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Models for the Assessment of Treatment
Improvement: The Ideal and the Feasible
P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos and C. Matrán

Abstract. Comparisons of different treatments or production processes are
the goals of a significant fraction of applied research. Unsurprisingly, two-
sample problems play a main role in statistics through natural questions such
as “Is the the new treatment significantly better than the old?” However, this
is only partially answered by some of the usual statistical tools for this task.
More importantly, often practitioners are not aware of the real meaning be-
hind these statistical procedures. We analyze these troubles from the point
of view of the order between distributions, the stochastic order, showing ev-
idence of the limitations of the usual approaches, paying special attention
to the classical comparison of means under the normal model. We discuss
the unfeasibility of statistically proving stochastic dominance, but show that
it is possible, instead, to gather statistical evidence to conclude that slightly
relaxed versions of stochastic dominance hold.

Key words and phrases: Stochastic dominance, similarity, two-sample
comparison, trimmed distributions, winsorized distributions, Behrens–Fisher
problem, index of stochastic dominance.

1. INTRODUCTION

Comparison is an essential activity in any field of
life, one upon which a significant part of human knowl-
edge is founded. In fact, one of the main achievements
of mankind—numbers—are just a wonderful sophisti-
cation of the comparison process. Whether by curiosity
or necessity we are continuously involved in compar-
ing objects, leading to assessments like bigger/smaller,
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shorter/taller, better/worse and so forth. It is therefore
natural the prominent role played in statistics by proce-
dures looking for some kind of ordering. In fact, “Two-
Sample Problems”, that is, comparing two populations
or two treatments, is probably the most common sit-
uation encountered in statistical practice. Not surpris-
ingly, every textbook on statistics explores the topic to
some extent.

In many cases, the practitioner using a two-sample
procedure has the goal of gathering evidence to con-
clude that a new treatment is better than the old stan-
dard. To fix ideas, let us assume that treatment refers
to a particular training program for athletes. To as-
sess the possible improvement provided by a new train-
ing program, the researcher collects some experimen-
tal data from athletes training under the two different
programs. Of course, not everything comes from the
type of training and one expects that a naturally tal-
ented athlete will perform better, whatever the training
program, than a less gifted one. In the simplest case in
which performance is measured in terms of a simple
univariate outcome, we can think of a training program
as a nondecreasing transform of the level of natural tal-
ent. If, in some scale, this talent level is measured as T

and the different training programs result in hold(T )
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and hnew(T ) levels of performance, respectively, we
would say that the new treatment is better than the old
if hold(t) ≤ hnew(t) for all t .

What type of conclusion is drawn from the most
standard use of the two-sample procedures? The most
commonly used test, namely, the t-test, even in the
Welch version related to the famous Behrens–Fisher
problem, would simply aim at rejecting that the mean
of hold(T ) is greater than the mean of hnew(T ). How-
ever, as we show in this paper, even under the normality
assumptions implicit in the use of the t-test, evidence
of a significantly greater mean under the new treatment
is compatible with a worse performance of, say, 40% of
athletes. We believe that practitioners should be aware
of this fact. We argue in this paper that, most often,
they would rather be interested in gathering evidence
for stochastic dominance than for an increase in mean
values.

In this goal of gathering evidence to support the
claim that the new treatment yields an improvement
over the old one, we cannot forget that testing hy-
pothesis theory is designed to provide evidence to re-
ject the null hypothesis and that lack of rejection does
not mean evidence for the null. While this is a well-
known fact in the statistical community, in the absence
of other approaches, practitioners often resort to widely
used procedures without full conscience of their true
meaning. Perhaps the best example of such a situation
is the generalized use of goodness of fit tests, as the
Kolmogorov–Smirnov test, as a way to justify a para-
metric model assumption, such as normality. A closer
example to our present framework is that of testing ho-
mogeneity in a two sample setup. In both situations,
regardless of the obtained result, we will not be able to
confirm the model but, at best, we would just get lack
of statistical evidence to reject it. This fact has been
pointed out by several authors, notably by Dette and
Munk (1998) or Munk and Czado (1998). In the partic-
ular case of stochastic dominance, we should test the
null that stochastic dominance does not hold against
the alternative that it does hold if we want evidence
supporting it (hence, evidence supporting that the new
treatment is better). Unfortunately, no reasonable sta-
tistical test can help in this task; see Berger (1988) and
our discussion in Section 2.1 below.

On the other hand, a model is merely an approxi-
mation to reality, so, in order to validate a model, we
should be conscious of what are the admissible devi-
ations to the model. This is the starting point for the
discussion of practical versus statistical significance
in Hodges and Lehmann (1954) continued in a series

of papers (see, e.g., Rudas, Clogg and Lindsay, 1994,
Liu and Lindsay, 2009, Álvarez-Esteban et al. 2008,
2012, 2014) having the common goal of testing the ap-
proximate validity of statistical hypothesis. In this pa-
per, we discuss two relaxations of the stochastic dom-
inance model for which there are consistent statistical
tests. More precisely, we show that there are consis-
tent tests that allow the practitioner to conclude, up to
some small probability of error, that the new treatment
is within a small neighborhood of being better than the
old one.

The remaining sections of this paper are organized
as follows. In Section 2, we further discuss the con-
venience of considering stochastic order rather than
growth in mean when trying to assess the improvement
given by a new treatment. Details about the above men-
tioned lack of valid inferential methods for concluding
stochastic dominance are also given, together with two
relaxations of stochastic dominance, which can be used
to produce indices of deviation from the ideal model
of stochastic order. We include a subsection that illus-
trates the behavior of these indices through the impor-
tant example of distributions that differ only in changes
in location or scale, showing that growth in the mean is
well compatible with a worse performance under a new
treatment for a very substantial fraction of the popula-
tion. We invite to a careful inspection of the graphics
in Figures 3 and 5 to get a visual impact of the depar-
tures of stochastic dominance measured through such
indices, when compared with changes in location and
scale in the normal model. Section 3 provides valid
inferential methods for gathering statistical evidence
that the relaxed stochastic order models hold; hence,
showing that these deviations from the ideal model
of stochastic dominance are tractable models from the
point of view of statistical inference. We also provide
a simulation study showing the performance of the in-
ferential methods in finite samples. Finally, the proofs
of some results introduced in this work are included in
an Appendix.

2. MODELS OF TREATMENT IMPROVEMENT

2.1 Distributional Dominance Versus Mean
Comparisons

Let us briefly explore the use and real meaning of
the most common approach to assess improvement
in two sample problems. Assuming independence be-
tween the samples and normality in the parent distri-
butions, the t-test is based on the comparison of the
means of the distributions. However, relations between
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the means, or any other feature of the distributions,
must be cautiously evaluated to assess some kind of
improvement in a production process or of a treatment
with respect to another.

To motivate our discussion, let us assume that the
probability laws of the variable of interest under two
different production processes are normal, say Pi =
N(μi, σ

2
i ), i = 1,2. If we could conclude that μ1 > μ2

we would be only allowed to claim that “in the mean”
the first process produces larger values than the sec-
ond. To better explain the meaning of such a statement,
we can resort to the strong law of large numbers: for
large enough samples obtained from both processes,
the mean of the sample obtained from P1 would be al-
most surely greater than that of the obtained from P2.
We should stress the fact that this statement does not
depend on the values σi . Thus it is compatible with the
situations displayed in Figure 1. The relevant question
is whether these situations are compatible with our in-
tuitive understanding of the statement that the first pro-
cess leads to greater values than the second.

An informal statement such as “men are taller than
women” can be better detailed saying that a short man
would not be as short among women, a medium-sized
man would be tall among women and a tall man would
be even taller among women. These comparisons in-
volve in a natural way the relative position or status

of every item in both populations. With greater preci-
sion, the whole comparison involves checking the new
status of each element of the first population when we
consider it as an element of the second population. If it
is always greater, then we could say that the variable in
the first population is greater than in the second.

To analyze if this relation holds, a notable simplifi-
cation is achieved through a previous arrangement of
each population ordering their elements by their sta-
tus. In that way, the relative position of each element
in its population is easily obtained, and normalization
in each population by its size to get comparable status
leads to a simple relation. If F and G are respectively
the distribution functions of the variable of interest in
the first and the second populations, and F−1, G−1 are
the corresponding quantile functions,

(1) F−1(t) ≤ G−1(t) for every t ∈ (0,1),

would mean that the variable in the first population is
lower than in the second. We recall that for a general
distribution function on the real line, F , the associated
quantile function, that we will denote as F−1, is de-
fined as

F−1(t) := min
{
x : t ≤ F(x)

}
, t ∈ (0,1).

It is well known that the relation (1) is equivalent
to the classical definition of stochastic order, usually

FIG. 1. Red: standard normal density; green: densities of N(1, σ 2), σ 2 = 1,2,3,6.
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attributed to Lehmann (1955), but already used at least
in Mann and Whitney (1947). We say that F is stochas-
tically smaller than G, and write F ≤st G, if

(2) F(x) ≥ G(x) for every x ∈ R.

In the econometric literature, where more general
classes of stochastic orders are considered, usually
linked to preferences related with families of utility
functions, this relation is often invoked as first-order
stochastic dominance (see, e.g., Shaked and Shanthiku-
mar, 2007 or Müller and Stoyan, 2002 for several ex-
tensions of the concept).

An interesting fact about quantile functions is that
if T is uniformly distributed on (0,1) then F−1(T )

has distribution function F . Let us return for a mo-
ment to the discussion in the Introduction and think of
F and G as the distribution functions of the perfor-
mances of athletes training under the old and new pro-
grams, respectively. Let T be a measure of the natural
talent of a randomly chosen athlete and let FT be its
d.f. If we assume that FT is continuous, then, it is well
known that T ∗ := FT (T ) is uniform on (0,1). There-
fore, just making a modification on the measurement
scale, we have that the variable giving the natural tal-
ent of the athletes is uniform on (0,1). Then we can
see F−1(T ∗) and G−1(T ∗) as the effects of the train-
ing programs on that natural talent. Hence, F−1 plays
the role of hold and G−1 that of hnew in the discussion

in the Introduction and we see from the interpretation
there that the new training program was better than the
old if hold(t) ≤ hnew(t) for all t coincides with first or-
der stochastic dominance.

In view of the arguments above, we think that a
sound answer to question “is the new treatment bet-
ter than the old” should be based on the assessment of
stochastic order. A look at Figure 2 shows that this can-
not be done by simply comparing the means. In fact,
the mean is the same for all distributions in green, but
stochastic order only holds in the comparisons N(0,1)

versus N(1,1). Specific inferential methods for assess-
ing F ≤st G are needed.

There is an abundant literature in statistical and
econometric journals concerning testing problems re-
lated to stochastic dominance. Some references, trac-
ing back to Mann and Whitney (1947), belong to an
order restricted inferential approach, that is, assuming
that stochastic order holds they focus on concluding
that strict stochastic order holds [F <st G if F(x) ≥
G(x) for all x with F(x) > G(x) for at least one x].
More precisely, they consider the problem of testing
the null hypothesis H0 : F = G against the alternative
Ha : F <st G. Obvious as it may be, it is relevant to
note that some caution should be adopted in applying
these procedures, since, both H0 and Ha can be simul-
taneously false.

FIG. 2. Red: standard normal quantile function; green: quantile functions of N(1, σ 2), σ 2 = 1,2,3,6.
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A different testing problem with a number of ref-
erences in the literature (see, e.g., McFadden, 1989,
Anderson, 1996, Barrett and Donald, 2003, Davidson
and Duclos, 2000, Linton, Maasoumi and Whang
2005, Linton, Song and Whang, 2010) is that of test-
ing the null H0: F ≤st G, versus Ha : F �st G. This is
a kind of goodness-of-fit test. The statistical meaning
of not rejecting the null is simply to acknowledge that
there is not evidence enough to guarantee that stochas-
tic dominance does not hold. However, this “accept-
ing” the null is sometimes invoked as a guarantee that
one random variable is stochastically larger than other,
but this is simply wrong.

The available analyses do not address the main goal
of gathering statistical evidence to assess that stochas-
tic dominance, F ≤st G, holds. This would be the natu-
ral result of rejecting the null in the problem of testing

(3) H0 : F �st G, versus Ha : F ≤st G.

Unfortunately, as already noted in Berger (1988),
Davidson and Duclos (2013) and Álvarez-Esteban et
al. (2014), the statistical assessment of distributional
dominance is impossible because small variations in
the tails of a distribution could avoid or facilitate a re-
lation of stochastic dominance. In fact, there is no good
α-level test for (3): the “no data” test, rejecting H0 with
probability α regardless of the data is uniformly most
powerful. This is shown in Berger (1988) in the one-
sample setting, but the result can be easily generalized
to the two-sample setup considered here.

2.2 Relaxations of Stochastic Dominance

As it often happens in statistics, the concept of
stochastic dominance is excessively rigid as to try to
confirm it on the basis of a sample. It is a too strong
assumption in problems in which one is inclined to
believe that a population X is somehow smaller than
another population Y . This difficulty seems to be a
big justification for the common practice of basing the
comparisons on features of the distributions, like the
means, when trying to assess some kind of order be-
tween distributions. For some parametric models, as in
the normal model, this approach has the additional ad-
vantage of leading to true stochastic order for distribu-
tions with the same variance. Since optimal testing for
this problem can be achieved through an exact test, the
two-sample t-test, the approach seems almost perfect.
For the celebrated Behrens–Fisher problem, when the
variances are not assumed equal, approximations such
as Welch’s proposal give satisfactory enough solutions
to face the comparison of means problem. However,

even in the normal model, this may be giving a right
answer to a wrong question.

Stochastic order is a 0–1 relation. It is either true or
false (of course, the same can be said for higher order
choices of stochastic dominance). In the case of nor-
mal laws, for instance, stochastic order holds only in
the case of equal variances and increasing means; see
Section 2.3 for related results on location-scale mod-
els (LS-models in the sequel). However, looking back
at Figure 2, it is tempting to say that the degree of de-
viation from stochastic order is higher in the example
in the lower right corner than in those in the lower left
or upper right corners. We could say that in these last
cases stochastic dominance nearly holds or, even, that
“in practice”, it holds. Some measurement of the level
of agreement with stochastic order would be helpful.

Motivated by the unfeasibility of consistently testing
(3), Berger (1988) considered the idea of “restricted
stochastic dominance”, which amounts to looking for
the relation F(x) ≥ G(x) on a fixed closed interval, ex-
cluding the tails of the sampled distribution. The choice
of the interval is somewhat arbitrary. The same ap-
proach had already been considered in Lehmann and
Rojo (1992), as a weak version of the stochastic order,
stressing the fact that it is not always appropriate to
require that the comparison holds for all values of x.
An analogous version has been developed in the two-
sample setting by Davidson and Duclos (2013). Given
the equivalence between (1) and (2), it would make
sense, as well, to fix an interval contained in (0,1)

and check whether (1) holds within this interval. On
the other hand, the normalization given by the quan-
tile transform gives some additional advantage. Rather
than facing the arbitrary choice of the interval on which
we want to check that (1) holds, we can look at the
length of the the set where it does not hold, namely,

(4) γ (F,G) = �
(
t ∈ (0,1) : F−1(t) > G−1(t)

)
,

where � stands for Lebesgue measure. This yields a
useful index to measure how far F and G are from
stochastic order, with γ (F,G) = 0 corresponding to
perfect fit. If we turn back to the example of the old and
new training programs for an athlete, then γ (F,G) =
0.05 means that 95% of athletes get better results with
the training program associated to G than with that
of F . When restricted to a specific model as the normal
model (and more generally to LS-models) the com-
putation and the meaning of this index is easy and
very informative. The contour-plot in Figure 3 gives
a nice insight into the fact that moderate and even
high levels of disagreement with stochastic order [up
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FIG. 3. Contour-plot of γ (N(0,1),N(μ,σ 2)) as in (4) for different values of μ (X-axis) and σ (Y -axis).

to γ (F,G) ∼ 0.5] are compatible with an increase in
mean, even in the normal model. As an example, if
F denotes the standard normal law, N(0,1), and G

corresponds to the law, N(0.337,1.52), then we have
γ (F,G) = 0.25. Again, in the training program exam-
ple, we see that the new program can yield an improve-
ment in the mean performance of athletes and, yet, re-
sult in worse results for 25% of them.

We recall that our initial motivation was to discuss
the suitability of the usual methods involved in the val-
idation of domination or improvement. From Figure 3
and the above discussion, the inadequacy of the two
sample t-test to validate a real improvement for most of
the population (unless both distributions satisfy some
strong additional assumptions such as normality plus
equal variances) should be obvious. Of course, this is
not an objection to the use of, say, the Welch version of
the t-test for testing an increase in mean. The key point
is the meaning of these mean comparisons for the task
of showing improvement of treatments or production
processes. Later, in Section 2.3 we return to the mean-
ing of definition (4) for normal and, more generally,
LS-models.

While γ (F,G) is a natural measure of deviation
from stochastic order, it is not the only possible choice.
In Leshno and Levy (2002), the authors introduce the
so-called almost stochastic dominance which, easily,
leads to an index to measure this deviation defining

α(F,G) =
∫
{G>F }(G(x) − F(x)) dx∫ ∞

−∞ |F(x) − G(x)|dx
.

Although γ (F,G) is well defined for any pair of
d.f.’s, some assumptions on F and G are needed in the
case of α(F,G). In Leshno and Levy (2002), the au-
thors require the distributions to be bounded [and limit
themselves to the cases in which α(F,G) < 0.5]. This
can be relaxed, but F and G should at least have finite
mean.

This index enjoys nice properties related to the
expectation of utility functions (see also Tsetlin et
al., 2015). However, it lacks an important property:
the stochastic dominance is preserved by monotone
functions. This remains true for γ (F,G) but not for
α(F,G). Returning again to the athletes example, let
h be a strictly increasing function, and assume that we
decide to measure the performance of the athletes us-
ing the values of h(hold) and h(hnew). If Fh and Gh

represent the distribution functions of the new r.v.’s,
then γ (F,G) = γ (Fh,Gh), while, there is no guaran-
tee that α(F,G) = α(Fh,Gh). We do not pursue fur-
ther the analysis of the α index in this paper.

Another alternative approach to measure agreement
with stochastic order has been introduced in Álvarez-
Esteban et al. (2016) (see also Álvarez-Esteban et al.,
2014). It is based on looking for statistical evidence
supporting that, for a given (small enough) π , there ex-
ist mixture decompositions:{

F = (1 − π)F̃ + πHF ,

G = (1 − π)G̃ + πHG,
(5)

for some d.f.’s F̃ , G̃ such that F̃ ≤st G̃.
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We mention some facts in favor of this approach. First,
it allows a robust treatment of the problem of stochastic
dominance because the decompositions above can be
interpreted as contamination neighborhoods of some
latent distributions F̃ and G̃. In this sense, we should
recall that statistical practitioners often process the
samples to avoid “rarities” or noise; hence, a method-
ological approach including an adequate treatment for
this kind of procedure is helpful. On the other hand,
by taking π large enough, model (5) always holds (the
extreme choice π = 1 will always do). The smallest π

for which a such decomposition is possible measures
the fraction of the population intrinsically outside the
stochastic order model. This provides an index of dis-
agreement with the stochastic order model, similar to
the lack of fit index introduced in Rudas, Clogg and
Lindsay (1994) for multinomial models or in Álvarez-
Esteban et al. (2012) as a relaxation of the homogene-
ity model. The key fact to use the contamination model
to measure deviation from stochastic order is given by
the following result, which is contained in Álvarez-
Esteban et al. (2016).

PROPOSITION 2.1. For arbitrary d.f.’s, F , G, and
π ∈ [0,1), (5) holds if and only if π ≥ π(F,G), where

(6) π(F,G) := sup
x∈R

(
G(x) − F(x)

)
.

Notice that, when π(F,G) ∈ (0,1) if F and G have
continuous densities f and g, respectively, then there
exists x0 such that π(F,G) = G(x0) − F(x0) and x0
satisfies f (x0) = g(x0). Also, as γ (F,G), π(F,G)

is invariant for strictly increasing transformations (see
Remark 2.6.1 in Álvarez-Esteban et al., 2016).

A better insight into the meaning of model (5) is
gained through the idea of trimmed probabilities. An

α-trimming of a probability, P , is any other probabil-
ity, say Q, such that

Q(A) =
∫
A

τ dP

for some function τ taking values in [0, 1
1−α

] and every
event A. The role of the function τ is to allow to discard
or downplay the influence of some regions on the sam-
ple space (having probability up to 1−α) on the model,
mimicking the common use in robust statistics of re-
moving disturbing observations. Identifying a proba-
bility on the line with its d.f., if we write Rα(F ) for
the set of trimmings of F , then F = (1 − α)F̃ + αHF

for some d.f. HF if and only if F̃ ∈ Rα(F ). Hence,
model (5) holds if and only if there exist F̃ ∈ Rα(F )

and G̃ ∈ Rα(G) such that F̃ ≤st G̃. Even more, this
happens if and only if, after trimming the right tail of
F and the left tail of G (removing an α fraction in both
cases), the resulting F̃ and G̃ satisfy F̃ ≤st G̃. We refer
to Álvarez-Esteban et al. (2016) for details.

Figure 4 shows the comparison of the empirical dis-
tributions corresponding to two samples of heights of
boys and girls (12 years old) from a data set dis-
cussed in Álvarez-Esteban et al. (2014). The value
π(Gm,Fn) = 0.046, means that it suffices to trim the
fraction π = 0.046 of shortest girls and of taller boys
to achieve stochastic order between the trimmed distri-
butions and shows, up to 0.046 contamination, girls (in
the sample) are taller than boys at age 12. On the other
hand, to get the stochastic dominance of boys over
girls we should allow a considerably higher contamina-
tion level [because π(Fn,Gm) = 0.123]; see Álvarez-
Esteban et al. (2014) for a more detailed analysis of
this problem.

FIG. 4. Sample d.f.’s of the heights of boys, Gm, and girls, Fn, aged 12 in the NHANES dataset.



476 ÁLVAREZ-ESTEBAN, DEL BARRIO, CUESTA-ALBERTOS AND MATRÁN

FIG. 5. Contour-plot of π(N(0,1),N(μ,σ 2)) as in (6) for different values of μ (X-axis) and σ (Y -axis).

Coming back to the role of π(F,G) as a measure
of agreement with the stochastic order, the case of the
normal model is shown in the contour-plot in Figure 5.
As in the case of γ (F,G) we see that an increase in the
mean is compatible with a high level of disagreement
with respect to stochastic order, that is, with an im-
provement under the new treatment. Thus, testing the
null assumption that π(FN(μ1,σ

2
1 ),FN(μ2,σ

2
2 )) ≥ 0.05

against the alternative π(FN(μ1,σ
2
1 ),FN(μ2,σ

2
2 )) < 0.05

would allow to conclude, upon rejection, that the sec-
ond treatment results in improvement if we are will-
ing to remove 5% of observations on each side, while
no similar conclusion would be obtained from testing
μ2 ≤ μ1 versus μ2 > μ1. In Section 3, we will ana-
lyze this possibility in the light of the testing procedure
developed in Álvarez-Esteban et al. (2016).

A simple comparison between the deviation indices
defined in (4) and (6) arises from the following simple
observation. For every couple (X,Y ) of random vari-
ables with marginal d.f.’s F , G, we have

G(x) = P(Y ≤ x,X ≤ Y) + P(Y ≤ x,X > Y)

≤ P(X ≤ x,X ≤ Y) + P(X > Y)

≤ F(x) + P(X > Y),

thus considering the quantile representations (X,Y ) =
(F−1,G−1), since P(X > Y) = �(F−1 > G−1) =
γ (F,G), from Proposition 2.1 we get the following
statement.

PROPOSITION 2.2. For any pair of d.f.’s, F and G,

π(F,G) ≤ γ (F,G).

Now, both π(F,G) and γ (F,G) are deviation in-
dices from the stochastic order model, taking values
in [0,1] and such that γ (F,G) = 0 if and only if
π(F,G) = 0, with any of these identities being also
equivalent to F ≤st G. Later, in Section 3 below,
we show how to consistently test H0 : π(F,G) ≥ δ0
against Ha : π(F,G) < δ0, which, in case of rejec-
tion, would provide statistical evidence that stochas-
tic order holds approximately. Under some additional
assumptions, we will also provide inferential methods
for reaching the more restrictive conclusion (in view of
Proposition 2.2) that γ (F,G) < δ0.

To conclude this section, we would like to mention
that π(F,G) and γ (F,G) are related to the concepts
of trimming and Winsorizing, respectively. Winsoriz-
ing and trimming are very popular robustification pro-
cedures in data analysis, designed to avoid an exces-
sive influence of the tails, mainly in presence of out-
liers. Recall that π(F,G) ≤ δ0 if and only if the d.f.’s
F̃ and G̃ that we obtain from F and G after remov-
ing the δ0 fraction of the upper tail of F and of the
lower tail of G, respectively, satisfy F̃ ≤st G̃. Win-
sorizing, in turn, consists in replacing the tails of the
distribution with the percentile value from each end.
If we assume that F−1(t) ≤ G−1(t) for t in some in-
terval (γ1,1 − γ2) then γ (F,G) ≤ δ0 if γ1 + γ2 ≤ δ0.
Of course, F−1 ≤ G−1 in (γ1,1 − γ2) if and only if
the d.f.’s F̃ and G̃ that we obtain from F and G by
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Winsorizing (both at quantiles γ1 and 1 − γ2) satisfy
F̃ ≤st G̃.

2.3 Stochastic Order and Location-Scale Models

In this subsection, we will specialize our analysis to
the comparisons under a LS-model. In fact, often, and
particularly in the simulation study below, we will fo-
cus on a normal model.

Let F0 be any d.f. on the real line. A d.f. F is
said to belong to the LS-model based on F0 if it sat-
isfies F(x) = F0(

x−θ
λ

), x ∈ R for some “location”,
θ ∈ R, and “scale”, λ > 0 parameters. The dependence
on these parameters will be included in the notation
through the corresponding subindices in the way Fθ,λ.
By resorting to the quantile functions, we obtain the
characterization

F−1
θ,λ(y) = λF−1

0 (y) + θ, for every y ∈ (0,1),

from which the stochastic order Fθ1,λ1 ≤st Fθ2,λ2 would
require

(7) (λ1 −λ2)F−1
0 (y) ≤ θ2 −θ1 for every y ∈ (0,1).

Under the assumption that F0 is continuous and strictly
increasing (something that we will assume from now
on in the LS-model setup), condition (7) holds if and
only if λ1 = λ2 and θ1 ≤ θ2. Moreover, two quan-
tile functions in the LS-family have a crossing point,
say y0, if and only if λ1 �= λ2 and F−1

0 (y0) = θ2−θ1
λ1−λ2

,
therefore, if the crossing point exists, it is unique.
In other words, the set {y : F−1

θ1,λ1
(y) ≤ F−1

θ2,λ2
(y)}

is (0,F0(
θ2−θ1
λ1−λ2

)] or [F0(
θ2−θ1
λ1−λ2

),1) and �({F−1
θ1,λ1

>

F−1
θ2,λ2

}) is 1 − F0(
θ2−θ1
λ1−λ2

) or F0(
θ2−θ1
λ1−λ2

) (depending of
the sign of λ1 − λ2). Moreover, note that

(8) γ (Fθ1,λ1,Fθ2,λ2) = γ (F0,1,Fθ2−θ1
λ1

,
λ2
λ1

),

hence, we can focus our analysis on comparison to the
reference d.f., F0.

Now, given two d.f.’s F , G in the LS-model, if we are
interested in guaranteeing an agreement with stochastic
dominance of G over F of, say, 95% for the γ (F,G)

index, it would suffice to consider the crossing point
of the quantile functions and check whether the inter-
val corresponding to {F−1 ≤ G−1} has, at least, length
0.95. For the normal model, when the reference d.f.
is �, the standard normal d.f., a simple computation
(which generalizes to any LS-model replacing � with
the reference d.f., F0) shows that

γ
(
N(0,1),N

(
μ,σ 2)) = 1 − �

(
μ

|σ − 1|
)
, σ �= 1,

while γ (N(0,1),N(μ,1)) = 0 if μ ≥ 0 and γ (N(0,

1),N(μ,1)) = 1 if μ < 0. This identity has been used

to obtain the contour-plot in Figure 3. We see that
γ (N(0,1),N(μ,σ 2)) is constant along rays {(μ,σ ) :
μ = C|σ − 1|, σ > 0}, for some C > 0, and be-
comes singular at μ = 0, σ = 1. We also note that
as σ grows bigger 1 (the case of higher variance
in the second sample), we can have μ > 0 while
γ (N(0,1),N(μ,σ 2)) → 1

2 . This shows again that the
conclusion μnew > μold is compatible with a worse
performance with the new treatment for up to 50% of
the population.

We analyze now the behavior of π(F,G) under the
LS-model. The fact that

sup
x∈R

(
Fθ2,λ2(x) − Fθ1,λ1(x)

)
= sup

x∈R
(
Fθ2−θ1

λ1
,
λ2
λ1

(x) − F0,1(x)
)
,

(9)

shows that, as in (8), we have

π(Fθ1,λ1,Fθ2,λ2) = π(F0,1,Fθ2−θ1
λ1

,
λ2
λ1

),

and we can consider only the case F = F0,1. There is
no simple, general expression for π(F0,1,Fθ,λ) for ev-
ery LS-model, since the maximization problem in (9)
depends on F0. In the particular case of the normal
model some elementary computations show that, for
σ �= 1 and μ ≥ 0, π(N(0,1),N(μ,σ 2)) = �(

x̃−μ
σ

) −
�(x̃), with

(10) x̃ = μ ±
√

μ2σ 2 + 2σ 2(σ 2 − 1) logσ

1 − σ 2 ,

where the positive sign is taken for σ > 1 and the neg-
ative for σ < 1. Also note that for the same values
of μ and σ , π(N(μ,σ 2),N(0,1)) = �(x̃) − �(

x̃−μ
σ

),
with x̃ the other solution in (10), a fact that allows
also to get the solution for nonpositive μ. Of course,
when σ = 1 and μ ≥ 0, π(N(0,1),N(μ,1)) = 0,
while π(N(μ,1),N(0,1)) is attained at the only cross-
ing point of both density functions x̃ = μ/2. These
computations have been used to produce the contour-
plot in Figure 5. We see that π(N(0,1),N(μ,σ 2))

has a smoother behavior than γ (N(0,1),N(μ,σ 2)).
For a better understanding of the different roles of
π(N(0,1),N(μ,σ 2)) and γ (N(0,1),N(μ,σ 2)), we
include Figure 6 below. We see that γ (N(0,1),

N(μ,σ 2)) equals the common value of the d.f.’s at the
crossing point, while π(N(0,1),N(μ,σ 2)) equals the
difference between d.f.’s at the point where the den-
sity functions have a crossing point and the N(μ,σ 2)

d.f. is above the standard normal d.f. In the next sec-
tion, we will use this characterization of γ (F,G) in
terms of crossing points (following a similar approach
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FIG. 6. Distribution and density functions N(0,1) (red) and N(1,6) (green). Abscissa C (resp., D) corresponds to crossing points of the
distribution (resp., density) functions. Lengths of vertical lines at C and D are γ (N(0,1),N(1,6)) and π(N(0,1),N(1,6)), respectively.

to that in Hawkins and Kochar, 1991) to design a test
for the null H0 : γ (F,G) ≥ δ0 against the alternative
Ha : γ (F,G) < δ0. Similarly, we will discuss how to
consistently test H0 : π(F,G) ≥ δ0 against the alterna-
tive Ha : π(F,G) < δ0. These will be, according to the
discussion above, feasible ways to gather statistical ev-
idence that for approximate stochastic dominance (i.e.,
to conclude that, essentially, the new treatment is better
than the old).

3. TESTING APPROXIMATE STOCHASTIC ORDER

In this section, we will succinctly analyze feasi-
ble test procedures to provide statistical evidence of
stochastic dominance. We keep in mind that no valid
inferential procedure can handle the testing problem
(3) and, consequently, we have to settle with the less
ambitious testing problems:

H0 : π(F,G) ≥ π0 against the alternative

Ha : π(F,G) < π0,
(11)

or

H0 : γ (F,G) ≥ γ0 against the alternative

Ha : γ (F,G) < γ0,
(12)

with π(F,G) and γ (F,G) defined in (6) and (4), re-
spectively. We insist that rejection of the null in (11)
would provide statistical evidence that stochastic order,
up to some small contamination, holds. In (12), rejec-
tion would lead to guarantee, at the desired level, that
treatment G produces better results than treatment F

for at least a fraction of size 1 − γ0 of the population.

For this, we will first include some results, obtained
in Álvarez-Esteban et al. (2016), that allow to tackle
(11) and present some new results for dealing with (12)
in a purely nonparametric way. Moreover, we will in-
clude some variations that can be used in the normal
model. We will finish giving a comparative analysis un-
der the normal model, based on a simulation study, pro-
viding a picture of the feasibility and performance of
the different approaches. In both (11) and (12), resort-
ing to the usual duality between one sided testing and
confidence bounds, we would be interested in obtain-
ing an upper confidence bound, say for π(F,G), say
for γ (F,G). If Û = Û (X1, . . . ,Xn,Y1, . . . , Ym) (resp.,
V̂ ) were an (asymptotic) upper confidence bound for
π(F,G) [resp., for γ (F,G)], rejection of H0 in (11)
[resp., in (12)] when Û < π0 (resp., when V̂ < γ0)
would yield a test with (asymptotically) controlled type
I error probability. This will be done in two different
settings corresponding to nonparametric and paramet-
ric points of view.

Throughout the section, we will assume that X1, . . . ,

Xn and Y1, . . . , Ym are independent i.i.d. r.v.’s obtained
from the d.f.’s F and G, respectively. We recall that Fn

and Gm will denote the sample distribution functions
based on the X’s and Y ’s samples. As a common as-
sumption in both setups, we will suppose that

F and G are continuous;
n,m → ∞, λn,m := n

n + m
→ λ ∈ (0,1).

(13)
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3.1 Testing Approximate Stochastic Dominance
with the π Index

The role of π(F,G) in Proposition 2.1 suggests ad-
dressing the testing problem (11) on the basis of the
Kolmogorov–Smirnov statistic:

π(Fn,Gm) = sup
x∈R

(
Gm(x) − Fn(x)

)
.

Consistency in the strong sense follows from the
Glivenko–Cantelli theorem, which implies

π(Fn,Gm) → π(F,G) almost surely, as m,n → ∞,

while the asymptotic behavior of its law, under as-
sumption (13), was obtained by Raghavachari (1973),
extending well-known results by Kolmogorov and
Smirnov, in the way√

mn

m + n

(
π(Fn,Gm) − π(F,G)

)
→w B̄(F,G,λ).

(14)

The limit law in (14) is that of the maximization of a
Gaussian Process on a suitable set

B̄(F,G,λ) := sup
t∈T (F,G,π(F,G))

(√
λB1(t)

− √
1 − λB2

(
t − π(F,G)

))
,

where B1(t) and B2(t) are i.i.d. Brownian Bridges on
[0,1], and the set is

T (F,G,π) := {
t ∈ [π,1] : G(x) = t and

(15)
F(x) = t − π for some x ∈ R̄

}
.

Also Álvarez-Esteban et al. (2016) provides new re-
sults, involving bootstrap and computational issues,
as well as exponential bounds for both types of er-
ror probabilities in testing on the basis of this statistic.
Moreover (see the extended version Álvarez-Esteban
et al., 2014), it is shown that, for α ∈ (0,1/2) there
are sharp lower bounds for the α-quantiles of the law
of B̄(F,G,λ), given by the quantiles of a “least favor-
able” normal law N(0, σ 2

π(F,G)(λ)) depending of λ and
of π(F,G).

In fact [in the interesting cases where λπ ≤ 1
2 and

(1 − λ)π ≤ 1
2 ], taking σ̄ 2

π(λ) = 1
4 − π2λ(1 − λ), rejec-

tion of the null in (11) when√
nm

n + m

(
π(Fn,Gm) − π0

)
< σ̄π0(λn,m)�−1(α),

(16)

provides a test of uniform asymptotic level α: If PF,G

denotes for the probability when the samples are ob-
tained from F and G, then

lim
n→∞ sup

(F,G)∈H0

PF,G

[√
nm

n + m
(πn,m − π0)

< σ̄π0(λn,m)�−1(α)

]
= α.

Moreover, it detects alternatives with power exponen-
tially close to one (see Proposition 3.3 in Álvarez-
Esteban et al., 2016).

Two modifications of (16) result in improving the fi-
nite sample performance of the test. The first relies on
the (classical) substitution of the least favorable vari-
ance by an appropriate estimation. The second, with
a more important effect, tries to correct the intrinsic
bias of π(Fn,Gm), a task that often is successfully car-
ried by resorting to the average of a set of boostrap
estimates. The final proposal, based on these modifica-
tions, π̂n,m,BOOT of π(Fn,Gm) and σ̂n,m of σ̄π0(λn,m)

(see the details in Álvarez-Esteban et al., 2016), con-
sists in rejection of H0 : π(F,G) ≥ π0 if

(17)
√

nm

n + m
(π̂n,m,BOOT − π0) < σ̂n,m�−1(α),

which defines a test of asymptotic level α with quickly
decreasing type I and type II error probabilities away
from the null hypothesis boundary. Of course, by defin-
ing

(18) Û := π̂n,m,BOOT −
√

n + m

nm
σ̂n,m�−1(α)

we get an upper bound with asymptotic confidence
level at least 1 − α for π(F,G).

Let us notice that Section 3.4 in Álvarez-Esteban et
al. (2016) is devoted to the adaptation of these statisti-
cal tools to the dependent data setup.

3.2 Testing Approximate Stochastic Dominance
with the γ Index

In this subsection, we introduce a new procedure
for the testing problem (12) under some additional as-
sumption on F and G. Basically, we assume that the
d.f.’s F and G have a single crossing point. This kind
of assumption has been considered in some other se-
tups. Hawkins and Kochar (1991) (see also Chen, Chen
and Chen, 2002) proposed and analyzed an estimator
of this crossing point, x∗. They also stress on the in-
terest of this point for comparison of lifetimes under
treatments, because, if the r.v. of interest is the survival
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time, then x∗ is the threshold such that, say, the con-
trol subjects have a lower chance of survival to any
age x < x∗, while they have a higher chance of sur-
vival to ages x > x∗. Here, we will make the same
assumption, but since our interest concerns the com-
mon value γ ∗ = F(x∗) = G(x∗) at this point, we will
state it in terms of the quantile functions in the al-
ternative way: there is a unique γ ∗ ∈ (0,1) such that
F−1(γ ∗) = G−1(γ ∗) and

F−1(t) − G−1(t) has opposite signs on(
0, γ ∗)

and on
(
γ ∗,1

)
.

(19)

In the same spirit as in Hawkins and Kochar (1991), we
introduce

ψ(γ ) =
∫ γ

0

(
F−1(t) − G−1(t)

)
dt

−
∫ 1

γ

(
F−1(t) − G−1(t)

)
dt

= 2
∫ γ

0

(
F−1(t) − G−1(t)

)
dt − (μF − μG),

where μF , μG denote the means of F and G. The fol-
lowing result gives the link between ψ and γ (F,G).

PROPOSITION 3.1. If F and G have finite means
and positive density functions on R and satisfy (19),
then γ ∗ is the unique maximizer of |ψ(t)| on (0,1),
ψ(γ ∗) �= 0 and

γ (F,G) =
{
γ ∗ if ψ

(
γ ∗)

> 0,

1 − γ ∗ if ψ
(
γ ∗)

< 0.

This suggests that we consider to estimate γ ∗ by

γ ∗
n,m = min

(
argmax
γ∈(0,1)

∣∣ψn,m(γ )
∣∣),

with ψn,m(γ ) = 2
∫ γ

0 (F−1
n (t) − G−1

m (t)) dt − (X̄n −
Ȳm), and γ (F,G) by

γ̂n,m =
{
γ ∗
n,m if ψn,m

(
γ ∗
n,m

) ≥ 0,

1 − γ ∗
n,m if ψn,m

(
γ ∗
n,m

)
< 0.

The asymptotic behavior of γ̂n,m is given next.

PROPOSITION 3.2. Assume that F and G satisfy
the conditions of Proposition 3.1 with densities, f and
g which are continuous in a neighborhood of x∗, and
such that f (x∗) �= g(x∗). Then, if the sample sizes sat-
isfy (13),√

nm

n + m

(
γ̂n,m − γ (F,G)

) →w N
(
0, σ 2)

,

where

σ 2 = γ ∗(1 − γ ∗)[(1 − λ)g2(x∗) + λf 2(x∗)]
(g(x∗) − f (x∗))2 .

We can now base our rejection rule for (12) on a
bootstrap estimation of σ 2. More precisely, we will re-
ject H0 : γ (F,G) ≥ γ0 if

(20)
√

nm

n + m
(γ̂n,m − γ0) < σ̂n,m�−1(α),

where σ̂n,m is the bootstrap estimator of σ . This re-
jection rule provides a consistent test of asymptotic
level α. Also, as in (18),

(21) V̂ := γ̂n,m −
√

n + m

nm
σ̂n,m�−1(α)

provides an upper confidence bound for γ (F,G) with
asymptotic level 1 − α.

REMARK 3.3. We must to point out the singular-
ity of the procedure if the density functions coincide at
the cross point of the d.f.’s. This fact produces instabil-
ity of the approach when the densities are very similar.
In particular, under a LS-model this will happen when
the scales are very similar, a case that should lead to
guarantee an stochastic dominance on the basis of the
estimates of the location parameters.

3.3 The Parametric Point of View

If we assume that F and G belong to the same LS-
model, with F0 continuous and strictly increasing, then
the values π(F,G) and γ (F,G) can be obtained from
the parameters. Therefore, the considered nonparamet-
ric approaches have natural competitors based on the
estimation of the parameters. Of course, such paramet-
ric alternatives will be highly nonrobust, specially for
small values of the population sizes, that are the inter-
esting ones but strongly depend on the tails of the dis-
tributions. However, we will consider these parametric
alternatives in order to explore the relative performance
of our above proposals under perfect conditions. In
this subsection, we assume that the parent distribution
functions F , G are respectively FN(μ1,σ

2
1 ), FN(μ2,σ

2
2 ),

although other parametric LS-families could be treated
in the same way.

By considering the maximum likelihood estimators
X̄n, Ȳm and S2

X , S2
Y for the involved parameters, we

can use the plugin estimators:

π̂n,m := π(FN(X̄n,S2
X),FN(Ȳm,S2

Y )) for π(F,G),(22)

γ̂n,m := γ (FN(X̄n,S2
X),FN(Ȳm,S2

Y )) for γ (F,G).(23)
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Since these estimators are differentiable functions of
the means and the standard deviations of the samples
(excepting when σ1 = σ2, for γ ), they will be asymp-
totically normal with the possible exception of γ in the
case σ1 = σ2. Avoiding this case, the consistency and
asymptotic normality would be guaranteed, and once
more the bootstrap can be used to approximate the dis-
tributions of (22) and (23). The derivation of the tests
and upper bounds would parallel those in Sections 3.1
and 3.2.

3.4 Some Simulations

We present now a simulation study that shows the
power of the procedures discussed in Sections 3.1 and
3.2 for the assessment of approximate stochastic order.
In our simulations, we have generated pairs of inde-
pendent i.i.d. random samples of sizes 100, 1000 and
5000 and report the rejection frequencies of the null
hypotheses (11) and (12) for three choices of π0 and
γ0 (π0, γ0 ∈ {0.01,0.05,0.1}). In all cases, we have
chosen the underlying distribution functions, F and
G, to be normal. This allows to compare the perfor-
mance of the nonparametric tests (16) (with the boot-
strap bias correction) and (20) to the parametric proce-
dures discussed in Section 3.3. Needless to say, these

parametric procedures are inconsistent if the unknown
random generators F and G do not exactly fit into
the parametric model. On the other hand, if F and G

satisfy the parametric model then the parametric pro-
cedures should be more efficient. Hence, the perfor-
mance of these parametric procedures should be taken
as an ideal benchmark to which we compare the per-
formance of the nonparametric, consistent procedures.
More extensive simulations, showing the performance
of the test (16) in different setups, including the least
favorable cases, can be found in the Online Appendix 2
to Álvarez-Esteban et al. (2016).

The results are reported in Tables 1 and 2. In all
cases, the nominal level of the test is α = 0.05, F is
the N(0,1) distribution and G is a N(μ,σ 2). Table 1
deals with the testing problem (11). Several choices of
σ (σ ∈ {0.7,1,1.5}) have been considered. For each
of these three choices of sigma, there are three dif-
ferent values of μ, chosen to make π(F,G) = 0.01
(left column), π(F,G) = 0.05 (central column) and
π(F,G) = 0.1 (right column). Then, for each combi-
nation of sample sizes, of parameters, μ and σ , and of
tolerance level, π0, there are two reported rejection fre-
quencies, with the upper row corresponding to the non-
parametric test and the lower row to the parametric test.

TABLE 1
Rejection rates for π(N(0,1),N(μ,σ 2)) ≥ π0 at the level α = 0.05 along 1000 simulations. Upper (resp., lower) rows show the results for

nonparametric (resp., parametric) comparisons. The means for each σ have been chosen to satisfy π(N(0,1),N(μ,σ2)) equal to 0.01,
0.05 and 0.10 (resp., first, second and third columns)

σ = 0.7 σ = 1 σ = 1.5
means means means

π0 Sample size 0.443 0.143 −0.050 −0.025 −0.125 −0.251 0.770 0.287 −0.017

0.01 100 0.132 0.010 0.000 0.026 0.011 0.001 0.110 0.009 0.000
0.095 0.001 0.000 0.002 0.000 0.000 0.113 0.002 0.000

1000 0.067 0.000 0.000 0.018 0.000 0.000 0.048 0.000 0.000
0.085 0.000 0.000 0.044 0.001 0.000 0.080 0.000 0.000

5000 0.044 0.000 0.000 0.016 0.000 0.000 0.049 0.000 0.000
0.062 0.000 0.000 0.072 0.000 0.000 0.069 0.000 0.000

0.05 100 0.379 0.069 0.005 0.071 0.020 0.006 0.431 0.059 0.003
0.675 0.096 0.008 0.230 0.084 0.016 0.730 0.103 0.007

1000 0.993 0.031 0.000 0.397 0.015 0.000 0.997 0.065 0.000
1.000 0.051 0.000 0.737 0.060 0.000 1.000 0.083 0.000

5000 1.000 0.035 0.000 0.979 0.028 0.000 1.000 0.037 0.000
1.000 0.057 0.000 1.000 0.057 0.000 1.000 0.052 0.000

0.10 100 0.788 0.270 0.033 0.222 0.087 0.027 0.822 0.247 0.046
0.960 0.450 0.083 0.543 0.290 0.088 0.978 0.489 0.077

1000 1.000 0.934 0.035 0.990 0.615 0.028 1.000 0.967 0.046
1.000 0.992 0.059 1.000 0.877 0.053 1.000 0.996 0.061

5000 1.000 1.000 0.029 1.000 0.998 0.032 1.000 1.000 0.039
1.000 1.000 0.055 1.000 1.000 0.049 1.000 1.000 0.053
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TABLE 2
Rejection rates for γ (N(0,1),N(μ,σ 2)) ≥ γ0 at the level α = 0.05 along 1000 simulations. Upper (resp., lower) rows show the results for

nonparametric (resp., parametric) comparisons. The means for each σ have been chosen to satisfy γ (N(0,1),N(μ,σ2)) equal to 0.01,
0.05 and 0.10 (resp., first, second and third columns)

σ = 1.1 σ = 1.5 σ = 2
means means means

γ0 Sample size 0.233 0.164 0.128 1.163 0.822 0.641 2.326 1.645 1.282

0.01 100 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.006 0.000
0.001 0.000 0.000 0.070 0.006 0.000 0.124 0.001 0.000

1000 0.013 0.000 0.000 0.095 0.000 0.000 0.102 0.000 0.000
0.038 0.004 0.000 0.085 0.000 0.000 0.083 0.000 0.000

5000 0.046 0.001 0.001 0.097 0.000 0.000 0.065 0.000 0.000
0.097 0.003 0.000 0.076 0.000 0.000 0.048 0.000 0.000

0.05 100 0.015 0.003 0.000 0.338 0.058 0.015 0.611 0.089 0.017
0.038 0.008 0.001 0.491 0.112 0.035 0.764 0.116 0.016

1000 0.209 0.043 0.007 0.919 0.088 0.002 0.998 0.082 0.000
0.319 0.079 0.015 0.992 0.089 0.001 1.000 0.066 0.000

5000 0.654 0.084 0.008 1.000 0.048 0.000 1.000 0.044 0.000
0.799 0.105 0.011 1.000 0.053 0.000 1.000 0.053 0.000

0.10 100 0.061 0.027 0.007 0.702 0.256 0.095 0.926 0.390 0.121
0.090 0.035 0.016 0.810 0.310 0.141 0.978 0.461 0.112

1000 0.540 0.212 0.073 1.000 0.661 0.084 1.000 0.884 0.066
0.672 0.258 0.092 1.000 0.795 0.074 1.000 0.988 0.057

5000 0.964 0.395 0.105 1.000 0.993 0.060 1.000 1.000 0.049
0.987 0.437 0.102 1.000 0.999 0.062 1.000 1.000 0.055

We see that the rejection frequencies for the nonpara-
metric procedure show either a reasonable agreement
to the nominal level of the test or are slightly conser-
vative, while the parametric procedure is slightly lib-
eral. On the other hand, the nonparametric procedure
is able to reject the null with remarkably high power.
As an illustration, consider, for instance, the block
σ = 0.7, π0 = 0.05. Within this block, the bound-
ary between the null and the alternative hypotheses
corresponds to the middle column [μ = 0.143; then
π(F,G) = 0.05]. The observed rejection frequencies
for the nonparametric procedure are 0.031 and 0.035
for sample sizes n = m = 1000 and n = m = 5000,
respectively, a bit below the nominal level of the test
(α = 0.05). As we move to the alternative [the left col-
umn, μ = 0.443, π(F,G) = 0.01], we see that sam-
ples of size n = m = 1000 are enough to reject the null
hypothesis π(F,G) ≥ 0.05 (and conclude that F and
G satisfy stochastic order up to less than 5% contam-
ination) with high probability (the observed rejection
frequency is 0.993). The worst behaviour in terms of
power corresponds to the case σ = 1 (middle group). In
this case, rejection of the null with high power (90% or
higher) requires sample sizes n = m = 5000. We note,

nevertheless, that testing for approximate stochastic or-
der is a hard inferential problem and, on the other hand,
sample sizes in this range are not unusual in many
fields of application. As for the parametric procedure
introduced for comparison (bottom rows), we observe
that it presents a better performance in terms of power
but it is a bit liberal in some cases (and recall, again,
that it is not a consistent procedure as we move away
from this LS setup).

The results for the testing problem (12) are reported
in Table 2. In this setup, the cases σ = σ0 and σ =
1 − σ0 are symmetrical and we have focused on the
case σ ≥ 1. The case σ = 1 would need a different
handling, since γ (N(0,1),N(μ,1)) only takes the val-
ues 0 and 1 depending on when μ ≥ 0 or μ < 0. For
these reasons, we have fixed σ ∈ {1.1,1.5,2}, choos-
ing then μ accordingly to get γ (N(0,1),N(μ,σ 2)) ∈
{0.01,0.05,0.10}.

We see in this case that the tests (both the nonpara-
metric and parametric) can be too liberal if the two
samples have similar variances. This is not surprising,
since the asymptotic variance in Proposition 3.2 tends
to ∞ as σ → 1. As we move away from this singular
case, we see a somewhat better degree of agreement
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to the nominal level of the test, as well as a generally
good performance in terms of power.

Deviations from the ideal model of stochastic order
in terms of the γ (F,G)-index admit, arguably, a sim-
pler interpretation than deviations in π(F,G)-index,
but we see that the assessment of stochastic order up to
a small deviation in π(F,G)-index is, from the point
of view of statistical inference, a better posed prob-
lem, less affected by the similarity of variances. Fi-
nally, we remark that, although both indices are intrin-
sically nonparametric in nature, the scope of π(F,G)

is considerably larger, since the single crossing point
assumption required for the validity of the asymptotic
theory for the γ (F,G)-index could be too restrictive
for some real applications.

APPENDIX: PROOFS

To the best of our knowledge, the index γ (F,G)

has been introduced just here, thus we include in this
Appendix some technical details to justify our claims
about the asymptotics for the proposed estimator γ̂n,m.

PROOF OF PROPOSITION 3.1. We begin noting
that ψ(1) = μF − μG = −ψ(0) and also that ψ

is differentiable in (0,1), with derivative ψ ′(t) =
2(F−1(t) − G−1(t)).

Consider first the case

F−1(t) > G−1(t), for t ∈ (
0, γ ∗)

,while

F−1(t) < G−1(t), for t ∈ (
γ ∗,1

)
,

we have γ (F,G) = γ ∗ with ψ ′(t) > 0, t ∈ (0, γ ∗),
while ψ ′(t) < 0, t ∈ (γ ∗,1). In particular, γ ∗ is the
unique maximizer of ψ .

Now, if ψ(0) ≥ 0 then ψ(1) ≤ 0, ψ(γ ∗) > ψ(0) ≥ 0
and ψ(t) ∈ [ψ(1),ψ(γ ∗)] for all t ∈ (0,1) and we see
that γ ∗ is the unique maximizer of |ψ(t)|. If, on the
other hand, ψ(0) < 0 then ψ(γ ∗) > ψ(1) > 0, ψ(t) ∈
[ψ(0),ψ(γ ∗)] for all t ∈ (0,1) and, again, γ ∗ is the
unique maximizer of |ψ(t)|.

In the other case F−1(t) < G−1(t), t ∈ (0, γ ∗), and
F−1(t) > G−1(t), t ∈ (γ ∗,1), we have γ (F,G) = 1 −
γ ∗ and, arguing as above, we see that γ ∗ is the unique
minimizer of ψ and the unique maximizer of |ψ(t)|
and satisfies ψ(γ ∗) < 0. �

By considering the quantile functions F−1
n associ-

ated to the empirical d.f.’s Fn as a random function,
we get in a natural way the quantile process defined
by uF

n (t) = √
n(F−1

n (t) − F−1(t)) for t ∈ (0,1). The
study of this statistically meaningful stochastic process
was addressed in the second half of the past century.

For use in the proof of Proposition 3.2, we provide the
following lemma.

LEMMA A.1. Let F (resp., G) be a d.f. with con-
tinuous and positive derivative f (resp., g) on the in-
terval [F−1(p) − ε,F−1(q) + ε] (resp., [G−1(p) −
ε,G−1(q) + ε]). Under the independence assumption
on the samples obtained from F and G, let uF

n (·)
and uG

m(·)) be the corresponding quantile processes.
Then there exist independent versions ũF

n (·) and ũG
m(·),

of these processes (with the same joint distribution
that the originals) and independent standard Brownian
bridges B̃1 and B̃2, such that

sup
t∈[p,q]

∣∣∣∣
(√

m

n + m
ũF

n (t) −
√

n

n + m
ũG

m(t)

)

−
(√

1 − λ
B1(t)

f (F−1(t))
− √

λ
B2(t)

g(G−1(t))

)∣∣∣∣ a.s.→ 0.

PROOF. The hypotheses on F and G guarantee
(see Example 3.9.24 in van der Vaart and Wellner,
1996):

uF
n (·) w→ B1(·)

f (F−1(·)) and

uG
m(·) w→ B2(·)

g(G−1(·)) in the space L∞[p,q],
where B1, B2 are independent standard Brownian
bridges. Moreover, the independence of the samples
implies that of the quantile processes, thus the joint
convergence

(
uF

n (·), uG
m(·)) w→

(
B1(·)

f (F−1(·)) ,
B2(·)

g(G−1(·))
)
.

Now we can resort to the Skorohod–Dudley–Wichura
almost surely representation theorem (see, e.g., Theo-
rem 1.10.3 in van der Vaart and Wellner, 1996), provid-

ing a sequence of pairs (ũF
n (·), ũG

m(·)) d= (uF
n (·), uG

m(·))
and a pair ( B̃1(·)

f (F−1(·)) ,
B̃2(·)

g(G−1(·)) )
d= ( B1(·)

f (F−1(·)) ,
B2(·)

g(G−1(·)) )

such that (ũF
n (·), ũG

m(·)) a.s.→ ( B̃1(·)
f (F−1(·)) ,

B̃2(·)
g(G−1(·)) ) in the

space L∞[p,q]. From here, the result is straightfor-
ward. �

PROOF OF PROPOSITION 3.2. We note first that

sup
γ∈[0,1]

∣∣ψn,m(γ ) − ψ(γ )
∣∣

≤
∫ 1

0

∣∣F−1
n (t) − F−1(t)

∣∣dt

+
∫ 1

0

∣∣G−1
m (t) − G−1(t)

∣∣dt → 0 a.s.
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[to check that
∫ 1

0 |F−1
n (t)−F−1(t)|dt vanishes asymp-

totically we can use the fact that it equals the Wasser-
stein distance between Fn and F , see del Barrio, Giné
and Matrán, 1999]. As a consequence, we have that
γ ∗
m,n → γ ∗ a.s.
Therefore, in the case F−1 − G−1 > 0 in (0, γ ∗),

F−1 − G−1 < 0 in (γ ∗,1), we will have that a.s.
ψm,n(γ

∗
m,n) > 0 eventually and γ̂m,n = γ ∗

m,n. Similarly,
in the case F−1 −G−1 < 0 in (0, γ ∗), F−1 −G−1 > 0
in (γ ∗,1), we will have a.s. that eventually γ̂m,n =
1 − γ ∗

m,n. Hence, in a probability one set, eventually√
n + m

nm

(
γ̂m,n − γ (F,G)

) = ±
√

n + m

nm

(
γ ∗
m,n − γ ∗)

,

with the positive sign in the former case and the nega-
tive in the latter.

By symmetry of the centered normal laws, it suffices

to prove the convergence for
√

n+m
nm

(γ ∗
m,n − γ ∗). From

this point, we assume that we are in the case F−1 −
G−1 > 0 in (0, γ ∗), F−1 − G−1 < 0 in (γ ∗,1) and
note that in this case γ ∗ is also the maximizer of ψ .

We note also that we can replace ψ by φ(γ ) =∫ γ
δ (F−1(t) − G−1(t)) dt for some fixed δ ∈ (0,1) and

still have that γ ∗ is the maximizer of φ(γ ), γ ∈ (δ, δ′)
for some other δ′ ∈ (0,1). We similarly set φn,m(γ ) =∫ γ
δ (F−1

n (t) − G−1
m (t)) dt . The assumptions ensure that

we can choose δ and δ′ such that f and g are contin-
uous and bounded away from 0 in (δ, δ′). Then, with
the notation introduced for the quantile processes asso-
ciated to the samples obtained from F and G,√

nm

n + m

(
φn,m(γ ) − φ(γ )

)

=
∫ γ

δ

√
m

n + m
uF

n (t) −
√

n

n + m
uG

m(t) dt.

The application of Lemma A.1 to the quantile pro-
cesses in L∞[δ, δ′], implies that there are versions of
uF

n , uG
m, B1 and B2 such that

sup
t∈[δ,δ′]

∣∣∣∣
(√

m

n + m
uF

n (t) −
√

n

n + m
uG

m(t)

)

−
(√

1 − λ
B1(t)

f (F−1(t))
− √

λ
B2(t)

g(G−1(t))

)∣∣∣∣ a.s.→ 0.

From this, we conclude that for any sequence verifying
γn,m = γ ∗ + oP (1),√

nm

n + m

(
φn,m(γn,m) − φ(γm,n)

)

−
√

nm

n + m

(
φn,m

(
γ ∗) − φ

(
γ ∗))

(24)

=
∫ γm,n

γ ∗

(√
m

n + m
uF

n (t) −
√

n

n + m
uG

m(t)

)
dt

= (
γm,n − γ ∗)

Z + (
γm,n − γ ∗)

oP (1),

with Z = √
1 − λB1(γ

∗)/f (x∗) − √
λB2(γ

∗)/g(x∗).
Since we already obtained the consistency γ ∗

m,n → γ ∗
a.s., we can apply now Theorem A.2 below to conclude
that√

nm

n + m

(
γ ∗
n,m − γ ∗) = − Z

1
f (x∗) − 1

g(x∗)
+ oP (1),

which completes the proof. �

The following theorem is a suitable version of Theo-
rem 3.2.16 in van der Vaart and Wellner, 1996 (see the
final comments there leading to this simplified state-
ment). It allows to obtain the asymptotic law of an es-
timator, like that involved in Proposition 3.2, based on
an “argmax” procedure. This kind of argument is one
of the best known tools to address the asymptotics of
M-estimators (see Section 3.2.4 in van der Vaart and
Wellner, 1996)

THEOREM A.2 (see Theorem 3.2.16 in van der Vaart
and Wellner, 1996). Let Mn be stochastic processes
indexed by an open interval � ⊂ R and M : � → R a
deterministic function. Assume that θ → M(θ) is twice
continuously derivable at a point of maximum θ0 with
second-derivative M ′′(θ0) �= 0. Suppose that for some
sequence rn → ∞:

rn
(
Mn(θ̃n) − M(θ̃n)

) − rn
(
Mn(θ0) − M(θ0)

)
= (θ̃n − θ0)Z + oP

(|θ̃n − θ0|),
for every random sequence θ̃n = θ0 + oP (1) and a ran-

dom variable Z. If the sequence θ̂n
P→ θ0 and satisfies

Mn(θ̂n) ≥ supθ Mn(θ) − oP (r−2
n ) for every n, then

rn(θ̂n − θ0) = − Z

M ′′(θ0)
+ oP (1).
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