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1. Introduction

Consider the problem of parameter estimation by the observations of the signals
in White Gaussian Noise (WGN) model

dXt = S (ϑ, t) dt+ εdWt, X0 = x0, 0 ≤ t ≤ T.
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Here S (ϑ, t) is deterministic signal and we have to estimate the parameter
ϑ ∈ Θ = (α, β) by continuous time observations XT = (Xt, 0 ≤ t ≤ T ). Without
loss of generality we suppose that x0 = 0. We are interested in the asymptotic
behavior of estimators of this parameter as ε → 0. It is known that if the signal
S (·, t) is a smooth function of the first argument for any t with finite Fisher
information

I (ϑ) =

∫ T

0

Ṡ (ϑ, t)
2
dt, (1.1)

then the maximum likelihood estimator ϑ̂ε is consistent, asymptotically normal
with the rate of convergence ε, i.e. ε−1

(
ϑ̂ε − ϑ0

)
⇒ N

(
0, I (ϑ0)

−1 )
and asymp-

totically efficient [5], [11], [12]. Here and in the sequel dot means derivation
w.r.t. ϑ.

The situation changes if the signal S (ϑ, t) = S (t− ϑ), where S (t) is discon-
tinuous function in t, say, has a jump at the point t = 0. Then the Fisher informa-
tion does not exist and the properties of the estimators are essentially different.
For example, the MLE is consistent, has non Gaussian limit distribution with
the rate of convergence ε2, i.e., ε−2

(
ϑ̂ε − ϑ0

)
⇒ û and asymptotically efficient

are Bayesian estimators [6]. Here û is some non degenerate random variable.
Let us recall that there is always a gap between mathematical model chosen

by a statistician to describe the results of observations and the model which
corresponds exactly to these observations. Sometimes the difference is not im-
portant and the theoretical results are in good agreement with the real data and
sometimes the difference can be essential. The difference between the models is
determined by the Kullback-Leibler distance between the corresponding mea-
sures. We are interested in the situations where the L2 difference between the
signals can be very small and the same time the difference of the properties of
estimators is sufficiently important. We show that even the rate of convergence
of estimators is quite different for two such close models.

We are in the situation of misspecification. This misspecification concerns not
only the choice of the signal in the family of models close to the model of real
data, but we suppose that the regularity conditions assumed by the statistician
are wrong. In particularly, the observed signal S (ϑ0, t) can be smooth with re-
spect to the unknown parameter ϑ0, but the signal chosen by the statistician
M (ϑ, t) is discontinuous. Our goal is to describe the properties of the corre-

sponding pseudo-MLE ϑ̂ε. Recall that this estimator converges to the value ϑ̂0,
which minimizes the Kullback-Leibler distance. Then we study its limit distribu-
tion and show that it converges to a non Gaussian limit law with the rate ε2/3,
which is different from the rate ε in smooth case and the rate ε2 in discontinuous
case.

This statement of the problem comes from the statistical radio physics. Sup-
pose that we have to detect a rectangular signal (change point problem) with
the help of the maximum likelihood algorithm. It is known that the received
signal can not have exactly rectangular form because the electrical current in
the circuit which produces the signal can not have a discontinuous changes and
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we have just a strongly increasing curve. The L2 difference between rectangular
and strongly increasing signals can be small and it is interesting to see what
happens with the properties of the estimators in such situation. This approxi-
mation can be good or bad depending on the front of the signal and the level of
signal-to-noise ratio.

We consider as well in some sense inverse problem, where the theoretical
model is smooth and the real data model is discontinuous and we describe
the asymptotics of the pseudo-MLE as ε → 0. We show that in this case the
estimator ϑ̂ε converges to the point ϑ̂0 which minimizes the Kullback-Leibler
distance and is asymptotically normal with the rate ε.

In the next section we remind some well-known properties of the estimators
in smooth, cusp-type and discontinuous signals together with the limits of the
corresponding normalized likelihood ratios. This will allow us to see the changes
due to the different type of misspecifications. In particular, we show that in the
case of misspecifications the limit likelihood ratios are in some sense “mixtures
of the true likelihood ratios”. The stochastic part is defined by the theoretical
model and the deterministic part is as it has to be in true model.

At the end we describe the conditions on the misspecified model (discontin-
uous vs discontinuous) which allow nevertheless to prove the consistency (true)
of the pseudo-MLE.

2. Preliminaries

Let us consider the problem of parameter estimation by the observations (in
continuous time) of the deterministic signal in the presence of WGN of small
intensity

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T. (2.1)

Here the unknown parameter ϑ0 ∈ Θ = (α, β) and S (ϑ0, ·) ∈ L2 (0, T ). We
suppose for the simplicity of exposition that this parameter is one-dimensional
and that α and β are finite. We are interested in the behavior of the estimators
of this parameter in the asymptotic of small noise, i.e., as ε → 0. The likelihood
ratio function is

L
(
ϑ,XT

)
= exp

{
1

ε2

∫ T

0

S (ϑ, t) dXt −
1

2ε2

∫ T

0

S (ϑ, t)
2
dt

}
, ϑ ∈ Θ.

The maximum likelihood estimator (MLE) ϑ̂ε and the Bayesian estimator (BE)
ϑ̃ε (for quadratic loss function) are defined by the relations

L
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
L
(
ϑ,XT

)
, ϑ̃ε =

∫
Θ
ϑp (ϑ)L

(
ϑ,XT

)
dϑ∫

Θ
p (ϑ)L (ϑ,XT ) dϑ

. (2.2)

Here p (·) is the density of the distribution a priory. It is supposed to be con-
tinuous and positive.
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It is well known that in the case of the smooth w.r.t. ϑ signal S (ϑ, t) these
estimators are consistent, asymptotically normal

ε−1
(
ϑ̂ε − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)
, ε−1

(
ϑ̃ε − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)
,

with convergent polynomial moments of any order p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

ε

∣∣∣∣∣
p

= I (ϑ0)
− p

2 E |ζ|p , lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̃ε − ϑ0

ε

∣∣∣∣∣
p

= I (ϑ0)
− p

2 E |ζ|p

and the both estimators are asymptotically efficient. Here I (ϑ0) is the Fisher
information (1.1) and ζ ∼ N (0, 1). The normalized likelihood ratio Zε (u) has
the following limit

Zε (u) =
L (ϑ0 + εu,X)

L (ϑ0, X)
=⇒ Z (u) = exp

{
uΔ− u2

2
I (ϑ0)

}
, u ∈ R. (2.3)

Here Δ ∼ N (0, I (ϑ0)). For the proofs see [5] or [7].
Suppose that the signal S (ϑ, t) has cusp-type singularity, say, S (ϑ0, t) =

|t− θ0|κ, where 0 < α < ϑ0 < β < T and κ ∈ (0, 1
2 ). Then the Fisher informa-

tion is ∞ and we have a singular problem of parameter estimation. Introduce
the Hurst parameter H = κ + 1

2 and double-side fractional Brownian motion
(fBm) WH (u) , u ∈ R. It is known that the MLE and BE are consistent, have
limit distributions

ε−
2
H

(
ϑ̂ε − ϑ0

)
=⇒ ξ̂, ε−

2
H

(
ϑ̃ε − ϑ0

)
=⇒ ξ̃,

the polynomial moments converge: for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

ε
2
H

∣∣∣∣∣
p

= E
∣∣∣ξ̂∣∣∣p , lim

ε→0
Eϑ0

∣∣∣∣∣ ϑ̃ε − ϑ0

ε
2
H

∣∣∣∣∣
p

= E
∣∣∣ξ̃∣∣∣p

and the BE are asymptotically efficient. Here the random variables ξ̂ and ξ̃ are
defined by the relations

Z(ξ̂) = sup
u∈R

Z (u) , ξ̃ =

∫
R uZ (u) du∫
R Z (u) du

, (2.4)

where the process Z (u) , u ∈ R is the limit of the normalized likelihood ratio

Zε (u) =
L
(
ϑ0 + ε

2
H u,XT

)
L (ϑ0, XT )

⇒ Z (u) = exp

{
γϑ0W

H (u)−
γ2
ϑ0

2
|u|2H

}
.

Here γϑ0 > 0 is some constant. The proofs can be found in [2]. Note that the
case κ ∈

(
−1

2 , 0
)
was studied in [8].
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Suppose now that the function S (ϑ, t) has discontinuity, say,

S (ϑ0, t) = h (t) 1{t<ϑ0} + g (t) 1{t≥ϑ0}, 0 < α < ϑ0 < β < T,

where h (t) �= g (t) for t ∈ (α, β).
It is known that the MLE and BE are consistent, have limit distributions

ε−2
(
ϑ̂ε − ϑ0

)
=⇒ η̂, ε−2

(
ϑ̃ε − ϑ0

)
=⇒ η̃, (2.5)

the polynomial moments converge: for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

ε2

∣∣∣∣∣
p

= E |η̂|p , lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̃ε − ϑ0

ε2

∣∣∣∣∣
p

= E |η̃|p

and the BE are asymptotically efficient. Here the random variables η̂ and η̃ are
defined by the relations (2.4), where the process Z (u) , u ∈ R is the limit of the
normalized likelihood ratio

Zε (u) =
L
(
ϑ0 + ε2u,XT

)
L (ϑ0, XT )

=⇒ Z (u) = exp

{
δ (ϑ0)W (u)− δ (ϑ0)

2 |u|
2

}
. (2.6)

Here δ (ϑ) = h (ϑ) − g (ϑ) and W (·) is a double-sided Wiener process. For the
proofs see [6] or [7].

We presented here three models of observations with different types of reg-
ularity and the normalized likelihood ratios Zε (u) have three different rates
of normalizing. The solutions of all these problems were obtained by the same
method of the study of the properties of estimators developed by Ibragimov
and Khasminskii [7]. Let us recall here the main steps. Suppose that for some
normalizing function ϕε → 0 the random process

Zε (u) =
L
(
ϑ0 + ϕεu,X

T
)

L (ϑ0, XT )
, u ∈ Uε =

(
α− ϑ0

ϕε
,
β − ϑ0

ϕε

)

converges to a non degenerate random process Z (u) , u ∈ R, i.e.,

Zε (·) =⇒ Z (·) . (2.7)

Introduce the random variables û and ũ by the relations like (2.4)

Z (û) = sup
u∈R

Z (u) , ũ =

∫
R uZ (u) du∫
R Z (u) du

. (2.8)

The limit distribution of the normalized MLE ûε = ϕ−1
ε

(
ϑ̂ε − ϑ0

)
can be

obtained as follows:

Pϑ0

(
ϑ̂ε − ϑ0

ϕε
< x

)
= Pϑ0

(
ϑ̂ε < ϑ0 + ϕεx

)
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= Pϑ0

{
sup

ϑ<ϑ0+ϕεx
L
(
ϑ,XT

)
> sup

ϑ≥ϑ0+ϕεx
L
(
ϑ,XT

)}

= Pϑ0

{
sup

ϑ<ϑ0+ϕεx

L
(
ϑ,XT

)
L (ϑ0, XT )

> sup
ϑ≥ϑ0+ϕεx

L
(
ϑ,XT

)
L (ϑ0, XT )

}

= Pϑ0

{
sup

u<x,u∈Uε

Zε (u) > sup
u≥x,u∈Uε

Zε (u)

}

−→ Pϑ0

{
sup
u<x

Z (u) > sup
u≥x

Z (u)

}
= Pϑ0 (û < x) . (2.9)

Here we put ϑ = ϑ0 +ϕεu and used the convergence (2.7). Therefore we proved
that

ϑ̂ε − ϑ0

ϕε
=⇒ û.

For the Bayesian estimator we have:

ϑ̃ε =

∫
Θ
θp (θ)L

(
θ,XT

)
dθ∫

Θ
p (θ)L (θ,XT ) dθ

= ϑ0 + ϕε

∫
Uε

up (θu)L
(
θu, X

T
)
du∫

Uε
p (θu)L (θu, XT ) du

= ϑ0 + ϕε

∫
Uε

up (θu)
L(θu,XT )
L(ϑ0,XT )

du∫
Uε

p (θu)
L(θu,XT )
L(ϑ0,XT )

du
= ϑ0 + ϕε

∫
Uε

up (θu)Zε (u) du∫
Uε

p (θu)Zε (u) du
,

where once more we changed the variables ϑu = ϑ0 + ϕεu. Hence

ϑ̃ε − ϑ0

ϕε
=

∫
Uε

up (θu)Zε (u) du∫
Uε

p (θu)Zε (u) du
=⇒

∫
R uZ (u) du∫
R Z (u) du

= ũ. (2.10)

Here p (ϑ0 + ϕεu) → p (ϑ0).
We are interested in the following problem of misspecification. Suppose that

model of observations chosen by the statistician is

dXt = M (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T

and the real data model (2.1) are different. Especially we study the situations
where the regularity conditions of these models do not coincide. For example, the
signal S (ϑ, t) is a smooth function of ϑ (regular case), but the statistician sup-
poses that the observed model has singularities of cusp or discontinuous types.

We presente in this work one model of observations with three different condi-
tions of regularity. We study the properties of the estimators when the misspecifi-
cations are smooth-discontinuous and discontinuous-smooth and discontinuous-
discontinuous. The similar statements related to the second model were studied
in [2].

The proofs of all presented below results are based on the technique developed
by Ibragimov and Khasminskii [7], but there is the following difference. As
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usual in misspecification problems the pseudo-likelihood ratio V
(
ϑ,XT

)
does

not satisfy the equality Eϑ0V
(
ϑ,XT

)
= 1. The limit of the MLE ϑ̂ε is the point

ϑ̂ which minimizes the corresponding Kullback-Leibler distance. Moreover, the
normalized pseudo-likelihood ratio

Zε (u) =
V
(
ϑ̂+ ϕεu,X

T
)

V
(
ϑ̂, XT

) , u ∈ Uε =

(
α− ϑ̂

ϕε
,
β − ϑ̂

ϕε

)

has no non degenerate limit Z (u). We show that with the “correct” normalizing
functions ϕε we obtain the limits like Zε (u) → ∞. That is why in the problems
below we propose two normalizing functions ϕε and ψε such that the random
process

Ẑε (u) = [Zε (u)]
ψε , u ∈ Uε

converges to some non degenerate random process Ẑ (u). The limit distributions
of the MLEs are obtained with the help of the convergence similar to (2.9), where
we use the equality

Pϑ0

{
sup

u<x,u∈Uε

Zε (u) > sup
u≥x,u∈Uε

Zε (u)

}

= Pϑ0

{
sup

u<x,u∈Uε

Ẑε (u) > sup
u≥x,u∈Uε

Ẑε (u)

}

−→ Pϑ0

{
sup
u<x

Ẑ (u) > sup
u≥x

Ẑ (u)

}
= Pϑ0 (û < x) . (2.11)

This last convergence provides us the limit

ϑ̂ε − ϑ̂

ϕε
=⇒ û

with a different û.
We propose two examples of misspecified models which admit the consistent

estimation of the unknown parameter.

3. Main results

We suppose that the observed process (real model) is

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3.1)

where ϑ0 ∈ Θ = (α, β) is the true value of unknown parameter and S (ϑ, ·) ∈
L2 (0, T ). If we use the theoretical model

dXt = M (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,
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with M (ϑ, ·) ∈ L2 (0, T ), then the (pseudo-) likelihood ratio (misspecified) is

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ T

0

M (ϑ, t) dXt −
1

2ε2

∫ T

0

M (ϑ, t)
2
dt

}
, ϑ ∈ Θ (3.2)

and the pseudo-MLE ϑ̂ε is defined by the equation

V
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
V
(
ϑ,XT

)
. (3.3)

If this equation has more than one solution, then any one of them can be taken as
ϑ̂ε. To understand what is the limit of the pseudo-MLE we write the likelihood
ratio as follows

ε2 lnV
(
ϑ,XT

)
= ε

∫ T

0

M (ϑ, t) dWt −
1

2

∫ T

0

[
M (ϑ, t)

2 − 2M (ϑ, t)S (ϑ0, t)
]
dt

= ε

∫ T

0

M (ϑ, t) dWt −
1

2
‖M (ϑ, ·)− S (ϑ0, ·)‖2 +

1

2
‖S (ϑ0, ·)‖2 ,

where we denoted as ‖·‖ the L2 (0, T ) norm. It can be easily verified that under
mild regularity conditions we have the convergence

sup
ϑ∈Θ

∣∣∣∣ε2 lnV (
ϑ,XT

)
+

1

2
‖M (ϑ, ·)− S (ϑ0, ·)‖2 −

1

2
‖S (ϑ0, ·)‖2

∣∣∣∣
= ε sup

ϑ∈Θ

∣∣∣∣∣
∫ T

0

M (ϑ, t) dWt

∣∣∣∣∣ −→ 0

as ε → 0. Hence if we suppose that the equation

inf
ϑ∈Θ

‖M(ϑ, ·)− S (ϑ0, ·)‖ =
∥∥∥M(ϑ̂, ·)− S (ϑ0, ·)

∥∥∥
has a unique solution ϑ̂ ∈ Θ̄ = [α, β], then we obtain the following well-known

result: in the case of misspecification the pseudo-MLE ϑ̂ε converges to the value
ϑ̂, which minimizes the Kullback-Leibler distance

ϑ̂ε −→ ϑ̂. (3.4)

Of course, if we have no misspecification, then ϑ̂ε −→ ϑ0. It is interesting to
note that in general case ϑ̂ �= ϑ0 but sometimes ϑ̂ = ϑ0 and we consider the
conditions of the consistency in such situations (see Examples 1 and 2 below).

3.1. Discontinuous versus smooth

Here we consider the situation where the true model (described by the signal
S (ϑ, ·)) is smooth w.r.t. ϑ but the theoretical model chosen by statistician has
discontinuous signal M (ϑ, ·).
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We start with one simple example. This example allows us to see that with
the wrong models it is possible sometimes to have the consistency of the pseudo-
MLEs. Moreover we can see as well the correct choice of the functions ϕε and
ψε.

Example 1. Suppose that the observed process is (3.1), where the signal

S (ϑ0, t) = δ−1 (t− ϑ0) 1{|t−ϑ0|<δ} + sgn (t− ϑ0) 1{|t−ϑ0|≥δ} (3.5)

and ϑ0 ∈ Θ = (α, β), 0 < α < β < T . Here α > δ and β < T−δ. The theoretical
model is

dXt = sgn (t− ϑ) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, ϑ ∈ Θ. (3.6)

This means that we observe the process (3.1) but we suppose that the observa-
tions are (3.6) and try to estimate the parameter ϑ0 of the model (3.1) using
the (wrong) model (3.6). These two signals S (ϑ0, t) and M (ϑ, t) are presented
on the Figure 1 below, where ϑ0 = 3 and ϑ = 3.

Fig 1. Real S (3, t) (dashed line) and theoretical M (3, t) signals

Introduce the pseudo-likelihood function

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ T

0

sgn (t− ϑ) dXt −
T

2ε2

}
, ϑ ∈ Θ

and define the pseudo-MLE ϑ̂ε by the relation

ϑ̂ε = arg sup
ϑ∈Θ

∫ T

0

sgn (t− ϑ) dXt.

Note that

ϑ̂ = arg inf
ϑ∈Θ

∫ T

0

[sgn (t− ϑ)− S (ϑ0, t)]
2
dt = ϑ0.
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Hence the pseudo-MLE ϑ̂ε defined in this misspecified parameter estimation
problem according to (3.4) is consistent.

To study its rate of convergence and the limit distribution we introduce the
normalized likelihood ratio

Zε (u) =
V
(
ϑu, X

T
)

V (ϑ0, XT )
, u ∈ Uε,

where ϑu = ϑ0 + ϕεu. Here ϕε → 0 will be chosen later and

Uε =

(
α− ϑ0

ϕε
,
β − ϑ0

ϕε

)
−→ (−∞,∞)

as ε → 0.
The substitution of the observation process in the likelihood ratio yields us

the following expression (we suppose that u > 0)

lnZε (u) =
1

ε

∫ T

0

[sgn (t− ϑ0 − ϕεu)− sgn (t− ϑ0)] dWt

+
1

ε2

∫ T

0

[sgn (t− ϑ0 − ϕεu)− sgn (t− ϑ0)]S (ϑ, t0) dt

= −2

ε

∫ T

0

1{ϑ0<t<ϑ0+ϕεu}dWt −
2

ε2

∫ T

0

1{ϑ0<t<ϑ0+ϕεu}S (ϑ0, t) dt

= −2

ε
[Wϑ0+ϕεu −Wϑ0 ]−

2

ε2

∫ ϑ0+ϕεu

ϑ0

S (ϑ0, t) dt

=
2
√
ϕε

ε
W+ (u)− ϕ2

ε

δε2
u2 =

2
√
ϕε

ε

[
W+ (u)− ϕ

3/2
ε

δε

u2

2

]
, (3.7)

where we denoted the Wiener process

W+ (u) = ϕ−1/2
ε [Wϑ0+ϕεu −Wϑ0 ] , u ∈

[
0,

β − ϑ0

ϕε

)
.

Therefore if we take

ϕε = (δε)
2/3

, ψε =
ε2/3

2δ1/3
,

then we can write

Ẑε (u) = (Zε (u))
ψε = exp

{
W+ (u)− u2

2

}
, u ∈

[
0,

β − ϑ0

ϕε

)
.

For the negative u we obtain a similar representation

Ẑε (u) = (Zε (u))
ψε = exp

{
W− (−u)− u2

2

}
, u ∈

(
α− ϑ0

ϕε
, 0

]
,
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where W− (u) , u ≥ 0 is a Wiener process independent of W+ (u) , u ≥ 0. Hence
if we denote W (·) a two-sided Wiener process, then

Ẑε (u) = (Zε (u))
ψε = exp

{
W (u)− u2

2

}
, u ∈ Uε.

Now the properties of the pseudo-MLE ϑ̂ε follow from the relations (2.9) and
(2.11) as follows:

Pϑ0

(
ϑ̂ε − ϑ0

(δε)
2/3

< x

)
= Pϑ0

(
ϑ̂ε < ϑ0 + (δε)

2/3
x
)

= Pϑ0

{
sup

ϑ<ϑ0+ϕεx
V
(
ϑ,XT

)
> sup

ϑ≥ϑ0+ϕεx
V
(
ϑ,XT

)}

= Pϑ0

{
sup

ϑ<ϑ0+ϕεx

V
(
ϑ,XT

)
V (ϑ0, XT )

> sup
ϑ≥ϑ0+ϕεx

V
(
ϑ,XT

)
V (ϑ0, XT )

}

= Pϑ0

{
sup

u<x,u∈Uε

Zε (u) > sup
u≥x,u∈Uε

Zε (u)

}

= Pϑ0

{
sup

u<x,u∈Uε

Ẑε (u) > sup
u≥x,u∈Uε

Ẑε (u)

}
= Pϑ0 (ûε < x) , (3.8)

where we denoted ûε the solution of the following equation

W (ûε)−
û2
ε

2
= sup

u∈Uε

(
W (u)− u2

2

)
.

Let us denote Ẑ (u) = exp
{
w (u)− u2/2

}
, u ∈ R, where w (·) is two-sided

Wiener process and note that for u ∈ Uε we have (in distribution) the relation
Ẑε (u) = Ẑ (u) . We say that this equality is in distribution because the Wiener
processes in Zε (u) and Z (u) are different and the Wiener process W (·) depends
on ε. It can be shown that

Pϑ0 (ûε < x) −→ Pϑ0 (û < x) ,

i.e.,

ûε =⇒ û = arg sup
u∈R

(
w (u)− u2

2

)

and we have the convergence of moments. Therefore we obtain the following

Proposition 1. The pseudo-MLE ϑ̂ε in this problem is consistent, converges
in distribution

ϑ̂ε − ϑ0

(δε)
2/3

=⇒ û
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and the moments converge: for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

(δε)
2/3

∣∣∣∣∣
p

= E |û|p .

The proof follows from more general result of the Theorem 1 below.

Return now to the general smooth model of observations

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T (3.9)

and the discontinuous theoretical model

dXt = M (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3.10)

where the signal

M (ϑ, t) = h (t) 1{t<ϑ} + g (t) 1{t≥ϑ}.

The unknown parameter ϑ ∈ Θ = (α, β) with 0 < α < β < T . We observe a
trajectory XT = (Xt, 0 ≤ t ≤ T ) of the solution of the equation (3.9) and we
want to estimate ϑ0 supposing that the observed process is (3.10). Therefore we
introduce the pseudo-likelihood ratio

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ ϑ

0

h (t) dXt +
1

ε2

∫ T

ϑ

g (t) dXt

− 1

2ε2

∫ ϑ

0

h (t)
2
dt− 1

2ε2

∫ T

ϑ

g (t)
2
dt

}
, ϑ ∈ Θ

and define the pseudo-MLE ϑ̂ε by the equation (3.3).
Let us introduce the following notations:

δ (t) = h (t)− g (t) , Φ (ϑ) =

∫ T

0

[M (ϑ, t)− S (ϑ0, t)]
2
dt,

Φ̈ (ϑ) = 2 [h (ϑ)− S (ϑ0, ϑ)]
[
ḣ (ϑ)− S′ (ϑ0, ϑ)

]
− 2 [g (ϑ)− S (ϑ0, ϑ)] [ġ (ϑ)− S′ (ϑ0, ϑ)] ,

γ(ϑ̂) =
Φ̈(ϑ̂)

2
, ϑ̂ ∈ Θ,

Ẑ (u) = exp

{
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2

}
, u ∈ R,

Zo (v) = exp

{
w (v)− v2

2

}
, v ∈ R
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û = arg sup
u∈R

[
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2

]
, v̂ = arg sup

u∈R

[
w (v)− v2

2

]
.

Here dot means differentiating w.r.t. ϑ, prime means differentiating w.r.t. t,
W (u) , u ∈ R and w (v) , v ∈ R are two-sided Wiener processes.

Note that

û = v̂

(
δ(ϑ̂)

γ(ϑ̂)

) 2
3

. (3.11)

Indeed, let us put u = rv. Then we can write

δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2 =

√
rδ(ϑ̂)w (v)− γ(ϑ̂)r2

2
v2

=
√
rδ(ϑ̂)

[
w (v)− γ(ϑ̂)r

3
2

2δ(ϑ̂)
v2

]
=

√
rδ(ϑ̂)

[
w (v)− v2

2

]

if we put r = δ(ϑ̂)
2
3 γ(ϑ̂)−

2
3 . Here w (v) = r−1/2W (rv). This proves (3.11).

Conditions M.

1. inft∈Θ δ (t) > 0.
2. The equation

∫ ϑ̂

0

[h (t)− S (ϑ0, t)]
2
dt+

∫ T

ϑ̂

[g (t)− S (ϑ0, t)]
2
dt = inf

ϑ∈Θ
Φ (ϑ)

has a unique solution ϑ̂ = ϑ̂ (ϑ0) ∈ Θ.
3. The functions h (t) , g (t) and S (ϑ, t) are continuously differentiable w.r.t.

t ∈ Θ.
4. infϑ∈Θ Φ̈ (ϑ) > 0.

The properties of the pseudo-MLE ϑ̂ε are described in the following theorem.

Theorem 1. Let the conditions M be fulfilled then the estimator ϑ̂ε converges
to the value ϑ̂, has the limit distribution

ϑ̂ε − ϑ̂

ε2/3
=⇒ û, (3.12)

and for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ̂

ε2/3

∣∣∣∣∣
p

= Eϑ0 |û|
p
. (3.13)

Proof. As before we study the normalized pseudo-likelihood ratio process

Zε (u) =
V
(
ϑ̂+ ϕεu,X

T
)

V
(
ϑ̂, XT

) , u ∈ Uε,
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where ϕε = ε2/3. We have (u > 0)

lnZε (u) =
1

ε2

∫ T

0

[
M

(
ϑ̂+ ϕεu, t

)
−M

(
ϑ̂, t

)]
dXt

− 1

2ε2

∫ T

0

[
M

(
ϑ̂+ ϕεu, t

)2

−M
(
ϑ̂, t

)2
]
dt

=
1

ε

∫ ϑ̂+ϕεu

ϑ̂

[h (t)− g (t)] dWt

− 1

2ε2

∫ ϑ̂+ϕεu

ϑ̂

(
[h (t)− S (ϑ0, t)]

2 − [g (t)− S (ϑ0, t)]
2
)
dt

=
δ(ϑ̂)

√
ϕε

ε

[
Wϑ̂+ϕεu

−Wϑ̂√
ϕε

]
−

Φ
(
ϑ̂+ ϕεu

)
− Φ

(
ϑ̂
)

2ε2
+ o (1)

=

√
ϕε

ε
δ(ϑ̂)W+ (u)− ϕ2

εu
2

4ε2
Φ̈(ϑ̂) + o (1)

= ε−2/3

[
δ(ϑ̂)W+ (u)− Φ̈(ϑ̂)

2

u2

2

]
+ o (1) .

Here we introduced the Wiener process

W+ (u) =
Wϑ̂+ϕεu

−Wϑ̂√
ϕε

, u ∈
[
0,

β − ϑ̂

ε2/3

)
,

and used in the expansion of Φ(ϑ̂+ ϕεu) the equality Φ̇(ϑ̂) = 0.
For the negative values u < 0 we obtain the similar representation

lnZε (u) = ε−2/3

[
δ(ϑ̂)W− (−u)− Φ̈(ϑ̂)

2

u2

2

]
+ o (1)

with the independent Wiener process W− (u) , u ≥ 0.
Let us put ψε = ϕε = ε2/3 and introduce the random process

Ẑε (u) = (Zε (u))
ψε = exp

{
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2 + o (1)

}
, u ∈ Uε. (3.14)

We define Zε (u) linearly decreasing to zero on the interval[
β − ϑ̂

ε2/3
,
β − ϑ̂

ε2/3
+ 1

]

and increasing from zero to Ẑε

(
α−ϑ̂
ε

)
on the interval

[
α− ϑ̂

ε2/3
− 1,

α− ϑ̂

ε2/3

]
.
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Further we put Ẑε (u) = 0 for

u �∈
[
α− ϑ̂

ε2/3
− 1,

β − ϑ̂

ε2/3
+ 1

]
.

Now the process Ẑε (u) is defined for all u ∈ R. Note that this process is con-
tinuous with probability 1.

Let us denote by Qϑ0,ε the measure induced by this process in the space
C0 (R) of continuous functions decreasing to zero at infinity. The corresponding
measurable space we denote as (C0 (R) ,B), where B is Borelian σ-algebra. By
Qϑ0 we denote the measure of the limit process Ẑ (·). According to the approach
of Ibragimov-Khasminskii we have to verify the uniform on compacts K ⊂ Θ
weak convergence

Qϑ0,ε =⇒ Qϑ0 . (3.15)

The next lemmas provide us the convergence of finite-dimensional distributions
and two properties of the random process Ẑε (·) allowing to prove the tightness

of the family of measures {Qϑ0,ε, ϑ ∈ Θ}. As the pseudo-MLE ûε = ϕ−1
ε (ϑ̂ε− ϑ̂)

is a continuous functional on the space (C0 (R) ,B), i.e.,

ûε = Ψ(Ẑε) = arg sup
u∈R

Ẑε (u)

we obtain from (3.15) the convergence ûε =⇒ û. Remind that the process Ẑε (u)
is defined on R.

From the representation (3.14) we obtain immediately the first lemma.

Lemma 1. The finite-dimensional distributions of Ẑε (·) converge, i.e.,: for any
set u1, . . . , uk and any k = 1, 2, . . .(

Ẑε (u1) , . . . , Ẑε (uk)
)
=⇒

(
Ẑ (u1) , . . . , Ẑ (uk)

)
. (3.16)

This convergence is uniform in ϑ on compacts K ⊂ Θ.

We need the following elementary estimate

Lemma 2. There exists a constant κ > 0 such that

Φ (ϑ)− Φ(ϑ̂) ≥ κ
(
ϑ− ϑ̂

)2

. (3.17)

Proof. As the point ϑ̂ is a unique minimum of the function Φ (ϑ), we can write
for any ν > 0

m (ν) = inf
|ϑ−ϑ̂|>ν

Φ (ϑ)− Φ(ϑ̂) > 0.

Hence for
∣∣∣ϑ− ϑ̂

∣∣∣ > ν

Φ (ϑ)− Φ(ϑ̂) ≥ m (ν) ≥ m (ν)

(
ϑ− ϑ̂

)2

(β − α)
2 .
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Further, for the values
∣∣∣ϑ− ϑ̂

∣∣∣ ≤ ν by Taylor expansion we have

Φ (ϑ)− Φ(ϑ̂) =
1

2
Φ̈(ϑ̂)

(
ϑ− ϑ̂

)2

(1 + o (1)) .

Therefore for sufficiently small ν we can write

Φ (ϑ)− Φ(ϑ̂) ≥ 1

4
Φ̈(ϑ̂)

(
ϑ− ϑ̂

)2

.

Taking

κ = min

(
m (ν)

(β − α)
2 ,

1

4
Φ̈(ϑ̂)

)

we obtain (3.17).
This estimate allows us to verify the boundedness of all moments of the

pseudo likelihood ratio process.

Lemma 3. For any p > 0 there exist constants c > 0 and d > 0 such that for
all |u| ≥ d

Eϑ0 Ẑ
p
ε (u) ≤ e−cu2

. (3.18)

Proof. Indeed, we have

Eϑ0Ẑε (u)
p
= exp

{
p2ε−2/3

2

∫ ϑ̂+ϕεu

ϑ̂

δ (t)
2
dt− pε−4/3

[
Φ(ϑ̂+ ϕεu)− Φ(ϑ̂)

]}
.

Now the estimate (3.18) follows from the relations

ε−2/3

∫ ϑ̂+ϕεu

ϑ̂

δ (t)
2
dt ≤ sup

t∈Θ
δ (t)

2 |u| ,

ε−4/3
[
Φ(ϑ̂+ ϕεu)− Φ(ϑ̂)

]
≥ κu2,

where we used (3.17). Therefore we obtain the estimate (3.18) with some c > 0
and d > 0.

Lemma 4. For any N > 0 and |u1| < N, |u2| < N we have the estimate

Eϑ0

∣∣∣Ẑε (u2)− Ẑε (u1)
∣∣∣4 ≤ C

(
1 +N2

)
|u2 − u1|2 (3.19)

with some constant C > 0.

Proof. Let us denote

at = ε−1/3δ (t), bt = −ε−2/3δ (t) [h (t) + g (t)− 2S (ϑ0, t)],

G (t) = exp

{∫ t

ϑ̂+ϕεu1

asdWs +

∫ t

ϑ̂+ϕεu1

bsds

}
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Note that

G
(
ϑ̂+ ϕεu2

)
=

Ẑε (u2)

Ẑε (u1)
.

The process G (t) has stochastic differential

dG (t) = G (t)

[
bt +

a2t
2

]
dt+G (t) atdWt, G

(
ϑ̂+ ϕεu1

)
= 1.

Therefore

G
(
ϑ̂+ ϕεu2

)
= 1 +

∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t)

[
bt +

a2t
2

]
dt+

∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t) atdWt.

We write

Eϑ0

∣∣∣Ẑε (u2)− Ẑε (u1)
∣∣∣4 = Eϑ0Ẑε (u1)

4
∣∣∣G(

ϑ̂+ ϕεu2

)
− 1

∣∣∣4

= Eϑ0Ẑε (u1)
4

∣∣∣∣∣
∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t)

[
bt +

a2t
2

]
dt+

∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t) atdWt

∣∣∣∣∣
4

≤ C1Eϑ0Ẑε (u1)
4

∣∣∣∣∣
∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t)

[
bt +

a2t
2

]
dt

∣∣∣∣∣
4

+ C2Eϑ0Ẑε (u1)
4

∣∣∣∣∣
∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t) atdWt

∣∣∣∣∣
4

≤ C1 (u2 − u1)
3
ϕ3
ε

∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

Eϑ0Ẑε (u1)
4
G (t)

4

∣∣∣∣bt + a2t
2

∣∣∣∣
4

dt

+ C2

⎛
⎝Eϑ0 Ẑε (u1)

8
Eϑ0

∣∣∣∣∣
∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t) atdWt

∣∣∣∣∣
8
⎞
⎠

1/2

.

For stochastic integral we have the estimate

Eϑ0

∣∣∣∣∣
∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t) atdWt

∣∣∣∣∣
8

≤ CEϑ0

(∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

G (t)
2
a2tdt

)4

≤ (u2 − u1)
3
ϕ3
ε

∫ ϑ̂+ϕεu2

ϑ̂+ϕεu1

a8t Eϑ0G (t)
8
dt.

Further

Eϑ0G (t)
8
= exp

{
32

∫ t

ϑ̂+ϕεu1

a2s ds− 8ε−4/3
[
Φ (t)− Φ

(
ϑ̂+ ϕεu1

)]}
,
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Eϑ0 Ẑε (u1)
8
= exp

{
32

∫ ϑ̂+ϕεu1

0

a2s ds− 8ε−4/3Φ
(
ϑ̂+ ϕεu1

)}

Hence

Eϑ0

∣∣∣Ẑε (u2)− Ẑε (u1)
∣∣∣4 ≤ C |u2 − u1|4 + C |u2 − u1|2

≤ C
(
1 +N2

)
|u2 − u1|2

for |u1| ≤ N and |u2| ≤ N .

Now the properties (3.12) and (3.13) of the pseudo-MLE ϑ̂ε follow from the
Lemmae 1, 3, 4 and the Theorem 1.10.1 in [7].

Remark 1. Note that as ϑ̂ ∈ Θ is the point of minimum of the function Φ (ϑ)
we have the equality

Φ̇(ϑ̂) =
[
h(ϑ̂)− S(ϑ0, ϑ̂)

]2
−
[
g(ϑ̂)− S(ϑ0, ϑ̂)

]2
= 0, (3.20)

which is equivalent to(
h(ϑ̂)− g(ϑ̂)

) [
h(ϑ̂) + g(ϑ̂)− 2S(ϑ0, ϑ̂)

]
= 0.

Hence the point ϑ̂ satisfies to the equality

S(ϑ0, ϑ̂) =
h(ϑ̂) + g(ϑ̂)

2
.

The equation

S(ϑ0, t) =
h(t) + g(t)

2
, α < t < β (3.21)

can have many solutions corresponding to the local extremes of the function
Φ (t) , t ∈ Θ. If the equation (3.21) has no solution, say,

S(ϑ0, t) <
h(t) + g(t)

2
, α < t < β, (3.22)

then ϑ̂ = α. Otherwise ϑ̂ = β. In these two cases the behavior of the estimator
ϑ̂ε can be studied as it was done in [9], Section 2.8. If we have the equality

S(ϑ0, t) =
h(t) + g(t)

2
, a ≤ t ≤ b,

on some interval [a, b], then any point of this interval can be taken as ϑ̂. We do

not study here the properties of ϑ̂ε in this situation and in the situation when
the function Φ (ϑ) , α < ϑ < β has two or more points of minimum. Note that
such study can be done by the same way as in [9], Section 2.7.
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Example 2. Choosing different smooth signals in the class

S =

{
S (t− ϑ) = sgn (t− ϑ) |t− ϑ|κ , κ >

1

2

}

and the same theoretical model (3.6) we can obtain different rates of convergence

of estimators. Note that once more we have ϑ̂ = ϑ0 and the pseudo-MLE ϑ̂ε is
consistent. The functions ϕε and ψε can be chosen as follows.

Let us fix some κ ∈ ( 12 ,∞). Then the corresponding calculations like (3.7)
provide us the expression (u > 0)

lnZε (u) =
2
√
ϕε

ε

[
W+ (u)− ϕ

1
2+κ
ε

ε

u1+κ

(1 + κ)

]
.

Therefore if we put

ϕε = ε
2

2κ+1 , ψε =
ε

2κ
2κ+1

2
,

then

Ẑε (u) = exp

{
W (u)− |u|1+κ

1 + κ

}
, u ∈ Uε

and the pseudo-MLE ϑ̂ε satisfies the relations

ϑ̂ε − ϑ0

ε
2

2κ+1

= ûε = arg sup
u∈Uε

[
W (u)− |u|1+κ

1 + κ

]
=⇒ û,

where

û = arg sup
u∈R

[
w (u)− |u|1+κ

1 + κ

]
.

Therefore choosing different κ > 1
2 we can obtain any rate εγ , γ < 1 of

convergence of pseudo-MLE:

ϑ̂ε − ϑ0

εγ
=⇒ û.

We do not present here the details of the proof of this convergence, but it can
be obtained following the same arguments as in the proof of the Theorem 1.

We see that the ϑ̂ε has a “bad” rate of convergence. Note that for other
estimators the rate can be better.

Let us study the trajectory fitting estimator (TFE) ϑ∗
ε defined by the relation

ϑ∗
ε = arg inf

ϑ∈Θ

∫ T

0

[Xt −m (ϑ, t)]
2
dt, (3.23)
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where

m (ϑ, t) =

∫ t

0

M (ϑ, s) ds.

To describe the asymptotic properties of this estimator we need a slightly dif-
ferent regularity conditions. Suppose that the function

Ψ (ϑ) =

∫ T

0

[m (ϑ, t)− s (ϑ0, t)]
2
dt, ϑ ∈ Θ

has a unique minimum at the point ϑ∗ ∈ Θ. Here

s (ϑ0, t) =

∫ t

0

S (ϑ0, v) dv.

Then the TFE ϑ∗
ε under regularity conditions admits the representation

ϑ∗
ε − ϑ∗

ε
=

∫ T

0
Wt ṁ (ϑ∗, t) dt∫ T

0
ṁ (ϑ∗, t)2 dt

(1 + o (1)) .

Therefore this estimator is asymptotically normal with the rate ε. The details
of the proof can be found in the Section 7.4 in [9].

3.2. Smooth versus discontinuous

Suppose that the true model (3.9) has discontinuous trend coefficient S (ϑ0, t)
of the following form

dXt =
[
h (t) 1{t<ϑ0} + g (t) 1{t≥ϑ0}

]
dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3.24)

where ϑ0 ∈ Θ = (α, β), 0 < α < β < T , but the statistician uses the model

dXt = M (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3.25)

with the “smooth” signal M (ϑ, ·). The pseudo-likelihood ratio V
(
ϑ,XT

)
and

the pseudo-MLE ϑ̂ε are defined by the same relations (3.2), (3.3). As before, we

are interested in the asymptotic behavior of ϑ̂ε as ε → 0.
To show that the situation is quite different we start with the example which

is “symmetric” to the Example 1.

Example 3. Suppose that the observed process is

dXt = sgn (t− ϑ0) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

and we use the model

dXt = M (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,
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with

M (ϑ, t) = δ−1 (t− ϑ) 1{|t−ϑ|<δ} + sgn (t− ϑ) 1{|t−ϑ|≥δ},

where the parameter ϑ ∈ Θ = (α, β). Here 0 < δ < α < β < T − δ.
These two signals S (ϑ, t) = sgn (t− ϑ) and M (ϑ, t) are presented on the

Figure 1.
It is easy to see that the function

Φ (ϑ) =

∫ T

0

[M (ϑ, t)− sgn (t− ϑ0)]
2
dt, ϑ ∈ Θ

attained its minimum at the point

ϑ̂ = ϑ0

and therefore the pseudo-MLE is consistent

ϑ̂ε −→ ϑ0.

More detailed analysis shows that it has asymptotically Gaussian distribution

ϑ̂ε − ϑ0

ε
∼ N

(
0, D2

)
with the “regular” rate ε of convergence and some limit variance D2 > 0.

Let us return to the problem with the equations (3.24), (3.25). Introduce the
notations

Φ (ϑ) =
1

2

∫ T

0

[M (ϑ, t)− S (ϑ0, t)]
2
dt, Φ(ϑ̂) = inf

ϑ∈Θ
Φ (ϑ) ,

Φ̈(ϑ̂) =

∫ T

0

M̈(ϑ̂, t)
[
M(ϑ̂, t)− S (ϑ0, t)

]
dt+

∫ T

0

Ṁ(ϑ̂, t)2 dt,

I (ϑ) =

∫ T

0

Ṁ(ϑ, t)2 dt, D(ϑ0)
2
= Φ̈(ϑ̂)−2I(ϑ̂).

and note that ϑ̂ = ϑ̂ (ϑ0).
The conditions of regularity:
Conditions R.

1. The functions h (·) and g (·) are bounded and inft∈Θ |h (t)− g (t)| > 0.

2. The function Φ(ϑ), ϑ ∈ Θ has a unique minimum at the point ϑ̂ ∈ Θ.
3. The function M (ϑ, t) is two times continuously differentiable w.r.t. ϑ.
4. We have

inf
ϑ0∈Θ

Φ̈(ϑ̂) > 0.
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Theorem 2. Let the conditions R be fulfilled, then the estimator ϑ̂ε converges
to the value ϑ̂, is asymptotically normal

ϑ̂ε − ϑ̂

ε
=⇒ ξ̂ ∼ N

(
0,D(ϑ0)

2
)
,

and for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ̂

ε

∣∣∣∣∣
p

= Eϑ0

∣∣∣ξ̂∣∣∣p .
Proof. Using the Taylor expansion we can write for the pseudo-likelihood ratio

Zε (u) =
V
(
ϑ̂+ εu,XT

)
V
(
ϑ̂, XT

) , u ∈ Uε =

(
α− ϑ̂

ε
,
β − ϑ̂

ε

)

the presentation

lnZε (u) = u

∫ T

0

Ṁ(ϑ̂, t)dWt −
u2

2
Φ̈(ϑ̂) + o (1) .

Therefore, if we denote

Z (u) = exp

{
u

∫ T

0

Ṁ(ϑ̂, t)dWt −
u2

2
Φ̈(ϑ̂)

}
, u ∈ R,

then we obtain the first lemma.

Lemma 5. We have the convergence of finite-dimensional distributions of the
process Zε (·): for any set u1, . . . , uk and any k = 1, 2, . . .

(Zε (u1) , . . . , Zε (uk)) =⇒ (Z (u1) , . . . , Z (uk)) . (3.26)

This convergence is uniform in ϑ on compacts K ⊂ Θ.

The next lemma can be proved following the same arguments as in the proof
of the Lemma 2.

Lemma 6. There exists a constant κ > 0 such that

Φ (ϑ)− Φ(ϑ̂) ≥ κ
(
ϑ− ϑ̂

)2

. (3.27)

Note that now the moments of Zε (u) are no more bounded. Denote ϑu =

ϑ̂+ εu, then for any ψ > 0, we can write

Eϑ0Zε (u)
ψ

= exp

{(
ψ2

2ε2

∫ T

0

[
M(ϑu, t)−M(ϑ̂, t)

]2
dt− ψ

ε2

[
Φ(ϑu)− Φ(ϑ̂)

])}
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≤ exp

{(
ψ2

2
M − ψκ

2

)
u2

}
= 1, (3.28)

where we denoted

M = sup
ϑ∈Θ

∫ T

0

Ṁ(ϑ, t)2dt

and put ψ = M−1κ.
Therefore we introduce the following normalized likelihood ratio

Ẑε (u) = Zε (u)
ψ
, u ∈ Uε

and establish the properties of this process similar to Ẑε (·) in Lemmae 3 and 4.

Lemma 7. Suppose that the conditions R are fulfilled, then we have the esti-
mates

Eϑ0 Ẑ
1/2
ε (u) ≤ e−κu2

, (3.29)

Eϑ0

∣∣∣Ẑ1/2
ε (u2)− Ẑ1/2

ε (u1)
∣∣∣2 ≤ C

(
1 +N2

)
(u2 − u1)

2
(3.30)

for |u1| < N, |u2| < N

Proof. The first estimate (3.29) we obtain immediately from (3.28). The proof
of the second estimate (3.30) can be carried out like the proof of the relation
(3.19).

The properties of the process Ẑε (·) established in the Lemmas 5 and 7 allows
to cite Theorem 1.10.1 in [7] and to obtain the announced in the Theorem 2

properties of the pseudo-MLE ϑ̂ε.

3.3. Discontinuous versus discontinuous

Let us remind that if the the observed model is discontinuous and the statis-
tician knows this but takes the wrong signals before and after the jump, then
nevertheless it is possible to have the consistent estimation. Consider the follow-
ing problem of parameter estimation in the situation of misspecification. The
theoretical model is

dXt =
[
h (t) 1{t<ϑ} + g (t) 1{t≥ϑ}

]
dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ ∈ Θ = (α, β), 0 < α < β < T . Suppose that h (t) − g (t) > 0 for
t ∈ [α, β]. The observed stochastic process has a different equation

dXt =
[
[h (t) + q (t)] 1{t<ϑ0} + [g (t) + r (t)] 1{t≥ϑ0}

]
dt+ εdWt, 0 ≤ t ≤ T,

where q (t) and r (t) are some unknown functions.
We study the conditions on q (t) and r (t) which allow the consistent estima-

tion of the parameter ϑ0.
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The function Φ (ϑ) for ϑ < ϑ0 is

Φ (ϑ) =

∫ ϑ

0

q (t)
2
dt+

∫ ϑ0

ϑ

[h (t) + q (t)− g (t)]
2
dt+

∫ T

ϑ0

r (t)
2
dt.

Hence

dΦ (ϑ)

dϑ
= q (ϑ)

2 − [h (ϑ)− g (ϑ) + q (ϑ)]
2

= − (h (ϑ)− g (ϑ)) [h (ϑ)− g (ϑ) + 2q (ϑ)] .

If the function

q (ϑ) >
g (ϑ)− h (ϑ)

2
, ϑ ∈ Θ, (3.31)

then for ϑ < ϑ0

dΦ (ϑ)

dϑ
< 0.

For ϑ > ϑ0 under condition

r (ϑ) <
h (ϑ)− g (ϑ)

2
(3.32)

we obtain the similar inequality

dΦ (ϑ)

dϑ
> 0.

Therefore

ϑ̂ = arg inf
ϑ∈Θ

Φ (ϑ) = ϑ0

and we obtain the following result.

Proposition 2. If the conditions (3.31) and (3.32) are fulfilled then the pseudo-

MLE ϑ̂ε is consistent.

It can be shown that

ϑ̂ε − ϑ0

ε2
=⇒ ξ

For the details see the similar problem in Section 5.3, [9]. The close problem of
change-point detection for misspecified diffusion processes are studied in [1].

3.4. Discussion

There are several other interesting problems of misspecification in regularity,
which can be studied by the proposed here approach.
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One of them is to study the asymptotic behavior of the Bayesian estimator
ϑ̃ε (see (2.2)) in the situation described by the equations (3.24), (3.25).

It can be shown that ϑ̃ε converges to the same value ϑ̂. Then using the
notations of the section 3.1 we can write

ϑ̃ε =

∫ β

α
ϑp (ϑ)

V (ϑ,XT )
V (ϑ̂,XT )

dϑ∫ β

α
p (ϑ) V (ϑ,XT )

V (ϑ̂,XT )
dϑ

= ϑ̂+ ε2/3
∫
Uε

u p (ϑu)Zε (u) du∫
Uε

p (ϑu)Zε (u) du
,

where we changed the variables ϑ = ϑu = ϑ̂+ ε2/3u. Hence

ϑ̃ε − ϑ̂

ε2/3
≈

∫
Uε

uZε (u) du∫
Uε

Zε (u) du
=

∫
Uε

u
(
Ẑε (u)

)2ε−2/3

du

∫
Uε

(
Ẑε (u)

)2ε−2/3

du

and the problem reduces to the study of the asymptotics of these two integrals
in the situation, where

Ẑε (u) = exp

{
δ(ϑ̂)W (u)− ψ(ϑ̂)

2
u2

}
(1 + o (1)) .

We can suppose that the detailed study will provide us the asymptotics

ϑ̃ε − ϑ̂

ε2/3
≈ û,

where û is as before the point of the maximum of the process δ(ϑ̂)W (u)−ψ(ϑ̂)
2 u2.

This means that as usual in regular estimation problems the asymptotic behavior
of the BE is similar to that of the MLE.

Another problem we obtain if we suppose that the observed process has a
signal M (ϑ, ·) with a singularity of the cusp-type (theoretical model) but the
observed process in reality has a smooth signal S (ϑ, ·), i.e.; cusp versus smooth.
Say,

dXt = a |t− ϑ|κ dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3.33)

where κ ∈ (0, 1
2 ).

Therefore the observed process is (3.9) but the statistician calculate the

pseudo-likelihood ratio V
(
ϑ,XT

)
and the pseudo-MLE ϑ̂ε following (3.2) and

(3.3) respectively. It is clear that ϑ̂ε converges to the value

ϑ̂ = arg inf
ϑ∈Θ

∫ T

0

[a |t− ϑ|κ − S (ϑ0, t)]
2
dt,

which minimizes the Kullback-Leibner distance and we describe the limit dis-
tribution of ε−

2
3−2κ

(
ϑ̂ε − ϑ̂

)
. For the details see [2].
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The properties of the MLE and Bayesian estimators for the ergodic diffusion
processes and inhomogeneous Poisson processes with cusp-type singularities are
studied for example, in [4], [3]. For the general theory of the parameter estima-
tion for different singular estimation problems see [7].

There is another class of problems related to the hypothesis testing in the
situations of the misspecification in regularity conditions. Let us consider the
hypothsis testing problem

H0 ϑ = ϑ0,

H1 ϑ > ϑ0,

by the observations of the Example 1. This means that we suppose that the
observations are (3.6) but the real signal is (3.5). The Wald’s test based on the

MLE ϑ̂ε is

Ψε

(
XT

)
= 1{ε−2(ϑ̂ε−ϑ0)>cν}.

The threshold cν is obtained as solution of the equation (no misspecification,
observations are (3.6))

lim
ε→0

Eϑ0Ψε

(
XT

)
= P (η̂ > cν) = ν.

Here ν ∈ (0, 1) and the random variable η̂ is the same as in (2.5) with δ (ϑ0) = 2.
If we use this test when the observed real signal is (3.5), then even under H0

ε−2
(
ϑ̂ε − ϑ0

)
= ε−4/3ε−2/3

(
ϑ̂ε − ϑ0

)
→ ∞

and the hypothesis H0 will be always rejected.

Acknowledgment

This work was done under partial financial support of the grant of RSF number
15-11-10022. The authors are grateful to Pavel Chigansky for careful reading of
the manuscript and the comments.

References

[1] Campillo, F., Le Gland, F., Kutoyants, Yu. A. (2000) Small noise asymp-
totics of the GLR test for off-line change detection in misspecified diffusion
processes. Stoch., Stoch. Reports. 70, 109–129. MR1785066

[2] Chernoyarov, O. V., Dachian, S. Yu., Kutoyants, Yu. A. (2018) On param-
eter estimation for cusp-type signals. Ann. Inst. Stat. Math., 70, 1, 39-62.
MR3742817

[3] Dachian, S. Yu., (2003) Estimation of cusp location by Poisson observa-
tions. Statist. Inference Stoch. Processes, 6, 1, 1–14. MR1965181

http://www.ams.org/mathscinet-getitem?mr=1785066
http://www.ams.org/mathscinet-getitem?mr=3742817
http://www.ams.org/mathscinet-getitem?mr=1965181


106 O. V. Chernoyarov et al.

[4] Dachian, S. Yu., Kutoyants, Yu. A. (2003) On cusp estimation of ergodic
diffusion process. J. Stat. Plann. Infer., 117, 153–166. MR2001147

[5] Ibragimov I. A., Has’minskii R. Z. (1974) An estimator of the parameter
of a signal in Gaussian white noise, Probl. Inform. Transm., 10, 31–46.
MR0403126

[6] Ibragimov I. A., Has’minskii, R. Z. (1975) Parameter estimation for a
discontinuous signal in white Gaussian noise. Probl. Inform. ransm., 11,
203–212.

[7] Ibragimov, I. A. and Has’minskii, R. Z. (1981) Statistical Estimation -
Asymptotic Theory. Springer-Verlag, New York. MR0620321

[8] Kordzakhia, N., Kutoyants, Y. A., Novikov, A. and Hin, L.-Y. (2017) On
a representation of fractional Brownian motion and the limit distributions
of statistics arising in cusp statistical models. Submitted. MR3403018

[9] Kutoyants, Yu. A. (1994) Identification of Dynamical Systems with Small
Noise. Kluwer Academic Publisher, Dordrecht. MR1332492

[10] Kutoyants, Yu. A. (2017) The Asymptotics of Misspecified MLEs for Some
Stochastic Processes: a Survey. Stat. Inference Stoch. Process., 20, 3, 347–
368. MR3694869

[11] Trifonov, A. P. (1984) Detection of the Signals with Unknown Parame-
ters. Theory of Signals Detection. Radio i Svyaz, Moscow (in Russian).
MR0759716

[12] Trifonov, A. P., Shinakov, Yu. S. (1986) Simultaneous Detection of Signals
and Estimation of their Parameters in the Presence of Noises. Radio i
Svyaz, Moscow (in Russian).

http://www.ams.org/mathscinet-getitem?mr=2001147
http://www.ams.org/mathscinet-getitem?mr=0403126
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=3403018
http://www.ams.org/mathscinet-getitem?mr=1332492
http://www.ams.org/mathscinet-getitem?mr=3694869
http://www.ams.org/mathscinet-getitem?mr=0759716

	Introduction
	Preliminaries
	Main results
	Discontinuous versus smooth
	Smooth versus discontinuous
	Discontinuous versus discontinuous
	Discussion

	Acknowledgment
	References

