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Dice Games
Marie-France Bru and Bernard Bru

Abstract. Translated from the French by Glenn Shafer, the French text will
appear as Chapter 1 of Volume 2 of Les jeux de l’infini et du hasard, by
Marie-France and Bernard Bru, to be published by the Presses universitaires
de Franche-Comté. The translation is published here with the permission of
the publisher and the surviving author. The text has been edited to omit most
references to other parts of the book. The authors extensive notes, which pro-
vide many additional references and historical details, have also been omit-
ted.
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1. INTRODUCTION

Cubic dice appear in human societies at least as early
as writing or numeration. Most museums have very
good specimens, sometimes dating back to 2000 or
3000 BCE, which were excavated in Mesopotamia or
in the Indus Valley (Stigler [30]). Their origin will not
be discussed here, but it must at least be remarked that,
unlike astragali or other objects thrown to the ground,
dice, initially made of terracotta, are unique in that
they tend to approach perfectly cubic dice, which are
equally liable to show any one of their faces, which are
marked by one to six points, thus approximating a kind
of mathematical equi-probability long before the no-
tion was imagined or named, the notion seeming thus
to have emerged in full armor from a little piece of
hardened clay into the sun of the Orient.

Of course, we know about mathematical cubes
whose six faces are superposable by definition, stud-
ied mathematically as such ever since geometry has
existed. Here, we are dealing with another type of
mathematical property. Each face of the die is math-
ematically equivalent when thrown; none is given an
advantage mathematically, even if it can be given an
advantage physically (deliberately or not). All faces
have the same “chance” to appear, and this is an equal-
ity by definition. Immediately, therefore, without hav-
ing to appeal to materialistic or idealistic philosophical
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theses, remarkable in all respects but foreign to our ac-
count, which is intended for children of all ages, we
have a new idea, the idea of “chance,” and a mathemat-
ical object, a “mathematical die.” And “randomness,”
the starting point for our thought and words about this
mathematical object, instead of being that blind di-
vinity that decides our destinies, becomes then also a
mathematical randomness, a theoretical “abstract” die,
as Borel [13] wrote, which falls to the ground without
favoring in any way any of its faces or any player who
might bet on one of them.

Another very common observation comes from dice
players themselves, millions of players over thousands
of years, who all know that the faces of a good die
appear about equally often if thrown long enough,
whereas by loading the die, you can modify this ap-
proximate equality enough to enrich yourself, if you
are not first found out. The purely mathematical equal-
ity of dice then takes on a particular practical form.
Certainly you cannot predict the outcome of a throw of
a die, but you can bet that on a large number of throws,
the six faces will appear approximately the same num-
ber of times.

We thus have multiple definitions of good dice.
A mathematical definition: each face has the same
chance of appearing. A statistical definition: each face
appears roughly equally often in a large number of
throws. And one can add juridical, psychological, epis-
temological, economic definitions, as many as you
want. From the earliest known texts, at least those that
we shall examine here, as we shall see, authors as-
similate, amalgamate, with no comment or argument,
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the mathematical equality of chances with the approx-
imate equality of statistical frequencies. They conflate
in one and the same language these two ways of defin-
ing (perhaps) the same thing. They write indifferently
that one face appears more frequently than another or
that it has more chances to appear. The two locutions
are interchangeable. This double language, or rather
this confusion of several languages, may simply be due
to the fact that the authors are hard pressed to define the
“chances” of which they speak, even if they understand
them mathematically well enough to calculate them. Or
it may be due to any other reason someone may want
to propose.

Be that as it may, it is a fact that this special kind
of multiple definition coalesces into a single physico-
mathematical entity that we call a die and that everyone
is supposed to understand clearly. The chances of the
faces of this die are equal by definition, like the faces of
a cube, and at the same time none of its faces is physi-
cally or morally “advantaged” if it is thrown. None can
really happen much more often than another. This has
always been the way, moreover, to judge of the good-
ness of a die, if you do not know how it was made.

At some point in the history of science, about which
we know little or nothing, some scholars may perhaps
have convinced themselves that as dice have their own
mathematical existence, there should be a “geometry
of chance,” a mathematical theory of dice, just as there
is a geometric theory of cubes, and that it could be
made into a calculus. And as the dice have a physical,
juridical, religious existence, etc., these same scholars
or others tried to apply this particular mathematics to
study the “games of chance” played by their contempo-
raries, to determine the probability of the different pos-
sible outcomes and the fair value of gambles or bets,
the value that maintains a kind of equality or justice
among the participants, as the chances are multiplied.
The calculus of dice would somehow permit us, at least
ideally, to account for the frequencies of appearance of
the different faces of a die, or the configurations of sev-
eral dice when they are thrown together. One can thus
speak, without forcing the point too far, of a (mathe-
matical) “law” of dice, what will be called in the eigh-
teenth century a law of probability that reason fits as
closely as possible to the realities involved, just as a
mathematical die is a simplified image of a good clay
die. This is one example among others of the mathe-
matical physics of Archimedes, Galileo or Newton, for
whom nature is not mathematical, but can be described
at least approximately in mathematical language.

Better still, and this time we have a reliable source,
at the end of the seventeenth century the well-known
scholar Jacob Bernoulli in Basel succeeded in putting
into one and the same mathematical statement the two
notions we have just introduced: the chance of one of
the faces of a die and the frequency of its occurrences.
This is Bernoulli’s theorem, which we examine in al-
most every paragraph of this work. This fundamen-
tal theorem can take very diverse forms and make use
of more and more advanced mathematics, notably the
mathematics of denumerable probabilities. It continues
to be the object of active research.

In this chapter, we are interested only in the a priori
calculus of mathematical dice, derived from their def-
inition, six equally probable faces, what is now called
the calculation of a probability law, a calculation of a
particular nature that surely goes back very far in time,
perhaps as far as the calculation of the dimensions of a
pyramid, or a circle, or a square, though we know very
little about this.

By definition, as we have said, each face of the die
has the same chance of appearing. This is a hypothesis
of a mathematical nature, a truth by definition, theo-
retical, preserved throughout a reasoning or a possible
calculation. This calculation obviously depends on ap-
propriate algebraic rules and also on the rules of the
games considered. The history of dice games is as long
as the history of men. It will suffice here to recall that in
the Roman era (to speak simply), soldiers had the right
to play dice in camp, so that Roman dice are found all
over Europe. One of the most common Roman games,
found in the Middle Ages and today, consists of throw-
ing three dice and summing up the faces obtained. The
first problem of the calculus of dice could therefore be
this one: Do the different possible sums of points of
three dice, from 3 to 18, have the same “chance” to oc-
cur, or are some favored over others, and if so, in what
ratio? We shall call this the problem of points.1 As for
the word chance, we keep for the moment the math-
ematical meaning everyone knows, a kind of special
weighting that allows us to begin the calculation, or as
d’Alembert wrote in the preliminary discourse of the
Encyclopaedia: a “quantity considered in the possibil-
ity of events,” which “produces the art of conjecturing,
from which arises the analysis of games of chance.”

1Translator’s note: Here, I translate the authors’ problème des
points into English as problem of points. I will use problem of di-
vision for what is usually called problem of points in English: the
problem of dividing the stakes when a game is ended before either
player has enough points to win.
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Or, if one prefers, an “abstract idea” at the foundation
of the whole theory, as we know Cournot said so em-
phatically [15, 16].

First, a few simple observations that players must
have made for a long time. There is an obvious math-
ematical symmetry in this problem. Points 3 and 18
(all the faces identical to 1 and to 6) necessarily have
the same chance. The same seems likely true for points
symmetrical with respect to the average, which is be-
tween 10 and 11, which thus must also have the same
chance, although the reasoning here is less obvious (in
general, it consists of changing the numbering, 1 be-
coming 6, 2 becoming 5 and so on).

Are these chances all equal as in the case of a single
die? Certainly not. It is enough to have thrown three
dice (or simply two dice as in the game of Monopoly)
a few times to realize that the sums of points near the
average, 10 or 11, even 9 or 12, are more advantageous,
more frequent, than the extreme sums 3 or 18, or even
4 or 17. There must be a mathematical reason for this,
and the problem is to find it.

2. THE PSUEDO-OVID’S DE VETULA

Here, we prefer the historical approach. To penetrate
to the reasons of things, look at how they have gradu-
ally been revealed in the course of time, in their pro-
gression and in their ruptures, if any. In the case of
the problem of points, as in all truly interesting cases,
this is difficult or even impossible because the prob-
lem is lost in the mists of time and it is impossible
to determine its origins and traditions in the absence
of clearly identified written texts. Historians have ex-
amined this question ever since the nineteenth century,
exploring the libraries at their disposal, and we have
hardly progressed since then. Perhaps somewhere there
is a Babylonian tablet or an Egyptian papyrus dealing
with the question of points, but we do not know where
they are. The first text usually cited on this question
dates from the middle of the thirteenth century, a long
encyclopedic poem, entitled De vetula, written in Latin
hexameters and falsely presented as Ovid’s testament.
We do not know the author, but we know that he was
connected to the University of Paris and that his poem
probably served for a long time as a pedagogical re-
source in the universities and schools of the Middle
Ages and the Renaissance. Be that as it may, the au-
thor by all appearances is a positive spirit, a scholar up
to date on medieval science, and if his ultimate goal
is indeed the conversion of souls, as was that of the
builders of cathedrals, his poem De vetula nevertheless

possesses a certain probabilistic modernity which es-
pecially interests us here.

In the first book of the poem, the pseudo-Ovid enu-
merates and criticizes the pleasures of life and its pro-
fane pursuits. The author treats in particular different
kinds of games, games of skill and reasoning, dice
games. In the last case, the point is clearly to discour-
age the player from ruining himself, while awakening
his intelligence. The aim seems to have been to show
how chance can be reduced to calculation, even as nei-
ther this calculation nor anything else can ever domi-
nate it. The calculation, in a certain way, puts chance
in its place or, we might say, in its seat. It understands
the game, but it is neutral and cannot prevent the ruin
of fathers of families and the squandering of inheri-
tances. Perhaps this is what Jean Le Fèvre, who pro-
duced a versified French adaptation of De vetula enti-
tled La Vieille ou les dernières amours d’Ovid in the
fourteenth century, meant in this trenchant title sum-
marizing the Latin poet’s point: “That he who knows
how to seat the dice has no advantage in the game.”

The same moralizing intention is found in the sec-
ond part of the poem, in which the author undertakes
to dissuade his readers, generally clerics like himself,
from indulging without measure in the pleasures of sex,
detailing the disappointments of Ovid who, believing
that he has finally succeeded in conquering the girl of
his dreams but deceived by the night, finds himself in
the bed of an “old woman,” a scabrous, rather obscene
episode in the style of novels and medieval fables in
which the woman is in turn idealized and trivialized.
But here is not the place to detail this point any more
than the third part, in which the author makes himself
the defender of philosophy and theology, alone wor-
thy of occupying a true scholar. The poem ends with
Ovid’s imaginary conversion to the true faith and a
hymn to the Virgin Mary. In short, a medieval peda-
gogical poem, of which we will examine only the part
that deals with the game of dice.

No doubt we should situate the calculus of dice in
the Western mathematical context of the time. A rel-
atively modest context, as it was in the time of Ro-
man grandeur, more concerned with earthly conquests
than with those of the human mind. This was deplored
by Jean-Étienne Montucla in his great Histoire des
mathématiques ([28], Volume I, page 482). The Ro-
man colonies of the West hardly departed from this
traditional disdain for mathematics, which was lim-
ited to the education of youth and the practical needs
of architecture, commerce or calendars. All the more
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so because mathematics had been compromised by as-
trology and methods of divination, whose astral fatal-
ism and abuse were denounced and severely repressed
by the Justinian code and several unanimous councils.
Just the same, Montucla (ibid., page 506) observes with
some relief that “the thirteenth century was almost a
time of enlightenment in comparison.” It appears in-
deed that the author of De vetula knew and proba-
bly taught Boethius’s arithmetic, from which he bor-
rows the use of tables inserted in the text, the “figures”
that make it possible to visualize the “configurations of
points” as well as the dice’s “ways of falling.” As J.-Y.
Guillaumin [11, 22] points out in his edition of the De
institutione arithmetica, Boethius was the first Latin
author to use this pedagogical device, which he bor-
rowed from his Greek model, Nicomachus of Gerasa’s
Introduction to Arithmetic and which De vetula bor-
rowed in turn, as certain Arab traditions did earlier
(Djebbar [21]). It is also evident that the erudite thir-
teenth century poet used quite well the Indian posi-
tional numeration adopted by the Arabs in the ninth
century. The Arabic decimal system appears in De ve-
tula beginning with the first manuscript, in the form
found in the twelfth–thirteenth centuries in the Latin
translations of Al-Khwarizmi and in the treatises of
Abraham Ibn Ezra, Fibonacci and Jordanus Nemorar-
ius. We know that at the end of the thirteenth century,
the Sorbonne Library had several manuscripts entitled
“algorismus,” notably those of John of Sacrobosco,
who was a professor of quadrivium2 in Paris from the
1220s, and who could have had the pseudo-Ovid as
a student. The positional decimal numeration, already
advocated in the tenth century by Gerbert d’Aurillac
(Bernelin c. 1000 [1], Beaujouan et al. [6], Allard [2],
page xv, [4]), gives the calculus of dice a certain ver-
satility and may explain in part this (perhaps) new ap-
plication of the science of numbers, as it explains other
applications of the time to astronomy and mechanics.

There are surely other sources for the calculus of
dice that we are completely unaware of. Moreover, in
reality we know almost nothing about the history of De
vetula, and we will say no more about it. Let us rather
see what people knew about “seating the dice” in the
thirteenth century.

So consider three dice, which we assume to have dif-
ferent colors, blue, white and red, to mark their differ-
ence, their individuality. Since the first modern courses

2Translator’s note: The quadrivium consisted of arithmetic, ge-
ometry, astronomy and music; the trivium consisted of grammar,
rhetoric and dialectic. These seven liberal arts prepared students for
professional study in law, medicine, and the church; see Figure 1.

in the calculus of probability, Borel’s, for example, this
has been the simplest way to present the matter. The
author of the De vetula proposes to calculate in how
many ways the points can appear on the three dice. He
is careful to point out that there are at least two ways
of doing this counting. First, there is what he calls the
“punctaturae,” which Le Fèvre translates into French
as “pointures,” that is, the marks that appear on the
dice without taking into account their color. For ex-
ample, 225 is the pointure corresponding to two dice
coming up 2 and one coming up 5. And so on for the
other cases. Punctatura could be translated as “what is
going to be pointed or piqued,” or as “configuration
of points,” or however you like. For his part, Jacob
Bernoulli calls De vetula’s punctaturae “modes.” Here,
we adopt Le Fèvre’s term, pointure, which is as good
as any other and which stands out as a special math-
ematical term. So the poet proposes first to count the
pointures.

This calculation was not new to the West. We know
that Wibold of Cambrai published in the tenth century
the 56 pointures of three dice by associating them with
the canonical virtues, from 111, charity, to 666, humil-
ity. This counting became classic, in various forms, in
the Middle Ages and the Renaissance. We also know
of several counts of pointures in antiquity in the some-
what simpler case of 4-sided astragali.3 Here, there are
35 pointures, named for the most important deities,
heroes or animals—Venus, the dog, etc.—which have
different divinatory values. In all the known texts, there
are no methods of calculation; it is a matter of sim-
ple enumeration, say in alphabetical order. In De ve-
tula, the pseudo-Ovid proposes a genuine combinato-
rial calculation of the 56 pointures of three dice, which
we will follow step by step. One starts by counting the
pointures where the three dice present the same face:
111, 222, etc. There are obviously 6 of them. Then
we count the pointures, such as 225, where two dice
present the same face and the third a different face. In
order to evaluate their number, we first choose the face
that is repeated, for which there are six choices, then
this choice being made, the single face from the re-
maining five, which makes a total of thirty, multiplying
six by five. Finally, we have to calculate the number

3Translator’s footnote: The astragalus bone, from the ankles of
sheep and other animals, falls on one of four sides when thrown.
In Greek literature, the four ways of falling were often named with
the letters A, �, � and F or the numbers 1, 3, 4 and 6, but since the
four sides are visually distinct, it was not necessary to mark them.
See the photographs in [23].
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FIG. 1. Cover and third page of Margarita Philosophica (Philosophical Pearl), reproduced with permission of the Rutgers University
Libraries. This sixteenth century compilation, published in 1504 by Gregor Reisch, was a comprehensive university textbook. The seven
liberal arts, divided into the trivium and the quadrivium, are listed in the bottom half of the circle on the cover. The diagram on third page
shows how the author fits these liberal arts into a larger map of philosophy.

of pointures corresponding to three different faces, for
example, 123. We find twenty of them by enumerating
the different cases according to whether the numbers
marked are “continuous,” for example, 123, or “discon-
tinuous,” for example, 124 or 135. And to be surer of
ourselves, we make a table of the 56 pointures, which
takes several forms in different manuscripts, culminat-
ing in the remarkable “bell-shaped” form found in the
second printed edition of 1479 and its later copies (see
Table 1).

The reader will have noticed that the second part
of the enumeration, which leads to 6 × 5 = 30, uses
the combinatorial rule of multiplication, which is im-
memorial (Biggs [10], number 1, Allard [3]) and which
the author seems to know well. This rule allows in the
same manner the calculation of numbers of arrange-
ments and permutations that is found very early in Chi-
nese, Indian and Arab mathematics (Biggs ibid.), in Fi-
bonacci’s or Jordanus’s treatises, and in the collections
of problems that formed the pedagogical basis of the
teaching of arithmetic at the University of Paris in the
thirteenth century (Beaujouan [5], Chapter XI; Allard
[3]).

The bell of pointures allows the poet a first comment.
The numbers go up to the middle points 10, 11 and then

back down. Thus, the points “are not of equal force.”
“The largest and the smallest of them come rarely, the
middle points frequently.”

But we still have not reached the crux of the mat-
ter. In fact, the middle points from 9 to 12 in this bell
all have the same “force” of six pointures, and the ex-
treme points, 3 and 4, or 17 and 18, have an equal force

TABLE 1

666 18
665 17
664 655 16
663 654 555 15
662 653 644 554 14
661 652 643 553 445 13
651 642 633 552 543 444 12
641 632 551 542 533 443 11
631 622 541 532 442 433 10
621 531 522 441 432 333 9
611 521 431 422 332 8
511 421 331 223 7
411 321 222 6
311 221 5
211 4
111 3
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of one pointure. Yet the common opinion of players,
from the very beginning all the way up to the Cheva-
lier de Méré, who said it to Pascal, is that point 11, for
example, comes more frequently than point 12. As for
point 4, it is clearly more advantageous than point 3.
We must therefore find another explanation. The “force
of the pointures” is not sufficient to explain or predict
the frequency of the throws.

The pseudo-Ovid now makes this remark:

Now, if we observe more carefully the poin-
tures, there are some for which there is only
one way of falling, and there are some for
which there are three or six, because the
manner of falling is unique when the three
numbers of which we have spoken are alike.
But if one of these numbers is different
two are alike, three cases occur, depending
on which is different. And if all are dif-
ferent, you will find that they can change
in six ways, because if you give any posi-
tion to one of the three, the other two ex-
change their positions, as permutation of the
pointures shows. In this way, the fifty-six
pointures are differentiated into two hun-
dred sixteen ways of falling, and when they
are distributed among the possible number
of points for the players as they should be,
you will know fully what value or loss any
of them can have.

We cannot say it better. The pointure is not enough to
specify the way the three dice fall. To the 56 pointures
(punctaturae) correspond in reality 216 ways of falling
(scemae cadendi) taking into account the color of the
dice. For example, the pointure 225 corresponds to 3
ways of falling, depending on whether the 5 is on the
white, the red or the blue die. The pseudo-Ovid then in-
troduces a special technical term for the dice’s ways of
falling, the cadentiae, which we will now translate as
chances. The poet tells us that the number of chances
makes it possible to know the players real gains and
losses. In the case of a single die, each face is its own
pointure and has the same chance of falling, but in the
case of three dice, the chances of different pointures
are different; there can be 1, 3 or 6 chances, depend-
ing on the color of the dice and, therefore, the points
have different chances that one must calculate from the
bell of pointures and the chances they can have. This is
summarized in Table 2. Thus a total of 216 chances for
the 16 possible points from 3 to 18.

TABLE 2

3 18 Punctatura 1 Cadentia 1
4 17 Punctatura 1 Cadentiae 3
5 16 Punctaturae 2 Cadentiae 6
6 15 Punctaturae 3 Cadentiae 10
7 14 Punctaturae 4 Cadentiae 15
8 13 Punctaturae 5 Cadentiae 21
9 12 Punctaturae 6 Cadentiae 25
10 11 Punctaturae 6 Cadentiae 27

The pseudo-Ovid stops there. The problem is com-
pletely solved. We can seat three dice. A priori, noth-
ing stops the poet from treating the case of four dice by
the same method: enumeration of pointures and then
evaluation of their chances taking into account the col-
ors. This in fact is how Jacob Bernoulli first proceeds
in the first part of Ars conjectandi, but he concludes
that this method is both tedious and long (taediosa and
prolixa). He proposes another, remarkably ingenious,
step-by-step method (ibid., page 24), which we exam-
ine later, but which perhaps would not have convinced
the pseudo-Ovid.

Just the same, De vetula is a genuine “calculus of
chances” in a relatively complex case. The pseudo-
Ovid constructs the table of chances for the points of
three dice, and in two different ways. By doing so,
knowing it or not, he introduces a mathematical no-
tion of the first magnitude, a probability law, mathe-
matically mimicking the tables of numbers found in
all commercial or agricultural accounts and already on
certain Sumerian tablets 4500 years ago (Stigler [31],
page 27). Was the Latin poet the first? We do not know.
Was he isolated? We do not know this either, but we
can doubt it and conjecture that the author of De vetula
was taking up something he had learned elsewhere, no
one knows where. He testifies at least to the existence,
at the dawn of Western universities, of a calculus of
perfect dice, mathematical dice and the proliferation
of manuscripts and editions all the way up to the sev-
enteenth century proves without a doubt that this thir-
teenth century calculus was not completely forgotten
and continued to be taught here and there, down to
modern times, without our being able to say more.

Things changed in the fifteenth century in Italy
and in the sixteenth century throughout Europe, when
mathematics acquired an autonomy and an importance
it had lost long before. Luca Pacioli could even write
in his dedication of Divine Proportion to Duke Sforza:

Among truths, as Aristotle and Averroes
affirm, those of mathematics are the most
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true: they are the first degree of certainty,
and all the other natural sciences come after
them. In this way, it is clear, Great and Pow-
erful Duke, that all other sciences are opin-
ions, and only these should be called certi-
tudes. ([29], page 49 of the 1988 edition)

Kant would not say anything different. The medieval
calculus of chances thus found a second life. Isolated,
strange and fascinating texts inevitably attracted the at-
tention of scholars who henceforth devoted themselves
exclusively or almost exclusively to the new sciences.
Chairs of mathematics were created, and we may sup-
pose that their holders taught the calculus of chances on
occasion, although we know of hardly any texts of any
importance on this subject, and those usually quoted
were published too late to influence the development
of the calculus of dice before Huygens’s treatise [25].
This treatise, the first that really counts, entitled De
ratiociniis in ludo aleae (On calculation in games of
chance), was published shortly after the exchange of
correspondence between Pascal and Fermat in the sum-
mer of 1654, marking the beginning of a new era for the
calculus of chances, punctuated by three eternal mas-
terpieces, Bernoulli’s Ars conjectandi, Moivre’s Doc-
trine of Chances and Laplace’s Théorie analytique. But
we limit ourselves here just to dice games and, to stay
focused, just to problem of points, posed in its general
Ovidian form: given n dice with f faces, calculate the
chances of obtaining a sum of points equal to s.

Pascal and Fermat dealt of course with problems of
dice, but there are no written traces of their dealing
with the problem of points. On the other hand, both
gave satisfactory answers to the problem of division:
how to divide the stake if the players stop playing.
A problem whose origin, like that of the problem of
points, goes back very far, but that we do not consider
here, for lack of space. We also know that Pascal, Fer-
mat, Leibniz and others developed the theory of com-
binations in a decisive way in the West. This theory
remained the main method for calculating chances be-
fore analytic theory arrived in the eighteenth century,
thanks to Moivre, Lagrange and Laplace. In large mea-
sure, it still remains the main method.

To our knowledge, the first printed trace of the prob-
lem of points in the new calculus of chances is found
in Christiaan Huygens’s [25] treatise, which introduces
the calculus of dice as follows:

As far as the dice are concerned, we can pro-
pose the following questions: with one die,

in how many throws should we risk throw-
ing the six or some other point? Similarly,
in how many throws should we try to throw
two sixes with two dice or three sixes with
three dice? And many other similar ques-
tions.

To solve them, here is what must be con-
sidered. First, with one die there are six
different outcomes, each of which can ap-
pear equally easily. I assume that the die
has the perfect shape of a cube. Then, with
two dice there are 36 different outcomes,
each of which similarly can be obtained
equally easily, for in conjunction with each
of the outcomes for one die, each of the
six outcomes of the other die can happen
at the same time, and six times 6 outcomes
makes 36 outcomes. Similarly, with three
dice there are 216 different outcomes, be-
cause in conjunction with each of the 36
outcomes of two dice, each of the six out-
comes of the third can happen and six times
36 outcomes makes 216 outcomes. It is
clear, in the same way, that with four dice
there are six times 216 outcomes, that is to
say 1296 outcomes, and that one can thus
further calculate any throw of dice, always
assuming for an additional die six times as
many outcomes.

Here, Huygens makes use only of the multiplication
rule, already put to use in De vetula and by all the au-
thors who have since addressed this question, not to
mention those who used it before the thirteenth century.
Huygens next deals with the problem of points for two
and three dice, but does not go beyond that. His con-
tribution is elsewhere. In fact, Huygens follows Pascal
and the scholastic tradition on the hope of gain, for-
malizing the notion of expectation, whose central role
in the theory we know, but in order to stay within the
limits of the problem of points, we do not dwell on this.

3. JACOB BERNOULLI

The first important contribution to the problem of
points, which really brought in a new idea that could
deal in principle with any number of dice with any
number of faces, is due to Jacob Bernoulli in his com-
mentary on Huygens’s treatise, which forms the first
part of Ars conjectandi. We do not know the date of
this text, which is certainly between 1685 and 1705.
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TABLE 3

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

On the other hand, we known that it was not read out-
side the Bernoulli family until after the publication of
Ars conjectandi [8] in September 1713, that is to say
after the first contributions of Montmort and Moivre,
about which we will say more later.

As mentioned above, Jacob Bernoulli starts by
counting the pointures and the chances in the case of
four dice. But he then proposes a method that is both
clear and easy, summarized in a table that allows the
calculation of the chances of points in general, step by
step. Bernoulli does not tell the principle of his method,
the reader (especially his brother Johann) being sup-
posed to find it for himself if he can. This principle is
very simple and very general, as we will see.

To simplify the presentation, we consider n six-sided
dice and we assume that we have succeeded in calculat-
ing the numbers of chances for all the points in this case
(one can suppose that n = 1 or 2; this does not change
the reasoning). Bernoulli proposes to show how we de-
duce from this the numbers of chances for the points
for n + 1 dice.

For n dice, the points vary from n to 6n. Let their
respective numbers of chances be ck , for n ≤ k ≤ 6n,
and to make the formulas simpler to write, set ck = 0
for all other integer values of k. Let us throw an extra
die and try to evaluate the number of chances Ck for the
sum of the faces of the n+1 dice to be equal to k. There
are six possibilities: the additional die falls 1,2, . . . ,6.
If it falls i, the number of chances for the sum of the
faces of the n + 1 dice to be equal to k is equal to ck−i .
Whence Bernoulli’s formula:

(c) Ck =
6∑

i=1

ck−i .

Formula (c) is what we now call a convolution formula.
Suitably generalized, it allows us to calculate the prob-
ability law of a sum of independent random variables
in absolute generality. But Bernoulli does not know this
and he prefers to adopt an arrangement in a table start-
ing from n = 1 and going step by step as far as we
want.

A single die’s chances are all equal to 1; we represent
this with a line of 1’s:

1 1 1 1 1 1.

Then we copy the same line five times, shifting it each
time one place to the right, and we add the columns
thus constituted. We obtain, by formula (c), the line of
chances for the points of two dice:

1 2 3 4 5 6 5 4 3 2 1.

Then we repeat with this new line what we had done
previously. That is, we write the line five times, shift-
ing each time one unit to the right, and then we add the
columns. According to the same formula (c), we obtain
the chances of the points for three dice, those of De ve-
tula. Let us follow the algorithm for four dice. Starting
with the chances given by De vetula for three dice, we
form Table 3.

Adding the columns gives, by formula (c), the se-
quence of chances for four dice:

1 4 10 20 35 56 80 104 125 140 146 140 125

104 80 56 35 20 10 4 1.

We can continue this way indefinitely. Bernoulli stop-
ped with six dice to show his merit without excess of
zeal. One had finally passed De vetula. It had taken 450
years or so.

Bernoulli’s algorithm applies without change to dice
with an arbitrary number of faces, but it does not give a
complete formula for relatively large numbers of dice.
Even if the step-by-step calculation is sure to give the
answer in the end, you will be hard pressed to carry it
out without error in a reasonable time when the value of
n is, say, 10. And what if n = 100 or 1000? Neverthe-
less, the simplicity and elegance of the algorithm could
not have failed to attract the attention of Bernoulli’s
nephew, Nicolas I Bernoulli, the first mathematician to
have access to the manuscript of Ars conjectandi, when
writing his famous thesis on law [9]. We may suppose
that it helped attract young Nicolas to the doctrine of
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chances, of which he became one of the best special-
ists. It is also possible that he informed Montmort quite
early of his uncle’s algorithm, but we have no proof of
this.

4. PIERRE RÉMOND DE MONTMORT

At the beginning of the eighteenth century, all the
scholars of Europe knew that the great Jacob Bernoulli
had written a fundamental work on the art of conjec-
turing. If one of the top mathematicians of Europe, one
of the masters of the new differential and integral cal-
culus, had been interested in the theory of chance and
its applications to civil, moral and economic affairs,
this was a serious matter that must not be allowed to
drop. So while waiting for the repeatedly delayed pub-
lication of Bernoulli’s great treatise, several hastened
to mark their territory in a field still virgin or nearly
so. This was the case with Pierre Rémond de Mont-
mort, who after briefly being a canon in the chapter
of Notre Dame of Paris, married and was now devoting
himself to the science of numbers in his castle of Mont-
mort in Champagne. Like Father Prestet, he was from
Malebranche’s entourage—a man of the world and a
scholar. His prefaces are remarkably written. Mont-
mort intended to write a history of mathematics, which
would have been the first in the West. He was well
along in his undertaking when death overtook him.

Montmort was also one of the first Western “combi-
natorists,” along with Nicolas Bernoulli and Abraham
de Moivre. He had that rare gift of counting configura-
tions that seem impossible to disentangle. As he con-
fided to Nicolas Bernoulli, you must have a special tal-
ent for it.

It seems to me that these demonstrations are
not like demonstrations in geometry. Those
touching on numbers and combinations are
infinitely more difficult. You can have them
very clearly in mind without being able to
put them on paper.

In 1708, Montmort published under cover of anony-
mity a remarkable Essay d’analyse sur les jeux de haz-
ard [20] (Essay analyzing games of chance).4 After
Huygens’s treatise, it was the first published work on

4Translator’s note: Montomort’s name did not appear in either
of the book’s two editions; see [24], page 287. But while being
prudent with respect to political and ecclesiastical authority, Mont-
mort was proud of his work and made sure his authorship was well
known among mathematicians. Newton was among those to whom
he sent copies; see [7], page 68.

the new calculus of chances. In the Introduction, the
author informs us that many of his friends “had long
urged him to try to see if Algebra could not manage
to determine the Banker’s advantage in the game of
Pharaon.” Informed about the potential work of Ja-
cob Bernoulli, he took up the question again and had
the good fortune to solve it and several others of the
same kind “or even more difficult.” Montmort did not
stop there. Far from the skepticism of the pseudo-Ovid
or Leibniz, he made himself the advocate of a doc-
trine of probabilities applied to “the things of life,” the
tones of which resembled those (yet to appear) of Jacob
Bernoulli, or even of Condorcet a century later:

We cannot know the future, but in Games of
chance, and often in other things of life, we
can always know exactly how much more
likely a certain thing is to happen in one way
rather than in any other! And since these are
the limits of our knowledge, we should at
least try to reach them.

As for the problem of points, Montmort contented
himself with giving a table of chances of the points in
the case of 2 to 9 dice, without any indication of meth-
ods. The complexity of the calculation for more than
5 dice suggests, however, that the scholar in Cham-
pagne had a valid formula for all cases, or at least a
simple algorithm, even though he said nothing about
it. He did not publish his formula and his demonstra-
tion until in the second edition of the Essay, in 1713.
Meanwhile, a mathematician of the first rank, Abra-
ham de Moivre, a native Huguenot of Vitry-le-François
exiled in London, published the formula in his mem-
oir [18], the first version, in Latin, of his great treatise
The Doctrine of Chances [19], which would have three
English editions, continually supplemented and clari-
fied, in 1718, 1738 and 1756. These alternating publi-
cations did not fail to arouse polemics on the true pa-
ternity of the formula and its combinatorial demonstra-
tion, which Moivre never published, but which could
have differed little from Montmort’s.

Without entering into too many details, we must
therefore examine this demonstration, which is not
without interest insofar as it makes use of two of the
most famous combinatorial formulas, apparently used
here for the first time in their full generality: the for-
mula for combinations with repetition and the sieve
formula. We follow as closely as possible the plan of
demonstration in the second edition of Montmort’s Es-
say, but not its form, which uses an arithmetic trian-
gle without enough notation to treat the generality of
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the proposition in question. This is a difficulty encoun-
tered in all combinatorial demonstrations of the eigh-
teenth century (and earlier centuries), where you treat
the case of small values of the variables and pass to the
general case informally, “by induction,” for lack of no-
tation adapted to a real proof. For ease of reading, we
have chosen here a middle way. We follow Montmort’s
plan with modernized notation.

In the general case, we have n dice with f faces.
To simplify the formulas a little, following a tradition
that goes back at least to Moivre ([18], pages 220–
221; [19], page 17 of the first edition, pages 35–36 of
the second edition, and pages 39–40 of the third edi-
tion), we assume that the faces are numbered from 0 to
f − 1. This does not change the chances, but the values
of the points are diminished by n. We seek the number
of chances that the sum of the faces of the f dice is
equal to s, for s between 0 and n(f − 1).

Write xi for the result of the ith die, for 1 ≤ i ≤ n. So
it is a matter of finding the number of integer solutions
of equation

(m) x1 + x2 + · · · + xn = s

such that 0 ≤ xi ≤ f − 1 for all i.
First assume that s < f .
In the case being considered, each of the variables xi

satisfying equation (m) is necessarily less than or equal
to s and, therefore, strictly smaller than f . Hence the
number of chances of obtaining the sum s is equal to
the number of nonnegative integer solutions of equa-
tion (m).

We have already encountered this problem. The an-
swer is given by the formula of combinations with rep-
etition of s from n things, that is to say5

(0) Cs
s+n−1

Suppose now that f ≤ s < 2f .
In this case, there may be solutions of equation (m)

containing variables greater than or equal to f , which
cannot therefore correspond to the faces of the dice that
we are considering (which are numbered from 0 to f −
1). So we must exclude such solutions from the count
(0) made previously. Since x1 +x2 +· · ·+xn = s < 2f ,
no more than one of the variables xi can be greater than
or equal to f . Say that it is the first. Then x1 = f + t1,
with 0 ≤ t1 < f , and consequently

t1 + x2 + · · · + xn = s − f,

5Translator’s note for readers accustomed to other notation:

Ck
n = n!

k!(n − k)! .

all the variables being nonnegative integers and strictly
less than f . The number of such solutions is obtained
from the preceding formula by replacing s with s − f :
Cs−f

s−f +n−1. Since there are n possibilities for the vari-
able exceeding f , the number of chances of the point s

when f ≤ s < 2f is

(1) Cs
s+n−1 − nCs−f

s−f +n−1.

Next, suppose that 2f ≤ s < 3f , and consider again
equation (m). Now it is obvious that at most two of the
variables can exceed f . Suppose the first two exceed f .
In this case, the subtraction in (1) removes twice the
number of corresponding solutions, that is, the number
of solutions of equation (m) satisfying x1 ≥ f , x2 ≥ f

and 0 ≤ xk ≤ f − 1 for k different from 1 and 2. To
compensate for this excessive subtraction, we add this
number back. But this number is also given by formula
(0) if we set x1 = f + t1 and x2 = f + t2 with 0 ≤ ti <

f for i = 1 and 2. We have

t1 + t2 + x3 + · · · + xn = s − 2f,

all variables being integers and strictly less than f .
The number of these solutions is given by Cs−2f

s−2f +n−1.

There are C2
n choices of two indices from n. So the

number of chances for s when 2f ≤ s < 3f is equal
to

(2) Cs
s+n−1 − nCs−f

s−f +n−1 + C2
nC

s−2f
s−2f +n−1.

Now if 3f ≤ s < 4f we should subtract as before
the solutions containing three variables greater than f .
The number of chances for s in this case is obviously

(3)
Cs

s+n−1 − nCs−f
s−f +n−1

+ C2
nC

s−2f
s−2f +n−1 − C3

nC
s−3f
s−3f +n−1.

And so on. If kf ≤ s < (k + 1)f , the number of
chances for the sum s will be

(k)
Cs

s+n−1 − nCs−f
s−f +n−1 + C2

nC
s−2f
s−2f +n−1

− · · · + (−1)kCk
nC

s−kf
s−kf +n−1

for every integer k strictly less than n − 1.
Here is what Montmort, Moivre and the others pre-

ferred to write: the number of chances for the point s

with n dice that have f faces starting with 0 is equal to

(s + 1)(s + 2) · · · (s + n − 1)

(n − 1)!
− n

(s − f + 1) · · · (s − f + n − 1)

(n − 1)!
+ n(n − 1)

2

(s − 2f + 1) · · · (s − 2f + n − 1)

(n − 1)! −· · ·,
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where the alternating sum stops as soon as one of the
factors becomes zero or negative.

If we want probabilities instead of chances, we must
divide this expression by the total number of chances
for n dice with f faces, that is to say f n. This gives

(s + 1)(s + 2) · · · (s + n − 1)

(n − 1)!f n

− n
(s − f + 1) · · · (s − f + n − 1)

(n − 1)!f n

+ n(n − 1)

2

(s − 2f + 1) · · · (s − 2f + n − 1)

(n − 1)!f n

− · · · ,

again stopping the sum as soon as one of the factors
becomes zero or negative.

The general problem of points is thus completely
solved. Except that as soon as the number of dice ex-
ceeds 10, the calculations, involving n! and up to n

alternating terms, become impractical. This problem
stumped mathematicians for a long time. It was not un-
til the beginning of the 1810s that Laplace resolved it
in a masterful way.6

5. LAPLACE

In 1812, in the Théorie analytique des probabil-
ités (Book II, Section 18) [27], Laplace gives the first
known approximation to the Montmort–Moivre for-
mula. Let us state it in the case where f = 2b + 1, so
that the mean point is equal to nb. The probability of a
sum s = nb + k is approximately equal to

(dvl)

√
6

πn(f 2 − 1)
exp

(
− 6k2

n(f 2 − 1)

)
,

which traces De vetula’s bell of chances as closely as
possible.

We will not give details in this chapter of the calcu-
lations leading to (dvl).7 But let us briefly consider the
case where the number of faces on the dice becomes
infinitely large, the number of dice remaining reason-
able. This seemingly esoteric problem has a very great
importance in the history of the probabilistic theory of
errors, and it will not detain us for very long.

6Efforts by Laplace and others before 1810 are discussed by the
Brus in later chapters of their book and by Anders Hald in A History
of Probability & Statistics and Their Applications before 1750 [24].

7Laplace’s work on this topic is discussed in great detail in other
chapters of the authors’ book.

The first mathematician to consider this case was
Thomas Simpson, a disciple of Moivre and soon his
main competitor.

We can picture a die with f sides as a lottery wheel
with f equal sectors or more simply as the segment
[0,1] divided into f equal parts, the faces of the die,
which are supposed to have all the same chances of
being selected. If f becomes infinitely large, the faces
of length 1/f become infinitely small and equal to dx.
A face is located by the sum of infinitely many such in-
tervals dx, taken as a unit, or by a number x between 0
and 1. We can thus see the choice of one of this infinity
of faces as the random choice of a number x between
0 and 1, or as was generally said in the second half of
the eighteenth century, as an “inevitable error” whose
“law of facility” is constant over the interval (0,1).

The sum s of the faces of the n dice becomes in-
finitely large of the same order as f . So we set 1/f =
dx and s/f = x, for x positive and less than n. The
above formula for the probabilities becomes

dx

(n − 1)!
[
xn−1 − n(x − 1)n−1

+ n(n − 1)

2
(x − 2)n−1

− n(n − 1)(n − 2)

2 · 3
(x − 3)n−1 + · · ·

]
,

(SL)

stopped as soon as one of the factors becomes zero.
The formula (SL) gives the “chance” that the sum of

the n errors is between x and x + dx. Without the dx,
it represents, in current terminology, the density of the
sum of n independent random variables following the
same uniform law on (0,1). It is the “facility” of the
sum of n equally possible errors between 0 and 1.

We can plot the curves of these facilities for small
values of n. They very quickly take the form of the
Laplacian or Gaussian bells.

For n = 2, the curve of facility is an isosceles trian-
gle placed on the x-axis. For n = 3, it is a bell formed
of three pieces of parabola, and if we compare the
curve corresponding to n = 4 with the normal law with
mean 2 and variance 1/3 [mean and variance of the
sum of 4 independent variables uniformly distributed
on (0,1)], we observe an almost perfect superposition,
which very quickly becomes an identity for larger val-
ues of n. This surprising result is a special case of the
fundamental theorem proven by Laplace in 1810. The
law of the sum of n independent variables with nearly
any density is very close to a normal distribution with
the same mean and variance, and this theorem holds



296 M.-F. BRU AND B. BRU

just as well for De vetula’s dice with a finite number of
faces, as we saw above. Since the normal law has been
tabulated since the beginning of the nineteenth century,
we have thus the numerical solution of all possible and
imaginable problems of points, and we stop there.

To conclude, let us return to the formula (dvl) above.
It says that a complicated combinatorial alternating
sum is nearly proportional to a simple exponential.
Such an approximation was not at all obvious a priori.
It took decades for it to appear as one of the basic for-
mulas in the probability calculus. It is well known that
it first emerged in the particular case of two-sided dice,
coins marked 0 and 1. The sum s of the faces is then
simply the number of 1’s obtained (or the number of
heads if 1 corresponds to heads and 0 to tails). It is no
wonder that this particular case was treated first. It is
one of the most remarkable results obtained by Moivre
in 1733, published at the end of the second edition of
his Doctrine of Chances in 1738 (pages 243 et seq. of
the third edition). Let us recall his result in contempo-
rary notation.

Suppose n = 2m symmetrical coins marked 0 and
1 are thrown together. We denote by s the sum of the
faces obtained, or the number of 1’s. Since at least Pas-
cal or Jacob Bernoulli it has been known that exactly
Cs

n of the 2n possible chances have the number of 1’s
equal to s. So Laplace’s approximation formula fol-
lows directly in this case from Stirling’s formula (e.g.,
Borel [12], No. 21):

(ms) Cs
2m

1

22m
≈ 1√

πm
exp

(
−(s − m)2

m

)
.

From this famous formula was born the “Gaussian
curve,” the analytical figure that symbolizes De ve-
tula’s table of cadentiae. Laplace went from formula
(ms) to formula (dvl) in his attempt to solve the prob-
lem of points for dice with any number f of faces,
a problem that stumped him for almost 40 years and
whose solution also gave him one of the main keys for
applying his theory of probabilities to natural philoso-
phy.
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