift term.
To fall in the framework given in the first part of our paper, we will denote

by V ε
t0,t

(v) the solution of the equation (7.5) which starts from v ∈ R
2 at time

2In this sense, Vt provides a probabilistic representation for ft .
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t0 ∈ [0, T ] and we set Pε
t0,t

f (v) = E[f (V ε
t0,t

(v))]. We also denote (for ε > 0 fixed
above),

μ(dθ, dρ) = θ−(1+ν) dθ × dρ, c(t, θ, ρ, v) = A(θ)
(
v − vt (ρ)

)
,

γε(t, ρ, v) = ϕκ
ε

(∣∣v − vt (ρ)
∣∣).

The infinitesimal operator of Pε
t0,t

is simply given by

Lε
t f (v) =

∫
E

μ(dθ, dρ)γ (t, ρ, v)
(
f

(
v + c(t, θ, ρ, v)

) − f (v)
)
.

We will replace the activity of small jumps (such that θ is close to 0) with a drift
term. To this purpose, we denote by Eδ = {(θ, ρ) : |θ | > δ} and we define

(7.10)

bδ(t, v) =
∫
{|θ |≤δ}

γ (t, ρ, v)c(t, θ, ρ, v)μ(dθ, dρ) and

L̂δ
t f (v) = bδ(t, v)∂f (v)

+
∫
Eδ

μ(dθ, dρ)γ (t, ρ, v)
(
f

(
v + c(t, θ, ρ, v)

) − f (v)
)
.

The approximating equation is

Uδ
t0,t

(v) = v +
∫ t

t0

bδ

(
s,Uδ

t0,s
(v)

)
ds

+
∫ t

t0

∫
Eδ×R+

c
(
s, θ, ρ,Uδ

t0,s−(v)
)

× 1{u≤γ (s,ρ,Uδ
t0,s−(v))}N(ds, dθ, dρ, du).

We denote by P̂δ
t0,t

the semigroup associated with L̂δ
t , that is, P̂δ

t0,t
f (v) :=

E[f (Uδ
t0,s

(v))].

THEOREM 23. Suppose that κ < 1
8 and ν < 1

2 . For every η < (2−3ν)(1+κ)
3+κ

there
exists Cη ≥ 1 and δη > 0 such that for 0 < δ ≤ δη we have

(7.11)
∣∣E[

f (Vt )
] −E

[
f

(
Uδ(V0)

)]∣∣ ≤ Cη‖f ‖2,∞ × δη.

The proof essentially consists in the use of Theorem 16 combined with (7.6).
For our readers’ sake, the complete proof is given in Section 8.4.

7.3. Second-order approximation. We define

σ(t, θ, ρ, v) = c(t, θ, ρ, v)
√

γε(t, ρ, v),

a
i,j
δ (t, v) =

∫
{|θ |≤δ}

μ(dθ, dρ)σ iσ j (t, θ, ρ, v),
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L̂δ
t f (v) = 〈

bδ(t, v),∇f (v)
〉 + 1

2

d∑
i,j=1

a
i,j
δ (t, v)∂2

jif (v)

+
∫
Eδ

μ(dθ, dρ)γε(t, ρ, v)
(
f

(
v + c(t, θ, ρ, v)

) − f (v)
)
,

where bδ is given by (7.10). This is the infinitesimal operator corresponding to the
semigroup P̂δ

t0,t
f (v) = E[f (Uδ

t0,t
(v))] with Uδ

t0,t
(v) solution to

Uδ
t0,t

(v) = v +
∫ t

t0

bδ

(
s,Uδ

t0,s
(v)

)
ds

+
∫ t

0

∫
Eδ

σδ

(
s, θ, ρ,Uδ

t0,s−(v)
)
Wμ(ds, dθ, dρ)

+
∫ t

0

∫
Eδ×R+

c
(
s, θ, ρ,Uδ

t0,s−(v)
)

× 1{u≤γ (s,ρ,Uδ
t0,s−(v))}N(ds, dθ, dρ, du).

The approach is quite similar to the first order. The main result is the following.

THEOREM 24. Let us assume that κ ≤ 1
18 and let

(7.12) r <
1 − ν

2 − κ
∧ 1 − ν

2

2 − κ
2

∧ 3 − 4ν

4 + κ
.

Then

(7.13)
∥∥∥∥ 1

ψ3

(
Pt0,tf − P̂δ

t0,t

)
f

∥∥∥∥∞
≤ Cδr(1+κ) × ‖f ‖3,∞.

REMARK 25. It turns out that the second-order error is larger then the first-
order error. This is somewhat counterintuitive. This is due to the fact that we mix
two different errors: Pt0,tf − Pε

t0,t
∼ ε1+κ and Pε

t0,t
f − P̂δ

t0,t
∼ δ3−νε−3. If ε is

fixed then the second-order error is δ3−ν and the first-order error is δ2−ν and this
seems coherent. But if we mix the two errors things become less obvious.

8. Proof of the results.

8.1. Proof of the results in Section 2.2. We begin with the estimates given in
Lemma 6.
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PROOF OF LEMMA 6. We follow the ideas in [24] so we just sketch the proof.
Let us fix the initial time s < T . For every t ∈ [s, T ], one has

|�Xs,t | ≤ |�Xs,s | +
∣∣∣∣∫ t

s

∫
E

h(r, z) dWμ(dr, dz)

∣∣∣∣ + ∣∣∣∣∫ t

s
g(r) dr

∣∣∣∣
+

∣∣∣∣∫ t

s

∫
E×[0,2�]

H(r−, z, u)Nμ(dr, dz, du)

∣∣∣∣,
where

h(r, z) = σ
(
r, z,XG1

s,r

) − σ
(
r, z,XG2

s,r

)
, g(r) = b

(
r,XG1

s,r

) − b
(
r,XG2

s,r

)
and

H(r, z, u) = 1G1(z)c
(
r, z,X

G1
s,r−

)
1{u≤γ (r,z,X

G1
s,r−)}

− 1G2(z)c
(
r, z,X

G2
s,r−

)
1{u≤γ (r,z,X

G2
s,r−)},

for all (r, z, u) ∈ [s, t] × E ×R+. Using the inequality,∣∣h(r, z)
∣∣ ≤ |�Xs,r | ×

∫ 1

0

∣∣∇σ
(
r, z, λX

G1
s,r− + (1 − λ)X

G2
s,r−

)∣∣dλ,

we obtain [∫
E

∣∣h(r, z)
∣∣2μ(dz)

] 1
2 ≤ ‖∇σ‖(μ,∞)|�Xs,r |.

Burkholder’s inequality yields

E

[
sup

s≤t ′≤t

∣∣∣∣∫ t ′

s

∫
E

h(r, z) dWμ(dr, dz)

∣∣∣∣]

≤ CE

[(∫ t

s

∫
E

∣∣h(r, z)
∣∣2μ(dz) dr

) 1
2
]

≤ C‖∇σ‖(μ,∞)E

[(∫ t

s
|�Xs,r |2 dr

) 1
2
]

≤ C‖∇σ‖(μ,∞)(t − s)
1
2E

[
sup

s≤r≤t
|�Xs,r |

]
.

And the same inequality holds for g. Finally, since Nμ is a positive measure, one
has

E

[
sup

s≤t ′≤t

∣∣∣∣∫ t ′

s

∫
E×[0,2�]

H(r−, z, u)Nμ(dr dz du)

∣∣∣∣]

≤ E

[∫ T

s
dr

∫
E×[0,2�]

∣∣H(r, z, u)
∣∣μ(dz) du

]
.



REGULARITY AND STABILITY FOR JUMP DIFFUSIONS 3057

A careful analysis of the term |H(r, z, u)| shows that the above term is upper
bounded by (t −s)α(G2 \G1)+C(c, γ )

∫ t
s E[|�Xs,r |]dr . Going back to the initial

inequality in our proof, one gets

E

[
sup

s≤r≤t
|�Xs,r |

]
≤ |�Xs,s | + (t − s)α(G2 \ G1)

+ C
(‖∇σ‖(μ,∞) + ‖∇b‖∞ + C(γ, c)

)
(t − s)

1
2E

[
sup

s≤r≤t
|�Xs,r |

]
.

Hence, whenever t − s ≤ δ := (2C(‖∇σ‖(μ,∞) +‖∇b‖∞ +C(γ, c))))−2, one gets

E

[
sup

s≤r≤t
|�Xs,r |

]
≤ 2

(|�Xs,s | + (t − s)α(G2 \ G1)
)
.

The argument follows by partitioning [s, T ] in

n ≤ 4T
(
C

(‖∇σ‖(μ,∞) + ‖∇b‖∞ + C(γ, c)
))2 + 1

subintervals of length δ and iterating. �

8.2. Proof of the results in Section 3. The proof of Lemma 10 makes extensive
use of moment estimates of some kind of linear-type stochastic system. To this
purpose, we begin with briefly explaining the type of system and the estimates we
have in mind.

8.2.1. Preliminary arguments for Lemma 10: Moment estimates for linear SDE.
In this section, we consider the d-dimensional linear equation

Vt = V0 +
∫ t

0

∫
E

(
h(s) + 〈∇b(s,Xs),Vs

〉)
ds

+
∫ t

0

∫
E

(
H(s, z) + 〈∇σ(s, z,Xs),Vs

〉)
Wμ(ds, dz)

+
∫ t

0

∫
G×(0,2�)

(
Q(s−, z) + 〈∇xc(s, z,Xs−),Vs−

〉)
× 1{u≤γ (s,z,Xs−)}Nμ(ds, du, dz).

(8.1)

Here, Xs is the solution of equation (1.1) and H , h and Q are predictable processes
which verify

E

[∫ T

0

(∥∥H(s, ·)∥∥2
L2(μ) + ∣∣h(s)

∣∣)ds + sup
s≤T

sup
x∈Rd

∫
G

∣∣Q(s, z)
∣∣γ (s, z, x)μ(dz))

]
< ∞.

This type of condition is needed in order for the corresponding stochastic (respec-
tively Lebesgue) integrals in (8.1) to make sense.
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PROPOSITION 26. We assume that there exists some predictable process R

and some measurable function ρ :R+ × E ×R
d →R+ such that

(8.2)
∣∣Q(s, z)

∣∣ ≤ ρ(s, z,Xs)|Rs |,
P-almost everywhere on �, for all (s, z) ∈ R+ × E. Then, for every p ≥ 2 there
exists a universal constant C (depending on p but not on the coefficients) such
that3

(8.3)
‖V ‖T ,p ≤ C exp

(
CT

(‖∇σ‖2
(μ,∞) + ‖∇b‖∞ + [∇c]pG,p

))
× (|V0| + ‖H‖T ,p + ‖h‖T ,p + [ρ]G,p‖R‖T ,p

)
.

PROOF. Let us begin with writing Vt = V0 + It +Mt +Jt , where It designates
the integral with respect to ds and so on. Using Burkholder’s inequality,

E

[
sup
t≤T

|Mt |p
]

≤ CE

[(∫ T

0

∫
G

(∣∣H(s, z)
∣∣2 + ∣∣〈∇σ(s, z,Xs),Vs

〉∣∣2)
μ(dz) ds

)p
2
]

≤ CE

[(∫ T

0

(∥∥H(s, ·)∥∥2
L2(μ) + ‖∇σ‖2

(μ,∞)|Vs |2)
ds

)p
2
]
.

Hölder’s inequality then yields

‖M‖T ,p ≤ C
√

T
(‖H‖T ,p + ‖∇σ‖(μ,∞)‖V ‖T ,p

)
.

A similar estimate holds true for It . Let us now give the estimates on the jump
term Jt . To shorten notation, we write dNμ instead of Nμ(ds dudz) and drop
the dependency of the coefficients on these variables. Moreover, we consider the
standard decomposition of dNμ = dÑμ +dN̂μ (martingale part and compensator).
Corresponding to this decomposition, we write Jt = J̃t + Ĵt . In order to estimate J̃t ,
we will use Burkholder’s inequality for jump processes (e.g., [30], Theorem 2.11)
to get

E

[
sup
t≤T

|J̃t |p
]
≤ CE

[(∫ T

0

∫
G×[0,2�]

∣∣Q + 〈∇c,V 〉∣∣21{u≤γ } dN̂μ

)p
2
]

+ CE

[∫ T

0

∫
G×[0,2�]

∣∣Q + 〈∇c,V 〉∣∣p1{u≤γ } dN̂μ

]
.

By assumption, one has |Q+〈∇c,V 〉| ≤ |ρ||R|+ |∇c||V |. Hence (for every fixed
time parameter),∫

G×[0,2�]
∣∣Q + 〈∇c,V 〉∣∣21{u≤γ } dN̂μ ≤ 2

∫
G

|ρ|2|R|2γ dμ + 2
∫
G

|∇c|2|V |2γ dμ

≤ 2|R|2|ρ|2G,2 + 2|V |2|∇c|2G,2.

3We recall that |ρ|G,p is defined in (3.1) and [ρ]G,p = sup1≤p′≤p |ρ|G,p′ .
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This leads to the following inequality:

E

[(∫ T

0

∫
G×[0,2�]

∣∣Q + 〈∇c,V 〉∣∣21{u≤γ } dN̂μ

)p
2
]

≤ CT
p
2
(|ρ|pG,2‖R‖p

T,p + |∇c|pG,2‖V ‖p
T,p

)
.

In a similar way,

E

[∫ T

0

∫
G×[0,2�]

∣∣Q + 〈∇c,V 〉∣∣p1{u≤γ } dN̂μ

]
≤ CT

(|ρ|pG,p‖R‖p
T,p + |∇c|pG,p‖V ‖p

T,p

)
.

For the term Ĵt , similar arguments yield

E

[
sup
t≤T

|Ĵt |p
]
≤ E

[(∫ T

0

∫
G×[0,2�]

∣∣Q + 〈∇c,V 〉∣∣1{u≤γ } dN̂μ

)p]
≤ CT p(|ρ|pG,1‖R‖p

T,p + |∇c|pG,1‖V ‖p
T,p

)
.

Summing up these estimates, we conclude that, if T ≤ 1, then

‖J‖T ,p ≤ CT
1
p
([ρ]G,p‖R‖T ,p + [∇c]G,p‖V ‖T ,p

)
.

It follows that

‖V ‖T ,p ≤ ‖V0‖p + C[ρ]G,p

(‖R‖T ,p + ‖H‖T ,p + ‖h‖T ,p

)
+ C

(
T

1
2 ‖∇σ‖(μ,∞) + T ‖∇b‖∞ + T

1
p [∇c]G,p

)‖V ‖T ,p.
(8.4)

We will use this inequality on the successive intervals (kT , (k + 1)T ), k ∈ N for
some convenient T (see after) in order to obtain (8.3). We take

T = min
{

1

6C‖∇b‖∞
,

1

(6C‖∇σ‖(μ,∞))2 ,
1

(6C[∇c]G,p)p
,1

}
which implies C(T

1
2 ‖∇σ‖(μ,∞)+T ‖∇b‖∞+T

1
p [∇c]G,p) ≤ 1

2 . Then the inequal-
ity (8.4) yields

‖V ‖T ,p ≤ 2
(‖V0‖p + C[ρ]G,p

(‖R‖T ,p + ‖H‖T ,p + ‖h‖T ,p

))
.

We denote Qk = C([ρ]G,p‖R‖kT ,p +‖H‖kT ,p +‖h‖kT ,p) and vk = ‖V ‖kT ,p and
we obtain

vk+1 ≤ 2vk + Qk ≤ 2vk + Qn ∀k ≤ n

and as a consequence vn ≤ 2n(|V |0 + Qn). Now, let S be fixed and let n =
[S/T ] + 1. Then we get

‖V ‖S,p ≤ vn ≤ 2n(|V |0 + On

)
= e([S/T ]+1) ln 2(|V |0 + C

([ρ]G,p‖R‖S,p + ‖H‖S,p + ‖h‖S,p

))
.
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We have

[S/T ] ≤ S × max
{
6C‖∇b‖∞,

(
6C‖∇σ‖(μ,∞)

)2
,
(
6C[∇c]G,p

)p}
so we conclude. �

The same reasoning based on Burkholder’s inequality for jump processes as in
the previous proof leads to the following.

REMARK 27. For every p ≥ 2, there exists a universal constant C (depending
on p) such that for every f ,

(8.5)

(
E

[(∫ t

0

∫
G×(0,2�)

∣∣f (s, z,Xs−)
∣∣1{u≤γ�(s,z,Xs−)}Nμ(ds, du, dz)

)p]) 1
p

≤ C max{t,1}[f ]G,p.

8.2.2. Proof of Lemma 10. PROOF OF LEMMA 10. We will prove, by recur-
rence that, for all p ≥ 2k,

sup
x∈Rd

E

[
sup
t≤T

∣∣∂αX
G

t (x)
∣∣p

k

] k
p ≤ αk,p(C,G)

= Cθ
k
∑

1≤n≤k
1
n

k,p (G) exp
(
CT k

( ∑
1≤n≤k

1

n

)
ap(G)

)
.

(8.6)

Step 1. (Chain Estimates) Let f : Rd → R and g : Rd → R
d be smooth func-

tions. If |α| = k ≥ 1, then

∣∣∂α(
f

(
g(x)

))∣∣ ≤ C

(
d∑

i=1

∣∣(∂if )
(
g(x)

)∣∣ × ∣∣∂αgi(x)
∣∣

+ ∑
2≤|α′|≤k

∣∣(∂α′
f

)(
g(x)

)∣∣ × ∑
1≤|β|≤k−1

∣∣∂βg(x)
∣∣ k

|β|
)
.

The above inequality is obtained by taking first derivatives and then by using
Young’s inequality in order to separate the different derivatives of g. As an im-
mediate consequence, one gets

(8.7)
∣∣∂αf

(
g(x)

)∣∣ ≤ C

(
‖∇f ‖∞

∣∣∂αg(x)
∣∣ + ‖f ‖2,k,∞

∑
1≤|β|≤k−1

∣∣∂βg(x)
∣∣ k

|β|
)
.
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Similar reasoning for F : R+ × E ×R
d → R that is globally measurable and dif-

ferentiable with respect to x ∈ R
d yields

(8.8)

(∫
E

∣∣∂α
x

(
F

(
t, z, g(x)

))∣∣2μ(dz)

) 1
2

≤ C

(
‖∇F‖(μ,∞)

∣∣∂αg(x)
∣∣ + ‖F‖2,k,(μ,∞)

∑
1≤|β|≤k−1

∣∣∂βg(x)
∣∣ k

|β|
)
.

Having this inequality in mind [and the notation (2.2)], we introduce the following
notation:

(8.9) yα = ∂αg(x), y[k−1] = (
∂βg(x)

)
1≤|β|≤k−1.

Using this notation, the estimate (8.7) [resp., (8.8)] reads∣∣∂αf
(
g(x)

)∣∣ ≤ C
(‖∇f ‖∞|yα| + ‖f ‖2,k,∞|y[k−1]|R[k−1]

)
,(8.10) (∫

E

∣∣∂α
x

(
F

(
t, z, g(x)

))∣∣2μ(dz)

) 1
2

≤ C
(‖∇F‖(μ,∞)|yα| + ‖F‖2,k,(μ,∞)|y[k−1]|R[k−1]

)
.

(8.11)

Step 2. [Deriving the Differential Equation for ∂αX
G

t (x) and Estimates] We
denote by Yα(t, x) = ∂αX

G

t (x) and by Y [k](t, x) = (Y α(t, x))1≤|α|≤k ∈ R
d[k], for

all initial data x. We claim that, for every multi-index α with |α| = k ≥ 1,

Yα(t, x) = ∂αX
G

0 (x)

+
∫ t

0

(
gα

(
s,X

G

s ,Y [k−1](s, x)
) + 〈∇b

(
s,X

G

s

)
, Y α(s, x)

〉)
ds

+
∫ t

0

∫
E

(
hα

(
s, z,X

G

s ,Y [k−1](s, x)
) + 〈∇σl

(
s, z,X

G

s

)
, Y α(s, x)

〉)
× Wμ(ds, dz)

+
Jt∑

j=1

Qα

(
Tj ,Zj ,X

G

Tj−(x), Y [k−1](Tj−, x)
)
1G(Zj )

+
Jt∑

j=1

〈∇c
(
Tj ,Zj ,X

G

Tj−
)
, Y

α

Tj−(x)
〉
1G(Zj ),

(8.12)

where gα , hα and Qα satisfy(∫
E

(∣∣hα(t, z, x, y[k−1])
∣∣2μ(dz)

)) 1
2 ≤ C‖σ‖2,k,(μ,∞)|y[k−1]|Rd[k−1]

,(8.13) ∣∣gα(t, x, y)
∣∣ ≤ C‖b‖2,k,∞|y[k−1]|Rd[k−1]

(8.14)
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and

(8.15)
∣∣Qα(t, z, x, y)

∣∣ ≤ C|y[k−1]|Rd[k−1]

∑
2≤|α|≤k

∣∣∂α
x c(t, z, x)

∣∣.
The equation (8.12) is obtained by taking formal derivatives in (2.18) and then,
(8.13), (8.14) and (8.15) are obtained by using (8.10) and (8.11).

Step 3. Now we prove (8.6) by recurrence on k. If k = 1, the inequality (8.6)
is an immediate consequence of Proposition 26. Let us now assume (8.6) to hold
true for k − 1. In order to prove it for k, we will make use of Proposition 26.
A first step is to make use the identity of laws from Lemma 9. We denote by
Y[k](t, x) = (Yα(t, x))1≤|α|≤k ∈R

d[k] the unique solution of the system of equations

Yα(t, x) = ∂αXG
0 (x)

+
∫ t

0

(
gα

(
s,XG

s ,Y[k−1](s, x)
) + 〈∇xb

(
s,XG

s

)
, Yα(s, x)

〉)
ds

+
∫ t

0

∫
E

(
hα

(
s, z,XG

s ,Y[k−1](s, x)
) + 〈∇xσl

(
s, z,XG

s

)
, Yα(s, x)

〉)
× Wμ(ds, dz)

+
Jt∑

j=1

(
Qα

(
Tj ,Zj ,X

G
Tj−(x), Y[k−1](Tj−, x)

)
+ 〈∇xc

(
Tj ,Zj ,X

G
Tj−

)
, Yα(Tj−, x)

〉)
1{Uk≤γ (Tj ,Zj ,XTj −).

(8.16)

These equations are the same as in (8.12) but we replace X
G

s by XG
s , Zj by Zj

and 1G(Zj ) by 1{Uk≤γ (Tj ,Zj ,XTj −)}. According to Lemma 9, Y [k](t, x), t ≥ 0 has

the same law as Y[k](t, x), t ≥ 0. Now we use Proposition 26 for V0 = ∂αXG
0 (x)

(implying that |V0| ≤ 1), h(s) = gα(s,XG
s ,Y[k−1](s, x)) and

H(s, z) = hα

(
s, z,XG

s (x), Y[k−1](s, x)
)
,

Q(s, z) = Qα

(
s, z,XG

s (x), Y[k−1](s, x)
)
,

for all s ∈ [0, T ] and all z ∈ E. In view of (8.13) and (8.14),∥∥H(s)
∥∥
L2(μ) ≤ C‖σ‖2,k,(μ,∞) × sup

s≤t

∣∣Y[k−1](s, x)
∣∣
R

d[k−1]
,

∣∣h(s)
∣∣ ≤ C‖b‖2,k,∞ × sup

s≤t

∣∣Y[k−1](s, x)
∣∣
R

d[k−1]
.

The estimates (8.15) give ∣∣Q(s, z)
∣∣ ≤ ρ

(
s, z,XG

s (x)
)
Rs,
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where

Rs = ∣∣Y[k−1](s−, x)
∣∣
R

d[k−1]
, ρ(s, z, x) = C

∑
2≤|α′|≤k

∣∣∂α′
x c(s, z, x)

∣∣.
We recall that |α| = k ≥ 2 and p ≥ 2k. Then, by Proposition 26, one has∥∥∂αX

G

· (x)
∥∥
T ,

p
k

= ∥∥∂αXG· (x)
∥∥
T ,

p
k

≤ C exp
(
CT ap

k
(G)

)
θk,

p
k
(G) sup

x∈Rd

(
E

[
sup
s≤T

∣∣Y[k−1](s, x)
∣∣p

k

R
d[k−1]

]) k
p ∨ 1

= C exp
(
CT ap

k
(G)

)
θk,

p
k
(G)

∑
1≤|β|≤k−1

(
E

[
sup
s≤T

∣∣∂βXG
s (x)

∣∣ kp
|β|k

]) k
p
.

(8.17)

We assume that 1 ≤ |β| = r ≤ k − 1. Using the recurrence hypothesis and due to
the fact that kp

|β|k = p
r

, one gets

(
E

[
sup
s≤T

∣∣∂βXG
s (x)

∣∣ p
|β|

]) |β|
p = ∥∥∂βX

G

· (x)
∥∥
T ,

p
r

≤ Cθ
r
∑

1≤n≤r
1
n

r,p (G) exp
(
CT r

( ∑
1≤n≤r

1

n!
)
ap(G)

)
.

This implies

(
E

[
sup
s≤T

∣∣∂βXG
s (x)

∣∣ kp
|β|k

]) k
p

≤ Cθ
k
∑

1≤n≤k−1
1
n

r,p (G) exp
(
CT k

( ∑
1≤n≤k−1

1

n

)
ap(G)

)
.

We insert this inequality in (8.17) and note that ap
k
(G) ≤ ap(G) and θk,

p
k
(G) ≤

θk,p(G) to conclude

∥∥∂αX
G

· (x)
∥∥
T ,

p
k

≤ Cθ
1+k

∑
1≤n≤k−1

1
n

k,p (G) exp
(
CT ap(G)

(
1 + k

∑
1≤n≤k−1

1

n

))

= Cθ
k
∑

1≤n≤k
1
n

k,p (G) exp
(
CT ap(G)k

∑
1≤n≤k

1

n

)
.

The proof is now complete by taking pk to replace p in (8.6). �
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8.2.3. Proof of Corollary 11 and Lemma 12. We begin with the following
simple remark.

REMARK 28. Whenever n ∈ N
∗ and p ≤ n, one gets

‖Jt‖p ≤ ‖Jt‖n and ‖Jt‖n
n = dne2�μ(G)t (es−1)

dsn

/
s=0 = Pn

(
�μ(G)t

)
,

an n-degree polynomial. As a consequence, for some large enough constant de-
pending, eventually, on the upper bound n but not on �, μ(G) nor on t ,

(8.18) ‖Jt‖p ≤ C�μ(G)max(t,1).

We now give the proof of Corollary 11.

PROOF OF COROLLARY 11. In order to prove the first assertion, one simply
writes, (P-almost surely on k ≤ Jt ),∣∣∂α(

g
(
Tk,X

G

Tk−(x)
))∣∣ ≤ C‖g‖1,q,∞Aq with Aq = 1∨ ∑

1≤|ρ|≤q

sup
s≤t

∣∣∂ρ
x X

G

s (x)
∣∣q .

Using Hölder’s inequality and (3.6), we upper bound the term in the left-hand side
of (3.7) by

C‖g‖1,q,∞E
([

(Jt × Aq)p
]) 1

p ≤ C‖g‖1,q,∞‖Jt‖ (1+η)p
η

(
E

[
A(1+η)p

q

]) 1
(1+η)p

≤ C‖g‖1,q,∞�μ(G)max(t,1)α
q
q,(1+η)pq(C,G).

To prove the second assertion, we write
Jt∑

k=1

1G(Zk)
∣∣∂αg

(
Tk,Zk,X

G

Tk−(x)
)∣∣ ≤ Aq × Bq,

with

Bq = ∑
1≤|β|≤q

Bq(β) where Bq(β) =
Jt∑

k=1

1G(Zk)
∣∣(∂βg

)(
Tk,Zk,X

G

Tk−(x)
)∣∣.

Using Hölder’s inequality and (3.6), we upper bound the term in (3.8) by

‖Aq‖ (1+η)p
η

× ‖Bq‖(1+η)p ≤ α
q

q,
(1+η)pq

η

(C,G) × ‖Bq‖(1+η)p.

Using the identification of laws from Lemma 9 and the inequality (8.5), one has

‖Bq‖(1+η)p

=
∥∥∥∥∫ t

0

∫
G×[0,2T ]

∣∣∂βg
(
s, z,XG

s−(x)
)∣∣1{u≤γ (s,z,XG

s−(x))}Nμ(ds, dz, du)

∥∥∥∥
(1+η)p

≤ C
[
∂βg

](1+η)p
G,(1+η)p.

The assertion follows by putting these estimates together. �
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8.3. Proofs of results in Section 6. We begin with Theorem 19. As already
hinted before, the result follows from Theorem 16.

PROOF OF THEOREM 19. We use Theorem 16 with k = 0 and q = 3. It is
easy to check that P ε

t verifies H2(0) and H3(0,3) [note that the constant C in (5.5)
depends on ε; but is not involved in the estimate (5.7)]. And Pt verifies H2(0) and
H3(0,3) as well. Moreover, the constant Q3(t,P ) defined in (5.1) verifies

Q3(t,P) ≤ C(t ∨ 1)3C42∗ exp
(
(t ∨ 1)CC36∗

)
,

where C∗ is the constant in (6.3) and C is a universal constant. Moreover, using a
Taylor expansion of order three we get∥∥(Lε −L)f

∥∥∞ ≤ Cδ(ε)‖f ‖3,∞

with C an universal constant. Then (5.7) gives (6.4). �

Next, we proceed with checking the Assumption H1 to complete the explicit
example.

PROOF OF ASSUMPTION H1. We notice that, by the choice of α,∫ 3ε

ε
cε(z, x)γ (x)

dz

z2 = 0

so our equation may be written as

Xε
t = x +

∫ t

0

∫ 3ε

ε

∫ 1

0
cε

(
z,Xε

s−
)
1{u≤γ (Xε

s−)}Ñμε(ds, dz, du)

+
∫ t

0

∫ 1

3ε

∫ 1

0
cε

(
z,Xε

s−
)
1{u≤γ (Xε

s−)}Nμε(ds, dz, du).

This is the same as the equation (6.1). We take E = [0,1], Aε = (0,3ε], Bε =
(3ε,4ε] and Cε = (4ε,1] and we have∫ 3ε

ε
c2
ε(z, x)γ (x)

dz

z2 = σ 2(x),

∫ 4ε

3ε
cε(z, x)γ (x)

dz

z3/2 = b(x),

so that δσ (ε) = δb(ε) = 0. Moreover, on Cε , c = cε which implies δc,γ (ε) = 0.
Finally, simple computations yield δA(ε) + δB(ε) + δC(ε) ≤ C

√
ε which leads to

the desired conclusion. �

8.4. Proofs of the results in Section 7. Before proceeding to the proofs, we
recall the following estimates for the derivatives of the above cut off function given
in [6], Lemma 2.3.
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LEMMA 29 ([6], Lemma 2.3). There exists ε0 > 0 such that, for every ε ∈
(0, ε0), every multi-index α ∈ {1,2}l , l ∈ N

∗ and every v ∈R
2, one has∣∣∂α lnϕε

(|v|)∣∣ ≤ Cl

(
1{|v|∈(ε,�ε−1]}|v|−l + 1{|v|∈(�ε−1,�ε+1)}�−1

ε

)
,(8.19) ∣∣∂αϕκ

ε

(|v|)∣∣ ≤ Cl

(
1{|v|∈(ε,�ε−1]}|v|κ−l + 1{|v|∈(�ε−1,�ε+1)}�κ−1

ε

)
.(8.20)

Moreover, for every β ∈ (0,1], ε ∈ (0, ε0) and x, y ≥ 0,

(8.21) xβ
∣∣ϕκ

ε (x) − ϕκ
ε (y)

∣∣ ≤ Cβ�κ
ε |x − y|β.

8.4.1. Proof of the first-order estimates in Boltzmann equation. The proof
consists in two major steps. First, we give upper-bounds for the constants in (3.3),
(3.4) and (3.5). Second, we use Theorem 16 for which we check the assumptions.
To conclude, we invoke (7.6) together with the estimates provided by Theorem 16.

We recall the parameters associated with P̂δ in (3.3), (3.4) and (3.5),

θq,p,(δ)(Eδ) = 1 + ‖bδ‖2,q,∞ + ∑
2≤|α|≤q

[
∂α
v c

]
Eδ,p

= 1 + ‖bδ‖2,q,∞,

ap,(δ)(Eδ) = ‖∇bδ‖∞ + [∇c]pG,p,

αq,p,(δ)(C,Eδ) = Cθ
q

∑
1≤n≤q

1
n

q,pq,(δ) (Eδ) exp
(
CT q

∑
1≤n≤q

1

n

(‖∇bδ‖∞ + [∇c]pq
G,pq

))
the first expression following from ∂αc = 0 if |α| ≥ 2.

LEMMA 30. We assume that κ < 1
8 and we take q = 2 (so that q2κ < 1

2 ). For
every a > 0, there exists ε0 > 0 and C ≥ 1 such that for every ε ∈ (0, ε0) one has

(8.22) αq,4q,(δ)(C,Eδ) ≤ Cε−a.

Moreover [see (4.2) for the notation], for all r ≤ 1−ν
1−κ

,

(8.23) �Eδ,q(γ ) + [lnγ ]Eδ,q,4q ≤ C × δ−qν × ε−q = C × δ−q(ν+r).

As a consequence, the constant in the right-hand side of (5.7) verifies

(8.24) Qq

(
T , P̂δ) ≤ C × δ−q(ν+r+a).

PROOF. (Throughout the proof, C will be a universal real constant and a an
arbitrary small constant that may change from one line to another.)

Since |∂αc(t, θ, ρ, v)| ≤ |θ | × 1|α|=1 and |γ | ≤ �κ
ε we get, for every p ≥ 1,∫

Eδ

∣∣∂αc(t, θ, ρ, v)
∣∣pγ (t, ρ, v)μ(dθ, dρ) ≤ C�κ

ε .

In particular,

[∇c]4q2

Eδ,4q2 = sup
1≤p≤4q

|∇c|4q2

Eδ,p
≤ C�4q2κ

ε
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and consequently, if 4q2κ < 2 then, as a consequence of (7.9), for sufficiently
small ε > 0,

exp
(
CT [∇c]4q2

Eδ,4q2

) ≤ exp
(
C�4q2κ

ε

) ≤ ε−a.

Moreover, using (8.20) we get∣∣∂α(
c(t, θ, ρ, v)γε(t, ρ, v)

)∣∣ ≤ C|θ | × (
ε1+κ−|α| + �κ

ε

)
.

As a consequence,∣∣∂αbδ(t, v)
∣∣ ≤ Cδ1−ν × (

ε1+κ−|α| + �κ
ε

) = C
[
δ1−ν+r(1+κ−|α|) + δ1−ν�κ

ε

] ≤ C

the last inequality being true for |α| = 2, if r ≤ 1−ν
|α|−1−κ

= 1−ν
1−κ

. We infer that
‖bδ‖1,q,∞ ≤ C and θq,4q2(Eδ) = 1 + ‖bδ‖2,q,∞ ≤ C implying (8.22).

We now turn to the proof of the inequality (8.23). Using (8.19), we get

γ
∣∣∂α

v lnγ
∣∣p

≤ C1{|v−vt (ρ)|>�ε−1}

+ 1{|v−vt (ρ)|∈[ε,�ε−1]}
(
1 + ∣∣v − vt (ρ)

∣∣−|α|)p∣∣v − vt (ρ)
∣∣κ

≤ C
(
1{|v−vt (ρ)|>�ε−1} + 1{|v−vt (ρ)|∈[ε,�ε−1]}ε−p|α|+κ)

.

For every p ≥ 1 (and small enough δ), we infer∣∣∂α
v lnγ

∣∣
Eδ,p

≤ Cδ−ν/pε−|α| ≤ Cδ−νε−|α|.

In particular,

[lnγ ]Eδ,4q = ∑
1≤|α|≤q

sup
1≤p≤4q

∣∣∂α
v lnγ

∣∣
Eδ,4q ≤ Cδ−νε−q = Cδ−ν−qr and

�G,q(γ ) =
q∑

h=1

∑
1≤|α|≤h

∣∣∂α
v lnγ

∣∣q/|α|
Eδ,h/|α| ≤ Cδ−qνε−q = Cδ−q(ν+r).

�

REMARK 31. The inequality (8.24) remains true (with the exact same proof)
for q = 3 and r ≤ 1−ν

2−κ
as soon as κ < 1

18 .

PROOF. Finally, by gathering these estimates, one obtains (8.23). �

LEMMA 32. Suppose that (7.8) holds and κ < 1
8 (we recall that ε = δr with

0 < r ≤ 1−ν
1−κ

). For every a > 0, there exists ε0 > 0 such that, for ε < ε0,

(8.25)
∥∥∥∥ 1

ψ2

(
P ε

t0,t
f − P̂ δ

t0,t

)
f

∥∥∥∥∞
≤ Cδ2−3ν−2r−3a × ‖f ‖2,∞.
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PROOF. We will use Theorem 16 with q = 2, k = 2.
Step 1. We check that for every p ∈ N and every a > 0, one can find C ≥ 1 and

εp,a > 0 such that, for every ε ∈ (0, εp,a), the following estimate holds true:

(8.26) E
[∣∣V ε

t (v)
∣∣p] ≤ Cψp(v)ε−a.

This implies that the hypothesis H2(p) [see (5.3)] holds for the semigroup Pε with
Cp(T ,Pε) = ε−a .

To this purpose, we use Itô’s formula for fp(x) = |x|p to get

E
[∣∣V ε

t (v)
∣∣p] = |v|p + Jp(t),

where

Jp(t) = E

[∫ t

0

∫
E×R+

[(∣∣V ε
s− + A(θ)

(
V ε

s− − vs(ρ)
)∣∣p − ∣∣V ε

s−
∣∣p)

× 1{u≤ϕκ
ε (|V ε

s−−vs(ρ)|}
]
dN

]
.

Using the inequality ||a + b|p − |a|p| ≤ C|b|(|a|p−1 + |b|p−1), we obtain

∣∣Jp(t)
∣∣ ≤ C�κ

εE

[∫ t

0

∫ π
2

− π
2

∫ 1

0

[∣∣A(θ)
(
V ε

s − vs(ρ)
)∣∣

× (∣∣A(θ)
(
V ε

s − vs(ρ)
)∣∣p−1 + ∣∣V ε

s

∣∣p−1)] dθ

θ1+ν
dρ ds

]

≤ C�κ
εE

[∫ t

0

∫ 1

0

(∣∣vs(ρ)
∣∣ + ∣∣V ε

s

∣∣)(∣∣vs(ρ)
∣∣p−1 + ∣∣V ε

s

∣∣p−1)
dρ ds

]

≤ C�κ
εE

[∫ t

0

∫ 1

0

(∣∣vs(ρ)
∣∣p + ∣∣V ε

s

∣∣p)
dρ ds

]
≤ C�κ

ε

(
1 + E

∫ t

0

∣∣V ε
s

∣∣p)
ds.

The last inequality is a consequence of

(8.27)
∫ 1

0

∣∣vs(ρ)
∣∣p dρ =

∫
R2

|v|pfs(dv) ≤ C < ∞.

The inequality (8.26) is then a consequence of Gronwall’s lemma.
Step 2. Second, we need to estimate, for regular f , the difference between the

actions of infinitesimal operators:(
Lε

t − L̂δ
t

)
f (v)

=
∫
Ec

δ

μ(dθ, dρ)γε(t, ρ, v)

× (
f

(
v + c(t, θ, ρ, v)

) − f (v) − 〈∇f (v), c(t, θ, ρ, v)
〉)
.
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One easily notes [using, again, (8.27)], that∣∣(Lε
t − L̂δ

t

)
f (v)

∣∣ ≤ ‖f ‖2,∞�κ
ε

∫
Ec

δ

μ(dθ, dv)
∣∣c(t, θ, ρ, v)

∣∣2
≤ Cψ2(v)δ2−ν‖f ‖2,∞�κ

ε .

We conclude that

(8.28)
∥∥∥∥ 1

ψ2

(
Lε

t − L̂δ
t

)
f

∥∥∥∥∞
≤ Cδ2−ν‖f ‖2,∞ε−a.

This proves that (5.6) holds with k = 2 and ε(t) = δ2−νε−a .
Step 3. We check that H3(1,2) holds true for both P̂δ and Pε . We will only

check it for the approximating semigroup P̂δ , the remaining case being very sim-
ilar. We recall that ft (dv) = P(Vt ∈ dv) where Vt is the solution of the equation
(7.3). Then, for every x ∈ R

2,

bδ(t, x) =
∫
Ec

δ

μ(dθ, dρ)γε(t, ρ, x)c(t, θ, ρ, x)

=
∫
{θ≤δ}

E
[
A(θ)(x − Vt)ϕ

κ
ε

(|x − Vt |)] dθ

θ1+ν
.

Using (8.21) with β = 1, we get∣∣bδ(t, x)
∣∣ + ∣∣∇bδ(t, x)

∣∣ ≤ C�κ
ε ψ1(x)

such that

(8.29)
∥∥∥∥ 1

ψ1
∇(

bδ(t,◦)∇f
)∥∥∥∥∞

≤ C�κ
ε ‖f ‖2,∞.

We write now

It (f )(x) :=
∫
Eδ

μ(dθ, dρ)γ (t, ρ, x)
(
f

(
x + c(t, θ, ρ, x)

) − f (x)
)

=
∫
Eδ

μ(dθ, dρ)γ (t, ρ, x)

∫ 1

0
dλ

〈∇f
(
x + λc(t, θ, ρ, x)

)
, c(t, θ, ρ, x)

〉
.

Hence, It (f )(x) is upper bounded by

E

[∫
{δ≤|θ |≤ π

2 }
dθ

θ1+ν
ϕκ

ε

(|x − Vt |) ∫ 1

0
dλ

〈∇f
(
x + λA(θ)(x − Vt)

)
,A(θ)(x − Vt)

〉]
.

And, using again (8.21) with β = 1, this gives

(8.30)
∥∥∥∥ 1

ψ1
It (f )

∥∥∥∥∞
+

∥∥∥∥ 1

ψ1
∇It (f )

∥∥∥∥∞
≤ C�κ

ε ‖f ‖2,∞.
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Step 4. We use (5.7) with q = 2, k = 2:∥∥∥∥ 1

ψ1

(
Pε

t0,t
f − P̂δ

t0,t

)
f

∥∥∥∥∞
≤ C × C1

(
t,Pε)Q2

(
t, P̂δ) ∫ t

t0

ε(s) ds × ‖f ‖2,∞

≤ Cε−a × δ−2(ν+r+a) × δ2−ν × ‖f ‖2,∞

= Cδ2−3ν−2r−3a × ‖f ‖2,∞.

Here, we have used (8.26), (8.28) and (8.24). �

We can now provide a proof for Theorem 23.

PROOF OF THEOREM 23. We recall that r = 2−3ν
3+κ

and ε = δr and we write∣∣E[
f (Vt )

] −E
[
f (Uδ(V0)

]∣∣ ≤ A + B where

A = ∣∣E[
f (Vt )

] −E
[
f (V ε

t (V0)
]∣∣, B = ∣∣E[

f
(
Uδ

t (V0)
)] −E

[
f (V ε

t (V0)
]∣∣.

By (7.6),

A ≤ ε−a × ε1+κ‖f ‖1,∞ ≤ δr(1+κ)−a‖f ‖1,∞.

Since (2 − 3ν)/(1 − ν) ≤ 3 ≤ (3 + κ)/(1 − κ), it follows that r ≤ (1 − ν)/(1 − κ)

and so we may use (8.25) and we obtain

B ≤
∫
R2

∣∣E[
f (V ε

t (v)
] −E

[
f (Uδ(v)

]∣∣f0(dv)

≤ C

∫
R2

(
1 + |v|2)

f0(dv) × δ2−3ν−2r−3a‖f ‖2,∞.

We conclude that∣∣E[
f (Vt )

] −E
[
f (Uδ(V0)

]∣∣ ≤ C‖f ‖2,∞
(
δr(1+κ)−a + δ2−3ν−2r−3a)

≤ C‖f ‖2,∞δ
(2−3ν)(1+κ)

3+κ
−3a

the last inequality being a consequence of the choice of r . �

8.4.2. Proof of the second-order estimates in the Boltzmann equation. We be-
gin with giving some useful estimates for the noise coefficient σδ .

LEMMA 33. 1. Let q ∈N
∗, r ≤ (1 − ν/2)/(q − 1 − κ/2) and ε = δr . Then the

following inequality holds true ‖σδ‖1,q,(μ,∞) ≤ C.
2. L̂δ

t verifies H3(2,3).4

4See (5.5).
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3. Let us assume that κ ≤ 1/18 and

(8.31) r ≤ 1 − ν

2 − κ
∧ 1 − ν/2

2 − κ/2
.

Then

(8.32)
∥∥∥∥ 1

ψ3

(
P ε

t0,t
f − P̂ δ

t0,t

)
f

∥∥∥∥∞
≤ Cδ3−4ν−3r−a × ‖f ‖3,∞.

PROOF. 1. Using (8.20) (with κ
2 instead of κ), we get∣∣∂ασ (t, θ, ρ, v)

∣∣ = ∣∣∂α(
c(t, θ, ρ, v)γ

1
2 (t, ρ, v)

)∣∣ ≤ C|θ |(ε1+ κ
2 −|α| + �

κ
2
ε

)
which gives, for 1 ≤ |α| ≤ q ,∫

Ec
δ

∣∣∂ασ (t, θ, ρ, v)
∣∣2μ(dθ, dρ) ≤ Cδ2−ν(

ε2+κ−2|α| + �κ
ε

)
= Cδ2−ν−r(2|α|−2−κ) ≤ C

the last inequality being true if r ≤ (2 − ν)/(2q − 2 − κ).
2. We only check that

(8.33)
∥∥∥∥ 1

ψ2
∇(a

i,j
δ (t,◦)∂i∂jf

∥∥∥∥∞
≤ C�κ

ε ‖f ‖3,∞.

(The remaining estimates are similar to step 3 in the proof of Lemma 32.) One has

a
i,j
δ (t, v) =

∫
{|θ |≤δ}

μ(dθ, dρ)
(
cicj )

(t, θ, ρ, v)γ (t, ρ, v)

so (8.33) follows from (8.21) with β = 1.
3. We will use Theorem 16 with q = k = 3. Using the first assertion and (8.24)

(see Remark 31), we get that both P̂δ
t and Pε

t verify H3(2,3) with Qq(t, P̂δ) ≤
C × δ−q(ν+r+a). And we recall that in (8.26) we have proved that C3(T ,Pε) =
ε−a . It remains to estimate(

Lε
t − L̂δ

t

)
f (v) =

∫
Ec

δ

μ(dθ, dρ)γ (t, ρ, v)

(
f

(
v + c(t, θ, ρ, v)

) − f (v)

− 〈∇f (v), c(t, θ, ρ, v)
〉 − 1

2

d∑
i,j=1

cicj (t, θ, ρ, v)∂2
ij f (v)

)
.

Taylor’s formula gives∣∣(Lε
t − L̂δ

t

)
f (v)

∣∣ ≤ C

∫
Ec

δ

μ(dθ, dv)
∣∣c(t, θ, ρ, v)

∣∣3 × ‖f ‖3,∞�κ
ε

≤ Cδ3−ν
∫ 1

0

∣∣v − vt (ρ)
∣∣3 dρ × ‖f ‖3,∞�κ

ε

≤ Cψ3(v)δ3−ν‖f ‖3,∞�κ
ε
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so that (5.6) holds with ε(t) = δ3−νε−a . We use (5.7) with q = k = 3 to get∥∥∥∥ 1

ψ3

(
P ε

t0,t
f − P̂ δ

t0,t

)
f

∥∥∥∥∞
≤ C × C3

(
P ε)Q3

(
P̂ δ) ∫ t

t0

ε(s) ds × ‖f ‖3,∞

≤ Cε−a × δ−3(ν+r) × δ3−ν × ‖f ‖3,∞

= Cδ3−4ν−3r−a × ‖f ‖3,∞. �

PROOF OF THEOREM 24. We proceed as in the first-order case by combining
the two errors by taking r such that r(1 + κ) = 3 − 4ν − 3r which amounts to
r = 3−4ν

4+κ
. But we need (8.31) to hold true so we ask (7.12) to hold true. �
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