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1. Introduction

The simple exclusion process is a statistical physics model that has received
much attention from physicists and probabilists over the years. In the present
article, we consider the case where the lattice is a segment of length 2N , the
total number of particles is N and the process is endowed with zero-flux bound-
ary conditions. We present a classification of the scaling limits of this model
according to the asymmetry imposed on the jump rates.

We start with a precise definition of the model. Consider a system of N
particles on the linear lattice {1, . . . , 2N}, subject to the exclusion rule that
prevents any two particles from sharing a same site. Each particle, independently
of the others, jumps to its left at rate pN and to its right at rate 1−pN as long as
the target site is not occupied. Additionally, we impose a “zero-flux” boundary
condition to the system: a particle located at site 1, resp. at site 2N , is not
allowed to jump to its left, resp. to its right. At any given time t, let Xi(t) be
equal to +1 if the i-th site is occupied, and to −1 otherwise.

It is standard to associate to such a particle system a so-called height function,
defined by

S(0) = 0 , S(k) =

k∑
i=1

Xi , k = 1, . . . , 2N .

Since the total number of particles isN , we necessarily have S(2N) = 0 so that S
is a discrete bridge. The dynamics of the particle system can easily be expressed
at the level of the height function: at rate pN , resp. 1 − pN , each downwards
corner, resp. upwards corner, flips into its opposite: we refer to Figure 1 for an
illustration. The law of the corresponding dynamical interface will be denoted
by P

N .
This dynamics admits a unique reversible probability measure:

μN (S) =
1

ZN

( pN
1− pN

) 1
2A(S)

, (1)

where A(S) =
∑2N

k=1 S(k) is the area under the discrete bridge S, and ZN is
a normalisation constant, usually referred to as the partition function. This
observation appears in various forms in the literature, see for instance [25, 18,
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Fig 1. An example of interface.

17]. Notice that the dynamics is reversible w.r.t. μN even if the jump rates
are asymmetric: this feature of the model is a consequence of our “zero-flux”
boundary condition.

From now on, we only consider “upwards” asymmetries, that is, pN ≥ 1/2,
and we aim at understanding the behaviour of the interface according to the
strength of the asymmetry. It is clear that the interface will be pushed higher
and higher as the asymmetry increases. On the other hand, the interface is
subject to some geometric restrictions: it is bound to 0 at both ends, and it is
lower than the deterministic shape k �→ k ∧ (2N − k). Actually, it is simple to
check that under a strong asymmetry, that is, pN = p > 1/2, the interface is
essentially stuck to the latter deterministic shape. Therefore, to see non-trivial
behaviours we need to consider asymmetries that vanish with N . We make the
following choice of parametrisation:

pN
1− pN

= exp
( 4σ

(2N)α

)
, σ > 0 , α ∈ (0,∞) ,

so that

pN =
1

2
+

σ

(2N)α
+O

( 1

N2α

)
.

The important parameter is α. When it equals +∞, we are in the symmetric
regime, while α = 0 corresponds to a strong asymmetry. In the present paper,
we investigate the whole range α ∈ (0,∞).

The results are divided into three parts: first, we characterise the scaling
limit of the invariant measure; second, the scaling limit of the fluctuations at
equilibrium; and third, we investigate the scaling limit of the dynamics out
of equilibrium. As we will see, the model displays a large variety of limiting
behaviours, most of them already appear in related contexts of the literature.
Let us mention that two sections of the present paper have been taken from the
recent work [29], and have been enriched with more details and comments.
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From now on, we extend S into a piecewise affine map from [0, 2N ] into
R: namely, S is affine on every interval [k, k + 1]. We also let L be the log-
Laplace functional associated to the Bernoulli ±1 distribution with parameter
1/2, namely L(h) = log coshh.

1.1. The invariant measure

The main result of this section is a Central Limit Theorem for the interface
under μN . To state this result, we need to rescale appropriately the interface
according to the strength of the asymmetry. For α ≥ 1, the space variable will
be rescaled by 2N so that the rescaled space variable will live in Iα = [0, 1]. On
the other hand, for α < 1, we will zoom in a window of order (2N)α around
the center of the lattice, hence the rescaled space variable will live in INα =
[−N/(2N)α, N/(2N)α] for any N ≥ 1, and Iα = R in the limit N → ∞.

This being given, we introduce the curve ΣN
α around which the fluctuations

occur. One would have expected this curve to be defined as the mean of S
under μN , but it is actually more convenient to opt for a different definition.
However, ΣN

α coincides with the mean under μN up to some negligible terms,
see Remark 13 below. For all k ∈ {0, . . . , 2N}, we set xk = k/(2N) if α ≥ 1,
xk = (k −N)/(2N)α if α < 1, and

ΣN
α (xk) =

k∑
i=1

L′(hN
i ) , hN

i =
2σ

(2N)α

(
N − i+

1

2

)
, i ∈ {1, . . . , 2N} . (2)

In between these discrete values xk’s, ΣN
α is defined by affine interpolation.

Let us mention that ΣN
α (x) ∼ (2N)2−ασx(1 − x) when α > 1, and ΣN

α (x) ∼
2N

∫ x

0
L′(σ(1− 2y))dy when α = 1. On the other hand, when α < 1, ΣN

α differs
from the maximal curve k �→ k∧ (2N −k) only in a window of order Nα around
the center of the lattice. We refer to Figure 2 for an illustration and to Equations
(22) and (24) for precise formulae.

We are now ready to introduce the rescaling for the fluctuations. For α ≥ 1,
we set

uN (x) :=
S(x2N)− ΣN

α (x)√
2N

, x ∈ [0, 1] ,

and for α < 1, we set

uN (x) :=
S(N + x(2N)α)− ΣN

α (x)

(2N)
α
2

, x ∈ INα .

Theorem 1. Under the invariant measure μN , we have uN (d)
=⇒ Bα as N → ∞.

The process Bα is a centered Gaussian process on Iα with covariance

E
[
Bα(x)Bα(y)

]
=

qα(0, x) qα(y, 1)

qα(0, 1)
, ∀x ≤ y ∈ [0, 1] , α ∈ [1,∞) , (3)
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Fig 2. Upper left α > 3/2, upper right α ∈ [1, 3/2], bottom α < 1. The red curve is ΣN
α : in

the first case, it is negligible compared to the fluctuations so we have not drawn it.

and

E
[
Bα(x)Bα(y)

]
=

qα(−∞, x) qα(y,+∞)

qα(−∞,+∞)
, ∀x ≤ y ∈ R , α ∈ (0, 1) , (4)

where

qα(x, y) =

⎧⎪⎨
⎪⎩
x ∨ y − x ∧ y if α ∈ (1,∞)∫ x∨y

x∧y
L′′(σ(1− 2u))du if α = 1∫ x∨y

x∧y
L′′(2σu)du if α ∈ (0, 1) .

Remark 2. In all cases, the process (cαBα(rα(x)), x ∈ [0, 1]) is a Brownian
bridge where

cα =

⎧⎪⎪⎨
⎪⎪⎩
1 if α > 1 ,√

σ
tanh(σ) if α = 1 ,

√
σ if α ∈ (0, 1) .

and

rα(x) =

⎧⎪⎨
⎪⎩
x if α > 1 ,
1
2

(
1 + σ−1 artanh((2x− 1) tanh(σ))

)
if α = 1 ,

1
2σ artanh(2x− 1) if α ∈ (0, 1) .

Let us make a few comments on this result. Recall that the mean shape ΣN
α

is of the order N (2−α)∧1. The scaling of our process uN together with the con-
vergence result stated in Theorem 1 show that the fluctuations of the interface
around this mean shape are of the order N (1∧α)/2. Consequently, according as α
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is larger than 3/2, resp. equal to 3/2, resp. smaller than 3/2, the mean shape is
negligible, resp. of the same order, resp. dominant, compared to the fluctuations.

Notice that for α ≤ 1, the features of the limiting mean shape and fluctua-
tions depend on the step distribution of our interface (through the log-Laplace
functional) while they are “universal” for α > 1. The case α = 3/2 is already
covered in [17], while the case α = 1 can be deduced from previous results of
Dobrushin and Hryniv [15] on paths of random walks conditioned on having a
given large area.

We also derive the asymptotics of the partition function ZN .

Proposition 3. As N → ∞ we have

log
ZN

22N
=

⎧⎪⎨
⎪⎩

σ2

6 (2N)3−2α +O(N1−2α ∨N5−4α) if α ∈ (1,∞) ,

(2N)
∫ 1

0
L
(
σ(1− 2x)

)
dx+O(1) if α = 1 ,

σ
2 (2N)2−α − 2N log 2 +O(Nα) if α ∈ (0, 1) .

Finally, let us observe that all the results presented above can be extended
to a more general class of static models: namely, to paths of random walks
having positive probability of coming back to 0 after 2N steps and whose step
distribution admits exponential moments.

1.2. Fluctuations at equilibrium

We turn our attention to the dynamics. Below, Ẇ will denote a space-time white
noise on [0,∞)×Iα, that is, a centred Gaussian random distribution such that for
any two functions f, g ∈ L2

(
[0,∞)×Iα

)
, we have EẆ (f)Ẇ (g) = 〈f, g〉. We will

denote by S(t, k) the dynamic height function and byX(t, k) = Xk(t) ∈ {−1, 1}
the occupation variables at time t and site k.

For α ≥ 1, we set

uN (t, x) :=
S(t(2N)2, x2N)− ΣN

α (x)√
2N

, x ∈ [0, 1] , t ≥ 0 ,

while for α < 1, we set

uN (t, x) :=
S(t(2N)2α, N + x(2N)α)− ΣN

α (x)

(2N)
α
2

, x ∈ INα , t ≥ 0 .

For convenience, we set Σ1(x) = limN→∞ ΣN
1 (x)/(2N) =

∫ x

0
L′(σ(1 − 2y))dy

for all x ∈ [0, 1], and, for α < 1, Σα(x) = limN→∞(ΣN
α (x) − N)/(2N)α =

x+
∫∞
−x

(
L′(2σy)− 1

)
dy for all x ∈ R.

Theorem 4. Assume that the process starts from the invariant measure μN .
Then, as N → ∞, the process uN converges in distribution to the process u
where



162 C. Labbé

1. For α ∈ (1,∞), u solves{
∂tu = 1

2∂
2
xu+ Ẇ , x ∈ (0, 1) ,

u(t, 0) = u(t, 1) = 0 ,
(5)

started from an independent realisation of Bα,
2. For α = 1, u solves{

∂tu = 1
2∂

2
xu− 2σ∂xΣ1 ∂xu+

√
1− (∂xΣ1)2 Ẇ , x ∈ (0, 1) ,

u(t, 0) = u(t, 1) = 0 ,
(6)

started from an independent realisation of B1,
3. For α ∈ (0, 1), u solves

∂tu =
1

2
∂2
xu− 2σ∂xΣα ∂xu+

√
1− (∂xΣα)2 Ẇ , x ∈ R , (7)

started from an independent realisation of Bα.

In all cases, convergence holds in the Skorohod space D([0,∞), C(Iα)).

Once again, notice the specific behaviour when α ≤ 1. De Masi, Presutti
and Scacciatelli [11] and Dittrich and Gärtner [14] prove convergence of the
fluctuations of the weakly asymmetric simple exclusion process (WASEP) on
the full line when the asymmetry scales like ε and time is sped up by ε−2: the
limiting fluctuations are then given by an equation similar to (7). Let us also cite
the work of Derrida, Enaud, Landim and Olla [13] on a related model interacting
with reservoirs.

An important ingredient in the proof of this theorem is the Boltzmann-Gibbs
principle, which is adapted to the present setting in Proposition 18.

1.3. Hydrodynamic limit

The subsequent question we address concerns the convergence to equilibrium:
suppose we start from some initial profile S0 at time 0, how does the interface
reach its stationary state? We consider the following rescaled height function

mN (t, x) :=
S
(
t(2N)(α+1)∧2, x2N

)
2N

, t ≥ 0 , x ∈ [0, 1] .

Notice that under this scaling, at any time t ≥ 0 the profile x �→ mN (t, x) is
1-Lipschitz.

Theorem 5. Let α ∈ (0,∞). We assume that the initial profile mN (0, ·) is de-
terministic and converges uniformly to some continuous profile m0(·). Then, the
process mN converges in probability, in the Skorohod space D([0,∞), C([0, 1])),
to the deterministic process m where:
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1. If α ∈ (1,∞), m is the unique solution of the linear heat equation{
∂tm = 1

2∂
2
xm ,

m(t, 0) = m(t, 1) = 0 , m(0, ·) = m0(·) .
(8)

2. If α = 1, m is the solution of the following heat equation with non-linear
drift {

∂tm = 1
2∂

2
xm+ σ

(
1− (∂xm)2

)
,

m(t, 0) = m(t, 1) = 0 , m(0, ·) = m0(·) .
(9)

3. If α ∈ (0, 1), m is the solution of the following Hamilton-Jacobi equation{
∂tm = σ

(
1− (∂xm)2

)
,

m(t, 0) = m(t, 1) = 0 , m(0, ·) = m0(·) .
(10)

Compare (8), (9) and (10) and observe the competition between the Laplacian
and the non-linear term: as α decreases, the non-linear term becomes predomi-
nant. Notice that (8) and (9) are well-posed parabolic PDEs, while (10) does not
admit unique weak solutions so that one needs to specify the notion of solutions
considered, see below. The convergence result in the case α = 1 is similar to the
results of Kipnis, Olla and Varadhan [28] and of Gärtner [19] who consider the
WASEP respectively on the torus and on the line Z; let us also cite the work of
Enaud and Derrida [16] on a similar model interacting with reservoirs.

Let us now be more precise on the notion of solution of (10) that we consider
here. For any Lipschitz function m0, we let η0(·) = (∂xm0(·) + 1)/2 and we say
that m is solution of (10) if m(t, x) =

∫ x

0

(
2η(t, y)− 1

)
dy where η is the entropy

solution of the Burgers equation with zero-flux boundary condition⎧⎪⎨
⎪⎩
∂tη = 2σ∂x

(
η(1− η)

)
, x ∈ (0, 1) , t > 0 ,

η(t, x)(1− η(t, x)) = 0 , x ∈ {0, 1} , t > 0 ,

η(0, ·) = η0 .

(11)

The precise formulation of the associated entropy conditions is given in Propo-
sition 31. Let us recall that this conservation law does not have unique solutions
in general, and that one needs to impose further conditions - here the entropy
conditions - to recover uniqueness. Let us mention that the interpretation of the
boundary conditions for this type of equations is not elementary. In the case of
Dirichlet boundary conditions, say η(t, 0) = a and η(t, 1) = b, the solution the-
ory does not yield solutions that satisfy the prescribed values at the boundaries
at all times, but they rather satisfy the so-called BLN conditions at the bound-
aries: we refer to Bardos, Le Roux and Nédélec [3] for the BV setting and to
Otto [33] for the L∞ setting. On the other hand, zero-flux boundary conditions
are simpler and one can impose to the solution to indeed have a zero-flux at the
boundaries at almost every time. We refer to Bürger, Frid and Karlsen [6] for
the complete solution theory.
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It turns out that the solution of (11) coincides with the solution of the same
PDE with appropriate Dirichlet boundary conditions: one simply needs to im-
pose η(t, 0) = 1 and η(t, 1) = 0. This fact can be heuristically explained as
follows.

If we consider the same dynamics on the whole line Z, then the hydrodynamic
limit is given by the same PDE but on the whole line R: this was proved by
Rezakhanlou [36] when the asymmetry does not depend on N , and, as we will
see, the proof extends to the case where the asymmetry is not too weak. Now, if
we start with particles at all negative sites and no particle at positive sites, then
the hydrodynamic limit is constant in time: the system does not evolve at the
macroscopic scale, and non-trivial behaviours can be observed only at a smaller
scale around the origin. A coupling argument then shows that adding particles
at positive sites does not modify the hydrodynamic behaviour on negative sites.
Similarly, if we start with particles at all sites k ≤ 2N and no particle after site
2N , then the hydrodynamic limit remains constant. A coupling argument shows
that if we remove some particles on {1, . . . , 2N}, the hydrodynamic behaviour
on {2N + 1, 2N + 2, . . .} remains unchanged.

Consequently, if we consider the same dynamics on the whole line Z and if we
start with particles at all negatives sites, no particle after site 2N , and the same
initial configuration of particles on {1, . . . , 2N} as in our original system, then
the initial condition outside the segment remains invariant at the level of the
hydrodynamic limit so that one should get the “effective” boundary conditions
η(t, 0) = 1 and η(t, 1) = 0.

The proof of the theorem in the case α < 1 thus mainly consists in showing
convergence of the density of particles

ρN (t, dx) =
1

2N

2N∑
k=1

ηNt (k) δ k
2N

(dx) , ηNt (k) =
X
(
t(2N)1+α, k

)
+ 1

2
, (12)

towards the deterministic process ρ(t, dx) = η(t, x)dx where η is the entropy
solution of the Burgers equation with the above Dirichlet conditions.

This convergence result is taken from [29], it is in the flavour of the works of
Rezakhanlou [36] and Bahadoran [2].

Observe that in the case α ∈ (1, 3/2) and under the invariant measure μN ,
the interface is of order N2−α � N . Therefore, when the process starts from
an initial condition which is at most of order N2−α, it is natural to derive the
hydrodynamic limit at this finer scale N2−α. (This is no longer relevant when
α ≥ 3/2 since, then, the fluctuations are dominant.) If we set

vN (t, x) :=
S(t(2N)2, x2N)

(2N)2−α
, t ≥ 0 , x ∈ [0, 1] ,

then it is possible to show that the sequence vN converges to the unique solution
of the following linear heat equation{

∂tv = 1
2∂

2
xv + σ ,

v(t, 0) = v(t, 1) = 0 , v(0, ·) = v0(·) .
(13)
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Fig 3. A plot of (14): the bold black line is the initial condition, the dashed line is the solution
at some time 0 < t < 1/(2σ), and the dotted line is the solution at the terminal time 1/(2σ).
The blue box corresponds to the window where we see KPZ fluctuations.

We do not provide the details on this convergence, but it relies on essentially
the same arguments as the case α = 1 of the previous theorem.

1.4. KPZ fluctuations

From now on, we consider the flat initial condition

S(0, k) = k mod 2 , k ∈ {0, . . . , 2N} .

Let us provide explicitly the solution of the Hamilton-Jacobi equation (10) start-
ing from the flat initial condition:

m(t, x) = x ∧ (1− x) ∧ (σt) , t > 0 , x ∈ [0, 1] , (14)

see Figure 3 for an illustration. Notice that the macroscopic stationary state
is reached at the finite time T = 1/(2σ). This is an important feature of the
hydrodynamic limit for α ∈ (0, 1): indeed, when α ≥ 1, the hydrodynamic limit
is parabolic and reaches its stationary state in infinite time.

We are now interested in fluctuations around this hydrodynamic limit. The
reader familiar with the Kardar Parisi Zhang (KPZ) equation would probably
guess that it should arise in our setting. Let us first recall the famous result
of Bertini and Giacomin [4] in that direction. Consider the WASEP on the
infinite lattice Z with jump rates 1/2 +

√
ε to the left and 1/2 to the right.

If one starts from a flat initial profile, then results in [19, 11] ensure that the
hydrodynamic limit grows evenly at speed

√
ε. Then, Bertini and Giacomin

look at the fluctuations around this hydrodynamic limit and show that the
random process

√
ε (S(tε−2, xε−1)−ε−3/2t) converges to the solution of the KPZ

equation, whose expression is given in (17) below (in Bertini and Giacomin’s
case, σ = 1/2).

Although our setting is similar to the one considered by Bertini and Giacomin,
the “zero-flux” boundary condition induces a major difference: our process ad-
mits a reversible probability measure, while this is not the case on the infinite
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lattice Z. However, if one starts the interface “far” from equilibrium, then we
are in an irreversible setting up to the time needed by the interface to reach
equilibrium, and one would expect the fluctuations to be described by the KPZ
equation.

Bertini and Giacomin’s result suggests to rescale the height function by
1/(2N)α, the space variable by (2N)2α and the time variable by (2N)4α. The
space scaling immediately forces one to take α ≤ 1/2 since, otherwise, the lat-
tice {0, 1, . . . , 2N} would be mapped onto a singleton in the limit. It happens
that the geometry of our model imposes a further constraint: Theorem 5 and
Equation (14) show that the interface reaches the stationary state in finite time
in the time scale (2N)α+1; therefore, as soon as 4α > α + 1, Bertini and Gia-
comin’s scaling yields an interface which is immediately at equilibrium in the
limit N → ∞. Consequently, we have to restrict α to (0, 1/3] for this scaling to
be non-trivial.

We set
hN (t, x) := γNS

(
t(2N)4α, N + x(2N)2α

)
− λN t , (15)

where

γN :=
1

2
log

pN
1− pN

, cN :=
(2N)4α

eγN + e−γN
, λN := cN (eγN −2+e−γN ) . (16)

The following result was established in [29]

Theorem 6. Take α ∈ (0, 1/3] and consider the flat initial condition. As
N → ∞, the sequence hN converges in distribution to the solution of the KPZ
equation: {

∂th = 1
2∂

2
xh− σ(∂xh)

2 + Ẇ , x ∈ R , t > 0 ,

h(0, x) = 0 .
(17)

The convergence holds on D
(
[0, T ), C(R)

)
where T = 1/(2σ) when α = 1/3, and

T = ∞ when α < 1/3. Here D
(
[0, T ), C(R)

)
is endowed with the topology of

uniform convergence on compact subsets of [0, T ).

Observe that for α = 1/3, T is the time needed by the hydrodynamic limit
to reach the stationary state. Indeed, in that case the time-scale of the hydro-
dynamic limit coincides with the time-scale of the KPZ fluctuations. Although
one could have thought that the fluctuations continuously vanish as t ↑ T , our
result show that they don’t: the limiting fluctuations are given by the solution
of the KPZ equation, restricted to the time interval [0, T ). This means that the
fluctuations suddenly vanish at time T ; let us give a simple explanation for this
phenomenon. At any time t ∈ [0, T ), the particle system is split into three zones:
a high density zone {1, . . . , λN

γN
t}, a low density zone {2N− λN

γN
t, . . . , 2N} and, in

between, the bulk where the density of particles is approximately 1/2, we refer
to Figure 3. The KPZ fluctuations occur in a window of order N2α around the
middle point of the bulk: from the point of view of this window, the boundaries
of the bulk are “at infinity” but move “at infinite speed”. Therefore, inside this
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window the system does not feel the effect of the boundary conditions until the
very final time T where the boundaries of the bulk merge.

Let us recall that the KPZ equation is a singular SPDE: indeed, the solution
of the linearised equation is not differentiable in space so that the non-linear
term would involve the square of a distribution. While it was introduced in the
physics literature [26] by Kardar, Parisi and Zhang, a first rigorous definition was
given by Bertini and Giacomin [4] through the so-called Hopf-Cole transform
h �→ ξ = e−2σh that maps formally the equation (17) onto{

∂tξ = 1
2∂

2
xξ + 2σξẆ , x ∈ R , t > 0 ,

ξ(0, x) = 1 .
(18)

This SPDE is usually referred to as the multiplicative stochastic heat equa-
tion: it admits a notion of solution via Itô integration, see for instance [10, 41].
Müller [32] showed that the solution is strictly positive at all times, if the initial
condition is non-negative and non-zero. This allows to take the logarithm of the
solution, and then, one can define the solution of (17) to be h := − log ξ/2σ.
This is the notion of solution that we consider in Theorem 6.

There exists a more direct definition of this SPDE (restricted to a bounded
domain) due to Hairer [22, 23] via his theory of regularity structures. Let us also
mention the notion of “energy solution” introduced by Gonçalves and Jara [20],
for which uniqueness has been proved by Gubinelli and Perkowski [21]. It pro-
vides a new framework for characterising the solution to the KPZ equation but
it requires the equation to be taken under its stationary measure.

For related convergence results towards KPZ, we refer to Amir, Corwin and
Quastel [1], Dembo and Tsai [12], Corwin and Tsai [9] and Corwin, Shen and
Tsai [8]. We also point out the reviews of Corwin [7], Quastel [35] and Spohn [38].

The paper is organised as follows. In Section 2, we study the scaling limit of
the invariant measure. Section 3 is devoted to the fluctuations at equilibrium. In
Section 4 we prove Theorem 5 on the hydrodynamic limit, and in Section 5 we
present the proof of the convergence of the fluctuations to the KPZ equation.
Some technical bounds are postponed to the Appendix. The sections are essen-
tially independent: at some localised places, we will rely on results obtained on
the static of the model in Section 2.

2. The invariant measure

Let Be(q) denote the Bernoulli ±1 distribution with parameter q ∈ [0, 1], and
let L be the log-Laplace functional associated with Be(1/2), namely L(h) =
log coshh for all h ∈ R. For each given N ≥ 1, we will work on the set
{−1,+1}2N endowed with its natural sigma-field. The canonical process will
be denoted by X1, . . . , X2N , and will be viewed as the steps of the walk S(n) :=∑

k≤n Xk. Recall that A(S) is the area under the walk S, defined in (1) and

recall that pN = 1/2 + σ/(2N)α +O(1/N2α).
The strategy of the proof consists in introducing an auxiliary measure νN

which is the same as μN except that, under νN , the walk is not conditioned on
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coming back to 0 but satisfies νN [S(2N)] = 0. This makes νN more amenable
to limit theorems. In particular, we establish a Central Limit Theorem and a
Local Limit Theorem for the marginals of the walk under νN . Since μN is equal
to νN conditioned on the event S(2N) = 0, and since the νN -probability of this
event can be estimated with the Local Limit Theorem, we are able to get the
convergence of the marginals of the walk under μN . The tightness is obtained
by similar considerations. Let us now provide the details.

Let πN be the law of the simple random walk, that is

πN :=
2N
⊗
k=1

Be(1/2) ,

and let νN be the measure defined by

dνN
dπN

=
1

Z ′
N

( pN
1− pN

)A(S)
2

eρNS(2N) , Z ′
N = eLS(hN ) , (19)

where LS(h
N ) :=

∑2N
k=1 L(h

N
k ) and

ρN = − 2σ

(2N)α

(
N +

1

2

)
, hN

k =
2σ

(2N)α

(
N − k +

1

2

)
, k ∈ {1, . . . , 2N} .

Remark 7. Under the measure νN , the total number of particles is not equal
to N almost surely, but is equal to N in mean. The measure νN can be seen as
a mixture of 2N + 1 measures, each of them being supported by an hyperplane
of configurations with � ∈ {0, . . . , 2N} particles. It is easy to check that our
dynamics is reversible with respect to each of these measures, and therefore,
with respect to νN .

Lemma 8. The measure νN satisfies

dνN
dπN

=
1

Z ′
N

e
∑

k hN
k Xk , νN =

2N
⊗
k=1

Be(qNk ) , (20)

where qNk =
(
L′(hN

k ) + 1
)
/2.

Proof. Notice that( pN
1− pN

)A(S)
2

eρNS(2N) = e
2σ

(2N)α
A(S)+ρNS(2N) ,

and

2σ

(2N)α
A(S) + ρNS(2N) =

2N∑
k=1

Xk

(
(2N − k + 1)

2σ

(2N)α
+ ρN

)
=

2N∑
k=1

Xkh
N
k .

Since πN is a product of Bernoulli measures and given the expression of the
Radon-Nikodym derivative above, we deduce that νN is also a product measure
of Bernoulli distributions with parameters

νN (Xk = 1) =
eh

N
k

eL(hN
k )

πN (Xk = 1) =
eh

N
k

2 coshhN
k

=
L′(hN

k ) + 1

2
.
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From there, simple calculations yield

νN
[
S(k)

]
=

k∑
i=1

L′(hN
i ) , VarνN

[
S(k), S(�)

]
=

k∧�∑
i=1

L′′(hN
i ) . (21)

Observe that the curve ΣN
α defined in (2) is nothing but the mean of S under

νN . Recall the definition of qα from Theorem 1. A simple calculation yields the
following asymptotics. For α ≥ 1, we have

ΣN
α (x) =

{
(2N)2−ασx(1− x) +O(N4−3α) α > 1 ,

2N
∫ x

0
L′(σ(1− 2y))dy +O(1) α = 1 ,

(22)

and

VarνN

[
S(x2N), S(y2N)

]
=

{
(2N) qα(0, x ∧ y) +O(N3−2α) α > 1 ,

(2N) qα(0, x ∧ y) +O(1) α = 1 ,
(23)

for all x, y ∈ [0, 1]. For α < 1, we find

ΣN
α (x) = N + (2N)α

(
x+

∫ ∞

−x

(
L′(2σy)− 1

)
dy
)
+O(1) α < 1 , (24)

and

VarνN

[
S(N+x(2N)α), S(N+y(2N)α)

]
= (2N)αqα(−∞, x∧y)+O(1) , α < 1 ,

(25)
for all x, y ∈ R.

The important observation for the sequel is the following result.

Lemma 9.
μN (·) = νN (· |S(2N) = 0) . (26)

Proof. Let CN be the set of all discrete bridges from (0, 0) to (2N, 0), then we
have

ZN =
∑

S∈CN

( pN
1− pN

) 1
2A(S)

= 22NπN

[( pN
1− pN

) 1
2A(S)

1{S(2N)=0}(S)
]
,

since πN is the uniform measure on the set of all lattice paths with 2N -steps
and since the latter set has cardinal 22N . Hence, for any subset D of CN , we
have (for all S ∈ D, S(2N) = 0)

νN (D |S2N = 0) =
πN

[(
pN

1−pN

) 1
2A(S)

e−Ls(h
N )1D(S)

]
πN

[(
pN

1−pN

) 1
2A(S)

e−Ls(hN )1{S(2N)=0}(S)
]

=
1

ZN
22NπN

[( pN
1− pN

) 1
2A(S)

1D(S)
]
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=
1

ZN

∑
S∈CN

( pN
1− pN

) 1
2A(S)

1D(S)

= μN (D) ,

and (26) follows.

Recall that for α ≥ 1 we have

uN (x) =
S(x2N)− ΣN

α (x)√
2N

, x ∈ [0, 1] ,

while for α < 1

uN (x) =
S(N + x(2N)α)− ΣN

α (x)

(2N)
α
2

, x ∈ [−N/(2N)α, N/(2N)α] .

Until the end of the section, k will denote an integer and �x = (x1, . . . , xk)
will be an element of (0, 1]k if α ≥ 1, of (−∞,+∞]k if α ∈ (0, 1). It will be
convenient to write uN (�x) = (uN (x1), . . . , u

N (xk)). Also, we use the convenient
notation uN (+∞) to denote uN (N/(2N)α) when α ∈ (0, 1). For α ∈ (0, 1), we
define the lattice approximation xN of x by setting

xN :=
�x(2N)α�
(2N)α

, x ∈ R ,

xN := +∞ for x = +∞, and �xN := (xN
1 , . . . , xN

k ) for all �x as above. We also let
xf = 1 when α ≥ 1 and xf = +∞ when α ∈ (0, 1).

If α ≥ 1, we let B̃α be the centred Gaussian process on [0, 1] whose covariance
is given by qα(0, · ∧ ·). If α ∈ (0, 1), we adopt the same definition except that
the process lives on R and that its covariance is given by qα(−∞, · ∧ ·). Notice
that in this last case, B̃α(x) converges to a finite limit when x → +∞ since this
is a martingale bounded in L2.

It is simple to check that Bα is obtained by conditioning B̃α to vanish at xf .
More precisely, if we denote by gx1,...,xk

α and g̃
x1,...,xk,xf
α the probability densities

of the vectors (Bα(x1), . . . , Bα(xk)) and (B̃α(x1), . . . , B̃α(xk), B̃α(xf )), then we
have

gx1,...,xk
α (y1, . . . , yk) =

g̃
x1,...,xk,xf
α (y1, . . . , yk, 0)

g̃
xf
α (0)

. (27)

The proof of Theorem 1 is divided into the following four steps.

Step 1: Convergence of the marginals under νN .

Lemma 10. The vector uN (�x) under νN converges in distribution to B̃α(�x).

Proof. The proof is classical, we only provide the details for the case α ∈ (0, 1)
as the other case is treated similarly. Until the end of the proof, i denotes the
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complex number
√
−1. For each j ∈ {1, . . . , k}, we define kj := N + �xj(2N)α�.

For all �t = (t1, . . . , tk) ∈ R
k, let

Lk(�t) :=

2N∑
�=1

L
(
i

k∑
j=1

tj1{�≤kj} + hN
�

)
,

so that Lk(0) = LS(h
N ) =

∑2N
k=1 L(h

N
k ) and

log νN

[
e
∑k

j=1 itjS(N+xN
j (2N)α)

]
= Lk(�t)− Lk(0) .

It is simple to check that

∂2
tj ,tmLk|	t=0

= −VarνN

[
S(kj), S(km)

]
.

Fix �t ∈ R
k. Using (25) and a Taylor expansion at the second line, we get

log νN

[
ei〈

	t,uN (	xN )〉
]
= Lk

(
�t(2N)−

α
2

)
− Lk(0)−

1

(2N)
α
2
〈�t,∇Lk(0)〉

= −1

2

k∑
j,�=1

tjt� qα(−∞, xj ∧ x�) +O
( |t|3
Nα/2

+
|t|2
Nα

)
,

so that the characteristic function of the vector uN (�xN ) converges pointwise to
the characteristic function of the Gaussian vector of the statement. Since the
difference between uN (�xN ) and uN (�x) is negligible, the lemma follows.

Step 2: Local limit theorems under νN . We have the following Local Limit
Theorems under νN . Let D	x,N

α be the finite set of all �y = (y1, . . . , yk) ∈ R
k such

that νN (uN (�xN ) = �y) > 0.

Lemma 11. Uniformly over all �y ∈ D	x,N
α and all N ≥ 1, we have

(2N)
k
2 (α∧1)

2k
νN

(
uN (�xN ) = �y

)
− g̃	xα(�y) = o(1) .

In the case k = 1, let Ex,N
α be the set of values y such that νN (uN (xf ) −

uN (xN ) = y) > 0.

Lemma 12. Uniformly over all y ∈ Ex,N
α and all N ≥ 1, we have

(2N)
1
2 (α∧1)

2
νN

(
uN (xf )− uN (xN ) = y

)
−
∫
z∈R

g̃
(x,xf )
α (z, z + y)dz = o(1) .

Below, we provide the proof of the first lemma. The second lemma follows
from exactly the same arguments, one simply has to notice that uN (xf ) −
uN (xN ) converges in law to B̃α(xf ) − B̃α(x), and that

∫
z∈R

g̃
(x,xf )
α (z, z + y)dz

is the density at y of this limiting r.v.
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Proof of Lemma 11. Let us prove the case α ∈ (0, 1) which is the most involved.
The main difference in the proof with the case α ≥ 1 lies in the fact that
the forthcoming bound (29) cannot be applied to all hN

i simultaneously when
α ∈ (0, 1). Indeed, these coefficients are not bounded uniformly over i and N
when α ∈ (0, 1). However, for any given a > 0, they are bounded uniformly over
all i ∈ IN,a := [N − a(2N)α, N + a(2N)α] and all N ≥ 1.

Without loss of generality, we can assume that x1 < x2 < . . . < xk so that
only xk can take the value +∞. Let φh(t) = exp(L(h+ it)− L(h)) for t, h ∈ R.
This is the characteristic function of the Bernoulli ±1 r.v. with mean L′(h) so
that

φh(t) = cos(t) + iL′(h) sin(t) , t ∈ R , h ∈ R . (28)

In particular, the characteristic function of the r.v. Xi under νN is given by
φhN

i
. The function φ is 2π-periodic and |φh(t)| ≤ 1 for all h, t. From (28), one

deduces that for any compact set K ⊂ R, there exists r(K) > 0 such that

∣∣φh(t)
∣∣ ≤ exp(−rt2L′′(h)) , ∀t ∈

[
− 2π

3
,
2π

3

]
, ∀h ∈ K . (29)

Let Φα denote the characteristic function of the Gaussian vector B̃α(�x). Classical
arguments from Fourier analysis entail that for all �y ∈ D	x,N

α

RN := (2N)
αk
2 νN

(
uN (�xN ) = �y

)
− 2kg̃	xα(�y) ,

can be rewritten as

RN =
1

πk

∫
D

ΦN (�t)e−i〈	t,	y〉d�t− 1

πk

∫
Rk

Φα(�t)e
−i〈	t,	y〉d�t ,

where ΦN is the characteristic function of uN (�xN ) under νN and

D :=
{
�t ∈ R

k : |t�| ≤
π

2
(2N)

α
2 , � = 1, . . . , k

}
.

Notice that the factor 1/2 in the definition of D comes from the simple fact that
our step distribution charges {−1, 1}, and therefore has a maximal span equal
to 2. Then, we take ρ ∈ (0, 1

2(3+k) ) and we bound |RN |πk by the sum of the

following three terms

J1 =

∫
D1

|ΦN (�t)− Φα(�t)|d�t , D1 = [−Nρα, Nρα]k ,

J2 =

∫
D2

|Φα(�t)|d�t , D2 = R
k\D1 ,

J3 =

∫
D3

|ΦN (�t)|d�t , D3 = D\D1 .

It suffices to show that these three terms vanish as N → ∞. Regarding J1, the
proof of Lemma 10 shows that

|ΦN (�t)− Φα(�t)| � |Φα(�t)|
( |�t |3
N

α
2
+

|�t |2
Nα

)
,
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uniformly over all |�t|3 = o(Nα/2). Since ρ(3 + k) < 1
2 , a simple calculation

shows that J1 goes to 0 as N → ∞. The convergence of J2 to 0 as N → ∞ is a
consequence of the exponential decay of the characteristic functions of Gaussian
r.v. We turn to J3. For each � ∈ {1, . . . , k}, we set

D3,� = D3 ∩
{
|t�| > 3−�Nρα; ∀j > �, |tj | ≤ 3−jNρα

}
,

so that D3 = ∪�D3,�. The important feature of these sets is that for all N large
enough

|t�|
2

≤ |t� + . . .+ tk| ≤
2π

3
(2N)

α
2 , ∀�t ∈ D3,� , ∀� ∈ {1, . . . , k} . (30)

We bound separately each term J3,� arising from the restriction of the integral
in J3 to D3,�. Take a > 0 such that −a < x1 < xk−1 < a and recall that xk can
be infinite. Let K be a compact set that contains all the values hN

i , i ∈ IN,a,
and let r be the corresponding constant introduced above (29). We also define
jp = N + �xp(2N)α� for all p ∈ {1, . . . , k} and

IN,a,� := IN,a ∩ (N + x�−1(2N)α, N + x�(2N)α] .

Using the independence of the Xi’s under νN and the fact that the modulus of
a characteristic function is smaller than 1 at the second line, as well as (29) and
(30) at the third line, we get

∣∣∣ΦN (�t)
∣∣∣ = ∣∣∣νN[ exp(i 2N∑

j=1

X(j)

k∑
p=1

1{j≤jp}
tp

(2N)
α
2

)]∣∣∣
≤

2N∏
j=1

∣∣∣φhN
j

(∑k
p=1 1{j≤jp}tp

(2N)
α
2

)∣∣∣
≤

∏
j∈IN,a,�

∣∣∣φhN
j

( t� + . . .+ tk
(2N)

α
2

)∣∣∣
≤ exp

(
− r

(t� + . . .+ tk)
2

(2N)α

∑
j∈IN,a,�

L′′(hN
j )
)
.

Since 1
(2N)α

∑
j∈IN,a,�

L′′(hN
j ) → q(x�−1, x� ∧ a) as N → ∞ and since the limit

is strictly positive, we have for N large enough

1

(2N)α

∑
j∈IN,a,�

L′′(hN
j ) ≥ 1

2
q(x�−1, x� ∧ a) ,

so that, using (30), we get

J3,� ≤
∫
D3,�

e−
r
8 t

2
�q(x�−1,x�∧a)d�t � N

(k−1)α
2

∫
|t�|>3−�Nρα

e−
r
8 t

2
�q(x�−1,x�∧a)dt� ,

which goes to 0 as N → ∞. This concludes the proof.
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Remark 13. It is possible to push the expansion of the local limit theorem one
step further, in the spirit of [34, Thm VII.12]. Then, a simple calculation shows
the following. Let x ∈ (0, 1) if α ≥ 1, and x ∈ R if α < 1. We have

μN

[
S(k)

]
− νN

[
S(k)

]
= o(N

1∧α
2 ) ,

uniformly over all k ≤ x(2N) if α ≥ 1, and all k ≤ N + x(2N)α if α < 1.

Corollary 14. The Radon-Nikodym derivative of μN with respect to νN , re-
stricted to σ(X1, . . . , XN ), is bounded uniformly over all N ≥ 1.

Proof. Using (26) at the first line and the independence of the Xi’s at the second
line, we get

μN

( N
∩
i=1

{S(i) = yi}
)
=

νN
( N
∩
i=1

{S(i) = yi};S(2N) = 0
)

νN (S(2N) = 0)

= νN
( N
∩
i=1

{S(i) = yi}
) νN (S(2N)− S(N) = −yN )

νN (S(2N) = 0)
,

for all y1, . . . , yN ∈ R. By Lemmas 11 and 12, the fraction on the r.h.s. is
uniformly bounded over all yN ∈ R and all N ≥ 1, thus yielding the statement
of the corollary.

Step 3: Convergence of the marginals under μN . From (26), we deduce
that

μN

(
uN (�xN ) = �y

)
=

νN
(
uN (�xN ) = �y; uN (xf ) = 0

)
νN

(
uN (xf ) = 0

) . (31)

By Lemma 11 and Equation (27), we have

μN

(
uN (�xN ) = �y

)
= 2k(2N)−

k
2 (α∧1)g	xα(�y)

(
1 + o(1)

)
,

uniformly over all N ≥ 1, and all �y lying in the intersection of Dk,N
α with a

compact domain of Rk. Thus, we deduce that for all �v < �w ∈ R
k, we have

μN

(
uN (�xN ) ∈ [�v, �w]

)
=

∑
	y∈[	v,	w]∩Dk,N

α

μN

(
uN (�xN ) = �y

)

=
∑

	y∈[	v,	w]∩Dk,N
α

( 2

(2N)
α∧1
2

)k

g	xα(�y)
(
1 + o(1)

)

−→
∫
	y∈[	v,	w]

g	xα(�y)d�y ,

as N → ∞. Since |uN (�x) − uN (�xN )| = O(N−α∧1
2 ) uniformly over all �x, we

deduce that the finite dimensional marginals of uN under μN converge to those
of Bα.
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Step 4: Tightness of the sequence μN . For convenience, we restrict to the
case α ∈ (0, 1); but the case α ≥ 1 is actually simpler. We start by showing
tightness of (uN (x), x ∈ R) under νN . More precisely, we are going to show that
there exists β > 0 such that

sup
N≥1

νN

[
|uN (0)|+ sup

x =y∈[−A,+A]

|uN (x)− uN (y)|
|x− y|β

]
< ∞ ,

for all A > 0, which ensures tightness in C(R,R).
We have for any λ ∈ R

log νN
[
eλu

N (0)
]
=

N∑
k=1

log νN

[
exp

( λ

(2N)
α
2

(
Xk − L′(hN

k )
))]

=

N∑
k=1

(
L
(
hN
k +

λ

(2N)
α
2

)
− L

(
hN
k

)
− λ

(2N)
α
2
L′(hN

k

))

=
λ2

2
qα(−∞, 0) +O(N−α/2) ,

uniformly over all N ≥ 1, which ensures that all the moments of uN (0) are
uniformly bounded in N ≥ 1.

Regarding the Hölder semi-norm, a direct computation shows that for all
A, δ > 0

log νN

[
exp

(uN (y)− uN (x)

|y − x|δ
)]

≤ ‖L′′‖∞|x− y|1−2δ ,

uniformly over all x, y of the form (k −N)/(2N)α with

k ∈ {N − �A(2N)α�, . . . , N + �A(2N)α�} .

Taking δ ∈ (0, 1/2), this yields a finite bound uniformly over all N ≥ 1 and
all such discrete x, y. Using classical interpolation arguments, we deduce that
this bound is still finite for non-discrete x, y lying in [−A,A]. Henceforth, the
Kolmogorov Continuity Theorem ensures that for any β ∈ (0, 1/2) and any
p ≥ 1 we have:

sup
N≥1

νN

[
sup

x =y∈J

|uN (x)− uN (y)|p
|x− y|pβ

]
< ∞ ,

where J = [−A,+A]. Notice that we did not introduce a different notation
for the modification built from the Kolmogorov Continuity Theorem, since it
necessarily coincides almost surely with the continuous process uN . Since J is
arbitrary, tightness in C(R,R) of uN under νN follows.

By Corollary 14, the law of (uN (x), x ∈ [− N
(2N)α , 0]) under μN is absolutely

continuous w.r.t. the law of the same process under νN . This ensures that the
sequence of the laws of (uN (x), x ∈ [− N

(2N)α , 0]) under μN is tight. Since the

laws of the processes (uN (−x), x ∈ [0, N
(2N)α ]) and (uN (x), x ∈ [0, N

(2N)α ]) under

μN coincide, we deduce the tightness of the whole process.
This concludes the proof of Theorem 1.
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Proof of Proposition 3. Recall that πN is the uniform measure on the set of
lattice paths that make 2N steps and start from 0. We write

ZN = 22NπN
[(pN

qN

) 1
2A(S)

1{S(2N)=0}

]
= 22NνN (S(2N) = 0) eLS(hN ) . (32)

Since νN (S(2N) = 0) → 0 as N → ∞, it suffices to estimate the exponential
term. When α > 1, we use the fact that L(0) = L′(0) = L(3)(0) = 0, L′′(0) = 1
and ‖L(4)‖∞ < ∞, to get

LS(h
N ) =

2N∑
i=1

L(hN
i ) =

2σ2

(2N)2α
L′′(0)

2N∑
i=1

(
N − i+

1

2

)2

+O(N5−4α)

=
σ2

6
(2N)3−2α +O(N (5−4α)∨(1−2α)) ,

and the asserted result follows in that case. For α = 1, the result follows from
the convergence of Riemann approximations of integrals. Finally, when α < 1,
we use the simple facts that L is even and that L(x)− x+ log 2 is integrable on
[0,∞) to get

LS(h
N ) = 2

N∑
i=1

L(hN
i ) = 2

N∑
i=1

hN
i − 2N log 2 + 2

N∑
i=1

(
L(hN

i )− hN
i + log 2)

=
σ

2
(2N)2−α − 2N log 2 +O(Nα) ,

thus concluding the proof.

3. Equilibrium fluctuations

The goal of this section is to establish Theorem 4. Our method of proof is
standard: first, we show tightness of the sequence of processes uN , then we
identify the limit via a martingale problem. Recall that we work under the
reversible measure μN .

3.1. Tightness

From now on, we set J = [0, 1] when α ≥ 1 and J = [−A,+A] for an arbitrary
value A > 0 when α < 1, along with

en(x) =

{√
2 sin(nπx) for α ≥ 1 ,
1√
A
sin

(
nπ
2A (x+A)

)
for α < 1 .

This is an orthonormal basis of L2(J). For all β > 0, we define the associated
Sobolev spaces

H−β(J) :=
{
f ∈ S′(J) : ‖f‖2H−β :=

∑
n≥1

n−2β〈f, en〉2 < ∞
}
.
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Recall that for α < 1, the value A > 0 is arbitrary. In order to prove tightness
of the sequence uN in the Skorohod space D([0,∞), C([0, 1]) for α > 1 and
in D([0,∞), C(R)) for α < 1, it suffices to show that the sequence of laws of
uN (t = 0, ·) is tight in C(J), and that for any T > 0 there exists p > 0 such that

lim
h↓0

lim
N→∞

E
N
μN

[
sup
s,t≤T

|t−s|≤h

‖uN (t)− uN (s)‖pC(J)
]
= 0 , (33)

see for instance [5, Thm 13.2].
Since we start from the stationary measure, the first condition is ensured

by what we proved in Step 4 of the preceding section. To check the second
condition, we proceed as follows. We introduce a piecewise linear interpolation
in time ūN of our original process by setting

ūN (t, ·) :=
(
tN + 1− t(2N)2α∧2

)
uN

( tN
(2N)2α∧2

, ·
)

+
(
t(2N)2α∧2 − tN )uN

( tN + 1

(2N)2α∧2
, ·
)
,

where tN := �t(2N)2α∧2�.
Lemma 15. For all β > 1/2 and all p ≥ 1, we have

E
N
μN

[
‖ūN (t)− ūN (s)‖p

H−β(J)

] 1
p �

√
t− s ,

uniformly over all 0 ≤ s ≤ t ≤ T and all N ≥ 1.

Proof. Assume that we have the bound

E
N
μN

[
‖uN (t)− uN (s)‖p

H−β(J)

] 1
p �

√
t− s+N− 3

2 (1∧α) , (34)

uniformly over all 0 ≤ s ≤ t and all N ≥ 1. Let 0 ≤ s ≤ t ≤ T . We distinguish
two cases. If tN = sN or t = (sN + 1)/(2N)2α∧2, then t− s ≤ 1/(2N)2α∧2 and

ūN (t, ·)− ūN (s, ·) = (t− s)(2N)2α∧2

(
uN

( sN + 1

(2N)2α∧2
, ·
)
− uN

( sN
(2N)2α∧2

, ·
))

,

so that the asserted bound follows from (34) and the fact that (t−s)(2N)2α∧2 ≤√
t− s(2N)α∧1 in that case. If tN ≥ sN + 1, then we write

ūN (t, ·)− ūN (s, ·) = uN
( tN
(2N)2α∧2

, ·
)
− uN

( sN + 1

(2N)2α∧2
, ·
)

+ ūN (t, ·)− ūN
( tN
(2N)2α∧2

, ·
)

+ ūN
( sN + 1

(2N)2α∧2
, ·
)
− ūN (s, ·) .
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The second and third increments on the r.h.s. can be bounded using the first
case above, yielding a term of order

√
t− s. Regarding the first increment, either

tN = sN + 1 and it vanishes, or tN ≥ sN + 2 and (34) yields a bound of order√
tN

(2N)2α∧2
− sN + 1

(2N)2α∧2
+N− 3

2 (1∧α) �
√
t− s+ (t− s)

3
4 �

√
t− s ,

as required. To complete the proof of the lemma, it suffices to show (34).
For all n ≥ 1, we let û(t, n) :=

∫
J
u(t, x)en(x)dx. Since β > 1/2, (34) is

proved as soon as we show that for all p ≥ 1

E
N
μN

[
|û(t, n)− û(s, n)|p

] 1
p �

√
t− s+N− 3

2 (1∧α) , (35)

uniformly over all N ≥ 1, all n ≥ 1 and all 0 ≤ s ≤ t.
Let LN be the generator of uN . Using the reversibility of the process, we have

the following identities

û(t, n)− û(s, n) =

∫ t

s

LN û(r, n)dr +MN
s,t(n) ,

û(T − (T − t), n)− û(T − (T − s), n) = −
∫ t

s

LN û(r, n)dr + M̃N
t,s(n) ,

where MN
s,t(n), t ≥ s is a martingale adapted to the natural filtration of uN ,

and M̃N
t,s, s ≤ t is a martingale in the reversed filtration. Summing up these

two identities, we deduce that it suffices to control the p-th moment of the
martingalesMN

s,t(n) and M̃N
t,s(n). Using the Burkhölder-Davis-Gundy inequality

(92), we get

E
N
μN

[
|MN

s,t(n)|p
] 1

p � E
N
μN

[
〈MN

s,·(n)〉
p/2
t

] 1
p

+E
N
μN

[
sup

r∈(s,t]

|MN
s,r(n)−MN

s,r−(n)|p
] 1

p

,

uniformly over all N ≥ 1, all n ≥ 1 and all 0 ≤ s ≤ t. It is then a simple
calculation to check that almost surely 〈MN

s,·(n)〉t is bounded by a term of order

t−s and supr∈(s,t] |MN
s,r(n)−MN

s,r−(n)| by a term of order N− 3
2 (1∧α), uniformly

over all n,N ≥ 1, thus yielding (35). The same bound holds for the reversed
martingale by symmetry, thus concluding the proof.

We need an interpolation inequality to conclude the proof of the tightness.

Lemma 16. Let η = 1/2 − ε and β = 1/2 + ε. For ε > 0 small enough, there
exist c > 0 and γ, κ ∈ (0, 1) such that

‖f‖Cγ(J) ≤ c ‖f‖κCη(J)‖f‖1−κ
H−β(J)

, ∀f ∈ Cη(J) ∩H−β(J) . (36)

Proof. We rely on two standard interpolation results, we refer to the book of
Triebel [39] for the proofs. For q ≥ 1 and δ ∈ (0, 1), let W δ,q(J) be the space of
functions f : J → R such that

‖f‖W δ,q := ‖f‖Lq +
(∫

x

∫
y

|f(x)− f(y)|q
|x− y|δq+1

dx dy
) 1

q

< ∞ .
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For η, β > 0 and κ ∈ (0, 1), we set δ := κη − (1− κ)β as well as q := 2/(1− κ).
Then, there exists c′ > 0 such that

‖f‖W δ,q ≤ c′‖f‖κCη‖f‖1−κ
H−β , ∀f ∈ Cη ∩H−β .

Furthermore, for any γ > 0 such that (δ− γ)q > 1 there exists c′′ > 0 such that

‖f‖Cγ ≤ c′′‖f‖W δ,q , ∀f ∈ W δ,q .

Therefore, taking κ ∈ (2/3, 1), η = 1/2− ε and β = 1/2+ ε with ε small enough,
we deduce the statement of the lemma.

By the triangle inequality at the first line, we deduce that for all p ≥ 1 and
all η ∈ (0, 1/2)

sup
0≤s≤t

E
N
μN

[
‖ūN (t)− ūN (s)‖pCη(J)

]

≤ sup
0≤s≤t

E
N
μN

[(
‖ūN (t)‖Cη(J) + ‖ūN (s)‖Cη(J)

)p]
� sup

t≥0
E
N
μN

[
‖ūN (t)‖pCη(J)

]
.

Using the Hölder regularity of the interface under μN proved in Step 4 of the
previous section, the stationarity of the process uN and the definition of ūN , we
then deduce that for all p ≥ 1 and all η ∈ (0, 1/2)

sup
N≥1

sup
0≤s≤t

E
N
μN

[
‖ūN (t)− ūN (s)‖pCη(J)

]
< ∞ .

Using Lemmas 15 and 16 together with Hölder’s inequality, we deduce that there
exist γ, κ ∈ (0, 1) such that for all p ≥ 1

E
N
μN

[
‖ūN (t)− ūN (s)‖pCγ(J)

]
� (t− s)

p(1−κ)
2 ,

uniformly over all N ≥ 1 and all 0 ≤ s ≤ t ≤ T . Applying Kolmogorov’s
Continuity Theorem, we deduce that for all ν ∈

(
0, (1− κ)/2) and all p ≥ 1, we

have

sup
N≥1

E
N
μN

[
sup

s =t∈[0,T ]

‖ūN (t)− ūN (s)‖pCγ(J)

|t− s|νp
]
< ∞ .

We deduce that condition (33) is fulfilled by the process ūN . The next lemma
shows that uN and ūN are uniformly close on compact sets, so that (33) is also
fulfilled by the process uN , thus concluding the proof of tightness.

Lemma 17. For all p ≥ 1, limN→∞ E
N
μN

[
supt≤T ‖uN (t)− ūN (t)‖pC(J)

]
= 0.

Proof. For all k ∈ {0, . . . , 2N − 1} and all i ∈ N, we set

Bi,k :=
[ i

(2N)2
,
i+ 1

(2N)2

]
×
[ k

2N
,
k + 1

2N

]
, α ≥ 1 ,
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Bi,k :=
[ i

(2N)2α
,

i+ 1

(2N)2α

]
×
[ k −N

(2N)α
,
k + 1−N

(2N)α

]
, α < 1 .

Suppose that for all p ≥ 1 we have

E
N
μN

[
sup

(t,x)∈Bi,k

|uN (t, x)− ūN (t, x)|p
]
� (2N)−(α∧1) p

2 , (37)

uniformly over all i ∈ N and all k ∈ {0, . . . , 2N − 1}. Then, we deduce that

E
N
μN

[
sup
t≤T

‖uN (t)− ūN (t)‖pC(J)
]
� (2N)(α∧1)

(
3− p

2

)
,

uniformly over all N ≥ 1. This yields the statement of the lemma for p large
enough, and in turn, Jensen’s inequality ensures that it holds for all p ≥ 1.
Therefore, we are left with the proof of (37). For notational convenience, let us
consider the case α ≥ 1. We have

|uN (t, x)− ūN (t, x)| ≤
∑

j,�∈{0,1}
|uN (t, k + �)− uN ((i+ j)(2N)−2, k + �)| ,

for all (t, x) ∈ Bi,k, all i ∈ N, all k ∈ {0, . . . , 2N − 1} and all N ≥ 1. There
are four terms in the sum. For each of them, the supremum over (t, x) ∈ Bi,k of
the corresponding increment is stochastically bounded by 2/(2N)(α∧1)/2 times
a Poisson r.v. with mean 1. Computing the p-th moment of the latter yields
(37).

3.2. The Boltzmann-Gibbs principle

The next result is the main ingredient that we need for the identification of
the limit. We will work at the level of the particle system η ∈ {0, 1}2N . Under
the measure νN defined in (20), the η(k)’s are independent Bernoulli r.v. with
parameter qNk .

Let τk denote the shift by k modulo 2N : namely, τkη(j) = η(j + k) for all
j ∈ {1, . . . , 2N}. Let Ψ be a cylinder function, that is, a function Ψ : {0, 1}r → R

for some r ∈ N. As soon as r ≤ 2N , we can define Ψ(η) = Ψ(η(1), . . . , η(r)).
Then, we set

V N
Ψ (η) := Ψ(η)−Ψ̃N −rΨ̃′

N (η(1)−qN1 ) , Ψ̃N := νN
[
Ψ
]
, Ψ̃′

N := ∂qN1 νN
[
Ψ
]
.

as well as its shift by k

τkV
N
Ψ (η) := Ψ(τkη)− τkΨ̃N − r(τkΨ̃

′
N )(η(k + 1)− qNk+1) ,

where τkΨ̃N := νN
[
Ψ(τk·)

]
and τkΨ̃

′
N := ∂qNk+1

νN
[
Ψ(τk·)

]
. Notice that V N

Ψ and

all its shifts have zero expectation under νN .
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Proposition 18 (Boltzmann-Gibbs principle). Let ϕ be a continuous function
on [0, 1] if α ≥ 1, a continuous and compactly supported function on R if α < 1.
Then for every t > 0 we have

lim
N→∞

E
N
μN

[(∫ t

0

1√
2N

2N∑
k=1

τkV
N
Ψ (ηs)ϕ

( k

2N

))2
]
= 0 , α ≥ 1 ,

lim
N→∞

E
N
μN

[(∫ t

0

1

(2N)
α
2

2N∑
k=1

τkV
N
Ψ (ηs)ϕ

( k −N

(2N)α

))2
]
= 0 , α < 1 .

(38)

Note the specific scaling of the test function for α < 1: this is because in
the scaling limit we only ever look at the interface within a window of size Nα

around site N . When α ≥ 1, we consider the whole interface in the scaling limit.

This type of result is classical in the literature on fluctuations of particle
systems. However, our setting presents some specificities. First, our stationary
measure is not a product measure, but it can be obtained by conditioning the
product measure νN on the hyperplane of all configurations with N particles, as
we did in Section 2. Second, νN is the product of independent but non-identically
distributed Bernoulli measures; however the means of these Bernoulli measures
vary “smoothly” in space. Given these differences with the usual setting, we
provide the details of the proof, following the structure of the classical proof
provided in [27, Thm 11.1.1]. We restrict ourselves to proving the case α < 1,
as the case α ≥ 1 is actually simpler.

Proof. Let A > 0 be such that supp ϕ ⊂ [−A,A]. We adopt the notation ϕ(k)
for ϕ((k −N)/(2N)α) for simplicity. An important argument in the proof will
be the uniform absolute continuity of μN w.r.t. νN , when the measures are
restricted to the filtration generated by η(1), . . . , η(N +A(2N)α), which follows
as an immediate adaptation of Corollary 14. To prove the proposition, we let
K be an integer and we decompose {N − A(2N)α, . . . , N + A(2N)α} into M
disjoint, consecutive boxes of size 2K + 1 (except the last box that may be
of smaller size), that we denote by Bi, i = 1 . . .M . Necessarily M is of order
Nα/K. For each box Bi, we define its interior B◦

i as the subset of all points in
Bi which are at distance at least r + 1 from the complement of Bi. This being
given, we denote by Bc = ∪i(Bi\B◦

i ). We also let ki be an arbitrary point in
Bi, for each i. Then, we write

1

(2N)
α
2

2N∑
k=1

τkV
N
Ψ (η)ϕ(k) =

1

(2N)
α
2

∑
k∈Bc

τkV
N
Ψ (η)ϕ(k)

+
1

(2N)
α
2

M∑
i=1

∑
k∈B◦

i

τkV
N
Ψ (η)

(
ϕ(k)− ϕ(ki)

)

+
1

(2N)
α
2

M∑
i=1

∑
k∈B◦

i

τkV
N
Ψ (η)ϕ(ki) .

(39)
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The contribution to (38) of the first term on the right gives (using Jensen’s
inequality on the time integral, the stationarity of μN , the absolute continuity
of μN w.r.t. νN ):

E
N
μN

[(∫ t

0

1

(2N)
α
2

∑
k∈Bc

τkV
N
Ψ (ηs)ϕ(k)ds

)2
]

� t2μN

[( 1

(2N)
α
2

∑
k∈Bc

τkV
N
Ψ (η)ϕ(k)

)2
]

� t2νN

[( 1

(2N)
α
2

∑
k∈Bc

τkV
N
Ψ (η)ϕ(k)

)2
]
,

Using the independence of the η(i)’s under νN and the fact that the νN -
expectation of V N

Ψ is zero, we get

νN

[( 1

(2N)
α
2

∑
k∈Bc

τkV
N
Ψ (η)ϕ(k)

)2
]

� 1

(2N)α

∑
k∈Bc

∑
�∈Bc

νN

[
τkV

N
Ψ (η)τ�V

N
Ψ (η)ϕ(k)ϕ(�)

]

� 1

(2N)α

∑
k∈Bc

∑
�∈Bc:|�−k|≤r

νN

[
τkV

N
Ψ (η)τ�V

N
Ψ (η)ϕ(k)ϕ(�)

]

� r2
M

(2N)α
,

so that it vanishes when N → ∞ and then K → ∞. Similarly, the contribution
to (38) of the second term on the right of (39) vanishes N → ∞ and then
K → ∞. Let us deal with the third term, which is more delicate. For each i, we
set ξi = (η(k), k ∈ Bi) and we let LN

Bi
be the generator of our process restricted

to Bi and not sped up by (2N)2α:

LN
Bi
f(ξi) =

∑
k,k+1∈Bi

(
f(ξk,k+1

i )− f(ξ)
)(

pN (1− ξi(k))ξi(k + 1)

+ (1− pN )ξi(k)(1− ξi(k + 1))
)
.

Following the calculations made at Equation (1.2) and below, in the proof of [27,
Thm 11.1.1], we deduce that

lim
K→∞

inf
f

lim
N→∞

E
N
μN

[(∫ t

0

(2N)−
α
2

M∑
i=1

ϕ(ki)L
N
Bi
f(ξi(s))ds

)2
]
= 0 ,

so that it suffices to show that

lim
K→∞

inf
f

lim
N→∞

E
N
μN

[(∫ t

0

(2N)−
α
2

M∑
i=1

ϕ(ki)
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×
( ∑

k∈B◦
i

τkV
N
Ψ (ηs)− LN

Bi
f(ξi(s))

)
ds
)2
]
= 0 ,

where the infimum is taken over all f : {0, 1}2K+1 → R. Using Jensen’s inequal-
ity on the time integral, the stationarity of our dynamics w.r.t. μN and then
the absolute continuity property recalled above, we bound the expectation in
the last expression by a term of order

t2(2N)−ανN

[( M∑
i=1

ϕ(ki)
( ∑

k∈B◦
i

τkV
N
Ψ (ξi)− LN

Bi
f(ξi)

))2]
, (40)

uniformly over allN ≥ 1, allK ≥ 1 and all t ≥ 0. Recall that the νN -expectation
of V N

Ψ is zero, and observe that νN is reversible for our dynamics. Hence the
νN -expectation of ∑

k∈B◦
i

τkV
N
Ψ (ξi)− LN

Bi
f(ξi)

is also zero. Moreover, ξi and ξj being independent under νN as soon as i �= j,
we deduce that the expression in (40) can be rewritten as

t2(2N)−α
M∑
i=1

ϕ(ki)
2FN

K (i) � t2‖ϕ‖2
K

1

M

M∑
i=1

FN
K (i) ,

where

FN
K (i) = νN

[( ∑
k∈B◦

i

τkV
N
Ψ (ξi)− LN

Bi
f(ξi)

)2]
.

The main difference with the classical proof presented in [27, Thm 11.1.1] lies
in the following argument. Let K and f be as above. For every x ∈ (−A,A) let
j = j(N, x) ∈ {1, . . . ,M} such that

|kj −N − x(2N)α| = min
i∈{1,...,M}

(|ki −N − x(2N)α|) .

Recall the definition of qNk given below (20). As N → ∞, qNkj
converges to

q(x) := (1 + L′(−2σx))/2 and

FN
K (j(N, x)) → FK(x) := ν

q(x)
K

[( 2K−r+1∑
k=r

τkV
q(x)
Ψ (ξ)− Lsym

K f(ξ)
)2]

,

where νqK is the product of 2K + 1 Bernoulli measures with parameter q, V q
Ψ is

defined by
V q
Ψ(ξ) = Ψ(ξ)− νqK

[
ξ
]
− ∂q(ν

q
K

[
ξ
]
)(ξ(1)− q) ,

and Lsym

K is the generator of the simple exclusion process on {0, 1}2K+1, that is

Lsym

K f(ξ) =
1

2

2K∑
k=1

(
f(ξk,k+1)− f(ξ)

)
.
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Since FN
K (i) is bounded uniformly over all i and all N ≥ 1, we deduce that

1

M

M∑
i=1

FN
K (i) → 1

2A

∫ A

−A

FK(x)dx ,

as N → ∞. Let Q = {q(x), x ∈ [−A,A]}, and observe that it is a compact
subset of (0, 1). Putting everything together, we deduce that

lim
N→∞

E
N
μN

[(∫ t

0

(2N)−
α
2

M∑
i=1

ϕ(ki)
( ∑

k∈B◦
i

τkV
N
Ψ (ηs)− LN

Bi
f(ξi(s))

)
ds
)2
]

� 1

K
sup
q∈Q

νqK

[( 2K−r+1∑
k=r

τkVΨ(ξ)− Lsym

K f(ξ)
)2]

,

uniformly over all f and all K as above. The supremum on the right is achieved
for some q0 by continuity and compactness. Then, we can directly apply the
arguments below Equation (1.3) in the proof of [27, Thm 11.1.1], which prove
that the infimum over f of the latter expression vanishes as K → ∞, thus
concluding the proof of the Boltzmann-Gibbs principle.

3.3. Identification of the limit

We treat in details the convergence of the processes uN when α < 1, the argu-
ments for α ≥ 1 are essentially the same. Let us introduce a few notations first.
We write 〈f, g〉 for the usual L2(R, dx) product as well as

〈f, g〉N :=
1

(2N)α

2N∑
k=1

f
(k −N

(2N)α

)
g
( k −N

(2N)α

)
,

for the discrete L2 product, and

∇f(x) := f(x+ (2N)−α)− f(x) , Δf(x) := ∇f(x)−∇f(x− (2N)−α) ,

for the discrete gradient and Laplacian. Let us state a classical result of the
theory of stochastic PDEs.

Proposition 19 (Martingale problem). Let (u(t, x), x ∈ R, t ≥ 0) be a contin-
uous process such that E[‖u(0, ·)‖∞] < ∞ and for all ϕ ∈ C∞

c (R), the processes
M(ϕ) and L(ϕ) are continuous martingales where

Mt(ϕ) = 〈u(t), ϕ〉 − 〈u(0), ϕ〉 − 1

2

∫ t

0

〈
u(s), ∂2

xϕ+ 4σ∂x
(
ϕ∂xΣα

)〉
ds ,

Lt(ϕ) = Mt(ϕ)
2 − t〈ϕ,ϕ

(
1− (∂xΣα)

2
)
〉 .

Then, u solves (7) started from the initial profile u(0, ·).
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Proof of Theorem 4. We treat in details the case α < 1. By Subsection 3.1, we
already know that (uN )N≥1 is a tight sequence in D([0,∞), C(R)). Since the sizes
of the jumps are vanishing with N , any limit point lies in C([0,∞), C(R)). Let
us consider an arbitrary convergent subsequence (uNi)i≥1 and let u be its limit.
We only need to check that u satisfies the Martingale problem of Proposition 19.
Our starting point is the stochastic differential equations solved by the discrete
process. Namely, for all ϕ ∈ C∞

c (R), we set

MN
t (ϕ) :=〈uN (t), ϕ〉N − 〈uN (0), ϕ〉N − 1

2

∫ t

0

〈
uN (s), (2N)2αΔϕ

〉
N
ds

− (2N)
3α
2

∫ t

0

〈1
2
ΔΣN

α (·) + (2pN − 1)1{ΔS(s,·) =0}, ϕ
〉
N
ds ,

where we have abbreviated ΔS(s(2N)2α, N+·(2N)α) into ΔS(s, ·) for simplicity.
Then, MN (ϕ) is a martingale, as well as LN

t (ϕ) := MN
t (ϕ)2 − 〈MN

· (ϕ)〉t where

〈MN
· (ϕ)〉t =

∫ t

0

4
〈
pN1{ΔS(s,·)>0} + (1− pN )1{ΔS(s,·)<0}, ϕ

2
〉
N
ds

=

∫ t

0

2
〈
1{ΔS·(s) =0}, ϕ

2
〉
N
ds+O(N−α) .

Notice the similarity between MN (ϕ), LN (ϕ) and M(ϕ), L(ϕ). In order to pass
to the limit along the subsequence Ni, we need to deal with the indicators in the
expressions above. To that end, we set Ψ(η) = η(1)(1− η(2)) + (1− η(1))η(2),
which is nothing else than the indicator of the event {ΔS(1) �= 0}, and we aim at
applying the Boltzmann-Gibbs principe of Proposition 18. A simple calculation
yields

Ψ̃N = qN1 (1−qN2 )+(1−qN1 )qN2 , Ψ̃′
N = 1−2qN2 , 2pN−1 =

2σ

(2N)α
+O(N−2α) .

By Proposition 18, the error made upon replacing the indicators in MN and
LN by τ·Ψ̃N + 2τ·Ψ̃

′
N (ηs(· + 1) − qN·+1) vanishes in probability as N → ∞. We

are left with computing

(2N)
α
2

2N∑
k=1

(1
2
ΔΣN

α

( k −N

(2N)α

)
+ (2pN − 1)τkΨ̃N (41)

+ 2(2pN − 1)τkΨ̃
′
N (ηs(k + 1)− qNk+1)

)
ϕ
( k −N

(2N)α

)
, (42)

as well as

1

(2N)α

2N∑
k=1

(
τkΨ̃N + 2τkΨ̃

′
N (ηs(k + 1)− qNk+1)

)
ϕ2
( k −N

(2N)α

)
.

We have the identities L′(hN
k ) = 2qNk − 1 and

∇uN
(
s,

k −N

(2N)α

)
=

2(ηs(k + 1)− qNk+1)

(2N)α/2
, τkΨ̃N =

1

2

(
1−L′(hN

k )2
)
+O(N−α) ,
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uniformly over all k. By a simple integration by parts, we get

2(2pN − 1)(2N)
α
2

2N∑
k=1

τkΨ̃
′
N (ηs(k + 1)− qNk+1)ϕ

( k −N

(2N)α

)

=
2σ

(2N)α

2N∑
k=1

uN
(
s,

k −N

(2N)α

)
(2N)α∇

(
L′(hN

k )ϕ
( k −N

(2N)α

))
+O(N−α) .

Furthermore, the identity L′′ = 1 − (L′)2 together with the expression of ΣN
α

yield
1

2
ΔΣN

α

( k −N

(2N)α

)
+ (2pN − 1)τkΨ̃

N = O(N−2α) ,

uniformly over all k. Putting everything together, we deduce that MN
t (ϕ) and

LN
t (ϕ) converge in probability to Mt(ϕ) and Lt(ϕ) along the convergent subse-

quence uNi . This completes the proof of Theorem 4.

4. Hydrodynamic limit

4.1. The replacement lemma

The goal of this subsection is to establish the so-called replacement lemma that
allows to replace averages of non-linear functionals applied to the particle system
by non-linear functionals applied to averages of the particle system. This lemma
will be needed in the proof of the hydrodynamic limit.

In this subsection, we work at the level of the particle system ηt, t ≥ 0 where

ηt(k) =
1 +X(t(2N)(1+α)∧2, k)

2
.

Even though the model was defined on systems of N particles, the dynamics
still makes sense when the total number of particles is any integer between 0
and 2N .

We need to introduce some notations. Let r ≥ 1 be an integer and Φ :
{0, 1}r → R. For all η ∈ {0, 1}2N and as soon as 2N ≥ r, we define

Φ(η) := Φ
(
η(1), . . . , η(r)

)
.

We also introduce the expectation of Φ under a product of Bernoulli measures
with parameter a ∈ [0, 1]:

Φ̃(a) :=
∑

η∈{0,1}r

Φ(η)a#{i:η(i)=1}(1− a)#{i:η(i)=0} . (43)

We let T�(i) := {i− �, i− �+ 1, . . . , i+ �} be the box of size 2�+ 1 around site
i, and for any sequence a(k), k ∈ Z, we define its average over T�(i) as follows:

MT�(i)a :=
1

2�+ 1

i+�∑
k=i−�

a(k) .
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For every k ∈ Z, we define the shift operator τk as follows

τkη(�) := η(�+ k) , � ∈ {1, . . . , 2N} ,

where �+k is taken modulo 2N . We consider the sequence Φ(η)(k) := Φ(τkη) and
the associated averages MT�(i)Φ(η). In the sequel, we will need a “replacement
lemma” that bounds the following quantity

V�(η) =
∣∣∣MT�(0)Φ(η)− Φ̃

(
MT�(0)η

)∣∣∣ .
Informally, if this quantity is small, this says that one can replace the average
on a large box of some function Φ evaluated at the particle system η, by the
expectation of Φ under a product of Bernoulli measures whose parameter equals
the density of η on this large box.

The replacement lemma works for all initial conditions when α ≥ 1. On the
other hand, when α < 1, we make the following assumption.

Assumption 20. For all N ≥ 1, the initial condition ιN is a product measure
on {0, 1}2N of the form ⊗2N

k=1Be(f(k/2N)), where f : [0, 1] → [0, 1] is assumed
to be piecewise constant and does not depend on N .

We can probably relax this assumption, but it is sufficient for our purpose.

Theorem 21 (Replacement lemma). Let α ∈ (0,∞) and let ιN be a measure
on {0, 1}2N . For α ∈ (0, 1), we suppose that Assumption 20 is fulfilled. Then,
for every δ > 0, we have

lim
ε↓0

lim
N→∞

P
N
ιN

(∫ t

0

1

N

2N∑
k=1

VεN (τkηs)ds ≥ δ
)
= 0 . (44)

The proof of this theorem relies on the classical one-block and two-blocks
estimates. First, let us introduce the Dirichlet form associated to our dynamics:

DN (f) = −
∑
η

√
f(η)LN

√
f(η) νN (η) ,

where f : {0, 1}2N → R+ and LN is the generator of our sped up process, that
is

LNg(η) = (2N)(1+α)∧2
2N−1∑
k=1

(
g(ηk,k+1)− g(η)

)(
pN η(k + 1)(1− η(k))

+ (1− pN ) η(k)(1− η(k + 1))
)
,

where ηk,k+1 is obtained from η by permuting the values at sites k and k + 1.
Notice that the reference measure in the Dirichlet form is taken to be the

reversible measure νN , which was defined in Section 2. Recall that νN is sup-
ported by the whole set {0, 1}2N , but its restriction to the hyperplane with N
particles coincides with the measure μN up to a multiplicative constant.

In the statements of the lemmas below, the function f will always be non-
negative and such that νN [f ] = 1.
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Lemma 22 (One-block estimate). For any α > 0 and any C > 0, we have

lim
�→∞

lim
N→∞

sup
f :DN (f)≤CN(2−α)∨1

1

N

2N∑
k=1

νN

[
V�(τkη)f(η)

]
= 0 .

The proof is an adaptation of Kipnis, Olla and Varadhan [28].

Proof. In this proof, ξ always denotes an element of {0, 1}2�+1 and η an element
of {0, 1}2N . The identity η|T�(i) = ξ will be an abusive notation for η(i− �− 1+
j) = ξ(j) for all j ∈ {1, . . . , 2�+ 1}. Recall that Φ only depends on r sites.

First, let us observe that we can restrict the sum over k to RN
� := {� +

1, . . . , 2N − �} since the remaining terms have a negligible contribution. Second,
we have the following identity

1

N

∑
k∈RN

�

νN

[
V�(τkη)f(η)

]
=

1

N

∑
k∈RN

�

∑
ξ

∑
η:η|T�(k)=ξ

V�(ξ)f(η)νN (η) +O(�−1) ,

(45)
uniformly over all densities f . LetD∗ denote the Dirichlet form of the symmetric
simple exclusion process on {0, 1}2�+1, that is

D∗(g) =
1

4

∑
ξ

2−(2�+1)
2�∑
j=1

(√
g(ξj,j+1)−

√
g(ξ)

)2

.

Let us introduce

f�(ξ) :=
1

#RN
�

∑
i∈RN

�

∑
η:η|T�(i)

=ξ

νN (η)f(η) .

Since νN [f ] = 1, we immediately deduce that
∑

ξ f�(ξ) = 1. Recall the inequality

(√∑
i

ai −
√∑

i

bi

)2

≤
∑
i

(√
ai −

√
bi
)2

,

that holds for all summable sequences ai, bi ≥ 0. Using this inequality, one gets
the bound

D∗(f�) �
�2−2�

#RN
� (2N)2∧(1+α)

DN (f) ,

uniformly over all densities f , all � ≥ 1 and all N ≥ 1. Notice that #RN
� =

2N − 2�. Combining the last bound with (45), we deduce that we only need to
show

lim
�→∞

lim
N→∞

sup
g:D∗(g)≤ C′�

(2N)2(α∧1)

F (g) = 0 , (46)

where the supremum is taken over all g : {0, 1}2�+1 → R+ such that
∑

ξ g(ξ) = 1,
and where F (g) :=

∑
ξ V�(ξ)g(ξ). By the lower semi-continuity of the Dirichlet
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form, {g : D∗(g) ≤ C′�
(2N)2(α∧1) } is a closed subset of the compact set of all

densities g and is therefore a compact set. Let gN be an element for which F
reaches its maximum over this compact set. We claim that

lim
N→∞

F (gN ) ≤ sup
g:D∗(g)=0

F (g) .

Indeed, there exists a subsequence of (gN )N whose image through F converges
to the l.h.s. One can extract another sub-subsequence that converges to some
element g∞. Necessarily g∞ is a density and D∗(g∞) = 0, thus yielding the
claim.

Notice that {g : D∗(g) = 0} is the set formed by all convex combinations
of the measures π�,k, k ∈ {0, . . . , 2� + 1} where π�,k is the uniform measure on
the subset of {0, 1}2�+1 with k particles (which is irreducible for our dynamics).
Henceforth, we have to show

lim
�→∞

sup
k=0,...,2�+1

∑
ξ

V�(ξ)π�,k(ξ) = 0 .

This can be done using a Local Limit Theorem, see [27, Step 6 Chapter 5.4].

Lemma 23 (Two-blocks estimate). For any α ≥ 1 and any C > 0, we have

lim
�→∞

lim
ε↓0

lim
N→∞

sup
f :DN (f)≤CN

1

N

2N−1∑
k=1

1

(2εN + 1)2

× νN

[ ∑
j:|j−k|≤εN

∑
j′:|j′−k|≤εN

∣∣∣MT�(j′)(η)− MT�(j)(η)
∣∣∣f(η)] = 0 .

For α < 1, if ιN satisfies Assumption 20, we have for all t, δ > 0

lim
�→∞

lim
ε↓0

lim
N→∞

1

N

2N−1∑
k=1

1

(2εN + 1)2

∑
j:|j−k|≤εN

∑
j′:|j′−k|≤εN

×
∫ t

0

P
N
ιN

(∣∣MT�(j′)(ηs)− MT�(j)(ηs)
∣∣ ≥ δ

)
ds = 0 .

The proof in the case α ≥ 1 is due to Kipnis, Olla and Varadhan [28].

Proof of Lemma 23, α ≥ 1. We can restrict the sum to all k ∈ RN
ε where RN

ε :=
{�εN�, . . . , 2N − �εN�}, since the contribution of the remaining terms is negli-
gible. We can also restrict the sum over j, j′ to the set

J(k) := {(j, j′) : |j − k| ≤ εN, |j′ − k| ≤ εN, j′ > j + 2�} .

Notice that #J(k) = #J does not depend on k and that it is of order (εN)2 as
long as � is small compared to εN . Therefore, we have to control

1

N

∑
k∈RN

ε

1

#J
νN

[ ∑
(j,j′)∈J(k)

∣∣∣MT�(j′)(η)− MT�(j)(η)
∣∣∣f(η)] .
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From now on, (ξ1, ξ2) will always denote an element of {0, 1}2�+1 × {0, 1}2�+1,
and η an element of {0, 1}2N . We set

D1(g) :=
1

4

∑
ξ1,ξ2

2−2(2�+1)
2�∑

n=1

(√
g(ξn,n+1

1 , ξ2)−
√
g(ξ1, ξ2)

)2
,

D2(g) :=
1

4

∑
ξ1,ξ2

2−2(2�+1)
2�∑

n=1

(√
g(ξ1, ξ

n,n+1
2 )−

√
g(ξ1, ξ2)

)2
,

D◦(g) :=
1

4

∑
ξ1,ξ2

2−2(2�+1)
2�∑

n=1

(√
g((ξ1, ξ2)◦)−

√
g(ξ1, ξ2)

)2
,

where (ξ1, ξ2)
◦ is obtained from (ξ1, ξ2) upon exchanging the values of ξ1(�+1)

and ξ2(�+ 1). Let us now set

f�(ξ1, ξ2) :=
∑

k∈RN
ε

1

#RN
ε #J

∑
(j,j′)∈J(k)

∑
η:

η|T�(j)
=ξ1

η|T�(j
′)=ξ2

f(η)νN (η) .

Notice that
∑

ξ1,ξ2
f�(ξ1, ξ2) = 1. As in the proof of Lemma 22, we get the

bounds

D1(f�) �
�

N3
DN (f) , D2(f�) �

�

N3
DN (f) ,

uniformly over all � and all densities f . On the other hand, we have the bound

D◦(f�) �
∑
ξ1,ξ2

∑
k∈RN

ε

1

#RN
ε #J

∑
(j,j′)∈J(k)

∑
η:

η|T�(j)
=ξ1

η|T�(j
′)=ξ2

νN (η)
(√

f(ηj,j′)−
√
f(η)

)2

.

Observe that we have

ηj,j
′
=
(
. . .

(((
. . .

(
(ηj,j+1)j+1,j+2

)
. . .

)j′−1,j′
)j′−2,j′−1)

. . .
)j,j+1

.

This induces a chain of configurations η0 = η, η1 = ηj,j+1, . . ., η2(j′−j)−1 = ηj,j
′
.

Then we write

(√
f(ηj,j′)−

√
f(η)

)2

≤ (2(j′ − j)− 1)

2(j′−j)−1∑
m=1

(√
f(ηm)−

√
f(ηm−1)

)2

.

A simple calculation then yields the following bound:

D◦(f�) �
(εN)2

N

DN (f)

(2N)2
.

By similar arguments as in the proof of Lemma 22, we deduce that it suffices to
show that

lim
�→∞

sup
D1(g)=D2(g)=D◦(g)=0

∑
ξ1,ξ2

∣∣∣MT�(0)ξ1 − MT�(0)ξ2

∣∣∣g(ξ1, ξ2) = 0 .
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The set {g : D1(g) = D2(g) = D◦(g) = 0} is the set of all convex combinations of
the measures m�,k, where m�,k is the uniform measure on {0, 1}2�+1×{0, 1}2�+1

with k particles, k = 0, 1, . . . , 4�+ 2. Consequently, it suffices to show

lim
�→∞

sup
k=0,...,4�+2

∑
ξ1,ξ2

∣∣∣MT�(0)ξ1 − MT�(0)ξ2

∣∣∣m�,k(ξ1, ξ2) = 0 .

A computation shows that this quantity vanishes, thus concluding the proof.

The proof in the case α < 1 is due to Rezakhanlou, we only adapt the
arguments in [36, Lemma 6.6].

Proof of Lemma 23, α ∈ (0, 1). We rely on the coupling (ηNt , ζNt ), t ≥ 0, intro-
duced in Subsection 4.3: ζN is stationary with law ⊗2N

k=1Be(c), η
N follows the

same dynamics as before, η0 has law ιN , (η0, ζ0) is ordered as follows:

ιN [η0(k)] ≥ c ⇔ η0(k) ≥ ζ0(k) ,

and the dynamics preserves the ordering (see Subsection 4.3 for more details).
Forthcoming Lemma 35 shows that the number n(t) of changes of sign of

k �→ ηt(k) − ζt(k) is bounded by a constant C > 0 for all t ≥ 0 and all N ≥ 1.
We deduce that on the box T2εN (k) and for all t ≥ 0, either ηt ≥ ζt or ηt ≤ ζt
except for at most 2CεN integers k’s in {1, . . . , 2N}. Consequently, except for
at most 2CεN integers k, we have for all j such that |j−k| ≤ εN and all � ≤ εN :

MT�(j)(ηt) ≤ MT�(j)(ζt) , and MT2εN (j)(ηt) ≤ MT2εN (k)(ζt) ,

or
MT�(j)(ηt) ≥ MT�(j)(ζt) , and MT2εN (j)(ηt) ≥ MT2εN (k)(ζt) .

With a probability going to 1 as N → ∞, ε ↓ 0 and � → ∞, we can replace the
averages of ζt by the value c. Therefore, for any given δ > 0:

lim
�→∞

lim
ε↓0

lim
N→∞

1

N

2N∑
k=1

1

2εN + 1

∑
|j−k|≤εN

P
N
ιN

(
MT�(j)(ηt),MT2εN (j)(ηt) ≤ c+ δ ,

or MT�(j)(ηt),MT2εN (j)(ηt) ≥ c− δ
)
= 1 .

Applying this reasoning simultaneously for all values c ∈ (δZ)∩ [0, 1], we deduce
that

lim
�→∞

lim
ε↓0

lim
N→∞

1

N

2N∑
k=1

1

2εN + 1

∑
|j−k|≤εN

× P
N
ιN

(
|MT�(j)(ηt)− MT2εN (j)(ηt)| < 2δ

)
= 1 .

Consequently, for any t ≥ 0

lim
�→∞

lim
ε↓0

lim
N→∞

1

N

2N−1∑
k=1

1

(2εN + 1)2

∑
j:|j−k|≤εN

∑
j′:|j′−k|≤εN
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× P
N
ιN

(∣∣MT�(j′)(ηt)− MT�(j)(ηt)
∣∣ ≥ 4δ

)
= 0 .

The Dominated Convergence Theorem completes the proof.

We also need the following technical lemma.

Lemma 24. Let G : {0, 1}2N → R+. For any t > 0 there exists C > 0 such
that for any initial probability measure ιN on {0, 1}2N we have

P
N
ιN

(∫ t

0

G(ηs)ds ≥ δ
)
≤ δ−1t sup

f :DN (f)≤CN1∨(2−α)

∑
η

νN (η)G(η)f(η) ,

where the supremum is taken over all f : {0, 1}2N → R+ such that νN [f ] = 1.

Proof. Denote by PN
t the semigroup associated to our discrete dynamics and

by fN
t the density of the measure ιNPN

t w.r.t. the measure νN . In other words,
fN
t is the density w.r.t. νN of the law of our process starting from the initial
distribution ιN . Since the dynamics is reversible w.r.t. νN , the operator LN is
self-adjoint in L2(νN ) and we have:

fN
0 =

dιN
dνN

, ∂tf
N
t = LNfN

t .

Let us collect a bound on DN ( 1t
∫ t

0
fN
s ds) following the lines of [27, Section 5.2].

To that end, we recall the definition of the entropy of some measure π w.r.t. to
the measure νN :

HN (π|νN ) := νN

[
dπ

dνN
log

dπ

dνN

]
=
∑
η

νN (η)
dπ

dνN
(η) log

dπ

dνN
(η) .

In the case where π = ιNPN
t , we will write HN (fN

t |νN ) for simplicity.
We have:

∂tHN (fN
t |νN ) =

∑
η

log(fN
t )(η)LN

(
fN
t (η)

)
νN (η) +

∑
η

LN
(
fN
t (η)

)
νN (η) .

Since νN is invariant under the dynamics the second term on the right vanishes
and since LN is self-adjoint in L2(νN ) we can rewrite the first term as follows

=
∑
η

LN
(
log(fN

t )(η)
)
fN
t (η)νN (η) .

From the elementary inequality log x ≤ x−1 that holds for all x ≥ 0, by setting
x =

√
b/a we deduce that a log b/a ≤ 2

√
a(
√
b−√

a) holds for all a, b ≥ 0. Thus
we get for every k

fN
t (η)(log(fN

t )(ηk,k+1)− log(fN
t )(η)) ≤ 2

√
fN
t (η)(

√
fN
t (ηk,k+1)−

√
fN
t (η)) ,
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and consequently

∑
η

LN
(
log(fN

t )(η)
)
fN
t (η)νN (η) ≤ 2

∑
η

√
fN
t (η)LN

(√
fN
t (η)

)
νN (η)

= −2DN (fN
t (η)) .

We thus get

HN (fN
t |νN ) + 2

∫ t

0

DN (fN
s (η)) ≤ HN (fN

0 ) .

The convexity of the Dirichlet form and the positivity of the entropy yield

DN (
1

t

∫ t

0

fN
s ds) ≤ 1

t

∫ t

0

DN (fN
s )ds ≤ 1

2t
HN (fN

0 ) .

Let us estimate this last quantity. Using the inequality x log x ≤ 0 that holds
for all x ≤ 1 we have

HN (fN
0 ) = HN (ιN ) = ιN

[
log

dιN
dνN

]
=
∑
η

ιN (η)
(
log ιN (η)− log νN (η)

)

≤
∑
η

ιN (η) log(1/νN (η))

≤ max
η

log(1/νN (η)) .

From the definition of νN given in (19), we deduce that

1/νN (η) = 22N
( pN
1− pN

)−A(S)
2

eLS(hN )+ 2σ
(2N)α (N+ 1

2 )S(2N) ,

where S is the height function associated to η. Maximising over η this quantity,
we find

max
η

1/νN (η) ≤ 22N
( pN
1− pN

)(2N)2

eLS(hN )+2σ(2N)2−α

.

Using the computations made in the proof of Proposition 3, we deduce that
there exists C > 0 such that for all N ≥ 1 we have

HN (fN
0 ) ≤ CN1∨(2−α) .

Let G : {0, 1}2N → R+. For any measure ιN we have

P
N
ιN

(∫ t

0

G(ηs)ds ≥ δ
)
≤ δ−1

E
N
ιN

[ ∫ t

0

G(ηs)ds

]

≤ δ−1t
∑
η

(
1

t

∫ t

0

ιNPN
s ds)(η)G(η)
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≤ δ−1t sup
f :DN (f)≤ C

2tN
1∨(2−α)

∑
η

νN (η)G(η)f(η) ,

where the supremum is taken over all f : {0, 1}2N → R+ such that νN [f ] =
1.

We now proceed to the proof of the Replacement Lemma.

Proof of Theorem 21. Fix � ≥ 1. Following the calculation performed on p.120
of [28], we get

VεN (τkη) =
∣∣∣ 1

2εN + 1

∑
|j−k|≤εN

τjΦ(η)− Φ̃
( 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
)∣∣∣

≤ 1

2εN + 1

∑
|j−k|≤εN

∣∣∣ 1

2�+ 1

∑
|n−j|≤�

τnΦ(η)

− Φ̃
( 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
)∣∣∣+O(�/N)

where the last term is uniform over all k and η. Then, we write

1

2εN + 1

∑
|j−k|≤εN

∣∣∣ 1

2�+ 1

∑
|n−j|≤�

τnΦ(η)− Φ̃
( 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
)∣∣∣

≤ 1

2εN + 1

∑
|j−k|≤εN

∣∣∣ 1

2�+ 1

∑
|n−j|≤�

τnΦ(η)− Φ̃
( 1

2�+ 1

∑
|n−j|≤�

η(n)
)∣∣∣

+
1

2εN + 1

∑
|j−k|≤εN

∣∣∣Φ̃( 1

2�+ 1

∑
|n−j|≤�

η(n)
)
− Φ̃

( 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
)∣∣∣ .

The latter term can be bounded as follows

1

2εN + 1

∑
|j−k|≤εN

∣∣∣Φ̃( 1

2�+ 1

∑
|n−j|≤εN

η(n)
)
− Φ̃

( 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
)∣∣∣

≤ ‖Φ̃′‖∞
2εN + 1

∑
|j−k|≤εN

∣∣∣ 1

2�+ 1

∑
|n−j|≤�

η(n)− 1

2εN + 1

∑
|j′−k|≤εN

η(j′)
∣∣∣

≤ ‖Φ̃′‖∞
(2εN + 1)2

∑
|j−k|≤εN

∑
|j′−k|≤εN

∣∣∣ 1

2�+ 1

∑
|n−j|≤�

η(n)− 1

2�+ 1

∑
|n−j′|≤�

η(n)
∣∣∣

+O(�/N) .

Putting everything together, we showed that:

VεN (τkη) ≤
‖Φ̃′‖∞

(2εN + 1)2

∑
j:|j−k|≤εN

∑
j′:|j′−k|≤εN

∣∣∣MT�(j′)(η)− MT�(j)(η)
∣∣∣

+
1

2εN + 1

∑
j:|j−k|≤εN

V�(τjη) +O
( �

N

)
,

(47)
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where the O
(

�
N

)
is uniform in k and η, so that it has a negligible contribution

in (44) when N → ∞ and then � → ∞.
To control the contribution of the second term of (47), we apply Lemma 24

with the map

G(η) =
1

N

2N∑
k=1

1

2εN + 1

∑
j:|j−k|≤εN

V�(τjη) .

We obtain:

P
N
ιN

(∫ t

0

1

N

2N∑
k=1

1

2εN + 1

∑
j:|j−k|≤εN

V�(τjηs)ds ≥ δ
)

≤ δ−1t sup
f :DN (f)≤CN1∨(2−α)

νN

[
1

N

2N∑
k=1

1

2εN + 1

∑
j:|j−k|≤εN

V�(τjη)f(η)

]
,

so that Lemma 22 ensures that this term has a vanishing contribution as N →
∞, ε ↓ 0 and then � → ∞.

Similarly, for α ≥ 1 the contribution of the first term of (47) is handled by
applying Lemma 23 combined with the bound of Lemma 24.

For α < 1, the contribution of the first term of (47) is dealt with as follows.
Using the Markov inequality, we get

P
N
ιN

(∫ t

0

1

N

2N∑
k=1

‖Φ̃′‖∞
(2εN + 1)2

∑
j:|j−k|≤εN
j′:|j′−k|≤εN

∣∣∣MT�(j′)(ηs)− MT�(j)(ηs)
∣∣∣ds ≥ δ

)

≤ δ−1 1

N

2N∑
k=1

‖Φ̃′‖∞
(2εN + 1)2

∑
j:|j−k|≤εN
j′:|j′−k|≤εN

∫ t

0

E
N
ιN

[∣∣MT�(j′)(ηs)− MT�(j)(ηs)
∣∣]ds .

(48)

Then, for any κ > 0 we write

E
N
ιN

[∣∣MT�(j′)(ηs)−MT�(j)(ηs)
∣∣] ≤ P

N
ιN

(∣∣MT�(j′)(ηs)−MT�(j)(ηs)
∣∣ ≥ δκ

)
+ δκ ,

where we have used the fact that MT�(j)(η) belongs to [0, 1] for all �, j, η. By
Lemma 23, we deduce that (48) goes to 0 as N → ∞, ε ↓ 0 and � → ∞. This
concludes the proof.

4.2. Hydrodynamic limit: The parabolic case

The goal of this subsection is to prove Theorem 5 for α ∈ [1,∞). We start with
the proof of tightness, and then we identify the limit. This second task is carried
out separately according as α > 1 or α = 1: this is because the limiting PDEs
are different and a special treatment is necessary in the second case. We write
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P
N for the law of the process involved in the statements. Recall that we write

mN (t, k) instead of mN (t, k/2N) for simplicity.
To prove tightness of the sequence mN in the Skorohod space D([0,∞),

C([0, 1])), it suffices to show that the sequence mN (t = 0, ·) is tight in C([0, 1]),
and that we have for any T > 0

lim
h↓0

lim
N→∞

E
N
[

sup
t,s≤T,|t−s|≤h

‖mN (t, ·)−mN (s, ·)‖∞
]
= 0 . (49)

The former is actually a hypothesis of our theorem. To prove the latter, we
introduce a piecewise linear time interpolation of mN , namely we set tN :=
�t(2N)2� and

m̄N (t, ·) :=
(
tN + 1− t(2N)2

)
mN

( tN
(2N)2

, ·
)

+
(
t(2N)2 − tN

)
mN

( tN + 1

(2N)2
, ·
)
.

This process is continuous in time so that one can hope that it is (uniformly
in N) Hölder continuous in space-time. If such a property holds true, then we
get tightness of mN if we are able to control the distance between mN and m̄N :
this is the content of the next lemma.

Lemma 25. For all T > 0, we have

lim
N→∞

E
N
[

sup
t∈[0,T ]

‖mN (t, ·)− m̄N (t, ·)‖∞
]
= 0 .

The proof of this lemma is almost the same as the proof of Lemma 17, so we
omit it. This result ensures that it is actually sufficient to show (49) with mN

replaced by m̄N in order to get tightness.
The following proposition ensures that m̄N satisfies (49).

Proposition 26. For any T > 0, there exists δ > 0 such that

sup
N≥1

E
N

[
sup

0≤s<t≤T

‖m̄N (t, ·)− m̄N (s, ·)‖∞
|t− s|δ

]
< ∞ .

Before we proceed to the proof of this proposition, we need to collect a few
preliminary results. The stochastic differential equations solved by the discrete
process mN are given by

dmN (t, �) =
(2N)2

2
ΔmN (t, �)dt

+ (2N)(2pN − 1)1{ΔS(t(2N)2,�) =0}dt+ dMN (t, �) ,

where MN is a martingale with bracket given by

d〈MN (·, �)〉t = 4
(
pN1{ΔS(t(2N)2,�)>0} + (1− pN )1{ΔS(t(2N)2,�)<0}

)
dt .
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If we let pNt (k, �) be the fundamental solution of the discrete heat equation:⎧⎪⎨
⎪⎩
∂tp

N
t (k, �) = (2N)2

2 ΔpNt (k, �) ,

pN0 (k, �) = δk(�) ,

pNt (k, 0) = pNt (k, 2N) = 0 ,

then it is simple to check that we have

mN (t, �) =
∑
k

pNt (k, �)mN (0, k) +N t
t (�)

+ (2N)(2pN − 1)

∫ t

0

∑
k

pNt−s(k, �)1{ΔS(s(2N)2,k) =0}ds ,
(50)

where N t
s(�) is the martingale defined by

N t
s(�) :=

∫ s

0

∑
k

pNt−r(k, �)dM
N (r, k) , s ∈ [0, t] .

Lemma 27. For all δ ∈ (0, 1
2 ), all T > 0 and all p ≥ 1, we have

E
N
[
|mN (t′, x)−mN (t, x)|p

] 1
p � |t′ − t|δ + 1√

2N
, (51)

uniformly over all t′, t ∈ [0, T ], all x ∈ [0, 1] and all N ≥ 1.

Observe that the term 1/
√
2N reflects the discontinuous nature of the process

mN .

Proof. Let t′ > t. Given the expression (50), the increment mN (t′, �)−mN (t, �)
can be written as the sum of three terms: the contribution of the initial condition,
of the asymmetry and of the martingale terms. We bound separately the p-th
moments of these three terms. First, we let p̄N be the fundamental solution of
the discrete heat equation on the whole line Z:{

∂tp̄
N
t (�) = (2N)2

2 Δp̄Nt (�) ,

p̄N0 (�) = δ0(�) ,

Contrary to pN , p̄N is translation invariant. Let us also extend mN into a
function on the whole line Z: we simply consider the 4N -periodic, odd function
that coincides with mN on [0, 2N ]. By symmetry for every � ∈ {0, . . . , 2N} and
all t ≥ 0 we have

∑
k∈Z

p̄Nt (�− k)mN (0, k) =

2N−1∑
k=1

pNt (k, �)mN (0, k) .

Therefore,

2N−1∑
k=1

(
pNt′ (k, �)− pNt (k, �)

)
mN (0, k)
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=
∑
k∈Z

(
p̄Nt′ (�− k)− p̄Nt (�− k)

)
mN (0, k)

=
∑
k∈Z

p̄Nt (k)
∑
j∈Z

p̄Nt′−t(j)
(
mN (0, �− k − j)−mN (0, �− k)

)
.

At this point we use the 1-Lipschitz regularity of the initial condition and a
simple bound on the heat kernel (see Lemma 47 for a proof) to get

|
∑
j∈Z

p̄Nt′−t(j)
(
mN (0, �− k − j)−mN (0, �− k)

)
| ≤

∑
j∈Z

p̄Nt′−t(j)
|j|
2N

�
√
t′ − t .

Consequently

∣∣∣ 2N−1∑
k=1

(
pNt′ (k, �)− pNt (k, �)

)
mN (0, k)

∣∣∣ � √
t′ − t ,

uniformly over all � ∈ {1, . . . , 2N − 1}, all t ≤ t′ ∈ [0, T ] and all N ≥ 1.
We turn to the contribution of the asymmetry. Using the estimate

∣∣pNt′−s(k, �)− pNt−s(k, �)
∣∣ � 1

(2N)
√
t− s

( t′ − t

t− s

)δ

,

whose proof is presented in Lemma 46, we get the following almost sure bound

∣∣∣ ∫ t′

0

∑
k

pNt′−s(k, �)1{ΔS(s(2N)2,k) =0}ds−
∫ t

0

∑
k

pNt−s(k, �)1{ΔS(s(2N)2,k) =0}ds
∣∣∣

≤
∫ t

0

∑
k

∣∣pNt′−s(k, �)− pNt−s(k, �)
∣∣ds+ ∫ t′

t

∑
k

pNt′−s(k, �)ds

� (t′ − t)δ ,

uniformly over all � ∈ {1, . . . , 2N − 1}, all t ≤ t′ ∈ [0, T ] and all N ≥ 1. Finally,
we treat the martingale term: since this term does not have contribution in
the hydrodynamic limit, we can use the rough inequality |N t

t (�) − N t′

t′ (�)| ≤
|N t

t (�)| + |N t′

t′ (�)| and we bound separately the two corresponding terms. By
symmetry, it suffices to bound |N t

t (�)|. Since pNt−r(k, �) � N−1(t − r)−1/2, see
Lemma 46, we have the almost sure bound

〈
N t

· (�)
〉
t
≤ 4

∫ t

0

∑
k

pNt−r(k, �)
2dr � 1

2N
,

uniformly over all t ∈ [0, T ]. Since the jumps of the martingale N t
· (�) are all of

size at most 1/N , we apply the Burkholder-Davis-Gundy inequality (92) and
get the bound

E
N
[
|N t

t (�)|p
] 1

p � 1√
2N

,

as required. This concludes the proof.
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Proof of Proposition 26. Fix T > 0. Recall the definition of m̄N . Arguing dif-
ferently according to the relative values of |t′− t| and (2N)−2 (similarly as what
we did in the proof of Lemma 15), one deduces from Lemma 27 that there exists
δ > 0 such that for any p ≥ 1

E
N
[
|m̄N (t′, x)− m̄N (t, x)|p

] 1
p � |t′ − t|δ ,

uniformly over all t′, t ∈ [0, T ], all x ∈ [0, 1] and all N ≥ 1. Using the 1-Lipschitz
regularity in space of mN and the definition of m̄N , we also get

E
N
[∣∣m̄N (t, x)− m̄N (t, y)

∣∣p] 1
p

≤
1∑

j=0

E
N
[∣∣∣mN

( tN + j

(2N)2
, x
)
−mN

( tN + j

(2N)2
, y
)∣∣∣p] 1

p

� |x− y| ,

uniformly over all x, y ∈ [0, 1], all t ∈ [0, T ] and all N ≥ 1. Combining these two
bounds, we obtain for all p ≥ 1,

E
N
[
|m̄N (t′, x)− m̄N (t, y)|p

] 1
p �

(
|t′ − t|+ |x− y|

)δ
,

uniformly over the same set of parameters. Kolmogorov’s Continuity Theorem
then ensures that m̄N admits a modification satisfying the bound stated in
Proposition 26 uniformly in N ≥ 1 for some δ > 0. Since m̄N is already contin-
uous, it coincides with its modification P

N -a.s., thus concluding the proof.

We now proceed to the proof of Theorem 5: we argue differently in the cases
α ∈ (1,∞) and α = 1. In both cases, we set

〈f, g〉N =
1

2N

2N∑
k=1

f
( k

2N

)
g
( k

2N

)
. (52)

Proof of Theorem 5, α ∈ (1,∞). We already know that the sequence mN , N ≥
1 is tight. Letm be the limit of a convergent subsequence. To conclude the proof,
we only need to show that for any ϕ ∈ C2([0, 1]) such that ϕ(0) = ϕ(1) = 0, we
have

〈m(t), ϕ〉 = 〈m(0), ϕ〉+ 1

2

∫ t

0

〈m(s), ϕ′′〉ds . (53)

This characterises the unique weak solution of the PDE (8).
The definition of our dynamics implies that for all ϕ ∈ C2([0, 1]) such that

ϕ(0) = ϕ(1) = 0, we have

〈mN (t), ϕ〉N =〈mN (0), ϕ〉N +
1

2

∫ t

0

〈
mN (s), (2N)2Δϕ

〉
N
ds

+O(N1−α) +MN
t (ϕ) ,

(54)
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where MN (ϕ) is a martingale with bracket

〈MN (ϕ)〉t =
∫ t

0

4

2N

〈
ϕ2, pN1{ΔS(s(2N)2,·)>0} + (1− pN )1{ΔS(s(2N)2,·)<0}

〉
N
ds

≤ 4t‖ϕ‖2∞
2N

.

The jumps of MN (ϕ) are almost surely bounded by a term of order N−1, uni-
formly over all N ≥ 1. Then, by the Burkholder-Davis-Gundy inequality (92)
we get

E
N
[
sup
t≤T

∣∣MN
t (ϕ)

∣∣2] 1
2 � 1√

N
+

1

N
,

uniformly over all N ≥ 1, so that MN (ϕ) vanishes in probability as N → ∞.
Then classical arguments ensure that, along a convergent subsequence of mN ,
we can pass to the limit on (54) and get (53), thus concluding the proof.

Proof of Theorem 5, α = 1. In that case, we characterise the limit via the Hopf-
Cole transform ξ(t, x) = exp(−2σm(t, x) + 2σ2t) that maps, formally, the PDE
(9) into {

∂tξ = 1
2∂

2
xξ , x ∈ [0, 1] , t > 0 ,

ξ(t, 0) = ξ(t, 1) = e2σ
2t , ξ(0, ·) = e−2σm(0,·) .

(55)

This equation admits a unique weak solution in the space of continuous space-
time functions, and it is well-known that the unique weak solution of (9) coin-
cides with the latter solution upon reverse Hopf-Cole transform.

A famous result due to Gärtner [19] shows that a similar transform, per-
formed at the level of the exclusion process, linearises the drift of the stochastic
differential equations solved by our discrete process. Namely, if one sets

γN =
2σ

2N
, cN =

(2N)2

eγN + e−γN
, λN = cN (eγN − 2 + e−γN ) ,

and
ξN (t, x) := e−γNS(t(2N)2,2Nx)+λN t , x ∈ [0, 1] , t ≥ 0 ,

then, using the abusive notation ξN (t, k) for ξN (t, x) when x = k/2N , we have{
dξN (t, k) = cNΔξN (t, k)dt+ dM̃N (t, k) ,

ξN (t, 0) = ξN (t, 1) = eλN t ,
(56)

where Δ is the discrete Laplacian and M̃N (t, k) is a martingale with quadratic
variation given by

〈M̃N (·, k)〉t = (2N)2
∫ t

0

ξN (s, k)2
((

e−2γN − 1
)2
1{ΔS(s(2N)2,k)>0}pN

+
(
e2γN − 1

)2
1{ΔS(s(2N)2,k)<0}(1− pN )

)
ds .

(57)
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The tightness of mN implies the tightness of ξN . It only remains to identify
the limit. To that end, we observe that for all ϕ ∈ C2([0, 1]) such that ϕ(0) =
ϕ(1) = 0, we have

〈ξN (t), ϕ〉N = 〈ξN (0), ϕ〉N +RN
t (ϕ)

+ cN

∫ t

0

(〈
ξN (s),Δϕ

〉
N
+

1

2N
eλNs

(
ϕ
( 1

2N

)
+ ϕ

(2N − 1

2N

)))
ds ,

where

RN
t (ϕ) =

∫ t

0

1

2N

2N−1∑
k=1

ϕ
( k

2N

)
dM̃N (s, k) .

It is elementary to check that there exists C > 0 such that |ξN (t, k)| ≤ C for all
t in a compact set of R+, all k ∈ {1, . . . , 2N − 1} and all N ≥ 1. Consequently
there exists C ′ > 0 such that 〈M̃N (·, k)〉t ≤ C ′t uniformly over the same set of
parameters. Moreover, the jumps of this martingale are uniformly bounded by
some constant on the same set of parameters. Then, a simple calculation based
on the Burkholder-Davis-Gundy inequality (92) shows that RN (ϕ) converges to
0 uniformly on compact sets, as N → ∞. Hence, any limit ξ of a convergent
subsequence of ξN satisfies

〈ξ(t), ϕ〉 = 〈ξ(0), ϕ〉+ 1

2

∫ t

0

(〈
ξ(s), ϕ′′〉+ e2σ

2s(ϕ′(0)− ϕ′(1))
)
ds ,

for all ϕ as above, and therefore coincides with the unique weak solution of (55),
thus concluding the proof.

4.3. Hydrodynamic limit: The hyperbolic case

This subsection is taken from [29].
For simplicity, we take σ = 1 in this whole subsection. The general case σ > 0

can be obtained mutatis mutandis.
Let us present the outline of this technical section which is split into four

parts. We start with a short subsection on the notion of solution that we con-
sider: we show the equivalence between the solution with appropriate Dirichlet
boundary conditions and the solution with zero-flux boundary conditions; so
that in the rest of the proof we rely on the former notion of solution.

Second we establish tightness of the sequences of processes at stake: this is
rather elementary since we are looking at the hydrodynamic scale.

Third, we assume that the convergence of the density of particles holds when
we start from “simple” initial conditions, that is, given by a product of Bernoulli
r.v. with densities that are piecewise constant. Then we show how to go from
simple initial conditions to general initial conditions. To do so, the idea is to
bound from above and below the given initial condition by some simple initial
conditions, then to run three instances of the particle systems under a monotone
coupling (that is, a coupling that preserves the order on the height functions)
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and finally to use the continuity in the initial condition of the solution map
associated to the PDE.

Fourth, we prove the convergence of the density of particles when we start
from “simple” initial conditions. The identification of the limit in that case then
follows the arguments presented in [36]: we show that the entropy inequalities
are satisfied at the microscopic level, see Lemma 36, and then we show in Lemma
37 that they can be transferred to the macroscopic level, using in particular the
Replacement Lemma established in Theorem 21 which relies on our assumption
on the initial condition to be simple.

4.3.1. Notion of solution

Recall the notation introduced in Subsection 4.1. Let us present the notion
of solution that we consider for the Burgers equation with zero-flux boundary
condition. This material is taken from [6, Def.4].

Definition 28. Let η0 ∈ L∞(0, 1). We say that η ∈ L∞((0,∞) × (0, 1)
)
is an

entropy solution of (11) if:

1. For all c ∈ [0, 1] and all ϕ ∈ C∞
c

(
(0,∞)× (0, 1),R+

)
, we have∫ ∞

0

∫ 1

0

(∣∣η(t, x)− c
∣∣∂tϕ(t, x)− 2 sgn(η(t, x)− c)

×
(
(η(t, x)(1− η(t, x))− c(1− c)

)
∂xϕ(t, x)

)
dx dt ≥ 0 ,

2. We have esslimt↓0
∫ 1

0

∣∣η(t, x)− η0(x)
∣∣dx = 0,

3. We have η(t, x)(1− η(t, x)) = 0 for almost all t > 0 and all x ∈ {0, 1}.
Let us mention that the first condition is sufficient to ensure that η has a trace

at the boundaries so that the third condition is meaningful. Bürger, Frid and
Karlsen [6, Sect. 4 and 5] show existence and uniqueness of entropy solutions
with zero-flux boundary condition.

Let us now introduce the Burgers equation with some appropriate Dirichlet
boundary conditions: ⎧⎪⎨

⎪⎩
∂tη = 2∂x

(
η(1− η)

)
,

η(t, 0) = 1 , η(t, 1) = 0 ,

η(0, ·) = η0(·) .
(58)

The precise definition of the entropy solution of (58) is the following.

Definition 29. Let η0 ∈ L∞(0, 1). We say that η ∈ L∞((0,∞) × (0, 1)
)
is an

entropy solution of (58) if it satisfies conditions 1. and 2. from Definition 28
together with the so-called BLN conditions

sgn(η(t, 0)− 1)
(
η(t, 0)(1− η(t, 0))− c(1− c)

)
≥ 0 , ∀c ∈ [η(t, 0), 1] ,

sgn(η(t, 1)− 0)
(
η(t, 1)(1− η(t, 1))− c(1− c)

)
≤ 0 , ∀c ∈ [0, η(t, 1)] ,

(59)

for almost all t > 0.
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Here again, there is existence and uniqueness of entropy solutions of (58), see
for instance [31, Sect. 2.7 and 2.8].

Proposition 30. The entropy solutions of (11) and (58) coincide.

Proof. Both solutions exist and are unique. Let us show that the solution of
(58) satisfies the conditions of Definition 28: actually, the two first conditions
are automatically satisfied, so we focus on the third one. If η(t, 0) ∈ (0, 1) then
pick c = 1 and observe that

η(t, 0)(1− η(t, 0)) > c(1− c) ,

so that
sgn(η(t, 0)− 1)

(
η(t, 0)(1− η(t, 0))− c(1− c)

)
< 0 .

This raises a contradiction so that η(t, 0) needs to be in {0, 1}. A similar argu-
ment shows that η(t, 1) needs to be in {0, 1}.

As a consequence, we can choose the formulation (58) in the proof of our
convergence result. Let us finally collect some properties of the solutions that
we will use later on.

Proposition 31. Let η0 ∈ L∞(0, 1). A function η ∈ L∞((0,∞)× (0, 1)
)
is the

entropy solution of (58) if and only if for all c ∈ [0, 1] and all ϕ ∈ C∞
c

(
[0,∞)×

[0, 1],R+

)
we have

∫ ∞

0

∫ 1

0

(
(η(t, x)− c)±∂tϕ(t, x) + h±(η(t, x), c)∂xϕ(t, x)

)
dx dt

+

∫ 1

0

(η0(x)− c)±ϕ(0, x)dx+ 2

∫ ∞

0

(
(1− c)±ϕ(t, 0) + (0− c)±ϕ(t, 1)

)
dt ≥ 0 ,

(60)

where (x)± denotes the positive/negative part of x ∈ R, sgn±(x) = ±1(0,∞)(±x)

and h±(η, c) := −2 sgn±(η − c)
(
η(1− η)− c(1− c)

)
.

Furthermore for any t > 0, the map η0 �→ η(t) is 1-Lipschitz in L1(0, 1).

Proof. The notion of solution defined by (60) is introduced in [40, Def. 1] and
it is shown therein that it coincides with another notion of solution, originally
due to Otto, which is based on boundary entropy-entropy flux pairs. It is then
shown in [31, Th 7.31] that the latter notion of solution is equivalent with the
notion of solution of Definition 29. This completes the proof of the first part of
the statement. The Lipschitz continuity in L1(0, 1) is proved in [6, Th. 3] for
the Burgers equation with zero-flux boundary conditions. By Proposition 30, it
also holds for (58), thus concluding the proof.

4.3.2. Tightness

We let M be the space of measures on [0, 1] with total mass at most 1, endowed
with the topology of weak convergence. Recall the process ρN defined in (12)
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and that mN is the rescaled height process. These two processes are related
through:

ρN
([
0,

k

2N

])
=

1

2

(
mN

( k

2N

)
+

k

2N

)
, k ∈ {0, . . . , 2N} .

Proposition 32. Let ιN be any probability measure on {0, 1}2N . The sequence
of processes (ρNt , t ≥ 0), starting from ιN , is tight in the space D([0,∞),M).
Furthermore, the associated sequence of processes (mN (t, x), t ≥ 0, x ∈ [0, 1]) is
tight in D([0,∞), C([0, 1])).

Note that for a generic measure ιN on {0, 1}2N , mN (t, 1) is not necessarily
equal to 0.

Proof. Let ϕ ∈ C2([0, 1]). It suffices to show that 〈ρN0 , ϕ〉 is tight in R, and that
for all T > 0

lim
h↓0

lim
N→∞

E
N
ιN

[
sup

s,t≤T,|t−s|≤h

|〈ρNt − ρNs , ϕ〉|
]
= 0 . (61)

The former is immediate since |〈ρN0 , ϕ〉| ≤ ‖ϕ‖∞. Regarding the latter, we let
LN be the generator of our sped-up process and we write

〈ρNt − ρNs , ϕ〉 = 1

2N

∫ t

s

2N∑
k=1

ϕ(k)LNηNr (k)dr +MN
s,t(ϕ) ,

where MN
s,t(ϕ) is a martingale. Its bracket can be bounded almost surely as

follows

〈MN
s,·(ϕ)〉t ≤

∫ t

s

1

(2N)2

2N−1∑
k=1

(
∇ϕ(k)

)2
(2N)1+αdr � t− s

(2N)2−α
.

Since the jumps of this martingale are bounded by a term of order ‖ϕ′‖∞/(2N)2,
and since

E
N
ιN

[
sup

t∈[s,s+h]∩[0,T ]

|MN
s,t(ϕ)|

]
≤ E

N
ιN

[
sup

t∈[s,s+h]∩[0,T ]

|MN
s,t(ϕ)|2

] 1
2

,

the BDG inequality (92) ensures that we have

lim
N→∞

sup
s∈[0,T ]

E
N
ιN

[
sup

t∈[s,s+h]∩[0,T ]

|MN
s,t(ϕ)|

]
= 0 . (62)

This being given, we observe that MN
s,t(ϕ) = MN

r,t(ϕ)−MN
r,s(ϕ) where r is taken

to be the largest element in {0, h, 2h, . . . , �T
h �h} which is below s. Therefore, we

have

E
N
ιN

[
sup

0≤s≤t≤T,|t−s|≤h

|MN
s,t(ϕ)|

]
≤ 2EN

ιN

[ ∑
r=0,h,...,�T

h �h

sup
t∈[r,r+2h]∩[0,T ]

|MN
r,t(ϕ)|

]
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≤ 2
∑

r=0,h,...,�T
h �h

E
N
ιN

[
sup

t∈[r,r+2h]∩[0,T ]

|MN
r,t(ϕ)|

]

≤ C

h
sup

r∈[0,T ]

E
N
ιN

[
sup

t∈[r,r+2h]∩[0,T ]

|MN
r,t(ϕ)|

]
,

for some C > 0. Combining this with (62) we deduce that

lim
h↓0

lim
N→∞

E
N
ιN

[
sup

0≤s≤t≤T,|t−s|≤h

|MN
s,t(ϕ)|

]
= 0 . (63)

Let us bound the term involving the generator. Decomposing the jump rates
into the symmetric part (of intensity 1 − pN ) and the totally asymmetric part
(of intensity 2pN − 1), we find

1

2N

2N∑
k=1

ϕ(k)LNη(k) = −(2N)α(1− pN )

2N−1∑
k=1

∇η(k)∇ϕ(k)

− (2N)α(2pN − 1)
2N−1∑
k=1

η(k + 1)(1− η(k))∇ϕ(k) .

A simple integration by parts shows that the first term on the right is bounded
by a term of order Nα−1 while the second term is of order 1. Consequently

E
N
ιN

[
sup

s,t≤T,|t−s|≤h

∣∣∣ 1

2N

∫ t

s

2N∑
k=1

ϕ(k)LNηr(k)dr
∣∣∣] � h , (64)

uniformly over all N ≥ 1 and all h > 0. The l.h.s. vanishes as N → ∞ and
h ↓ 0. Combining (63) and (64), (61) follows.

We turn to the tightness of the interface mN . First, the profile mN (t, ·) is
1-Lipschitz for all t ≥ 0 and all N ≥ 1. Second, we claim that for some β ∈ (α, 1)

E
N
ιN

[
|mN (t, k)−mN (s, k)|p

] 1
p � |t− s|+ 1

N1−β
, (65)

uniformly over all 0 ≤ s ≤ t ≤ T , all k ∈ {1, . . . , 2N} and all N ≥ 1. This
being given, the arguments for proving tightness are classical: one introduces a
piecewise linear time-interpolation m̄N of mN and shows tightness for this pro-
cess, and then one shows that the difference between m̄N and mN is uniformly
small. We are left with the proof of (65). Let ψ : R → R+ be a non-increasing,
smooth function such that ψ(x) = 1 for all x ≤ 0 and ψ(x) = 0 for all x ≥ 1.
Fix β ∈ (α, 1). For any given k ∈ {1, . . . , 2N}, we define ϕN

k : {0, . . . , 2N} → R

by setting ϕN
k (�) = ψ

(
(�− k)/(2N)β

)
. Then, we observe that

1

2N

2N∑
�=1

(
2ηt(�)− 1

)
ϕN
k (�) = mN (t, k) +O(Nβ−1) ,
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uniformly over all k ∈ {1, . . . , 2N} and all t ≥ 0. Then, similar computations to
those made in the first part of the proof show that

E
N
ιN

[∣∣∣ 1

2N

2N∑
�=1

(
ηt(�)− ηs(�)

)
ϕN
k (�)

∣∣∣p] 1
p � (t− s) +

√
t− s

N1+β−α
+

1

N1+β
,

uniformly over all k, all 0 ≤ s ≤ t ≤ T and all N ≥ 1. This yields (65).

4.3.3. Identification of the limit

The main step in the proof of Theorem 5 is to prove the convergence of the den-
sity of particles, starting from a product measure ιN satisfying Assumption 20.
Notice that if the process starts from ιN , then ρN0 converges to the deterministic
limit ρ0(dx) = f(x)dx.

Theorem 33. Under Assumption 20, the process ρN converges in distribution
in the Skorohod space D

(
[0,∞),M

)
to the deterministic process (η(t, x)dx, t ≥

0), where η is the entropy solution of (58) starting from η0 = f .

Given this result, the proof of the hydrodynamic limit is derived as follows.

Proof of Theorem 5. Let ιN be as in Theorem 33. We know that ρN converges to
ρ, where ρ(t, dx) = η(t, x)dx and η is the entropy solution of (58) starting from
η0 = f . Let us show that mN converges to the integrated solution associated to
ρ, namely

(t, x) �→
∫ x

0

(2η(t, y)− 1)dy .

Once this will be proved, we will have completed the proof of our theorem when
the initial condition satisfies Assumption 20.

Let m be the limit point of some convergent subsequence mNi . By Skorohod’s
representation theorem, we can assume that (ρNi ,mNi) converges almost surely
to (ρ,m). Recall that ρ is of the form ρ(t, x) = η(t, x)dx. Our goal is to show
that m(t, x) =

∫ x

0
(2η(t, y)− 1)dy for all t, x.

Fix x0 ∈ (0, 1). Take ϕp be a C∞ function that approximates the indicator of
[0, x0]. More precisely, we assume that for any δ > 0 we have

∥∥ϕp − 1[0,x0]

∥∥
L1(0,1)

→ 0 , sup
f∈Cδ([0,1])

∣∣〈f, δx0 + ∂xϕp〉
∣∣

‖f‖Cδ

→ 0 , (66)

as p → ∞. Such a function exists, take for instance ϕp(·) = 1 −
∫ ·
−∞ P1/p(y −

x0)dy where Pt is the heat kernel on R at time t. Considering a smooth approx-
imation of the indicator of [0, x0] is convenient as we would like to pass to the
limit on 〈ρNt ,1[0,x0]〉 but we established convergence in the topology of weak
convergence of probability measures, and the indicator is not continuous.

If we set I(t, x0) = m(t, x0) −
∫ x0

0
(2η(t, y) − 1)dy for some x0 ∈ (0, 1) and

some t > 0, then |I(t, x0)| is bounded by∥∥m(t)−mNi(t)
∥∥
∞ +

∣∣〈mNi(t), δx0 + ∂xϕp〉
∣∣+ ∣∣〈mNi(t), ∂xϕp〉+ 〈2ρNi

t − 1, ϕp〉
∣∣
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+ 2
∣∣〈ρNi

t − ρt, ϕp〉
∣∣+ ∣∣〈2ρ(t)− 1, ϕp − 1[0,x0]〉

∣∣ .
Recall that mN is 1-Lipschitz in space, so that the second term vanishes as
p → ∞ by (66). A discrete integration by parts shows that the third term
vanishes as Ni goes to ∞. The first and fourth terms vanish as Ni → ∞ by
the convergences of mNi and ρNi , and the last term is dealt with using (66).
Choosing p and then Ni large enough, we deduce that |I(t, x0)| is almost surely
as small as desired. This identifies completely the limit m of any convergent
subsequence, under PN

ιN .
We are left with the extension of this convergence result to an arbitrary

initial condition. Assume that mN (0, ·) converges to some profile m0(·) for the
supremum norm. Since each mN (0, ·) is 1-Lipschitz, so is m0.

The idea is to squeeze m0 in between two elements mε,+
0 and mε,−

0 that are
the scaling limits of initial conditions for which the result has already been
proved, then to consider a monotone coupling of three instances of our height
processes starting from approximations of these three initial conditions and then
to combine this monotonicity with the continuity of the solution map of our PDE
to deduce the convergence result.

More precisely for every ε > 0, one can find two profiles mε,+
0 and mε,−

0 which
are 1-Lipschitz, piecewise affine, start from 0 and are such that:

• mε,−
0 stays below m0: m0 − ε ≤ mε,−

0 ≤ (m0 − ε
4 ) ∨ (−x) ∨ (x− 1) ,

• mε,+
0 stays above m0: (m0 +

ε
4 ) ∧ x ∧ (1− x) ≤ mε,+

0 ≤ m0 + ε ,

• ‖ρε,±0 − ρ0‖L1 → 0 as ε ↓ 0, where ρε,±0 (·) =
(
∂xm

ε,±
0 (·) + 1

)
/2.

The proof of the existence of such profiles is postponed below. Now consider
a coupling (mN,ε,−,mN ,mN,ε,+) of three instances of our height process which
preserves the order of the interfaces and is such that mN,ε,±(0, ·) is the height
function associated with the particle density distributed as

⊗2N
k=1Be

(
ρε,±0 (k/2N)

)
.

We draw independently these two sets of Bernoulli r.v. It is simple to check that

P
(
mN,ε,−(0, ·) ≤ mN (0, ·) ≤ mN,ε,+(0, ·)

)
→ 1 ,

asN → ∞. By the order preserving property of the coupling, if these inequalities
are satisfied at time 0 they remain true at all times. Our convergence result
applies to mN,ε,± and, consequently, any limit point of the tight sequence mN

is squeezed in [mε,−,mε,+] where mε,± is the integrated entropy solution of (58)
starting from mε,±

0 . By the second part of Proposition 31, we deduce that mε,±

converge, as ε ↓ 0, to the integrated entropy solution of (58) starting from m0,
thus concluding the proof.

Let us briefly explain how one can construct mε,−
0 , the construction of mε,+

0

being similar. For simplicity, we let V (x) := (−x)∨ (x− 1). Let n ≥ 1 be given.
We subdivide [0, 1] into three sets:

I := {x : m0(x) > V (x) + ε/2} , J1 := [0, 1/2]\I , J2 := (1/2, 1]\I .
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On J1 and J2, we set mε,−
0 (x) = V (x). On I ∩ {k/n : k = 0, 1, . . . , n}, we set

mε,−
0 (x) = m0(x) − ε

2 . Then, we extend mε,−
0 to the rest of I by affine inter-

polation. The fact that m0 is 1-Lipschitz ensures that mε,−
0 is also 1-Lipschitz.

If n is large enough compared to 1/ε we get the inequalities m0 − ε ≤ mε,−
0 ≤

(m0 − ε
4 ) ∨ (−x) ∨ (x− 1). Regarding the convergence in L1 of the density, we

observe that ρε,−0 (x) = 0 on J1, ρ
ε,−
0 (x) = 1 on J2 and

ρε,−0 (x) =
1

|I(x)|

∫
I(x)

ρ0(u)du , x ∈ I ,

where I(x) = I∩ [k/n, (k+1)/n) and k is the integer part of nx. From there, we
deduce that ‖ρε,−0 − ρ0‖L1(J1) =

∫
J1

ρ0(x)dx. At this point, we observe that J1
is an interval starting at 0 and that, at the end point x of J1 we have m0(x) ≤
V (x) − ε/2. Hence we have

∫
J1

ρ0(x)dx ≤ ε/4 and ‖ρε,−0 − ρ0‖L1(J1) ≤ ε/4.

Similarly, ‖ρε,−0 − ρ0‖L1(J2) =
∫
J2
(1 − ρ0(x))dx which is also smaller than ε/4.

Finally, ‖ρε,−0 − ρ0‖L1(I) goes to 0 as n → ∞: indeed, the almost everywhere

differentiability of x �→
∫ x

0
ρ0(u)du ensures that ρε,−0 (x) goes to ρ0(x) for almost

all x ∈ I (see for instance [37, Chap. 8]), so that the dominated convergence
theorem yields the asserted convergence.

4.3.4. Proof of the convergence starting from simple initial conditions

To prove Theorem 33, we need to show that the limit of any convergent subse-
quence of ρN is of the form ρ(t, dx) = η(t, x)dx and that η satisfies the entropy
inequalities of Proposition 31. To make appear the constant c in these inequali-
ties, the usual trick is to define a coupling of the particle system ηN with another
particle system ζN which is stationary with density c so that, at large scales, one
can replace the averages of ζN by c. Such a coupling has been defined by Reza-
khanlou [36] in the case of the infinite lattice Z. The specificity of the present
setting comes from the boundary conditions of our system: one needs to choose
carefully the flux of particles at 1 and 2N for ζN .

The precise definition of our coupling goes as follows. We set

p(1) = 1− pN , p(−1) = pN , and p(k) = 0 ∀k �= {−1, 1} ,

as well as b(a, a′) = a(1 − a′). We denote by ηk,� the particle configuration
obtained from η by permuting the values η(k) and η(�). We also denote by
η ± δk the particle configuration which coincides with η everywhere except at
site k where the occupation is set to η(k)± 1. Then, we define

L̃bulkf(η, ζ) = (2N)1+α
2N∑

k,�=1

p(�− k)×

[(
b(η(k), η(�)) ∧ b(ζ(k), ζ(�))

)(
f(ηk,�, ζk,�)− f(η, ζ)

)
+
(
b(η(k), η(�))− b(η(k), η(�)) ∧ b(ζ(k), ζ(�))

)(
f(ηk,�, ζ)− f(η, ζ)

)
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+
(
b(ζ(k), ζ(�))− b(η(k), η(�)) ∧ b(ζ(k), ζ(�))

)(
f(η, ζk,�)− f(η, ζ)

)]
,

and

L̃bdryf(η, ζ) = (2N)1+α(2pN − 1)(1− c)ζ(1)
(
f(η, ζ − δ1)− f(η, ζ)

)
+ (2N)1+α(2pN − 1)c(1− ζ(2N))

(
f(η, ζ + δ2N )− f(η, ζ)

)
.

We consider the stochastic process (ηNt , ζNt ), t ≥ 0 associated to the generator
L̃ = L̃bulk + L̃bdry. From now on, we will always assume that ηN0 has law ιN ,
where ιN satisfies Assumption 20, and that ζN0 is distributed as a product of
Bernoulli measures with parameter c. Furthermore, we will always assume that
the coupling at time 0 is such that

sgn(ηN0 (k)− ζN0 (k)) = sgn(f(k/2N)− c) , ∀k ∈ {1, . . . , 2N} ,

where f is the macroscopic density profile of Assumption 20. Such a coupling can
be constructed by considering i.i.d. r.v. U1, . . . , U2N uniformly distributed over
[0, 1], and by setting ηN0 (k) (resp. ζN0 (k)) to 1 if Uk ≤ f(k/2N) (resp. Uk ≤ c).
We let P̃N

ιN ,c be the law of the process (ηN , ζN ).

Remark 34. The process ηN follows the dynamics of the WASEP with zero-
flux boundary conditions. The process ζN follows the dynamics of the WASEP
with some open boundary conditions chosen in a such a way that the process is
stationary with density c. Actually, we prescribe the minimal jump rates at the
boundary for the process to be stationary with density c: there is neither entering
flux at 1 nor exiting flux at 2N . This choice is convenient for establishing the
entropy inequalities. Let us also mention that the coupling is such that the order
of ζN and ηN is preserved. More precisely, if in both particle systems there
is a particle which can attempt a jump from k to �, then the jump times are
simultaneous.

It will actually be important to track the sign changes in the pair (ηN , ζN ). To
that end, we let Fk,�(η, ζ) = 1 if η(k) ≥ ζ(k) and η(�) ≥ ζ(�); and Fk,�(η, ζ) = 0
otherwise. We say that a subset C of consecutive integers in {1, . . . , 2N} is a
cluster with constant sign if for all k, � ∈ C we have Fk,�(η, ζ) = 1, or for all
k, � ∈ C we have Fk,�(ζ, η) = 1. For a given configuration (η, ζ), we let n be
the minimal number of clusters needed to cover {1, . . . , 2N}: we will call n the
number of sign changes. There is not necessarily a unique choice of covering into
n clusters. Let C(i), i ≤ n be any such covering and let 1 = k1 < k2 < . . . kn <
kn+1 = 2N + 1 be the integers such that C(i) = {ki, ki+1 − 1}.
Lemma 35. Under P̃

N
ιN ,c, the process ηN has law P

N
ιN while the process ζN is

stationary with law ⊗2N
k=1Be(c). Furthermore, the number of sign changes n(t)

is smaller than n(0) + 3 at all time t ≥ 0.

Proof. It is simple to check the assertion on the laws of the marginals ηN and
ζN . Regarding the number of sign changes, the key observation is the following.
In the bulk {2, . . . , 2N − 1}, to create a new sign change we need to have two
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consecutive sites k, � such that ηN (k) = ζN (k) = 1, ηN (�) = ζN (�) = 0 and we
need to let one particle jump from k to �, but not both. However, our coupling
does never allow such a jump. Therefore, the number of sign changes can only
increase at the boundaries due to the interaction of ζN with the reservoirs: this
can create at most 2 new sign changes, thus concluding the proof.

Assumption 20 ensures the existence of a constant C > 0 such that n(0) < C
almost surely for all N ≥ 1. We now derive the entropy inequalities at the
microscopic level. Recall that τk stands for the shift operator with periodic
boundary conditions, and let 〈u, v〉N = (2N)−1

∑2N
k=1 u(k/2N)v(k/2N) denote

the discrete L2 product.

Lemma 36 (Microscopic inequalities). Let ιN be a measure on {0, 1}2N sat-
isfying Assumption 20. For all ϕ ∈ C∞

c ([0,∞) × [0, 1],R+), all δ > 0 and all
c ∈ [0, 1], we have limN→∞ P̃

N
ιN ,c(IN (ϕ) ≥ −δ) = 1 where

IN (ϕ) :=

∫ ∞

0

(〈
∂sϕ(s, ·),

(
ηNs (·)− ζNs (·)

)±〉
N
+
〈
∂xϕ(s, ·), H±(τ·ηNs , τ·ζ

N
s

)〉
N

+ 2
(
(1− c)±ϕ(s, 0) + (0− c)±ϕ(s, 1)

))
ds

+
〈
ϕ(0, ·),

(
ηN0 (·)− ζN0 (·)

)±〉
N

,

where H+(η, ζ) = −2
(
b(η(1), η(0)) − b(ζ(1), ζ(0))

)
F1,0(η, ζ) and H−(η, ζ) =

H+(ζ, η).

This is an adaptation of Theorem 3.1 in [36].

Proof. We define

Bt =

∫ t

0

(〈
∂sϕ(s, ·),

(
ηs(·)− ζs(·)

)±〉
N
+ L̃

〈
ϕ(s, ·),

(
ηs(·)− ζs(·)

)±〉
N

)
ds

+
〈
ϕ(0, ·),

(
ηN0 (·)− ζN0 (·)

)±〉
N

.

We have the identity〈
ϕ(t, ·),

(
ηNt (·)− ζNt (·)

)±〉
N

= Bt +Mt , (67)

where M is a mean zero martingale. Since ϕ has compact support, the l.h.s. van-
ishes for t large enough. Below, we work at an arbitrary time s so we drop the
subscript s in the calculations. Moreover, we write ϕ(k) instead of ϕ(k/2N) to
simplify notations. We treat separately the boundary part and the bulk part of
the generator. Regarding the former, we have

L̃bdry
〈
ϕ(·),

(
η(·)− ζ(·)

)+〉
N

= (2N)α(2pN − 1)
(
ϕ(1)η(1)ζ(1)(1− c)− ϕ(2N)η(2N)(1− ζ(2N))c

)
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≤ 2ϕ(0)(1− c) +O(N−α) ,

since ϕ is non-negative and 2pN − 1 ∼ 2(2N)−α. Similarly, we find

L̃bdry
〈
ϕ(·),

(
η(·)− ζ(·)

)−〉
N

≤ 2ϕ(2N)(0− c)− +O(N−α) .

We turn to the bulk part of the generator. Recall the map Fk,�(η, ζ), and set
Gk,�(η, ζ) = 1−Fk,�(η, ζ)Fk,�(ζ, η). By checking all the possible cases, one easily
gets the following identity

L̃bulk
(
η(k)− ζ(k)

)+
= (2N)1+α

∑
�

[(
p(�− k)

(
b(ζ(k), ζ(�))− b(η(k), η(�))

)
− p(k − �)

(
b(ζ(�), ζ(k))− b(η(�), η(k))

))
Fk,�(η, ζ)

−
(
p(�− k)b(η(k), η(�)) + p(k − �)b(ζ(�), ζ(k))

)
Gk,�(η, ζ)

]
.

Since η and ζ play symmetric rôles in L̃bulk, we find a similar identity for

L̃bulk
(
η(k) − ζ(k)

)−
. Notice that the term on the third line is non-positive,

so we will drop it in the inequalities below. We thus get

L̃bulk
〈
ϕ(·),

(
η(·)− ζ(·)

)±〉
N

≤ (2N)α
2N∑

k,�=1
�=k±1

p(�− k)
(
ϕ(k)− ϕ(�)

)
I±k,�(η, ζ) ,

where

I+k,�(η, ζ) =
(
b(ζ(k), ζ(�))− b(η(k), η(�))

)
Fk,�(η, ζ) , I−k,�(η, ζ) = I+k,�(ζ, η) .

Up to now, we essentially followed the calculations made in the first step of the
proof of [36, Thm 3.1]. At this point, we argue differently: we decompose p(±1)
into the symmetric part 1− pN , which is of order 1/2, and the asymmetric part
which is either 0 or 2pN − 1 ∼ 2(2N)−α.

We start with the contribution of the symmetric part. Recall the definition
of the number of sign changes n and of the integers k1 < . . . < kn+1. Using a
discrete integration by parts, one easily deduces that for all i ≤ n

ki+1−1∑
k,�=ki

�=k±1

(
ϕ(k)− ϕ(�)

)
I±k,�(η, ζ) =

ki+1−2∑
k=ki

(
η(k)− ζ(k)

)±
Δϕ(k)

−
(
η(ki+1 − 1)− ζ(ki+1 − 1)

)±∇ϕ(ki+1 − 2)

+
(
η(ki)− ζ(ki)

)±∇ϕ(ki − 1) .

Since n(s) is bounded uniformly over all N ≥ 1 and all s ≥ 0, we deduce
that the boundary terms arising at the second and third lines yield a negligible
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contribution. Thus we find

(2N)α
2N∑

k,�=1
�=k±1

(1− pN )
(
ϕ(k)− ϕ(�)

)
I±k,�(η, ζ) = O

( 1

N1−α

)
.

Regarding the asymmetric part p(±1) − (1 − pN ), a simple calculation yields
the identity

(2N)α
2N∑

k,�=1
�=k±1

(
p(�− k)− 1 + pN

)(
ϕ(k)− ϕ(�)

)
I±k,�(η, ζ)

=
1

2N

2N−1∑
k=1

∂xϕ(k)τkH
±(η, ζ) +O(N−α) ,

uniformly over all N ≥ 1. Therefore

L̃bulk
〈
ϕ(·),

(
η(·)− ζ(·)

)±〉
N

≤ 1

2N

2N−1∑
k=1

∂xϕ(k)τkH
±(η, ζ) +O

( 1

Nα∧(1−α)

)
.

Putting together the two contributions of the generator, we get

Bt ≤
∫ t

0

(〈
∂sϕ(s, ·),

(
ηNs (·)− ζNs (·)

)±〉
N
+
〈
∂xϕ(s, ·), τ·H±(ηNs , ζNs )

〉
N

+ 2t
(
(1− c)±ϕ(s, 0) + (0− c)±ϕ(s, 1)

))
ds

+
〈
ϕ(0, ·),

(
ηN0 (·)− ζN0 (·)

)±〉
N
+O

( 1

Nα∧(1−α)

)
.

Recall the equation (67). A simple calculation shows that Ẽ
N
ιN ,c〈M〉t � 1

N1−α

uniformly over all N ≥ 1 and all t ≥ 0. Moreover, the jumps of M are almost
surely bounded by a term of order N−1. Applying the BDG inequality (92), we
deduce that

Ẽ
N
ιN ,c

[
sup
s≤t

M2
s

] 1
2 � 1

N
1−α
2

,

uniformly over all N ≥ 1 and all t ≥ 0. Since ϕ has compact support, Bt = −Mt

for t large enough. The assertion of the lemma then easily follows.

Recall that MT�(u)η is the average of η on the box T�(u) for any u ∈
{1, . . . , 2N}.

Lemma 37 (Macroscopic inequalities). Let ιN be a measure on {0, 1}2N sat-
isfying Assumption 20. For all ϕ ∈ C∞

c ([0,∞) × [0, 1],R+), all δ > 0 and all
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c ∈ [0, 1], we have limε↓0 limN→∞ P
N
ιN (JN (ϕ) ≥ −δ) = 1 where

JN (ϕ) :=

∫ ∞

0

(〈
∂sϕ(s, ·),

(
MTεN (·)(η

N
s )− c

)±〉
N

+
〈
∂xϕ(s, ·), h±

(
MTεN (·)(η

N
s ), c

)〉
N

+ 2
(
(1− c)±ϕ(s, 0) + (0− c)±ϕ(s, 1)

))
ds

+
〈
ϕ(0, ·),

(
MTεN (·)(η

N
0 )− c

)±〉
N

.

(68)

Proof. Since at any time s ≥ 0, ζN (s, ·) is distributed according to a product of
Bernoulli measures with parameter c, we deduce that

lim
ε↓0

lim
N→∞

Ẽ
N
ιN ,c

[ 1

2N

2N∑
u=1

∣∣∣MTεN (u)(ζ
N
s )− c

∣∣∣] = 0 .

and consequently, by Fubini’s Theorem and stationarity, we have

lim
ε↓0

lim
N→∞

Ẽ
N
ιN ,c

[ ∫ t

0

1

2N

2N∑
u=1

∣∣∣MTεN (u)(ζ
N
s )− c

∣∣∣ds] = 0 .

Now we observe that for all ε > 0, we have P̃
N
ιN ,c almost surely〈

ϕ(0, ·),
(
ηN0 (·)− ζN0 (·)

)±〉
N

=
〈
ϕ(0, ·),MTεN (·)

(
ηN0 − ζN0

)±〉
N
+O(ε) .

Recall the coupling we chose for (ηN0 (·), ζN0 (·)). Since P̃
N
ιN ,c almost surely the

number of sign changes n(0) is bounded by some constant C > 0 uniformly over
all N ≥ 1, we deduce using the previous identity that〈
ϕ(0, ·),

(
ηN0 (·)− ζN0 (·)

)±〉
N

=
〈
ϕ(0, ·),

(
MTεN (·)η

N
0 −MTεN (·)ζ

N
0

)±〉
N
+O(ε) .

Therefore, by Lemma 36, we deduce that the statement of the lemma follows if
we can show that for all δ > 0

lim
ε↓0

lim
N→∞

P̃
N
ιN ,c

(∫ t

0

1

2N

2N∑
u=1

∣∣∣MTεN (u)

(
ηNs − ζNs

)±
−
(
MTεN (u)(η

N
s − ζNs )

)±∣∣∣ds > δ

)
= 0 ,

lim
ε↓0

lim
N→∞

P̃
N
ιN ,c

(∫ t

0

1

2N

2N∑
u=1

∣∣∣MTεN (u)H
±(ηNs , ζNs )

− h±
(
MTεN (u)(η

N
s ),MTεN (u)(ζ

N
s )
)∣∣∣ds > δ

)
= 0 .

(69)
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We restrict ourselves to proving the second identity, since the first is simpler.
Let N+

s , resp. N−
s , be the set of u ∈ {1, . . . , 2N} such that ηs ≥ ζs, resp.

ζs ≥ ηs, on the whole box TεN (u). By Lemma 35, 2N − #N+
s − #N−

s is of
order εN uniformly over all s, all N ≥ 1 and all ε. Therefore, we can neglect
the contribution of all u /∈ N+

s ∪N−
s . If we define Φ(η) = −2η(1)(1− η(0)) and

if we let Φ̃(a) be as in (43) below, then for all u ∈ N+
s we have

MTεN (u)H
−(ηNs , ζNs )− h−

(
MTεN (u)(η

N
s ),MTεN (u)(ζ

N
s )
)
= 0 ,

as well as

MTεN (u)H
+(ηNs , ζNs )− h+

(
MTεN (u)(η

N
s ),MTεN (u)(ζ

N
s )
)

= MTεN (u)Φ(η
N
s )− Φ̃

(
MTεN (u)η

N
s

)
− MTεN (u)Φ(ζ

N
s ) + Φ̃

(
MTεN (u)ζ

N
s

)
.

Similar identities hold for every u ∈ N−
s . We deduce that the second identity of

(69) follows if we can show that for all δ > 0

lim
ε↓0

lim
N→∞

P
N
ιN

(∫ t

0

1

2N

2N∑
u=1

∣∣∣MTεN (u)Φ(η
N
s )− Φ̃

(
MTεN (u)ηs

)∣∣∣ds > δ

)
= 0 ,

lim
ε↓0

lim
N→∞

Ẽ
N
ιN ,c

[ ∫ t

0

1

2N

2N∑
u=1

∣∣∣MTεN (u)Φ(ζ
N
s )− Φ̃

(
MTεN (u)ζ

N
s

)∣∣∣ds] = 0 .

The first convergence is ensured by Theorem 21, while the second follows from
the stationarity of ζN and the Ergodic Theorem. This completes the proof of
the lemma.

Proof of Theorem 33. For any given ε > 0, we have

MT2εN (k)(ηs) =
1

2ε
ρN

(
s,
[ k

2N
− ε,

k

2N
+ ε

])
=

1

2ε
ρN

(
s, [x− ε, x+ ε]

)
+O(N−1) ,

(70)

uniformly over all k ∈ {1, . . . , 2N − 1}, all x ∈
[

k
2N , k+1

2N

]
and all N ≥ 1. Notice

that the O(N−1) depends on ε. For all ρ ∈ D
(
[0,∞),M([0, 1])

)
, we set

Vc(ε, ρ) :=

∫ ∞

0

(〈
∂sϕ(s, ·),

( 1

2ε
ρ
(
s,
[
· −ε, ·+ ε

])
− c

)±〉

+
〈
∂xϕ(s, ·), h±

( 1

2ε
ρ
(
s,
[
· −ε, ·+ ε

])
, c
)〉

+ 2
(
(1− c)±ϕ(s, 0) + (0− c)±ϕ(s, 1)

))
ds

+
〈
ϕ(0, ·),

( 1

2ε
ρ
(
0,
[
· −ε, ·+ ε

])
− c

)±〉
.
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Combining (70), (68) and the continuity of the maps h±(·, c) and (·)±, we deduce
that for any δ > 0, we have

lim
ε↓0

lim
N→∞

P
N
ιN

(
Vc(ε, ρ

N ) ≥ −δ
)
= 1 .

At this point, we observe that for all ϕ ∈ C([0, 1],R+) we have

〈ρN (t), ϕ〉 ≤ 1

2N

2N∑
k=1

ϕ(k/2N) ,

so that a simple argument ensures that for every limit point ρ of ρN and for all
t ≥ 0, the measure ρ(t, dx) is absolutely continuous with respect to the Lebesgue
measure, and its density is bounded by 1. Therefore, any limit point is of the
form ρ(t, dx) = η(t, x)dx with η ∈ L∞([0,∞)× (0, 1)

)
. Let P be the law of the

limit of a convergent subsequence ρNi . Since ρ �→ Vc(ε, ρ) is a P-a.s. continuous
map on D

(
[0,∞),M([0, 1])

)
, we have for all ε > 0

lim
i→∞

P
Ni
ιNi

(
Vc(ε, ρ

Ni) ≥ −δ
)
≤ P

(
Vc(ε, ρ) ≥ −δ

)
.

For any ρ of the form ρ(t, dx) = η(t, x)dx, we set

Vc(ρ) :=

∫ ∞

0

(〈
∂sϕ(s, ·),

(
η(s, ·)− c

)±〉
+
〈
∂xϕ(s, ·), h±

(
η(s, ·), c

)〉

+ 2
(
(1− c)±ϕ(s, 0) + (0− c)±ϕ(s, 1)

))
ds+

〈
ϕ(0, ·), (η0 − c)±

〉
,

and we observe that by Lebesgue Differentiation Theorem, we have P-a.s. Vc(ρ) =
limε↓0 Vc(ε, ρ). Therefore,

P
(
Vc(ρ) ≥ −δ

)
= P

(
lim
ε↓0

Vc(ε, ρ) ≥ −δ
)

≥ E
[
lim
ε↓0

1{Vc(ε,ρ)≥−δ/2}
]

≥ lim
ε↓0

E
[
1{Vc(ε,ρ)≥−δ/2}

]
≥ lim

ε↓0
lim
i→∞

P
Ni
ιNi

(
Vc(ε, ρ

Ni) ≥ −δ/2
)
= 1 ,

so the process
(
η(t, x), t ≥ 0, x ∈ (0, 1)

)
under P coincides with the unique

entropy solution of (58), thus concluding the proof.

5. KPZ fluctuations

This section is taken from [29], with more details at some places.
For simplicity, we take σ = 1 in this whole section. The general case σ > 0

can be obtained mutatis mutandis.
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To prove Theorem 6, we follow the method of Bertini and Giacomin [4].
Due to our boundary conditions, there are two important steps that need some
specific arguments: first the bound on the moments of the discrete process, see
Proposition 39, second the bound on the error terms arising in the identification
of the limit, see Proposition 44. In order to simplify the notations, we will regu-
larly use the microscopic variables k, � ∈ {1, . . . , 2N − 1} in rescaled quantities:
for instance hN (t, �) stands for hN (t, x) with x = (�−N)/(2N)2α. As usual, we
let Ft, t ≥ 0 be the natural filtration associated with the process (ξN (t), t ≥ 0).
We also introduce the notation

∇+f(�) := f(�+ 1)− f(�) , ∇−f(�) := f(�)− f(�− 1) .

5.1. The discrete Hopf-Cole transform

The proof relies on the discrete Hopf-Cole transform, which was originally in-
troduced by Gärtner [19] in the context of the WASEP on the line. Recall that

hN (t, x) := γNS
(
t(2N)4α, N + x(2N)2α

)
− λN t ,

and

γN :=
1

2
log

pN
1− pN

, cN :=
(2N)4α

eγN + e−γN
, λN := cN (eγN − 2 + e−γN ) .

The discrete Hopf-Cole transform consists in setting ξN (t, x) := exp(−hN (t, x)).
It allows to counterbalance the asymmetry of the drift of the WASEP: while the
drift in the evolution equations of hN was given by a Laplacian plus a gradient,
the drift in the evolution equations of ξN is given by the Laplacian. Let us
present the details here.

We decompose ξN into a drift part DN (t) and a martingale part MN (t):

dξN (t, �) = DN (t, �)dt+ dMN (t, �) ,

and we aim at identifying the expressions of these two terms. Recall the dynam-
ics of S: the process S(t, �) makes a jump of size 2 at rate pN if ΔS(t, �) = 2
and of size −2 at rate 1− pN if ΔS(t, �) = −2. Hence we have

DN (t, �) =

⎧⎪⎨
⎪⎩
ξN (t, �)

(
(e2γN − 1)(1− pN )(2N)4α + λN

)
if ΔS(t, �) = −2 ,

ξN (t, �)
(
(e−2γN − 1)pN (2N)4α + λN

)
if ΔS(t, �) = 2 ,

ξN (t, �)λN if ΔS(t, �) = 0 ,

as well as d〈MN (·, k),MN (·, �)〉t = 0 whenever k �= � and

d〈MN (·, �)〉t
dt

=

⎧⎪⎨
⎪⎩
ξN (t, �)2(e2γN − 1)2(1− pN )(2N)4α if ΔS(t, �) = −2 ,

ξN (t, �)2(e−2γN − 1)2pN (2N)4α if ΔS(t, �) = 2 ,

0 if ΔS(t, �) = 0 .
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On the other hand, we have the following array

ΔξN (t, �) ∇+ξN (t, �) · ∇−ξN (t, �)
ΔS(t, �) = −2 ξN (t, �)(2eγN − 2) ξN (t, �)2(eγN − 1)(1− eγN )
ΔS(t, �) = 2 ξN (t, �)(2e−γN − 2) ξN (t, �)2(e−γN − 1)(1− e−γN )
ΔS(t, �) = 0 ξN (t, �)(eγN − 2 + e−γN ) ξN (t, �)2(eγN − 1)(1− e−γN )

Putting everything together, we deduce that the stochastic differential equations
solved by ξN are given by⎧⎪⎨
⎪⎩
dξN (t, �) = cNΔξN (t, �)dt+ dMN (t, �) , � ∈ {1, . . . , 2N − 1} ,

ξN (t, 0) = ξN (t, 2N) = eλN t ,

ξN (0, ·) = e−hN (0,·) ,

(71)

where the bracket ofMN is given by d〈MN (·, k),MN (·, �)〉t = 0 whenever k �= �,
and

d〈MN (·, k)〉t = λN

(
ξN (t, k)ΔξN (t, k) + 2ξN (t, k)2

)
dt

− (2N)4α∇+ξN (t, k)∇−ξN (t, k)dt .
(72)

Observe that ∣∣d〈MN (·, k)〉t
∣∣ � ξN (t, k)2(2N)2αdt ,

uniformly over all t ≥ 0, all k and all N ≥ 1.
The goal of the next paragraph is to express the process ξN as the mild

solution of (71) and to split this expression into two terms: one coming from
the initial condition and another one from the stochastic oscillations. We let
pNt (k, �) be the discrete heat kernel on {0, . . . , 2N} sped up by 2cN and endowed
with homogeneous Dirichlet boundary conditions:⎧⎪⎨

⎪⎩
∂tp

N
t (k, �) = cNΔpNt (k, �) ,

pN0 (k, �) = δk(�) ,

pNt (k, 0) = pNt (k, 2N) = 0 ,

For any t ≥ 0, we introduce the martingale [0, t] � r �→ N t
r(�) by setting

N t
r(�) =

∫ r

0

2N−1∑
k=1

pNt−s(k, �)dM
N (s, k) . (73)

We also define the process IN as the solution of⎧⎪⎨
⎪⎩
∂tI

N (t, �) = cNΔIN (t, �) ,

IN (t, 0) = IN (t, 2N) = eλN t ,

IN (0, �) = ξN (0, �) .

Then, standard arguments ensure that

ξN (t, �) = IN (t, �) +N t
t (�) , ∀� . (74)
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5.2. Preliminary bounds

The hydrodynamic limit of Theorem 5, upon discrete Hopf-Cole transform, is
given by

1 ∨ exp
(
λN t− γN

(
� ∧ (2N − �)

))
.

At any time t, the set of points � for which this expression is equal to 1 coincides
with the window

BN
0 (t) := [

λN

γN
t, 2N − λN

γN
t] ⊂ [0, 2N ] .

Within this window, the density of particles is approximately 1/2. On the left of
this window, the density is approximately 1, and on the right it is approximately
0. For technical reasons, it is convenient to introduce an ε-approximation of this
window by setting:

BN
ε (t) :=

[λN

γN
t+ εN, 2N − λN

γN
t− εN

]
, t ∈ [0, T ) .

The term IN coming from the initial condition remains close to the hydro-
dynamic limit, while the fluctuations are given by the martingale term. For
convenience, we set

bN (t, �) := 2 + exp
(
λN t− γN

(
� ∧ (2N − �)

))
.

and we introduce the discrete heat kernel on the whole line Z:{
∂tp̄

N
t (�) = cNΔp̄Nt (�) ,

p̄N0 (�) = δ0(�) .

Proposition 38. Let K be a compact subset of [0, T ) and fix ε > 0. Uniformly
over all t ∈ K, we have

1. IN (t, �) � bN (t, �) for all � ∈ {1, . . . , 2N},
2. |∇±IN (t, �)| � t−

1
2N−3α uniformly over all � ∈ BN

ε (t),
3. |IN (t, �)− IN (t′, �)| � N−α uniformly over all � ∈ BN

ε (t′) and all t < t′ ∈
K,

4. |IN (t, �)− IN (t, �′)| � N−α uniformly over all �, �′ ∈ BN
ε (t).

Proof. It will be convenient to split IN into two terms

IN (t, �) = ξN,◦(t, �) + ξN,×(t, �) . (75)

where⎧⎪⎨
⎪⎩
∂tξ

N,◦(t, �) = cNΔξN,◦(t, �) ,

ξN,◦(t, 0) = ξN,◦(t, 2N) = eλN t ,

ξN,◦(0, �) = 1 ,

and

⎧⎪⎨
⎪⎩
∂tξ

N,×(t, �) = cNΔξN,×(t, �) ,

ξN,×(t, 0) = ξN,×(t, 2N) = 0 ,

ξN,×(0, �) = 1 .
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Notice that ξN,◦ is an approximation of IN where the initial condition is set to
1 for all �, while ξN,× is the error made under this approximation. Observe that

ξN,×(t, �) =
2N−1∑
k=1

pNt (k, �)
(
ξN (0, k)− 1

)
.

The four bounds of the statement will be obtained separately for ξN,◦ and
ξN,×.

Since our initial condition is flat, it is immediate to check that∣∣ξN,×(t, �)
∣∣ � N−α � bN (t, �) ,

which immediately yields the bounds 1., 3. and 4. of the statement for ξN,×.
Recall that p̄N is the discrete heat kernel on Z. Using Lemmas 49 and 50, we
get

∇±ξN,×(t, �) =
∑

k∈BN
ε/2

(0)

∇+p̄Nt (�− k)(ξN (0, k)− 1) +O(N1−αe−δN2α

) ,

uniformly over all � ∈ BN
ε (t), all t ∈ K and all N ≥ 1. Then, we write∑

k∈BN
ε/2

(0)

|∇+p̄Nt (�− k)| = −p̄Nt (�− i− − 1) + 2p̄Nt (0)− p̄Nt (�− i+) ,

where i± are the first and last integers in BN
ε/2(0). Using Lemma 47 and our

choice of initial condition, we deduce that

∣∣∣ ∑
k∈BN

ε/2
(0)

∇+p̄Nt (�− k)(ξN (0, k)− 1)
∣∣∣ � 1 ∧ 1√

t(2N)3α
,

uniformly over the same set of parameters. The same applies to ∇−, thus con-
cluding the proof of the bound 2. for ξN,×.

To establish the required bounds on ξN,◦, we first show that there exists δ > 0
such that

|ξN,◦(t, �)− 1| � exp(−δN2α) , (76)

uniformly over all t ∈ K, all � ∈ BN
ε (t) and all N ≥ 1. Since

ξN,◦(t, �) = 1 + λN

∫ t

0

(
1−

2N−1∑
k=1

pNt−s(k, �)
)
eλNsds ,

the bound will be ensured if we are able to show that there exists δ > 0 such
that (

1−
2N−1∑
k=1

pNt−s(k, �)
)
eλNs � e−δN2α

, (77)
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uniformly over all s ∈ [0, t], all t ∈ K and all � ∈ BN
ε (t). The proof of this

estimate on the heat kernel is provided in Appendix 6.2. This yields (76), and
therefore concludes the proof of the bounds 2., 3. and 4. of the statement for
ξN,◦.

Using the estimate on ξN,◦(t,N) − 1 obtained above, we deduce that for N
large enough, bN solves⎧⎪⎨

⎪⎩
∂tb

N (t, �) = cNΔbN (t, �) , � ∈ {1, . . . , N − 1} ,

bN (t, 0) ≥ ξN,◦(t, 0) , bN (t,N) ≥ ξN,◦(t,N) ,

bN (0, k) ≥ ξN,◦(0, k) .

By the maximum principle, one deduces that bN (t, �) ≥ ξN,◦(t, �) for all t ∈
K and all � ∈ {0, . . . , N}. By symmetry, this inequality also holds for � ∈
{N, . . . , 2N}.

To alleviate the notation, we define

qNs,t(k, �) = pNt−s(k, �)b
N (s, k) . (78)

We now have all the ingredients at hand to bound the moments of ξN .

Proposition 39. For all n ≥ 1 and all compact set K ⊂ [0, T ), we have

sup
N≥1

sup
�∈{1,...,2N−1}

sup
t∈K

E

[(ξN (t, �)

bN (t, �)

)n]
< ∞ .

Since bN is of order 1 inside BN
ε (t), this ensures that the moments are them-

selves of order 1 in these windows.

Proof. We fix the compact set K until the end of the proof. Using the expression
(74) and Proposition 38, we deduce that

E

[(
ξN (t, �)

bN (t, �)

)2n] 1
2n

� 1 + E

[(
N t

t (�)

bN (t, �)

)2n] 1
2n

. (79)

We set Dt
r :=

[
N t

·
]
r
−〈N t

· 〉r and we refer to Appendix 6.1 for the notations. By
the BDG inequality (91), we obtain

E

[(
N t

t (�)
)2n] � E

[〈
N t

· (�)
〉n
t

]
+ E

[[
Dt

· (�)
]n

2

t

]
, (80)

uniformly over all � ∈ {1, . . . , 2N − 1}, all t ≥ 0, and all N ≥ 1. Let

gNn (s) := sup
k∈{1,...,2N−1}

E

[(ξN (s, k)

bN (s, k)

)2n
]
.

We claim that

E

[〈
N t

· (�)
〉n
t

]
� bN (t, �)2n

∫ t

0

gNn (s)√
t− s

ds , (81)
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E

[[
Dt

· (�)
]n

2

t

]
� bN (t, �)2n

(
1 +

∫ t

0

gNn (s)√
t− s

ds
)
, (82)

uniformly over all � ∈ {1, . . . , 2N − 1}, all N ≥ 1 and all t ∈ K. We postpone
the proof of these two bounds. Combining these two bounds with (79) and (80),
we obtain the following closed inequality

gNn (t) � 1 +

∫ t

0

gNn (s)√
t− s

ds ,

uniformly over all N ≥ 1 and all t ∈ K. By a generalised Grönwall’s inequality,
see for instance [24, Lemma 6 p.33], we deduce that gNn (t) is uniformly bounded
over all N ≥ 1 and all t ∈ K.

We are left with establishing (81) and (82). Using (72), we obtain the almost
sure bound

〈
N t

· (�)
〉
t
� (2N)2α

∫ t

0

∑
k

pNt−s(k, �)
2ξN (s, k)2ds ,

uniformly over all N ≥ 1, t ≥ 0 and � ∈ {1, . . . , 2N − 1}. Recall the function qN

from (78). Using Hölder’s inequality at the second line, we find

E

[(〈N t
· (�)

〉
t

bN (t, �)2

)n
]

�
t∫

s1,...,sn=0

∑
k1,...,kn

E

[ n∏
i=1

(2N)2α
(qNsi,t(ki, �)

bN (t, �)

)2(ξN (si, ki)

bN (si, ki)

)2
]
dsi

�
t∫

s1,...,sn=0

∑
k1,...,kn

n∏
i=1

(2N)2α
(qNsi,t(ki, �)

bN (t, �)

)2

gNn (si)
1
n dsi

�
( t∫
s=0

∑
k

(2N)2α
(qNs,t(k, �)
bN (t, �)

)2

gNn (s)
1
n ds

)n

.

By the first inequality of Lemma 48 we bound
∑

k q
N
s,t(k, �)/b

N (t, �) by a term
of order 1, and by the second inequality of the same lemma we bound

(2N)2α sup
k

qNs,t(k, �)

bN (t, �)
,

by a term of order 1/
√
t− s. Using Jensen’s inequality at the second step, we

thus get

E

[(〈N t
· (�)

〉
t

bN (t, �)2

)n
]
�
( t∫
s=0

gNn (s)
1
n

√
t− s

ds
)n

�
∫ t

0

gn(s)√
t− s

ds ,
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uniformly over all N ≥ 1, all t ∈ K and all � ∈ {1, . . . , 2N − 1}, thus yielding
(81).

We turn to the quadratic variation. Let Jk be the set of jump times of ξN (·, k).
We start with the following simple bound[

Dt
· (�)

]
t
=
∑
τ≤t

∑
k

pNt−τ (k, �)
4
(
ξN (τ, k)− ξN (τ−, k)

)4

� γ4
N

∑
k

∑
τ≤t;τ∈Jk

qNτ,t(k, �)
4
(ξN (τ, k)

bN (τ, k)

)4

,

uniformly over all N ≥ 1, all t ≥ 0 and all � ∈ {1, . . . , 2N − 1}. We set ti :=
i(2N)−4α for all i ∈ N and we let Ii := [ti, ti+1). Then, by Minkowski’s inequality
we have

E

[[
Dt

· (�)
]n

2

t

] 2
n

� γ4
N

�t(2N)4α�∑
i=0

∑
k

sup
s∈Ii,s<t

qNs,t(k, �)
4
E

[( ∑
τ∈Ii∩Jk

(ξN (τ, k)

bN (τ, k)

)4)n
2
] 2

n

,

Let Q(k, r, s) be the number of jumps of the process ξN (·, k) on the time interval
[r, s]. We have the following almost sure bound

ξN (τ, k) ≤ ξN (s, k)e2(2N)−4αλN+2γNQ(k,s,ti+1) ,

uniformly over all s ∈ Ii−1, all τ ∈ Ii, all k ∈ {1, . . . , 2N − 1} and all i ≥ 1.
Consequently we get

∑
τ∈Ii∩Jk

(ξN (τ, k)

bN (τ, k)

)4

� (2N)4α
∫ ti

ti−1

(ξN (s, k)

bN (s, k)

)4

Q(k, s, ti+1) e
8γNQ(k,s,ti+1)ds ,

uniformly over all N ≥ 1, all i ≥ 1 and all k ∈ {1, . . . , 2N − 1}. Since
(Q(k, s, t), t ≥ s) is, conditionally given Fs, stochastically bounded by a Poisson
process with rate (2N)4α, we deduce that there exists C > 0 such that almost
surely

sup
N≥1

sup
i≥1

sup
s∈Ii−1

E

[
Q(k, s, ti+1)

n
2 e4nγNQ(k,s,ti+1)

∣∣∣Fs

]
< C .

Then, we get

E

[( ∑
τ∈Ii∩Jk

(ξN (τ, k)

bN (τ, k)

)4)n
2
] 2

n

� (2N)4α
∫ ti

ti−1

E

[((ξN (s, k)

bN (s, k)

)4

Q(k, s, ti+1) e
8γNQ(k,s,ti+1)

)n
2
] 2

n

ds

� C(2N)4α
∫ ti

ti−1

gNn (s)
2
n ds ,
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uniformly over all N ≥ 1, all i ≥ 1 and all k. On the other hand, when i = 0 we
have the following bound

E

[( ∑
τ∈I0∩Jk

(ξN (τ, k)

bN (τ, k)

)4)n
2
] 2

n �
(ξN (0, k)

bN (0, k)

)4

E

[
Q(k, 0, t1)

n
2 e2nγNQ(k,0,t1)

]
� 1,

uniformly over all k and all N ≥ 1.

Observe that

pNt−s(k, �) = e−2cN (t−s)
∑
n≥0

(2cN (t− s))n

n!
pn(k, �) ,

where pn(k, �) is the probability that a discrete-time random walk, killed upon
hitting 0 and 2N and started from k, reaches � after n steps. Therefore, we easily
deduce that sups∈Ii,s<t q

N
s,t(�, k) � qNti,t(�, k). Using the two bounds of Lemma

48, we get∑
k

sup
s∈Ii,s<t

qNs,t(k, �)
4 �

∑
k

qNti,t(k, �)
4 � sup

k
qNti,t(k, �)

3
∑
k

qNti,t(k, �)

� bN (t, �)4
(
1 ∧ 1√

t− ti (2N)2α

)
,

uniformly over all N ≥ 1 and i ≥ 0. Putting everything together, we obtain

E

[[
Dt

· (k)
]n

2

t

] 2
n � bN (t, �)4

(
1 +

∫ t

0

gNn (s)
2
n

√
t− s (2N)2α

ds
)
,

and the required bound follows by Jensen’s inequality, thus concluding the proof.

5.3. Tightness

The following two lemmas control the moments of the space and time increments
of the process.

Lemma 40. Fix ε > 0, β ∈ (0, 1/2) and a compact set K ⊂ [0, T ). For any
n ≥ 1, we have

E

[∣∣ξN (t, �′)− ξN (t, �)
∣∣2n] 1

2n �
∣∣∣ �− �′

(2N)2α

∣∣∣β ,

uniformly over all t ∈ K, all �, �′ ∈ BN
ε (t) and all N ≥ 1.

Proof. The expression (74) yields two terms for ξN (t, �)− ξN (t, �′). By Proposi-
tion 38, the first term can be bounded by a term of order N−α which is negligible
compared to (|�−�′|/(2N)2α)β whenever � �= �′. Therefore, to complete the proof
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of the lemma, we only need to establish the appropriate bound for the 2n-th
moment of Rt

t(�, �
′), where we have introduced the martingale

Rt
s(�, �

′) :=

∫ r

0

2N−1∑
k=1

(
pNt−s(k, �)− pNt−s(k, �

′)
)
dMN (s, k) , r ∈ [0, t] .

Let Dt
s(�, �

′) = [Rt
· (�, �

′)]s − 〈Rt
· (�, �

′)〉s. We claim that we have

E

[〈
Rt

· (�, �
′)
〉n
t

] 1
n �

∣∣∣ �− �′

(2N)2α

∣∣∣2β , E

[[
Dt

· (�, �
′)
]n

2

t

] 2
n � (2N)−4α , (83)

uniformly over all t ∈ K, all �, �′ ∈ BN
ε (t) and all N ≥ 1. These two inequalities,

together with the BDG inequality (91) yield the desired bound on the 2n-th
moment of Rt

s(�, �
′), thus concluding the proof. We are left with the proof of

these inequalities. As in the proof of Proposition 39, we observe that

E

[[
Dt

· (�, �
′)
]n

2

t

] 2
n � γ4

N

�t(2N)4α�∑
i=0

∑
k

sup
s∈Ii,s<t

(
qNs,t(k, �)− qNs,t(k, �

′)
)4

× E

[( ∑
τ∈Ii

(ξN (τ, k)

bN (τ, k)

)4)n
2
] 2

n

.

The arguments in that proof ensure that the expectation in the r.h.s. is uniformly
bounded over all i, all k and all N ≥ 1. On the other hand, sups∈Ii

(
qNs,t(k, �)−

qNs,t(k, �
′)
)4 � qNti,t(k, �)

4 + qNti,t(k, �
′)4, so that Lemma 48 immediately yields

∑
k

sup
s∈Ii

(
qNs,t(k, �)− qNs,t(k, �

′)
)4 � 1 ∧

( 1√
t− ti(2N)2α

)3

,

since bN (t, �) is of order 1 in BN
ε (t). Hence, we get

E

[[
Dt

· (�, �
′)
]n

2

t

] 2
n � γ4

N

�t(2N)4α�∑
i=0

1 ∧
( 1√

t− ti(2N)2α

)3

� γ4
N ,

uniformly over all t ∈ K, all �, �′ ∈ BN
ε (t) and all N ≥ 1. This yields the

second bound of (83). Regarding the first bound, we notice that we only have to
consider the cases where � �= �′. Then, we have the following almost sure bound

〈
Rt

· (�, �
′)
〉
t
�
∫ t

0

2N−1∑
k=1

(
pNt−s(k, �)− pNt−s(k, �

′)
)2
(2N)2αξN (s, k)2ds .

We argue differently according as k belongs to BN
ε/2(s) or not. Using Lemma 49,

we deduce that∫ t

0

∑
k/∈BN

ε/2
(s)

(
qNs,t(k, �)− qNs,t(k, �

′)
)2
(2N)2αE

[(ξN (s, k)

bN (s, k)

)2n] 1
n

ds
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� N1+2αe−δN2α

,

uniformly over all � ∈ Bε(t), all t ∈ K and all N ≥ 1. This yields a bound
of the desired order whenever � �= �′. On the other hand, using Lemma 46 the
contribution of the remaining k’s can be bounded as follows∫ t

0

∑
k∈Bε/2(s)

(
pNt−s(k, �)− pNt−s(k, �

′)
)2
(2N)2αE

[
ξN (s, k)2n

] 1
n ds

�
∫ t

0

ds

(t− s)
1
2

∣∣∣ �− �′

(2N)2α

∣∣∣2β ,

since bN (s, k) is of order 1 in BN
ε/2(s), thus concluding the proof.

Lemma 41. Fix ε > 0, β ∈ (0, 1/4) and a compact set K ⊂ [0, T ). For any
n ≥ 1, we have

E

[∣∣ξN (t′, �)− ξN (t, �)
∣∣2n] 1

2n � |t′ − t|β +
1

(2N)α
,

uniformly over all N ≥ 1, all t < t′ ∈ K and all � ∈ BN
ε (t′).

Proof. Using (74), we can write ξN (t′, �) − ξN (t, �) as the sum of two terms.
Proposition 38 ensures that the first term is bounded by a term of order N−α

as required. Therefore, we only need to find the appropriate bound for the 2n-th
moment of N t′

t′ (�)−N t
t (�). To that end, we bound separately the 2n-th moments

of At,t′

δ and Bt,t′

t , where we have set δ = t′ − t and introduced the martingales

At,t′

u := N t′

t+u(�)−N t′

t (�), u ≤ δ and Bt,t′

s := N t′

s (�)−N t
s(�), s ≤ t.

Recall that bN (t′, �) is of order 1 in BN
ε (t′). Since

At,t′

u (�) =

∫ t+u

t

∑
k

pNt′−r(k, �)dM
N (r, k) ,

a simple computation, using Proposition 39 and Lemma 48, shows that

E

[〈
At,t′

· (�)
〉n
δ

] 1
n � (2N)2α

∫ t′

t

∑
k

qNr,t′(k, �)
2
E

[(ξN (r, k)

bN (r, k)

)2n] 1
n

dr

� (2N)2α
∫ t′

t

1√
t′ − r (2N)2α

dr �
√
δ ,

uniformly over all t < t′ ∈ K, all � ∈ BN
ε (t′) and all N ≥ 1. Then, we set

Dt,t′

u (�) :=
[
At,t′

· (�)
]
u
− 〈At,t′

· (�)
〉
u
. Let Jk be the set of jump times of ξN (·, k).

We have the almost sure bound

[
Dt,t′

· (�)
]
δ
� γ4

N

∑
k

∑
τ∈(t,t′]∩Jk

qNτ,t′(k, �)
4
(ξN (τ, k)

bN (τ, k)

)4

,
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uniformly over all the parameters. Thus, the same computation as in the proof
of Lemma 40 ensures that

E

[[
Dt,t′

· (�)
]n

2

δ

] 2
n � γ4

N ,

uniformly over all t < t′ ∈ K, all � ∈ BN
ε (t′) and all N ≥ 1. Thus, by (91), we

deduce that

E
[
|N t′

t′ (�)−N t′

t (�)|2n
] 1

2n � |t′ − t| 14 +
1

(2N)α
,

uniformly over the same set of parameters.
We turn our attention to Bt,t′ . First, we have the identity

Bt,t′

s (�) =

∫ s

0

∑
k

(
pNt′−r(k, �)− pNt−r(k, �)

)
dMN (r, k) , ∀s ≤ t ,

so that

E

[〈
Bt,t′

· (�)
〉n
δ

] 1
n � (2N)2α

∫ t

0

2N−1∑
k=1

(
qNr,t′(k, �)− qNr,t(k, �)

)2
dr .

At this point, we argue differently according as k belongs to BN
ε/2(r) or not.

Using Lemma 49, we have

(2N)2α
∫ t

0

∑
k/∈BN

ε/2
(r)

(
qNr,t′(k, �)− qNr,t(k, �)

)2
dr � N1+2αe−δN2α � N−2α ,

uniformly over all � ∈ BN
ε (t′), all t < t′ ∈ K and all N ≥ 1. On the other hand,

using Lemma 46, we get for all β ∈ (0, 1/4)

(2N)2α
∫ t

0

∑
k∈BN

ε/2
(r)

(
pNr,t′(k, �)− pNr,t(k, �)

)2
dr �

∫ t

0

|t′ − t|2β

(t− r)
1
2+2β

dr � (t′ − t)2β ,

uniformly over all t < t′ ∈ K, all � ∈ BN
ε (t′) and all N ≥ 1. Furthermore, we

set Et,t′

s :=
[
Bt,t′

·
]
s
− 〈Bt,t′

· 〉s, s ≤ t and we have the almost sure bound

[
Et,t′

· (�)
]
t
� γ4

N

∑
τ∈(0,t]

∑
k

(
qNτ,t′(k, �)− qNτ,t(k, �)

)4(ξN (τ, k)

bN (τ, k)

)4

,

uniformly over all 0 ≤ t < t′, all � and all N ≥ 1. This being given, we apply
the same arguments as in the proof of Lemma 40 to get

E

[[
Et,t′

· (�)
]n

2

t

] 2
n � γ4

N ,

uniformly over the same set of parameters. Using (91), we deduce that

E
[
|N t′

t (�)−N t
t (�)|2n

] 1
2n � |t′ − t|β +

1

(2N)α
,

uniformly over the same set of parameters, thus concluding the proof.
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Proposition 42. Fix t0 ∈ [0, T ). The sequence ξN is tight in D([0, t0], C(R)),
and any limit is continuous in time.

Proof. One introduces a piecewise linear time-interpolation ξ̄N of our process
ξN , namely we set tN := �t(2N)4α� and

ξ̄N (t, ·) :=
(
tN +1− t(2N)4α

)
ξN

( tN
(2N)4α

, ·
)
+
(
t(2N)4α − tN

)
ξN

( tN + 1

(2N)4α
, ·
)
.

Using Lemmas 40 and 41, it is simple to show that the space-time Hölder semi-
norm of ξ̄N on compact sets of [0, T ) × R has finite moments of any order,
uniformly over all N ≥ 1. Additionally, the proof of Lemma 4.7 in [4] carries
through, and ensures that ξN − ξ̄N converges to 0 uniformly over compact sets
of [0, T )×R in probability. All these arguments provide the required control on
the space-time increments of ξN to ensure its tightness, following the calculation
below Proposition 4.9 in [4].

5.4. The key lemma

We use the notation 〈f, g〉 to denote the inner product of f and g in L2(R).
Similarly, for all maps f, g : [0, 2N ] → R, we set

〈f, g〉N :=
1

(2N)2α

2N−1∑
k=1

f(k)g(k) .

Notice that the scaling here is different from the one used in the notation (52).
This is because we only look at a window of order (2N)α in space for the KPZ
fluctuations, while in the hydrodynamic limit we were considering the whole
lattice of size 2N .

To conclude the proof of Theorem 6, it suffices to show that any limit point
ξ of a convergent subsequence of ξN satisfies the following martingale problem
(see Proposition 4.11 in [4]).

Definition 43 (Martingale problem). Let (ξ(t, x), t ∈ [0, T ), x ∈ R) be a con-
tinuous process satisfying the following two conditions. Let t0 ∈ [0, T ). First,
there exists a > 0 such that

sup
t≤t0

sup
x∈R

e−a|x|
E
[
ξ(t, x)2

]
< ∞ .

Second, for all ϕ ∈ C∞
c (R), the processes

M(t, ϕ) := 〈ξ(t), ϕ〉 − 〈ξ(0), ϕ〉 − 1

2

∫ t

0

〈ξ(s), ϕ′′〉ds ,

L(t, ϕ) := M(t, ϕ)2 − 4

∫ t

0

〈ξ(s)2, ϕ2〉ds ,

are local martingales on [0, t0]. Then, ξ is a solution of (18) on [0, T ).
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The first condition is a simple consequence of Proposition 39. To prove that
the second condition is satisfied, we introduce the discrete analogues of the
above processes. For all ϕ ∈ C∞

c (R), the processes

MN (t, ϕ) = 〈ξN (t), ϕ〉N − 〈ξN (0), ϕ〉N − 1

2

∫ t

0

〈ξN (s), (2N)4αΔϕ〉Nds ,

LN (t, ϕ) = MN (t, ϕ)2 − 2λN

(2N)2α

∫ t

0

〈ξN (s)2, ϕ2〉Nds+RN
1 (t, ϕ) +RN

2 (t, ϕ) ,

are martingales, where

RN
1 (t, ϕ) := − λN

(2N)2α

∫ t

0

〈ξN (s)ΔξN (s), ϕ2〉Nds ,

RN
2 (t, ϕ) := (2N)2α

∫ t

0

〈∇+ξN (s)∇−ξN (s), ϕ2〉Nds .

If we show that RN
1 (t, ϕ) and RN

2 (t, ϕ) vanish in probability when N → ∞,
then passing to the limit on a convergent subsequence, we easily deduce that
the martingale problem above is satisfied. Below, we will be working on [N −
A(2N)2α, N + A(2N)2α] where A is a large enough value such that [−A,A]
contains the support of ϕ. The moments of ξN on this interval are of order 1
thanks to Proposition 39. Since |ΔξN | � γNξN , we have

E
[
|RN

1 (t, ϕ)|
]
� γN

∫ t

0

1

(2N)2α

∑
k

ϕ2
( k −N

(2N)2α

)
ds � γN ,

so that RN
1 (t, ϕ) converges to 0 in probability as N → ∞. To prove that RN

2

converges to 0 in probability, it suffices to apply the following delicate estimate
which is the analogue of Lemma 4.8 in [4].

Proposition 44. There exists κ > 0 such that for all A > 0, we have

E

[∣∣E[∇+ξN (t, �)∇−ξN (t, �) | Fs

]∣∣] � 1

(2N)2α+κ
√
t− s

,

uniformly over all � ∈ [N −A(2N)2α, N +A(2N)2α], all s < t in a compact set
of [N−α, T ) and all N ≥ 1.

To prove this proposition, we need to collect some preliminary results. Recall
the decomposition (74). If we set

KN
t−r(k, �) := ∇+pNt−r(k, �)∇−pNt−r(k, �) ,

(here the gradients act on the variable �), then using the martingale property
of N t

· (�) we obtain for all s ≤ t

E

[
∇+ξN (t, �)∇−ξN (t, �) | Fs

]
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=
(
∇+IN (t, �) +∇+N t

s(�)
)(
∇−IN (t, �) +∇−N t

s(�)
)

+ E

[ ∫ t

s

2N−1∑
k=1

KN
t−r(k, �) d〈MN (·, k)〉r

∣∣∣Fs

]
.

Set

fN
s (t, �) := E

[∣∣∣E[∇+ξN (t, �)∇−ξN (t, �)
∣∣Fs

]∣∣∣] .

Fix ε > 0. Using the expression of the bracket (72) of MN , we get

fN
s (t, �) ≤ DN

s (t, �) +

∫ t

s

∑
k∈BN

ε/2
(r)

(2N)4α|KN
t−r(k, �)|fN

s (r, k)dr , (84)

where DN
s (t, �) = DN,1

s (t, �) +DN,2
s (t, �) +DN,3

s (t, �) with

DN,1
s (t, �) := E

[∣∣(∇+IN (t, �) +∇+N t
s(�)

)(
∇−IN (t, �) +∇−N t

s(�)
)∣∣] ,

DN,2
s (t, �) :=

∫ t

s

∑
k/∈BN

ε/2
(r)

(2N)4α|KN
t−r(k, �)|fN

s (r, k)dr ,

DN,3
s (t, �) := λNE

[∣∣∣E[ ∫ t

s

2N−1∑
k=1

KN
t−r(k, �)

(
ξN (r, k)ΔξN (r, k)

+ 2ξN (r, k)2
)
dr
∣∣Fs

]∣∣∣] .

From now on, we fix a compact set K ⊂ [0, T ).

Lemma 45. Fix ε > 0. There exists κ > 0 such that

DN
s (t, �) � 1 ∧ 1

(2N)2α+κ
√
t− s

, (85)

uniformly over all � ∈ BN
ε (t), all N−α ≤ s < t ∈ K and all N ≥ 1.

Proof. Let us observe that we have the simple bound

fN
s (r, k) � bN (r, k)2γ2

N , (86)

uniformly over all the parameters. Recall also that bN (t, �) is of order 1 whenever
� ∈ BN

ε (t).

Let p̄N be the discrete heat kernel on the whole line Z sped up by 2cN , see
Appendix 6.2, and set K̄N

t (k, �) = ∇+p̄Nt (�− k)∇−p̄Nt (�− k).

Bound of DN,1
s . It suffices to bound the square of the L2-norms of ∇±IN (t, �)

and ∇±N t
s(�). By Proposition 38, we deduce that (∇±IN (t, �))2 � N−5α uni-

formly over all N−α ≤ t ∈ K, all � ∈ BN
ε (t) and all N ≥ 1.
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We now treat ∇+N t
s(�) (the proof is the same with∇−). Using again Lemmas

49 and 50, we have

E

[(
∇+N t

s(�)
)2] � E

[ 2N−1∑
k=1

∫ s

0

(
∇+pNt−r(k, �)

)2
d〈M(·, k)〉r

]

� (2N)2α
∑

k∈BN
ε/2

(r)

∫ s

0

(
∇+p̄Nt−r(k, �)

)2
dr +O

(
N1+2αe−δN2α)

,

uniformly over all � ∈ BN
ε (t), all t ∈ K and all N ≥ 1. Using Lemma 47,

we easily deduce that the last expression is bounded by a term of order 1 ∧
1/(

√
t− s(2N)4α) as required.

Bound of DN,2. Using the exponential decay of Lemma 49 and (86), we
deduce that there exists δ > 0 such that∫ t

s

∑
k/∈BN

ε/2
(r)

(2N)4α|KN
t−r(k, �)|fN

s (r, k)dr �
∫ t

s

∑
k/∈BN

ε/2
(r)

(2N)2αe−δN2α

dr ,

uniformly over all � ∈ BN
ε (t), all s ≤ t ∈ K and all N ≥ 1. This trivially yields

a bound of order N−3α as required.

Bound of DN,3. By Lemmas 50 and 49, there exists δ > 0 such that DN,3
s (t, �)

can be rewritten as

λNE

[∣∣∣E[ ∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)

(
ξN (r, k)ΔξN (r, k) + 2ξN (r, k)2

)
dr
∣∣Fs

]∣∣∣] ,

(87)

up to an error of order N2α+1e−δN2α

, uniformly over all � ∈ BN
ε (t), all t ∈ K

and all N ≥ 1. The error term satisfies the bound of the statement. We bound
separately the two contributions arising in (87). First, using the almost sure
bound |ΔξN (r, k)| � γNξN (r, k), we get

λNE

[∣∣∣E[ ∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)ξ

N (r, k)ΔξN (r, k)dr
∣∣Fs

]∣∣∣]

� (2N)α
∫ t

s

∑
k∈BN

ε/2
(r)

|K̄N
t−r(k, �)|dr ,

uniformly over all � ∈ BN
ε (t), all t ∈ K and all N ≥ 1. Using Lemma 47, this

easily yields a bound of order 1/(2N)2α+κ with κ > 0, as required. Second, we
have ∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)E

[
ξN (r, k)2

∣∣Fs

]
dr
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=

∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)E

[
ξN (r, k)2 − ξN (t, �)2

∣∣Fs

]
dr

+

∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)drE

[
ξN (t, �)2

∣∣Fs

]
.

We claim that we have∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)dr = −

∫ ∞

t−s

∑
k∈Z

K̄N
r (k, �)dr −

∫ t

s

∑
k/∈BN

ε/2
(r)

K̄N
t−r(k, �)dr .

(88)
We postpone the proof of this identity. The second term on the right can be
bounded using Lemma 49: it has a negligible contribution. Using Lemma 47 on
the first term, we easily deduce that

λNE

[∣∣∣ ∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)drE

[
ξN (t, �)2

∣∣Fs

]∣∣∣] � 1 ∧ 1√
t− s(2N)4α

,

uniformly over all � ∈ BN
ε (t), all t ∈ K and all N ≥ 1. On the other hand, for

any given β ∈ (0, 1/4), the Cauchy-Schwarz inequality together with Lemmas
40 and 41 yields

E

[∣∣ξN (r, k)2 − ξN (t, �)2
∣∣]

� E

[(
ξN (r, k) + ξN (r, �)

)2] 1
2

E

[(
ξN (r, k)− ξN (r, �)

)2] 1
2

+ E

[(
ξN (r, �) + ξN (t, �)

)2] 1
2

E

[(
ξN (r, �)− ξN (t, �)

)2] 1
2

� 1 ∧
(∣∣∣ �− k

(2N)2α

∣∣∣2β + |t− r|β +
1

(2N)α

)
,

uniformly over all � ∈ BN
ε (t), all k ∈ BN

ε/2(r), all r ≤ t ∈ K and all N ≥ 1.

Using Lemma 47, it is simple to deduce the existence of κ ∈ (0, 1) such that

λNE

[∣∣∣ ∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)E

[
ξN (r, k)2 − ξN (t, �)2

∣∣Fs

]
dr
∣∣∣] � 1

(2N)2α+κ
,

uniformly over all s < t ∈ K, all � ∈ BN
ε (t) and all N ≥ 1.

It remains to establish (88). To that end, we observe that∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)dr +

∫ t

s

∑
k/∈BN

ε/2
(r)

K̄N
t−r(k, �)dr

=

∫ t−s

0

∑
k∈Z

K̄N
r (k, �)dr
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=

∫ ∞

0

∑
k∈Z

K̄N
r (k, �)dr −

∫ ∞

t−s

∑
k∈Z

K̄N
r (k, �)dr .

Notice that the last two integrals converge absolutely thanks to the estimates
collected in Lemma 47. An integration by parts shows that∑

k∈Z

K̄N
r (k, �) = −

∑
k∈Z

p̄Nr (�− k)Δp̄Nr (�− k − 1) ,

but also that ∑
k∈Z

K̄N
r (k, �) = −

∑
k∈Z

p̄Nr (�− k − 1)Δp̄Nr (�− k) .

Recall that ∂tp̄
N
r = Δp̄Nr . Therefore

∑
k∈Z

K̄N
r (k, �) = −1

2

∑
k∈Z

∂t
(
p̄Nr (�− k)p̄Nr (�− k − 1)

)
.

The integral over (0,∞) of this last expression vanishes. Therefore,

∫ t

s

∑
k∈BN

ε/2
(r)

K̄N
t−r(k, �)dr +

∫ t

s

∑
k/∈BN

ε/2
(r)

K̄N
t−r(k, �)dr

= −
∫ ∞

t−s

∑
k∈Z

K̄N
r (k, �)dr ,

thus concluding the proof of the claim.

We have all the elements at hand to prove the main result of this section.

Proof of Proposition 44. Iterating (84) and using Lemma 51 and the bound
(86), we deduce that

fN
s (t, �) ≤ DN

s (t, �) +
∑
n≥1

Hs(t, �, n) ,

where for all n ≥ 1, we set tn+1 = t, kn+1 = � and

Hs(t, �, n) :=

∫
s≤t1≤...≤tn≤t

∑
ki∈BN

ε/2
(ti)

DN
s (t1, k1)

n∏
i=1

(2N)4α|KN
ti+1−ti(ki, ki+1)|dti.

By Lemma 45, we already know that DN
s (t, �) satisfies the bound of the state-

ment of Proposition 44. To conclude the proof of the proposition, we only need
to show that this is also the case for the sum over n ≥ 1 of Hs(t, �, n).

Fix A > 0. Let n0 = c logN , for an arbitrary c > −3α/ log β, where β < 1
is taken from Lemma 51. Using Lemmas 45 and 51, we easily deduce that
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Hs(t, �, n) � βn uniformly over all n ≥ 1, all � ∈ {N −A(2N)2α, N +A(2N)2α}
and all N−α ≤ s ≤ t ∈ K. Given the definition of n0, we deduce that∑

n≥n0

Hs(t, �, n) � (2N)−3α ,

uniformly over the same set of parameters, as required.
Let us now treat

∑
n<n0

Hs(t, �, n). We introduce

As(t, �, n) :=

∫
s≤t1≤...≤tn≤t

∑
ki∈BN

ε (ti)

DN
s (t1, k1)

n∏
i=1

(2N)4α|KN
ti+1−ti(ki, ki+1)|dti .

By Lemma 45, we have

As(t, �, n)

�
∫

s≤t1≤...≤tn≤t

∑
ki∈BN

ε (ti)

1

(2N)2α+κ
√
t1 − s

n∏
i=1

(2N)4α|KN
ti+1−ti(ki, ki+1)|dti .

If we restrict the domain of integration to those t1 such that t1−s ≥ (t−s)/(n+
1), then a simple calculation based on Lemma 51 ensures that this restricted
integral is bounded by a term of order

√
n+ 1βn

(2N)2α+κ
√
t− s

� 1

(2N)2α+κ
√
t− s

,

for all n ≤ n0. On the other hand, when t1− s < (t− s)/(n+1) there is at least
one increment ti+1 − ti which is larger than (t − s)/(n + 1). By symmetry, let
us consider the case i = 1. By Lemma 50, we can replace KN

t2−t1(k1, k2) with
K̄N

t2−t1(k1, k2) up to a negligible term. By Lemma 47, we bound the sum over
k1 of |K̄N

t2−t1(k1, k2)| by a term of order (2N)−4α(t2 − t1)
−1 thus yielding the

bound ∫ s+ t−s
n+1

s

∑
k1∈BN

ε (t1)

1

(2N)2α+κ
√
t1 − s

(2N)4α|KN
t2−t1(k1, k2)|dt1

�
∫ s+ t−s

n+1

s

1

(2N)2α+κ
√
t1 − s (t2 − t1)

dt1 +O(N1+4αe−δN2α

)

�

√
t−s
n+1

(2N)2α+κ t−s
n+1

� 1

(2N)2α+κ′√t− s
,

for all κ′ ∈ (0, κ) and all n < n0. Using Lemma 51, we can bound the integral
over t2, . . . , tn of the remaining terms by a term of order βn−1. Consequently,
we have proved that there exists κ′ > 0 such that

As(t, �, n) �
βn−1

(2N)2α+κ′√t− s
, (89)
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uniformly over all � ∈ [N −A(2N)2α, N +A(2N)2α], all t ∈ K, all s ∈ [0, t], all
n < n0 and all N ≥ 1.

Finally, we set Bs(t, �, n) := Hs(t, �, n)−As(t, �, n). We can replace each oc-
currence of pN by p̄N up to a negligible term, using Lemma 50. Among the pa-
rameters k1, . . . , kn involved in the definition of Bs(t, �, n), at least one them, say
ki0 , belongs to BN

ε/2(ti0)\BN
ε (ti0). Then, using the bound

∣∣K̄N
t (k, �)

∣∣ ≤ p̄Nt (k, �)
together with the semigroup property of the discrete heat kernel at the second
line and the exponential decay of Lemma 49, we get

∑
ki0+1,...,kn

n∏
i=i0

∣∣K̄N
ti+1−ti(ki, ki+1)

∣∣

≤
∑

ki0+1,...,kn

n∏
i=i0

p̄Nti+1−ti(ki, ki+1) = p̄Nt−ti0
(ki0 , �) � e−δN2α

,

uniformly over all the parameters. Using Lemma 45, one easily gets

Bs(t, �, n) � (2N)n4αe−δ(2N)2α ,

uniformly over all n ≥ 1, all s < t ∈ K and all � ∈ [N−A(2N)2α, N+A(2N)2α].
Given the definition of n0, we deduce that the sum over all n < n0 of the latter
is negligible w.r.t. (2N)−3α, uniformly over the same set of parameters. This
concludes the proof.

6. Appendix

6.1. Martingale inequalities

Let X(t), t ≥ 0 be a càdlàg, mean zero, square-integrable martingale. Let
〈X〉t, t ≥ 0 denote the bracket of X, that is, the unique predictable process
such that X2 − 〈X〉 is a martingale. Let [X]t denote its quadratic variation: in
the case where the martingale is of finite variation, we have

[X]t =
∑

τ∈(0,t]

(Xτ −Xτ−)
2 .

The Burkholder-Davis-Gundy inequality ensures that for every p ≥ 1, there
exists c(p) > 0 such that

E
[
|Xt|p

] 1
p ≤ c(p)E

[
[X]

p
2
t

] 1
p

. (90)

It happens that the process Dt = [X]t − 〈X〉t is also a martingale. Thus, using
twice the Burkholder-Davis-Gundy inequality, one gets that for every p ≥ 2
there exists c′(p) > 0 such that

E
[
|Xt|p

] 1
p ≤ c′(p)

(
E

[
〈X〉

p
2
t

] 1
p

+ E

[
[D]

p
4
t

] 1
p
)
. (91)
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We will also rely on the following inequality

E

[
sup
s≤t

|Xs|p
] 1

p ≤ c′′(p)
(
E

[
〈X〉

p
2
t

] 1
p

+ E

[
sup
s≤t

|Xs −Xs−|p
] 1

p
)
, (92)

which can be found in [30] for instance.

6.2. Discrete heat kernel estimates

We introduce the fundamental solution pNt (k, �) of the discrete heat equation
sped up by a factor cN > 0⎧⎪⎨

⎪⎩
∂tp

N
t (k, �) = cNΔpNt (k, �) ,

pN0 (k, �) = δk(�) ,

pNt (k, 0) = pNt (k, 2N) = 0 ,

(93)

for all k, � ∈ {1, . . . , 2N − 1}, as well as its analogue p̄Nt (�) on Z:{
∂tp̄

N
t (�) = cNΔp̄Nt (�) ,

p̄N0 (�) = δ0(�) ,
(94)

for all � ∈ Z. The latter is more tractable than the former since it is translation
invariant. Using a coupling between a simple random walk on Z and a simple
random walk killed at 0 and 2N , we get the elementary bound pNt (k, �) ≤
p̄Nt (� − k) for all k, � ∈ {1, . . . , 2N − 1} and all t ≥ 0. The following estimates
are standard, see for instance Lemma A.1 in [12] or Lemma 26 in [17].

Lemma 46. For all β ∈ [0, 1], we have

pNt (k, �) � 1 ∧ 1√
tcN

,

|pNt (k, �)− pNt (k, �′)| � 1 ∧ 1√
tcN

∣∣∣�− �′√
cN

∣∣∣β ,

|pNt (k, �)− pNt′ (k, �)| � 1 ∧ 1√
tcN

∣∣∣ t− t′

t

∣∣∣β ,

uniformly over all 0 ≤ t < t′, all k, �, �′ ∈ {1, . . . , 2N − 1} and all N ≥ 1. The
same bounds hold for p̄N .

Let us also state the following simple bounds.

Lemma 47. We have
∑

k p̄
N
t (k)|k| �

√
cN t , p̄Nt (�) � 1/

√
cN t as well as

∑
k∈Z

|∇p̄Nt (k)| ≤ 2p̄Nt (0) ,
∑
k∈Z

|∇p̄Nt (k)||k| � 1 , |∇p̄Nt (�)| � 1 ∧ 1

tcN
,

uniformly over all � ∈ Z, all t ≥ 0 and all N ≥ 1.
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Proof. Notice that
∑

k p̄
N
t (k)|k| is smaller than the square root of the variance

of a simple random walk on Z at time 2cN t. This easily yields the first bound.
The second bound follows from the Fourier decomposition of p̄N . We turn to
the bounds involving the gradient of p̄N . First, ∇p̄Nt (k) is positive if k < 0, and
negative otherwise. Then, we have the simple identity∑

k<0

∇p̄Nt (k) = −
∑
k≥0

∇p̄Nt (k) = p̄Nt (0) ,

which yields the first bound. Regarding the second bound, a simple integration
by parts yields

−
∑
k<0

∇p̄Nt (k)k =
∑
k≤0

p̄Nt (k) , −
∑
k≥0

∇p̄Nt (k)k =
∑
k>0

p̄Nt (k) ,

so that we get
∑

k∈Z
|∇p̄Nt (k)||k| = 1. To get the third bound, it suffices to use

the Fourier decomposition of p̄N .

From now on, we work in the setting of Section 5. Recall the definition of qN

from (78).

Lemma 48. Uniformly over all 0 ≤ s < t, all � ∈ {1, . . . , 2N − 1} and all
N ≥ 1, we have

2N−1∑
k=1

qNs,t(k, �) � bN (t, �) , qNs,t(k, �) � bN (t, �)
(
1 ∧ 1√

t− s (2N)2α

)
. (95)

Proof. By symmetry, it is sufficient to prove the lemma under the further as-
sumption � ≤ N . If bN (s, k) ≤ 3, then we have bN (s, k)/bN (t, �) ≤ 3 while if
bN (s, k) > 3, then a simple calculation ensures that

bN (s, k)

bN (t, �)
�
{
e−λN (t−s)+γN (�−k) if k ≤ N ,

e−λN (t−s)+γN (k−�) if k ≥ N ,

uniformly over all s < t, all k ∈ {1, . . . , 2N − 1}, all � ∈ {1, . . . , N} and all
N ≥ 1. Therefore, it suffices to show that

2N−1∑
k=1

pNt−s(k, �) � 1 , pNt−s(k, �) � 1 ∧ 1√
t− s(2N)2α

, (96)

as well as

2N−1∑
k=1

pNt−s(k, �)e
−λN (t−s)+γN |�−k| � 1 ,

pNt−s(k, �)e
−λN (t−s)+γN |�−k| � 1 ∧ 1√

t− s(2N)2α
.

(97)
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Regarding (96), the first bound is immediate since pNt (·, �) is a sub-probability
measure, while the second bound is proved in Lemma 46. We turn to (97).
Since k �→ eak is an eigenvector of the discrete Laplacian on Z with eigenvalue
2(cosh a− 1), we deduce that

2N−1∑
k=1

pNt−s(k, �)e
γN |�−k| ≤

∑
k∈Z

p̄Nt−s(�− k)eγN |�−k|

≤ 2e2cN (t−s)(cosh γN−1) = 2eλN (t−s) ,

thus yielding the first bound. To get the second bound, it suffices to use the
Fourier decomposition of p̄Nt−s(·)eγN ·.

We also recall a simple bound on the heat kernel, in the flavour of large
deviations techniques. For all a > 0, t > 0 and N ≥ 1, we have

∑
k≥a

p̄Nt (k) ≤ e
2tcNg

(
a

2cNt

)
, (98)

where g(x) = cosh(argshx)−x argshx−1 for all x ∈ R. By studying the function
g(x)/x, one easily deduces that the term on the r.h.s. is increasing with t.

We let q̄Ns,t(k, �) := p̄Nt−s(k, �)b
N (s, k).

Lemma 49. Fix a compact set K ⊂ [0, T ) and ε > 0. There exists δ > 0 such
that

qNs,t(k, �) ≤ q̄Ns,t(k, �) � e−δN2α

,

uniformly over all k /∈ BN
ε/2(s), all � ∈ BN

ε (t) and all 0 ≤ s ≤ t ∈ K.

Proof. Let us consider the case where bN (s, k) ≥ 3; by symmetry we can assume
that k ∈ {1, . . . , N}. Then, we apply (98) to get

p̄Nt−s(�− k)eλNs−γNk ≤ e
2(t−s)cNg

(
�−k

2cN (t−s)

)
+λNs−γNk

. (99)

We argue differently according to the value of α. If 4α ≤ 1, then (� − k)/cN
is bounded away from 0 uniformly over all N ≥ 1, all k /∈ Bε/2(s) and all
� ∈ Bε(t). Using the concavity of g, we deduce that there exists d > 0 such that
the logarithm of the r.h.s. of (99) is bounded by

−d(�− k) + λNs− γNk � −dε
N

2
,

thus concluding the proof in that case.
We now treat the case 4α > 1. Let η > 0. First, we assume that s ∈ [0, t− η].

For any c > 1/4!, we have g(x) ≤ −x2/2 + cx4 for all x in a neighbourhood of
the origin. Then, for N large enough we bound the logarithm of the r.h.s. of
(99) by

f(s) = −1

2

(�− k)2

2cN (t− s)
+ c

(�− k)4

(2cN (t− s))3
+ λNs− γNk .
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A tedious but simple calculation shows the following. There exists δ′ > 0, only
depending on ε, such that sups∈[0,t−η] f(s) ≤ −δ′N2α for all N large enough.
This ensures the bound of the statement in the case where s ∈ [0, t− η].

Using the monotonicity in t of (98), we easily deduce that for all s ∈ [t−η, t],
we have

p̄Nt−s(�− k)eλNs−γNk ≤ ef(t−η)+λNη .

Recall that λN is of order N2α. Choosing η < δ′ small enough and applying the
bound obtained above, we deduce that the statement of the lemma holds true.

The case where bN (s, k) is smaller than 3 is simpler, one can adapt the above
arguments to get the required bound.

Proof of (77). The quantity 1 −
∑2N−1

k=1 pNt−s(k, �) is equal to the probability
that a simple random walk, sped up by 2cN and started from �, has hit 0 or 2N
by time t− s. By the reflexion principle, this is smaller than twice∑

k≥�

p̄Nt−s(k) +
∑

k≥2N−�

p̄Nt−s(k) .

We restrict ourselves to bounding the first term, since one can proceed similarly
for the second term. Using (98), we deduce that it suffices to bound exp(2(t −
s)cNg

(
�/(2(t − s)cN )

)
+ λNs). This is equal to the l.h.s. of (99) when k = 0,

so that the required bound follows from the arguments presented in the last
proof.

Finally, we rely on the following representation of pN :

pNt (k, �) =
∑
j∈Z

p̄Nt (k + j4N − �)− p̄Nt (−k + j4N − �) .

The next lemma shows that pNt (k, �) can be replaced by p̄Nt (� − k) up to some
negligible term, whenever � is in the ε-bulk at time t.

Lemma 50. Fix ε > 0 and a compact set K ⊂ [0, T ). There exists δ > 0 such
that uniformly over all s ≤ t ∈ K, all k ∈ {1, . . . , 2N − 1}, all � ∈ BN

ε (t) and
all N ≥ 1, we have

∣∣pNt−s(k, �)− p̄Nt−s(k, �)
∣∣bN (s, k) � e−δN2α

.

Proof. We only consider the case where bN (s, k) > 3 since the other case is
simpler. Observe that there exists C > 0 such that log bN (s, k) ≤ CN2α for all
s ∈ K and all k ∈ {1, . . . , 2N − 1}. Arguing differently according to the relative
values of 4α and 1, and using the bound (98), we deduce that there exists j0 ≥ 1
such that∑
j∈Z:|j|≥j0

p̄Nt−s(k + j4N − �)bN (s, k) + p̄Nt−s(−k + j4N − �)bN (s, k) � e−δN2α

,

(100)



Scaling limits of bridges 239

uniformly over all s ≤ t ∈ K, all k ∈ {1, . . . , 2N − 1} and all � ∈ Bε(t). On the
other hand, the arguments in the proof of Lemma 49 yield that∑

j∈Z:|j|<j0

p̄Nt−s(−k + j4N − �)bN (s, k) � e−δN2α

,

∑
j∈Z:0<|j|<j0,

p̄Nt−s(k + j4N − �)bN (s, k) � e−δN2α

,

uniformly over the same set of parameters, thus concluding the proof.

Lemma 51. Fix ε > 0. There exist β ∈ (0, 1) such that∫ t

s

∑
k∈BN

ε/2
(r)

|KN
t−r(k, �)|(2N)4αdr < β ,

uniformly over all s ≤ t ∈ K, all � ∈ BN
ε (t) and all N large enough.

Proof. Lemma 50 ensures that∫ t

s

∑
k∈Bε/2(r)

|KN
t−r(k, �)|(2N)4αdr =

∫ t

s

∑
k∈Bε/2(r)

|K̄N
t−r(k, �)|(2N)4αdr

+O(N1+4αe−δN2α

) ,

uniformly over all � ∈ Bε(t), all t ∈ K and all N ≥ 1. Lemma A.3 in [4] ensures
that the first term on the r.h.s. is smaller than some β′ ∈ (0, 1). Since the second
term vanishes as N → ∞, the bound of the statement follows.
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[3] Bardos, C., le Roux, A. Y., and Nédélec, J.-C. (1979). First order
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1012. MR3795074

[9] Corwin, I. and Tsai, L.-C. (2017). KPZ equation limit of higher-spin
exclusion processes. Ann. Probab. 45, 3, 1771–1798. MR3650415

[10] Da Prato, G. and Zabczyk, J. (1992). Stochastic equations in infinite
dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44.
Cambridge University Press, Cambridge. MR1207136 (95g:60073)

[11] De Masi, A., Presutti, E., and Scacciatelli, E. (1989). The weakly
asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab.
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