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Abstract: The literature on time series of functional data has focused
on processes of which the probabilistic law is either constant over time
or constant up to its second-order structure. Especially for long stretches
of data it is desirable to be able to weaken this assumption. This paper
introduces a framework that will enable meaningful statistical inference of
functional data of which the dynamics change over time. We put forward the
concept of local stationarity in the functional setting and establish a class
of processes that have a functional time-varying spectral representation.
Subsequently, we derive conditions that allow for fundamental results from
nonstationary multivariate time series to carry over to the function space.
In particular, time-varying functional ARMA processes are investigated
and shown to be functional locally stationary according to the proposed
definition. As a side-result, we establish a Cramér representation for an
important class of weakly stationary functional processes. Important in
our context is the notion of a time-varying spectral density operator of
which the properties are studied and uniqueness is derived. Finally, we
provide a consistent nonparametric estimator of this operator and show it
is asymptotically Gaussian using a weaker tightness criterion than what is
usually deemed necessary.
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1. Introduction

In functional data analysis, the variables of interest take the form of smooth
functions that vary randomly between repeated observations or measurements.
Thus functional data are represented by random smooth functions X (1), 7 € D,
defined on a continuum D. Examples of functional data are concentration of fine
dust as a function of day time, the growth curve of children as functions of age,
or the intensity as a function of wavelength in spectroscopy. Because functional
data analysis deals with inherently infinite-dimensional data objects, dimension
reduction techniques such as functional principal component analysis (FPCA)
have been a focal point in the literature. Fundamental for these methods is the
existence of a Karhunen-Loéve decomposition of the process (Karhunen, 1947;
Loeve, 1948). Some noteworthy early contributions are Kleffe (1973); Grenander
(1981); Dauxois, Pousse and Romain (1982); Besse and Ramsay (1986). For an
introductory overview of the main functional data concepts we refer to Ramsay
and Silverman (2005) and Ferraty and Vieu (2006).

Most techniques to analyze functional data are developed under the assump-
tion of independent and identically distributed functional observations and focus
on capturing the first- and second-order structure of the process. A variety of
functional data is however collected sequentially over time. In such cases, the
data can be described by a functional time series {X;(7)}tez. Since such data
mostly show serial dependence, the assumption of i.i.d. repetitions is violated.
Examples of functional time series in finance are bond yield curves, where each
function is the yield of the bond as a function of time to maturity (e.g. Bowsher
and Meeks, 2008; Hays, Shen and Huang, 2012) or the implied volatility surface
of a European call option as a function of moneyness and time to maturity. In
demography, mortality and fertility rates are given as a function of age (e.g.
Erbas, Hyndman and Gertig, 2007; Hyndman and Ullah, 2007; Hyndman and
Booth, 2008), while in geophysical sciences, magnometers record the strength
and direction of the magnetic field every five seconds. Due to the wide range of
applications, functional time series and the development of techniques that allow
to relax the i.i.d. assumption have received an increased interest in recent years.

The literature on functional time series has mainly centered around station-
ary linear models (Mas, 2000; Bosq, 2002; Dehling and Sharipov, 2005) and
prediction methods (Antoniadis, Paparoditis and Sapatinas, 2006; Bosq and
Blanke, 2007; Aue, Dubart Norinho and Hérmann, 2015). A general framework
to investigate the effect of temporal dependence among functional observations
on existing techniques has been provided by Hérmann and Kokoszka (2010),
who introduce LP, approximability as a moment-based notion of dependence.

Violation of the assumption of identically distributed observations has been
examined in the setting of change-point detection (e.g. Berkes et al., 2009;
Hormann and Kokoszka, 2010; Aue et al., 2009; Horvath, Huskova and Kokoszka,
2010; Gabrys, Hormann and Kokoszka, 2010), in the context of functional re-
gression by Yao, Miiller and Wang (2005); Cardot and Sarda (2006) and in the
context of common principal component models by Benko, Hardle and Kneip
(2009).
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Despite the growing literature on functional time series, the existing theory
has so far been limited to strongly or weakly stationary processes. With the
possibility to record, store and analyze functional time series of an increasing
length, the common assumption of (weak) stationarity becomes more and more
implausible. For instance, in meteorology the distribution of the daily records of
temperature, precipitation and cloud cover for a region, viewed as three related
functional surfaces, may change over time due to global climate changes. In the
financial industry, implied volatility of an option as a function of moneyness
changes over time. Other relevant examples appear in the study of cognitive
functions such as high-resolution recordings from local field potentials, EEG and
MEG. It is widely known that these type of data have a time-varying spectral
structure and their statistical treatment requires to take this into account. While
heuristic approaches such as localized estimation are readily implemented and
applied, a statistical theory for inference from nonstationary functional time
series is yet to be developed.

The objective of the current paper is to develop a framework for inference
of nonstationary functional time series that allows the derivation of large sam-
ple approximations for estimators and test statistics. For this, we extend the
concept of locally stationary processes (Dahlhaus, 1996a) to the functional time
series setting. We show that fundamental results for multivariate time series can
be carried over to the function space, which is a nontrivial task. Our work, which
provides a basis for inference of nonstationary functional time series, focuses on
frequency domain-based methods and therefore also builds upon the work by
Panaretos and Tavakoli (2013a,b). Functional data carry infinite-dimensional
intrinsic variation and in order to exploit this rich source of information, it is
important to optimally extract defining characteristics to finite dimension via
techniques such as functional PCA (FPCA). In the case of stationary dependent
functional data, the shape and smoothness properties of the random curves are
completely encoded by the spectral density operator, which has been shown to
allow for an optimal lower dimension representation via dynamic FPCA (see
e.g., Panaretos and Tavakoli, 2013a; Hormann, Kidziiski and Hallin, 2015).
Since the assumption of weak stationarity is often too restrictive, we aim to
provide the building blocks for statistical inference of nonstationary functional
time series and for the development of techniques such as time-varying dynamic
FPCA. In particular, our framework will be essential for the development of op-
timal dimension reduction techniques via a local functional Cramér-Karhunen-
Loeve representation. Such a representation must not only take into account
the between- and within curve dynamics but also that these are time-varying.
Moreover, the frequency domain arises quite naturally in certain applications
such as brain data imaging and is moreover very useful in nonparametric speci-
fications. For example, Aue and van Delft (2017) use our framework to derive a
test for stationarity of functional time series against nonstationary alternatives
with slowly changing dynamics.

The paper is structured as follows. In section 2, we first introduce some basic
notation and methodology for functional data and relate this in a heuristic man-
ner to the concept of locally stationary time series and introduce the definition
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of a locally stationary functional time series. In section 3, we demonstrate that
time-varying functional ARMA models have a causal solution and are function-
ally locally stationary according to the definition in section 2. This hinges on
the existence of stochastic integrals for operators that belong to a particular
Bochner space. In section 4, the time-varying spectral density operator is de-
fined and its properties are derived. In particular, we will show uniqueness of the
time-varying spectral density operator. In section 5, we derive the distributional
properties of a local nonparametric estimator of the time-varying spectral den-
sity operator and deduce a central limit theorem. The results are illustrated by
application to a simulated functional autoregressive process in section 6. Tech-
nical details and several auxiliary results that are of independent interest are
proved in the Appendix.

2. Locally stationary functional time series

Let X = {X;};=1,....7 be a stochastic process taking values in the Hilbert space
H = L*(]0, 1]) of all real-valued functions that are square integrable with respect
to the Lebesgue measure. While current theory for such processes is limited to
the case where {X;} is either strictly or weakly stationary, we consider nonsta-
tionary processes with dynamics that vary slowly over time and thus can be
considered as approximately stationary at a local level.

As an example, consider the functional autoregressive process X given by

Xi(1) = Bi(Xi—1) (1) + &e(7), 7€[0,1],

fort =1,...,T, where the errors ; are independent and identically distributed
random elements in H and B; for t = 1,...,T are bounded operators on H.
Assuming that the autoregressive operators B; change only slowly over time, we
can still obtain estimates by treating the process as stationary over short time
periods. However, since this stationary approximation deteriorates over longer
time periods, standard asymptotics based on an increasing sample size T' do not
provide suitable distributional approximations for the finite sample estimators.
Instead we follow the approach by Dahlhaus (1996a, 1997) and define local
stationary processes in a functional setting based on an infill asymptotics. The
main idea of this approach is that for increasing T the operator B; is still
‘observed’ on the same interval but on a finer grid, resulting in more and more
observations in the time period over which the process can be considered as
approximately stationary. Thus we consider a family of functional processes

Xor(1) = By (Xe—1,7) (7) + (1), rel0,1], 1<t<T,

indexed by T € N that all depend on the common operators B, indexed by
rescaled time u = t/T. Consequently, we in fact examine a triangular array of
random functions that share common dynamics as provided by the continuous
operator-valued function B, u € [0,1]. For each T, a different ‘level’ of the se-
quence is thus considered where the dynamics change more slowly for increasing
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values of T'. We will establish a class of functional time series with a time-varying
functional spectral representation that includes interesting processes such as the
above example and higher order time-varying functional ARMA models. The
framework as provided in this paper will allow to investigate how nonstationar-
ity affects existing methods, such as (dynamic) FPCA, and how these methods
should be adjusted in order to be robust for changing characteristics. Similarly
as Dahlhaus and Subba Rao (2006) and Vogt (2012) in the case of ordinary
time series, we call a functional time series locally stationary if it can be locally
approximated by a stationary functional time series. In the following definition,
| - |l2 denotes the L2 -norm of H.

Definition 2.1 (Local stationarity). A sequence of stochastic processes
{X: 1}ez indexed by T' € N and taking values in H is called locally station-
ary if for all rescaled times u € [0, 1] there exists an H-valued strictly stationary

process {Xt(u)}tez, such that
o - X, < (-l + )P s

for all 1 < t < T, where Pt(f‘T) is a positive real-valued process such that for

some p > 0 and C' < o the process satisfies [E(’Pt(j}) p) < C for all t and T and
uniformly in u € [0, 1].

For the purpose of illustration, a very simple locally stationary functional
time series is depicted in figure 1 (A). Note that visual interpretation of a func-
tional time series can be extremely difficult, especially when it is driven by
many interacting components. The process in figure 1(A) is driven solely by
two components and is generated as

Xir(1) = &7 01(T) + Xo.7 H2(7) 7€ [0,1] (1)

where ¢1, @2 are basis functions of H and the random coeflicients & r, x¢,r are
independent Gaussian time-varying AR(2). The parameters of the time-varying
AR(2) models are chosen in such a way that the magnitude and phase of the
roots of the characteristic polynomials of & r and x.r vary cyclically with
rescaled time ¢/T but in opposite direction as time progresses. The correspond-
ing coefficient curves are plotted in figure 1(C) and 1 (D), respectively. The
dependence structure of the two driving components vary from independence
to close to unit root behavior and this varying cyclical behavior is also clearly
visible in the resulting functional process {X; r}. In order to contrast this with
behavior observed under stationarity, figure 1(B) depicts the closely related
weakly stationary functional process of (1) where the random coefficients are
generated using two stationary AR(2) with parameters specified as the time
average of & r and x: T, respectively. A comparison of the plots for the locally
stationary and the stationary case shows a clear difference in the dynamics of the
two processes, which is particularly discernible in the projections on the Fourier
components. The example thus indicates the effect of falsely misspecifying a
locally stationary process as stationary on statistical inference.
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Fig 1: Comparison of stationary and local stationary functional time series

Definition 2.1 is broad and is further investigated in Aue and van Delft (2017).
It will allow for the development of statistical inference procedures for nonsta-
tionary functional time series and in particular encompasses nonlinear functional
models. Nonlinear functional time series is a topic that is relatively unexplored.
Possible relevant models that are worth investigating are, for instance, time-
varying additive functional regression (Miiller and Yao, 2008) and time-varying
functional ARCH models (Hérmann, Horvath and Reeder, 2013). However, as
the focus of this paper is on frequency domain based methods, it is more appro-
priate to work with an alternative characterization of local stationarity in terms
of spectral representations, which we discuss below. We start by introducing the
necessary terminology on operators and spectral representations for stationary

functional time series.
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2.1. Functional spaces and operators: Notation and terminology

First, we introduce some basic notation and definitions on functional spaces
and operators. Let (T, 8) be a measurable space with o-finite measure p. Fur-
thermore, let E be a Banach space with norm || - |z and equipped with the
Borel o-algebra. We then define L%, (T, u) as the Banach space of all strongly
measurable functions f : T'— E with finite norm

1
110 = flgersn = ([ 1A dutr))”
for 1 < p < o0 and with finite norm

= |fle@p = inf
Il = 1fllLg (@ ,L&?)ZOTSE{’NW(T)”E

for p = 0. We note that two functions f and g are equal in LP, denoted as

f £ g, if |f —g|, = 0. If E is a Hilbert space with inner product (:,-) then
L2(T, i) is also a Hilbert space with inner product

o) = F Dy = | S dulr).

For notational convenience, we use the shorter notation | f|, and {f, g) whenever
no ambiguity about the space L% (T, u) is possible. Similarly, if T < R¥ and u
is the Lebesgue measure on T', we omit p and write L, (T), and if E = R we
write LP(T, u).

Next, an operator A on a Hilbert space H is a function A : H — H. An
operator A is said to be compact if the image of each bounded set under A is
relatively compact. If H is separable, there exist orthonormal bases {¢,} and
{¢,} of H and a monotonically decreasing sequence of non-negative numbers
sn(A), n € N converging to zero, such that

Af = 5n(A) {f, ¥n) dn (2)

HMS

n=

for all f € H. The values s, (A) are called the singular values of A and (2) is the
singular value decomposition of A. For operators on H, we denote the Schatten
p-class by S,(H) and its norm by ||-||,. More specifically, for p = oo, the space
S (H) indicates the space of bounded linear operators equipped with the stan-
dard operator norm, while for 1 < p < oo the Schatten p-class is the subspace
of all compact operators A on H such that the sequence s(A) = (S"(A))nen\l
of singular values of A belongs to ¢?; the corresponding norm is given by
1A, = |s(A)|p. For 1 < p < ¢ < oo, we have the inclusion S,(H) < S,(H).
Two important classes are the trace-class and the Hilbert-Schmidt operators
on H, which are given by Si(H) and Sy(H), respectively. More properties of
Schatten-class operators and in particular of Hilbert-Schmidt operators are pro-
vided in Appendix Bl. Finally, the adjoint of A is denoted by AT while the
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identity and zero operator are given by Iy and Op, respectively. As usual, the
complex conjugate of z € C is denoted by Z and the imaginary number by i.

The main object of this paper are functional time series X = {X;} that
take values in the Hilbert space H = L2([0,1]). More precisely, for some un-
derlying probability space (Q,.Z,P), let H = L% (), P) be the Hilbert space of
all H-valued random variables X with finite second moment E|X |3 < o0. To
avoid ambiguities between the norms of H and H, we write || X||g for the norm
in H and reserve the notation |X|z for the more frequently used norm in H.
Throughout the paper, we assume that X; € H. For the spectral representation
and Fourier analysis of functional time series {X,}, we also require the corre-
sponding spaces He = Lg([0,1]) and He = L%_(Q,P). We recall some basic
properties of functional time series. First, a functional time series X is called
strictly stationary if, for all finite sets of indices J < Z, the joint distribution
of {X;4;|j € J} does not depend on t € Z. Similarly, X is weakly stationary if
its first- and second-order moments exist and are invariant under translation in
time. In that case, the mean function m of X is defined as the unique element
of H such that

(m,g) = E(X¢, 9), ge H.

Furthermore, the h—th lag covariance operator Cp, is given by

<Chgl792>: [E[<gl7X07m><Xhimvg2>]a 91792€H7

and belongs to Sa(H). Since Sa(H) is isomorphic to the tensor product, we call
Cp, also autocovariance tensor. The covariance operator Cp can alternatively be
described by its kernel function ¢, satisfying

1 1
<Ch91a92>:J f cn(T,0) g1(0) g2(7) do dr, g1.92 € H.
0 JO

In analogy to weakly stationary multivariate time series, where the covariance
matrix and spectral density matrix form a Fourier pair, the spectral density
operator or tensor JF, is given by the Fourier transform of Cp,

1 .
= — Y Che ™M 3
2m hgz " ®)

Fu
A sufficient condition for the existence of F, in Sy(He) is Dz IChllp < .
Since the setting of this paper allows for higher order dependence among the
functional observations, we also require the notion of higher order cumulant
tensors. The necessary derivations and definitions are given in Appendix B2.
Throughout the remainder of this paper, time points in {1,...,7} will be de-
noted by ¢, s or r, while rescaled time points on the interval [0, 1] will be given
by u and v. Additionally, angular frequencies are indicated with A\, o, 8 or w and
functional arguments are denoted by 7, 0.
Finally, we require the notion of stochastic integrals with respect to operator-
valued functions. To this end, let By, denote the Bochner space L2Sx (o) (=7 7],
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) of all strongly measurable functions U : [—m, 7] — So(Hg) such that

s
W13, = [ I0lEdu) < o,
—Tr

where 11 is a measure on the interval [—, 7] given by u(A) = § , || Fo |1 dw for all
Borel sets A € [—m, w]. The subspace B is then defined similarly with Hilbert-
Schmidt norms replacing the operator norms. We distinguish explicitly between
the two spaces as the latter space allows for stronger results to be obtained but
excludes interesting processes such as functional autoregressive processes.

2.2. Assumptions

In this section, we collect for better reference the assumptions required in subse-

quent sections. We start by the main assumptions needed for a frequency domain

characterization of local stationarity. In contrast to Panaretos and Tavakoli

(2013a), who only consider transfer functions in By, we also prove the more

general case of transfer functions in By, as it includes the important case of

functional autoregressive processes. The necessary results are proved in section

B2.3 of the Appendix. Throughout the assumptions and the paper, we refer to

Sp(He) and B, with p = 2 or p = 0 to make the distinction between the two

cases.

(A1) (i) {et}tez is a weakly stationary white noise process taking values in H
with spectral representation &, = SLT e“tdZ,, where Z,, is a 2m-periodic
orthogonal increment process taking values in Hc;

(ii) the functional process X; r with t =1,...,T and T € N is given by

Xor = f et AT Az, ae. in H

with transfer operator AﬁTw) € B, and an orthogonal increment process Z,,,.
(A2) There exists A : [0,1] x [-7, 7] — S,(H¢) with A, . € B, and A, ,, being
continuous in u such that for all T'e N

sup AL = Ap oI, = 0(3)-

(A3) The function A.. is Holder continuous of order o > 1/2 in u and w.

(A4) The function A.. is twice continuously differentiable in v and w with
second derivatives being uniformly bounded in v and w.

We note that a functional Cramér representation such as in (Al)(ii) can also
be obtained when the spectral density operator is not well-defined; we refer the
reader to van Delft and Eichler (2018), in which a functional version of Her-
glotz’s theorem is proved and frequency domain representations for stationary
time series on the function space are further generalized. For the derivation of
asymptotic results for kernel estimators of the spectral density operator, we re-
quire additional assumptions on the moments of k—order of the process e; in
(A1l). The following assumption will be imposed for k < 4 or k < 0.
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(A5) The process {e;}tez satisfies E|o|5 < oo and, with Cj,
k—th order cumulant tensor of e, fo

denoting the

Slk—1

tir=—oo ICE, oty 2 < 0

Finally, the following assumptions formulate the conditions imposed on the taper
functions, the kernel functions, and the bandwidths used for kernel smoothing.

(A6) The function i : R — R* is symmetric with compact support on [0, 1] and
is of bounded variation.

(A7) The function K : R — R" is symmetric, has bounded variation and
compact support [—1,1], and satisfies

() | Kiw)do =1

(i) waKf(w) dw = 0.

(A8) The sequences be r and by p satisfy for T'— oo (i) bsr — 0 and by — 0;
(11) bfyT bt,T T — Q05 (111) bfyT log(bt,T T) - 0; and (IV) bt2,T bf,T — 0.

2.3. Local stationarity in the frequency domain

The original definition of local stationary processes by Dahlhaus (1996a) has
been formulated in the frequency domain. The following proposition can be
viewed a generalization of Dahlhaus (1996a) to the functional setting.

Proposition 2.2. Suppose that assumptions (A1) and (A2) hold. Then {X;r}
s a locally stationary process in H.

Proof. For u € [0,1], we define the approximating stationary functional process
(X" }iez by .
X = J et Ay dZ,,.

Then we have
|Xer - X1, = | J (AT — Au) dz| <P

with
¢ = sup [| AL — A

[

<oup [JALD) Ayl + w8 [y~ Aull,, = O + 14 —u)

and ) .
Pt(;) T ‘ J7 e (Ag?;) = Auw)dZ, 5
Since
w 1 (" 2 g
(PP < 5 [ AT - Awal Ell, < [ 1], e

the process satisfies the conditions of Definition 2.1 with p = 2. O
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As in the time series setting, we need the existence of a transfer operator
Ay that is continuous in u € [0,1] to guarantee locally an approximately
stationary behavior without sudden changes. In order to include interesting cases
such as autoregressive processes for which a time-varying functional spectral
representation with a common continuous transfer operator A, ., does not exist,
we require that such a representation only holds approximately by condition
(A2).

The previous result leads us to consider time-varying processes of the form

T
X = Z Aés)etfs, (4)
SEZ
where {e5}sez is a weakly stationary functional white noise process in H and

{Ag) }sez are sequences of linear operators for ¢t = 1,...,T and T € N. The fol-
lowing result states the conditions under which such a process satisfies condition

(A1).

Proposition 2.3. Suppose that {e;}icz satisfies assumption (A1) and, for p =
2 orp = o0, let {Ag)}sez be a sequence of operators in S,(H) satisfying
D H|Ag) Il, <o forallt=1,...,T and T € N. Then the process

Xth = Z Ag;) Et—s (5)
seZ

satisfies assumption (A1) with Af;) € B,.

The proof is relegated to section Al.1 of the Appendix. For p = 2, the propo-
sition yields a time-varying version of the corresponding result of Panaretos
and Tavakoli (2013a). The more general case p = o also includes linear models
introduced by Bosq (2000) and Hormann and Kokoszka (2010) as well as the
important class of time-varying functional autoregressive processes, which we
discuss in detail in the next section.

Remark 2.4. For processes of the form (4), we can alternatively verify Definition
2.1 in the time domain provided we impose some regularity conditions on the
decay of the sequence of filter operators {Ag) }sez. For example, sufficient condi-
tions for (A1)—(A2) to be satisfied would be to assume that there exists a positive
monotonically decreasing sequence {{(s)}cz that satisfies >} _, [s[¢(s) < o0 such
that sup; - H|A§?|Hp < K/{(s) and that there exists a sequence {A;y}sen that

satisfies
K{(s)

T )

T
sup [| A — Ayl <
t,T

for some constant K independent of T. The local asymptotic theory derived
later in this paper relies however on additional smoothness conditions of the
approximate transfer operators such as condition (A4). These could then be
replaced by sup,, || %As,u |, < K{(s), where %As,u denotes the second-order
derivative of the function v — A, ,. Depending on the application, different
conditions could be considered. The investigation of necessary restrictions on




118 A. van Delft and M. FEichler

the time domain filter operators are beyond the scope of this paper and are left
for future work.

3. Locally stationary functional autoregressive processes

Due to its flexibility as well as its simplicity, functional autoregressive pro-
cesses have been found useful in numerous applications such as economics and
medicine, especially for prediction purposes (see e.g., Damon and Guillas, 1982;
Besse and Ramsay, 1986; Antoniadis and Sapatinas, 2003, for early work). De-
spite of being linear in the function space, the filter operators act on a Hilbert
space of which the elements can still exhibit arbitrary degrees of nonlinearity
and can therefore be seen to be highly nonlinear in terms of scalar records.
Most estimation techniques are however still based on the assumption of i.i.d.
functional errors. This assumption has been relaxed by Bosq (2000), where the
assumption of independence of the errors of the causal solution is relaxed to un-
correlatedness in an appropriate sense, and by Hormann and Kokoszka (2010)
for functional AR(1) processes within the framework of LP-m-approximability.

In this section, we introduce a class of time-varying functional autoregres-
sive processes for which inference and forecasting methods can be developed
in a meaningful way. More specifically, we will show that time-varying func-
tional autoregressive processes as well as the more general time-varying func-
tional ARMA processes are locally stationary and that stationary functional
ARMA (m,n) processes are a special case. For this we first need to establish
that a causal solution exists for time-varying functional AR(m) processes. This
is done in the theorem stated below.

Theorem 3.1. Let {e;}iez be a white noise process in H and let {X; 1} be a
sequence of time-varying functional AR(m) given by

Xt,T = Z B%,j(Xt*j,T) + & (6)
j=1

with B, j = By foru <0 and B, ; = By ; for uw > 1. Furthermore, suppose
that

(i) the operators B, j are continuous in u € [0,1] for all j =1,...,m;

(@) for all u € [0,1], the operators satisfy Z;nzl | B,

lo < 1.

Then (6) has a unique causal solution of the form
o0
Xer = 3 AL (e0-1) (7)
1=0

for all t € N with sup, Zio |HAg) H!OO < 00.

In order to prove the theorem, note that we can represent the functional
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AR(m) process in state space form

Xt Bey Bro -+ Bry\ [Xiar €t
Xiar Iy On Xi_oT On
) = . ) + .| (®
Xi—m+1,T Ig  Opm Xi—m,T On
Xik,T Bﬂ; sz—l,T sik

T
Here, X 2‘ 7 1s a m-dimensional random vector taking values in the Hilbert space
H™ with inner product {(z,y) = >.\", {x;,yiyy. Furthermore, B} denotes a
matrix of operators and thus is itself an operator on H™. Consequently, we can
write the functional AR(m) process more compactly as
X?,T = B*%(X;tk—l,T) +ef

with ef € L%, (2, P).

Proof of Theorem 3.1. In order to show that a causal solution exists in the lo-
cally stationary setting, we require the following result which is proved in Ap-
pendix A1.2.

Lemma 3.2. Foru € [0,1], the assumption ZT=1 | Bu,jlloo < 1 implies that the
operator B¥ satisfies || B*" || < 1 for some ko > 1,k, € Z.

We note that this is a weaker assumption than ||BZ[|, < 1. Although
\HB?j’“"IHOO < 1 is usually stated as the condition for a causal solution in the
stationary case, the condition 337", || Bu,j{lo <1 is easier to check in practice.

As a consequence of this lemma, the assumption 37", [|Byjllc < 1 for all

u € [0,1] implies that the spectral radius of B} satisfies
* : sk || 1/k 1
r(BY) = sup A = lim [|BY," < 5

for some § > 0. Observe then that by recursive substitution

(9)

* .- =1 * *
Xt,TZZ ( BQ)%-Z-
=0 =0 7
From (8), this implies a solution is given by

O -1

Xer = Z [ OBT_TS]l 1(61"_1)7 (10)
=0 " 5= s

where [-]1,1 refers to the upper left block element of the corresponding block
matrix of operators. In order to prove the theorem we shall proceed in a similar
manner as Kiinsch (1995) and derive that

-1
4
swpll| [1B.0,,4], <
t,T 511 T]l’l o=

for some constant ¢ and p < 1. For this, we require the following lemma.
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Lemma 3.3. Let B(H) be the algebra of bounded linear operators on a Hilbert
space. Then for each A € B(H) and each e > 0, there exists an invertible element
M of B(H) such that r(A) < || MAM ||, < 7(A4) + &

Since B(H) forms a unital C*-algebra, this lemma is a direct consequence
of a result in Murphy (1990)[p.74]. Lemma 3.3 together with (9) imply we can
specify for fixed u a new operator M (u) € B(H) such that

1

1M (w) BEM ™ (u) [0 < T 5

Because of the continuity of the autoregressive operators in u, we have that for
all w € [0, 1], there exists a neighborhood V(u) such that

| M (w) BE M~ (u) || < <1 for veV(u).

1
1+6/3
Define now the finite union | J;_; V(u;) with V(u;) n V(u;) = @ for i # I. Due
to compactness and the fact that B} = B{ for v < 0 this union forms a cover
of (—oo,1]. The preceding then implies that there exists a constant ¢ such that

1Bl < cllM (ui) BYM ™ (ui)loo, i =1,

Now, fix t and T and define the set J;; = {s > 0: %=* € V(u;)} n{0,1,...,1—1}.

Then specify p = ﬁ to obtain

-1 =1
(B, <[], <0 11 5%
=0 T »lloo s=0 T oo i=1"seJ;, 7 llleo
T
<c™ [T IT [IM(u)Bie M~ (wy)|
i=1seJ; r

T

<c I pl =y,
=1

which gives the result. O

Theorem 3.1 will be used to show that time-varying functional ARMA models
for which a functional spectral representation exists satisfy conditions (A1) and
(A2) and hence by Proposition 2.2 are locally stationary. Before we can consider
general time-varying functional ARMA models we first need the following re-
sult, which shows that for time-varying functional autoregressive processes there
exists a common continuous transfer operator A, ., that satisfies condition (A2).

Theorem 3.4. Let {e;}ez be a white noise process in H and let {X,;r} be a
sequence of functional autoregressive processes given by

i By j(Xi—jr) = Ctler) (11)
=0

with By ; = By, Cy = Co foru <0 and By ; = B1;, Cy, = Cy foru > 1. If
the process satisfies, for all uw € [0,1] and p = 2 or p = o0, the conditions
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(i) Cy 1s an invertible element of So,(H);
(i) Bu,j € Sp(H) for j =1,...,m with 375" | [|Bu,;
(711) the mappings u — By, ; for j = 1,..,m and v — C,, are continuous in
u € [0,1] and differentiable on u € (0,1) with bounded derivatives,

then the process { X1} satisfies (A2) with

||l <1 and Bu70 = IH;

m

—1
T _ 1 —iwj
A%WJ_E<Z€ jB%,j) C% (12)

j=0
and thus is locally stationary.

The proof of Theorem 3.4 is relegated to Appendix A1.2. As shown in Theo-
rem 3.1, a sufficient condition for the difference equation (11) to have a causal
solution is 337% | [[Bu,jflo < 1 or ||B¥* ||, < 1 for some kg > 1. The mov-

ing average operators will then satisfy >, ]HAng)moo < o, and Proposition

2.3 shows that X, p satisfies assumption (Al) with Aﬁf} € By It follows from
(10) that time-varying functional AR(m) processes that have a causal solution

with moving average operators satisfying 3,7 \HAS) [l2 < oo do not exist. In-

stead we need at least Ag(;) to be an invertible element of Sy, (H) together with
201 1Bujll2 < 1. By Proposition B1.6, this case is covered by Proposition
2.2 with A. , € S2(Hc) in condition (A2). For stationary functional AR(m)
processes this is straightforward to verify using back-shift operator notation
and by solving for the inverse of the autoregressive lag operator. Under slightly
more restrictive assumptions it is possible to obtain uniform convergence re-
sults for processes with transfer operators AﬁTw) € Bs. We will come back to this
in sections 4 and 5, in which we consider capturing the changing second-order
dependence structure via the time-varying spectral density operator.

Using Theorem 3.4, it is now straightforward to establish that the time-
varying functional ARMA processes are locally stationary in the sense of Propo-
sition 2.2. A time-varying functional moving average process of order n has
transfer operator

1 < o
AD = — N, et
t,w /727T E) TJ
where @/ ; € S,(H) are the moving average filter operators. This follows from

the spectral representation of the &;. Setting A%,w = A,Ej;) gives the result.
Finally, we can combine this with Theorem 3.4, to obtain that conditions (A1)
and (A2) are satisfied for time-varying functional ARMA (m,n) with common
continuous transfer operator given by

1 m o -1 n )
_ —iwj ) . —iwl
Ag = T Cy <Ze B;J) DO e (13)

Jj=0
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For operators that do not depend on ¢, this result proves the existence of
a well-defined functional Cramér representation for weakly stationary func-
tional ARMA (m,n) processes as discussed in Bosq (2000) or as in Hormann
and Kokoszka (2010). The latter is easily seen by means of an application of
the dominated convergence theorem and by defining the m-dependent coupling
process by

(m) (%)
Xt,T =9t,T(5t7~- s Et— m+1a8t ms Et—m— 17"')

for measurable functions g; 7 : H* — H with¢t =1,...,T and T' € N and where
{e}} is an independent copy of {&;}.

4. Time-varying spectral density operator

We will now introduce the time-varying spectral density operator and its prop-
erties. We will show that the uniqueness property of the time-varying spectral
density established by Dahlhaus (1996a) also extends to the infinite dimension.

Let XtT satisfy conditions (A1) and (A2) with ,A,E? = .A(T) for t < 1 and

A = A for t > T. We define the local autocovariance operator as the
cumulant tensor

Cuq,;) = COV(X[qus/ZJ,TaX[uT+s/2J,T)7 (14)

where |s| denotes the largest integer not greater than s. This operator belongs
to Sa(H) and hence has a local autocovariance kernel cq(ﬂ) e L%([0,1]?) given by

€Par, g2) = JJ ) (r,0)g1(0)g2(7)dodr, 91,92 € H. (15)

Proposition 4.1. Suppose (A1) and (A2) are satisfied. Then the local autoco-
variance operator defined in (14) satisfies >, ., H|C,(£)|H2 < o0.

The proof can be found in section A1.3 of the Appendix. Proposition 4.1
implies that the Fourier transform of (14) is a well-defined element of S (H¢)
and is given by

ZC(T) 71ws (16)

For fixed T, this operator can be seen as a functional generalization of the

Wigner-Ville spectral density matrix (Martin and Flandrin, 1985) and we shall
therefore refer to it as the Wigner-Ville spectral density operator .7-'1(;3 It is
easily shown that the Fourier transform of the autocovariance kernel chs) , for

fixed t and T, forms a Fourier pair in L? with the kernel of ]-75{3, referred to as
the Wigner-Ville spectral density kernel

1 .
(T) — (T) —iws
fu,w (7—7 U) - 27‘( 2 cu,s (7—7 0')6 . (17)

seZ
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More specifically, given > HCELTS) |, < oo for p = 2 or p = oo, the spectral
density kernel is uniformly bounded and uniformly continuous in w with respect
to | - |p. Additionally, the inversion formula

cuTS? (r,0) = J fQ(LT‘) (1,0) e dw (18)

holds in || - |, for all s, w, T, 7, and o. This formula and its extension to higher
order cumulant kernels follows directly from an application of the dominated
convergence theorem. Under additional assumptions, certain results presented
in this paper will hold uniformly rather than in mean square. Sufficient would
be to assume that the functional white noise process {e;}wcz is mean square
continuous and that the sequence of operators {Ag)}sez is Hilbert-Schmidt
with continuous kernels for all ¢t = 1,...,T and T € N. The process {X; 1}
is then itself mean square continuous and a slight adjustment in the proof of
Proposition 4.1 demonstrates that ZSEZ Hcg;) HOC < o0. This is also expected to
be the case for yet-to-be-developed concepts such as a time-varying Cramér-
Karhunen-Loéve representation. The results obtained in the previous section
however demonstrate that a representation under these stronger conditions ex-
cludes time-varying functional AR(m) models. We will therefore not impose
them but merely remark where stronger results could be obtained.

The pointwise interpretation of the L2-kernels makes it easy to verify that the

Wigner-Ville spectral operator ]—'1(;3 is 2m-periodic in w and self-adjoint. Namely,

cgzs(a, T) = 07(59)(7', o) implies le(jB(U, T) = 1(33(7', o), where fT the kernel
function of the adjoint operator FT. Moreover, F¢ is trace-class by Parseval’s
identity and therefore Proposition B1.3 implies that (16) is actually an element
of S1(Hc). We will show in the following that (16) converges in integrated mean

square to the time-varying spectral density operator defined as
Fuw = Auw Fo Al (19)

The time-varying spectral density operator satisfies all of the above properties
and is non-negative definite since for every 1 € L([0, 1]),

(Ao FS AL 0.0y = (VTG AL L0, A JFEAL 1) >0,

which is a consequence of the non-negative definiteness of F7. For any two
elements 1, ¢ in LZ([0,1]), one can interpret the mapping w — (3, Fy ., ©) =
(Fuw, ¢y € C to be the local cross-spectrum of the sequences {<1/),Xt(u)>}tez
and {<<p7Xt(u)>}t€Z. In particular, w — (¢, Fy . ¥) = 0 can be interpreted as
the local power spectrum of {<¢,Xt(u)>}tez for all w € [0,1]. In analogy to the
spectral density matrix in multivariate time series, we will show below that
the local spectral density operator completely characterizes the limiting second-
order dynamics of the family of functional processes {X; 7 :t =1,...,T}ren.
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Theorem 4.2. Suppose that assumptions (A1) to (A3) hold. Then, for all u €
(0,1),

| IR = Pl = o) (20

as T — oo.

Proof. By definition of the Wigner-Ville operator and Lemma B2.5,

T 1 |uT—s/2 (T)
FT) - _Zcov | AT A2,
T iBluT+s 2 (T) —iws
J; eﬁ[ o2l A [uT+s/2],8 dZﬁ) €

1 7 ixs 4(T) (T) f —iws
~or Z f_ € A[qus/QJ,)\ X (‘A[uT+s/2J,)\) dXe™".
Using identity (B1.3), we have that

(1) (1) T (4D (T)
A ]:E ('A |[uT+s/2],A ) - ('A[qus/QJ,)\ ® A[uTJrs/QJ,)\) ]:i

|uT—s/2],A

Similarly,
uw: Zf 1)\5 uA@A )]:id)\e_iws.
We can therefore write the left-hand side of (20) as

I

Consider the operator

2

dw.
2

i s T —iws
27’(’ Z J » u —s/2],\ ® AEU%-&-S/Q - A“J‘ ® AU,)\) ‘Fi d\e

(u,T) (T) (T)
Gs)\ = (‘A[qus/2J,>\ ® A[uT+s/2J,)\ —Aun® Au«\) F
and its continuous counterpart

G\ = (A(u—%),)\ At gya — Aun ® Aur) Fs.

27T

By Hélder’s inequality for operators (Proposition B1.3), both are trace-class
and hence Hilbert-Schmidt. Another application of Holder’s inequality together
with assumption (A2) yields

2
(T)
m uT+s/2 1,2 ® ['A[uTis/2J,)\ - Aui%vk])}—i 5

6 1
walb 7 =0(7%)- @

< ‘H‘AE:T-;_s/QJ )\H| H|AEZ’1)“is/2J,)\ — Aust
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By Minkowski’s inequality, we obtain

| R Rl = Y0 wllydo o),
It is therefore sufficient to derive a bound on
T 2
| G sl 2

A similar argument as in (21) shows that

M (A 0 ® (At o = Auer) + (A o — Auer) ® Au ) F

<C|%“

2

for some constant C' > 0. The operator-valued function G, , is therefore Holder
continuous of order @ > 1/2 in u. Note that (18) implies the inverse Fourier
transform of this operator is a well-defined element of Sy(Hc¢). We can therefore
write (22) as

_1 " —jw(s—s’ 2 isA 2 is’ A
(27r)2LTZ@ ( )<L G e dA,JO G ne ax'y

s,s’

1 ~
— o G I3,

seZ

where G, can be viewed as the s-th Fourier coefficient operator of
G = ». Because of Holder continuity, these operators satisfy [|Gsll2 <

|7 | Guwlll2 |s| 7 = O(s™%). Hence,

& ~ 2 1-2
211Gy I = O(n!~2).

lsl
2T

Concerning the partial sum ZZ:_& |gs (7, 0)|?, we proceed as in Dahlhaus (1996a)
and use summation by parts to obtain

n—1 2m p2rn—1
¢ is(A—=X n log(n)
NG = [ [T 8 G506 iy = o),
5=0 5=0

which follow from the properties of G, and Lemma B3.1. Tt is straightforward
to see that 22;01 [|G_s]|3 satisfies the same bound. Hence,

72 = Fusliy o = [ el + o)
- 1-2a nlog(n)
—O(n )+O(—Ta )

Choosing an appropriate value n « T' completes the proof. O



126 A. van Delft and M. FEichler

Intuitively, the value of n such that nlog(n) T~ — 0 can be seen to deter-
mine the length of the data-segment over which the observations are approxi-
mately stationary. Only those functional observations X; r from the triangular
array with t/T € [u + %,u — 2] will effectively contribute to the time-varying
spectral density operator at u. As T increases, the width of this interval shrinks
and sampling becomes more dense. Because the array shares dynamics through
the operator-valued function A, ., which is smooth in u, the observations be-
longing to this interval will thus become close to stationary as T" — o0. The
theorem therefore implies that, if we have infinitely many observations with the
same probabilistic structure around some time point ¢, the local second-order
dynamics of the family are completely characterized by F, .

The above theorem provides a promising result. It is well-known from the
time series setting that a Cramér representation as given in Proposition 2.2 is in
general not unique (e.g. Priestley, 1981). However, Theorem 4.2 shows that the
uniqueness property as proved by Dahlhaus (1996a) generalizes to the functional
setting. That is, if the family of H-valued processes {X;r : t = 1,...,T}ren
has a representation with common transfer operator A, ., that operates on H¢
and that is continuous in w, then the time-varying spectral density operator
will be uniquely determined from the triangular array. This uniqueness of the
time-varying spectral density operator is expected to be extremely valuable in
the development of inference methods. For example, it would be of interest to
determine whether this result will allow to develop Quasi Likelihood methods to
fit parametric models in the functional setting. Such an extension is not direct
and has to take into account the compactness of the operator and the properties
of Toeplitz operators in the infinite dimension. This is however beyond the scope
of this paper and the authors will consider this in future work.

Remark 4.3. If assumptions (A1) and (A2) hold with p = 2, we have by continu-
ity of the inner product that the kernel a, , of A, , is well-defined in L2 ([0, 1]?)
and hence is uniformly Hélder continuous of order o > 1/2 in both w and w. If
we thus additionally assume that the {e;};cz are mean square continuous and
the operator A, ,, is an element of By of which the Hilbert-Schmidt component
has a kernel that is continuous in its functional arguments, the error holds in
uniform norm.

5. Estimation

The time-varying spectral density operator as defined in section 4.2 allows to
capture the complete second-order structure of a functional time series with
possibly changing dynamics. In order to consider inferential techniques such
as dynamic FPCA for nonstationary functional time series, functional Whittle
likelihood methods or other general testing procedures, we require a consistent
estimator for the time-varying spectral density operator. In this section, we
present a nonparametric estimator of the time-varying spectral density operator.
It should be noted that this requires a careful consideration of certain concepts
on the function space, details of which are relegated to sections B2-B3 of the



Locally stationary functional time series 127

Appendix, and that there are some discrepancies compared to existing results
available in the Euclidean setting.

The section is structured as follows. First, we define a functional version of
the segmented periodogram and derive its mean and covariance structure. We
then consider a smoothed version of this operator and show its consistency.
Finally, we provide a central limit theorem for the proposed estimator of the
time-varying spectral density operator. Proofs of this section can be found in
section A1.4 of the Appendix.

5.1. The functional segmented periodogram tensor

The general idea underlying inference methods in the setting of locally station-
ary processes is that the process X; r can be considered to be close to some

stationary process, say Xt(uo), on a reasonably small data-segment around wug.
If this segment is described by {t : |4 — ug| < by/2} for some bandwidth by,
classical estimation methods from the stationary framework can be applied on
this stretch. The estimated value is subsequently assigned to be the value of the
parameter curve at the midpoint ug of the segment. The entire parameter curve
of interest in time-direction can then be obtained by shifting the segment. We
will also apply this technique in the functional setting.

First, let the length of the stretch considered for estimation be denoted by
Nrp, where Nt is even and Ny « T. In the following, we will drop the explicit
dependence of N on T and simple write N = Np. Then the local version of the
functional Discrete Fourier Transform (fDFT) is defined as

N1 .
DI(LTJ = D he N Xjur)-Nj24s+1,7€ 7, (23)
s=0

where h, n is a data taper of length N. It is clear that Di(LTUz is a 2mw-periodic
function in w that takes values in H¢. The data-taper is used to improve the
finite-sample properties of the estimator (Dahlhaus, 1988): firstly, it mitigates
spectral leakage, which is the transfer of frequency content from large peaks to
surrounding areas and is also a problem in the stationary setting. Secondly, it
reduces the bias that stems from the degree of nonstationarity of the process
on the given data-segment, that is, the fact that we use the observations X; r

for estimation rather than the unknown stationary process Xt(UO). We define the
data-taper by a function h : [0,1] — R and setting h, v = h(%); the taper
function A should decay smoothly to zero at the endpoints of the interval while
being essentially equal to 1 in the central part of the interval. Thus the taper
gives more weight to data-points closer to the midpoint.

As a basis for estimation of the time-varying spectral density operator, we
consider the normalized tensor product of the local functional Discrete Fourier
Transform. This leads to the concept of a segmented or localized periodogram
tensor

1§ = (27 Hy 5 (0))~* DT) @ DT (24)

swW U,w?



128 A. van Delft and M. FEichler

where
Hy n(w) = Z hE e (25)

is the finite Fourier transform of the k-th power of the data-taper. Given the
moments are well-defined in L2 ([0, 1]?), the corresponding localized periodogram
kernel is given by

ID)(r,0) = (27 Han(0)) ' D) () DL (0). (26)

Similar to the stationary case, sufficient conditions for the existence of the higher
order moments of the localized periodogram tensor are obtained from

_ 2
I15215 = (27 Ha,w (0)) =" [ DI (27)
which implies that [EHIu pr < oo if [EHD H < oo or, in terms of moments of

X, [EHX,57TH2 < 0.

To ease notation, we denote ¢, , = |uT| — N/2+ 7+ 1 to be the r-th element
of the data-segment with midpoint u. For u; = j/T we also write t;, = ty, ,
and abbreviate u;, = t;,/T. The following result is used throughout the rest
of the paper.

Proposition 5.1. Suppose that assumption (A1) holds with Agj;) € By, and

additionally sup,,, . | 175, Nl < . Then

try A trk )

Cum(Xtrl,T7-«-aXtTk,T) :f JRICR LT )] (A(T) Q- ®A(T )
I1k
XA+ AR) FR o @A d g, (28)

1

where the equality holds in the tensor product space He ® - - - ® H¢. Moreover,
for fized t € {1,...,T} and T € N, the k-th order cumulant spectral tensor of
the linear functional process { X},

(t,T) (T) (T) (T
‘F)\l,..,)\k,l = (‘Atrl,/\l K ® Atrk_lyak 1 Atrk,—A+) ilq-w)\k—l’

where Ay = A\ + ..+ Ap—1, is well-defined in the tensor product space ®f:1 H¢

with kernel fAl oy (T1se o3 T)

,,,,,

Note that under the stronger condition At o € Ba, the tensor f )\k L will
be trace-class for all k£ = 2. The above proposition implies that the hlgher order
cumulant tensor of the local fDFT can be written as

cum (Du:,le ) Dngk )
= | (N AT s = M) @@ Hy (AT, - M)
X 77()\1 + ...+)\k) il’m’)\k_l dM - dAg. (29)
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Here, the function Hy(G.,w) and similarly Hy n(G.,w) generalize the defini-
tions of Hy and Hy n to

N—-1 .
Hin(Go,w) = 3 BE y Goe' (30)
s=0

with Hy(G.,w) = H1 n(G.,w), where in our setting G5 € By, for all s € Ny. For
Go = In., we get back the original definitions of Hy and Hy, n. The convolution
property of Hy straightforwardly generalizes to

f Hy n(Ae,a+7) @ Hyn(Bo, f —7) dy = 2m Hpy n(Ae @ Bo, oo + ), (31)
II

where (Ay)r—o,.. .n—1 and (B;)r—o,... n—1 are vectors of tensors or operators.
From the taper function h, we derive the smoothing kernel K in rescaled
time u by

1\2
Ki@) = - h(x + 2) (32)
for z € [-4, 1] and zero elsewhere; furthermore, we define the bandw1dth be,r =
N/T that corresponds to segments of length N, and set Ky r(x) = ( )

Finally, we define the kernel-specific constants
Ky = J 22 Ki(x) dx and | K||5 = J Ki(z)® dx
R R
The first order and second order properties of the segmented functional pe-

riodogram can now be determined.

Theorem 5.2. Suppose that assumptions (A1), (A2), (44), and (A5) with
k < 4 hold. Then the mean and covariance structure of the local functional
periodogram are given by

1 o?
ECISD01,92) = (Fuwgn 92) + 5bir ke 55 (Fuwgr, 62)

log(bs, 7T
olt2r) + O(EETT),

and
COV(<I(T)1 » g1 ® 92> < u w27g3 ® g4>)
= Hyn((Frue , 93,910, w1 —w2) Ho N ((Frue
T W1 T
+ Ho N(<‘Ftu.-’ 94, 91), w1 + w2) HQ,N(<~7:tgf,- 0, 93:92), —w1 — wa)

ro(y o),

fOT’ all 91,92,93,94 € H‘D'

94, 92>7 Wy — wl)

;W1

The proof exploits assumption (A2) and is based on the theory of L-functions
(Dahlhaus, 1983), which allows to provide upper bound conditions on the data-
taper function. Details of the extension of the latter to the functional setting
can be found in section B3 of the Appendix.
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5.2. Consistent estimation

Theorem 5.2 shows that the segmented periodogram tensor is not a consistent
estimator. In order to obtain a consistent estimator we proceed by smoothing
the estimator over different frequencies. That is, we consider convolving the
segmented periodogram tensor with a window function in frequency direction

FO - L JH K= A) I dx, (33)

be, be

where b¢ 7 denotes the bandwidth in frequency direction. To ease notation, we
also write Ki7(w) = 5= K (52). Additionally we use subsequently

K = J w? K¢ (w) dw and |K¢[3 = J K (w) dw
R R

as an abbreviation for kernel-specific constants.

Theorem 5.3 (Properties of the estimator ]31&13) Suppose that assumptions
(A1), (A2), and (A4) to (A7) with p = o0 and k < 4. Then the estimator

F) = L Krr(w— ) I dx (34)
has mean
: e bl 02 Kebip 07
[E<]:qf;291792> = (Fuwgi, g2) + — ;’T ﬁ<]‘—u,w91,92> + f;’T ﬁ<]:u,w91792>
o) +o(tEr) + O("BRL L)), (35)
’ ’ bt,T T

and covariance structure

cov (<—7:_7S?31 91 ® g2), <]:—1(532, 93 @ gu))

o | K |2
= 2m [ Kol f Kir(wi — A1) Ker(wa — M) {Fun 93, 91 {Fu,—x, 94, 92 dAq
bt’T T II
o | K|
MJ Kip(wr — A1) Ker(wz + A1) (Fua 94, 91) {Fu,—x, 93, G2) dA1
£ h
log(be,r T) by, _
+O(=, 7 ) +O05) +0((berbrr 1)) (36)

fO’f’ all 91,92,93,94 € H@'

The proof follows from a multivariate Taylor expansion and an application
of Lemma P4.1 of Brillinger (1981). We note that the covariance has greatest
magnitude for wy + ws = 0(mod27), where the weight is concentrated in a band
of width O(bg ) around wy and wy respectively. The above result shows that the
bandwidths need to decay to zero with an appropriate rate in order to obtain
consistency.
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Proposition 5.4. Under assumptions (A1), (A2), and (A4) to (A8) withp = o0
and k < 4, we have

dim by ber T eov((FLD, 91 ® g2), (FLLD, . 95 ® 9))

= 2 [ K3 [ K |3 n(wn — w2) (Fuor 93, 91) Fu w1 94, 92)

+ 27 | K 5 [ Ke 3 mwr + w2) (Fuuw, 94, 91) (Fu,—1 93, 92)
(37)

for all g1,92,93,94 € Hc and for fixed wi,ws. If wi,ws depend on T then the
convergence holds provided that liminfp_,q, |(w1,7 + we 7) mod 27| > € for some
e > 0.

The proof follows straightforwardly from a change of variables and a func-
tional generalization of approximate identities (e.g., Edwards, 1967).

Corollary 5.5. Under the same assumptions

|eor (P2, 7], = 0 (irr)

w,w1? Y u,ws
uniformly in wy,ws € [—m, 7| and u € [0,1].

Proof. Note that |K; 1| = O(ﬁ) and | K¢ |1 = 1, from which it is easy to
see that

[ st a0, 0(iL)

be,

Since || Fy.w |2 is moreover uniformly bounded in v and w, the statement follows
directly from equation (A1.15). O

Remark 5.6. Theorem 5.2, Theorem 5.3, Proposition 5.4, and Corollary 5.5 can
be shown to hold in a stronger sense under additional assumptions. Namely,
if the respective set of assumptions hold with p = 2 then the kernel func-
tion of the transfer operator Ag? is well-defined. If this function is continu-
ous and the white noise process {e;} is moreover mean square continuous with
SUDy, wr 1 Ifn o wp s oo < 00 for k < 4, the aforementioned statements hold
in uniform norm.

Theorem 5.7 (Convergence in integrated mean square). Suppose that assump-
tions (A1),(A2), and (A4) to (A8) with k = 2,4 hold. Then the spectral density
operator is consistent in integrated mean square. More precisely, we have

IMSE(F(T) = | EJFD - Fuulfpdo
11

= O((be,r ber T)7Y) + 0(b7 1 + b p + (ber T) M log(be,r T)).

Since it is uniform in w € II, we have pointwise mean square convergence where

the error also satisfies [EH|.7:",STW) — Fuuwll} = O(ﬁ) +o(b + b7 + bﬁ#).

The proof follows almost straightforwardly from decomposing the above in
terms of its variance and its squared bias.
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Remark 5.8 (Discrete observations). In practice, functional data commonly are
observed not continuously but only on a discrete grid. In this case, the above
consistency results continue to hold only under additional regularity assump-
tions. To illustrate the effect of discrete observations, suppose that, for given
T, we observe the random functions X;(7), ¢ = 1,...,T, on the grid points
0< 7 <...<7y < 1. The corresponding discrete data x;; = X,;(7;) are inter-
polated to yield functions XM (7) in some M-dimensional subspace Hy; of H.
Furthermore, let Py; X; be the orthogonal projection of X; onto Hy;. Then the
mean square error of the estimator 7, ,(X™) based on the discrete observation
can be bounded by application of Minkowski’s inequality by

[Emfu’w(XM) - ]:u,wm%
< Z[Em}—uw(XM) - ]:u,w(PM X)\H% + Q[Em]:uw(PM X) - ]:u,wmg-

Here, the first term can be interpreted as the error due to discretization. In the
second term, the mean square error of F, .,(Py X) can be rewritten as

[Emﬁu,w(PM X) - ]:u,wm%
= E[| Fuo(Par X) = Fuuo(Prr XI5 + | Fu o (Par X) = Full3,

where F,, (P X) is the time-varying spectral density operator of the process
Py X;. The first term describes the estimation error and, by Parseval’s equality,
is bounded by

and hence converges to zero as T' — o in a local stationary framework. Finally,
the second term is the approximation error due to replacing the functions X; by
their projections Py; X;. Under suitable regularity conditions on the functions
X; and for an increasingly dense grid, the approximation error can be made ar-
bitrarily small. Furthermore, the discretization error | X — Py X¢ |2 converges
to zero such that for an appropriate rate of M — oo, the error due to discretiza-
tion in 38 also tends down to zero. The detailed derivations are similar to those
in section 5 of Panaretos and Tavakoli (2013b) and are therefore omitted.

5.3. Weak convergence of the empirical process

The results of the previous section give rise to investigating the limiting dis-
tribution of .7-'13?3, the local estimator of the spectral density operator. We will

proceed by showing that joint convergence of its kernel fﬁ} to complex Gaussian
elements in LZ([0, 1]?) can be established.

Consider the sequence of random elements (EuTw) in L2([0,1]?), where

TeN

B = Vourber T (£ —E[£E2])

for fixed w € [—m,m] and u € [0,1]. In order to establish convergence in
LZ([0,1]?), it is more appropriate to consider the representation of E&Tg with
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respect to some orthonormal basis. For this, let {t,,}men be an orthonormal
basis of He. Then {¢mn }m nen With ¥, = ¥ @1, forms an orthonormal basis

Of L%([Oa 1]2)7 and qu?;,); equals

T = 2 (B, Ymn) Ymn-
’ m,neN ’

Hence, the distribution of EAQ(LT“), is fully characterized by the finite-dimensional
distribution of the coefficients of its basis representation. Furthermore, weak con-

vergence of E&TJ will follow from the weak convergence of (<E§TJ, ¢mn>)m el

in the sequence space ¢2. Subsequently, we identify EI(LTL?, with its dual (EﬁTJ)* €
L2([0,1]*)* and write A A
for all ¢ € LZ([0,1]?).

To show convergence to a Gaussian functional process, we make use of the
following result by Cremers and Kadelka (1986), which weakens the tightness

condition usually employed to prove weak convergence and generalizes earlier
results by Grinblat (1976).

Lemma 5.9. Let (T, B, 1) be a measure space, let (E,|-|) be a Banach space,
and let (X,)nen be a sequence of random elements in L%,(T, p) such that

(i) the finite-dimensional distributions of X,, converge weakly to those of a
random element Xo in LY (T, 1) and

(i) limsup EJ.X, |} < B[ Xol7.
Then X, converges weakly to Xo in L, (T, ).

In our setting, the weak convergence of the process EA’&TJ in L2([0,1]?) will

follow from the joint convergence of E&TJ (Ymyng)s- - EAQSTJ (¥my, my,) forall k e N
and the condition

EER] - 2 E
m,ne

BDWa) = T ElBuelimn) ~ElBl; (39

m,ne

as T — oo. In contrast, Panaretos and Tavakoli (2013b) employ the slightly
stronger condition

BT ()| < bonn

for all T € N and m,n € N and some sequence (¢,,,,) € ¢1. In fact, the condition
corresponds in our setting to the one given in Grinblat (1976). Finally, we note
that condition (39) is sufficient for our purposes, but recently it has been shown
(Bogachev and Miftakhov, 2015) that it can be further weakened to

sup || E{Y) H; < .
TeN

For the convergence of the finite-dimensional distributions, we show conver-
gence of the cumulants of all orders to that of the limiting process. For the first
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and second order cumulants of E&TJ (tmn), this follows from Theorem 5.3. It
therefore remains to show that all cumulants of higher order vanish asymptoti-

cally.

Proposition 5.10. Suppose that assumptions (A1), (A2), and (A4) to (A8) for
some k = 3 hold. Then, for all u € [0,1] and for all w; € [—m, 7] and m;,n; € N
fori=1,... k, we have

cum (Ei,Tw)l (Yming )y »Ei,Tﬁk (¢mknk)) =o(1) (40)

as T — o0.

The distributional properties of the functional process can now be summa-
rized in the following theorem.

Theorem 5.11 (Weak convergence). Suppose that assumptions (A1), (A2),
and (A4) to (A8) for all k € N hold. Then

. D
(E’l(l«,uzj)jzl,...,J - (E“""J')jzl,...,J’ (41)
where By, j = 1,...,J, are jointly Gaussian elements in L([0,1]%) with

means E(Eqy u, (¥mn)) = 0 and covariances

0¥ (B (brun)s B (V)
— 2 [ K3 1Kt [n(i = w5) (P s Yy (s ) (42)
(s 05) Fuson Vs Ym ) Fayo Vs V) |
foralli,jel,....J and m,m/,n,n’ € N.

Proof of Theorem 5.11. For condition 39, we note that

E

BT

U,w

|z = f[ | Var(E(T (1, U)) drdo =byrbsr T Hvar(]:gu))uz.
0,1]2

and it therefore is satisfied by Theorem 5.3. Together with the convergence of the
finite-dimensional distributions this proves the asserted weak convergence. [

6. Numerical simulations

To illustrate the performance of the estimator in finite samples, we consider a
time-varying functional time series with representation

Xor =By ((Xi—17) + &, (43)

where B, 1 € By is continuous in u € [0, 1] and where {¢;} is a collection of
independent innovation functions. In order to generate the process, let {1;}ien
be an orthonormal basis of H and denote the vector of the first k Fourier co-
efficients of Xy 1 by XgT) = ((Xep, Y1), ... ,<Xt’T,1/Jk>)’. Similar to Hérmann,
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Kidziriski and Hallin (2015), we exploit that the linearity of the autoregressive
operator implies the first k& Fourier coefficients, for k large, approximately satisfy
a VAR(1) equation. That is,

X"~ XD e VLT, (44)

where €t = (<5t7¢1>a s 7<5t7¢k>), and %%,1 = (<B%,1(1/)1)71/}]>7 1< Z7.7 < k)
Correspondingly, the local spectral density kernel will satisfy

k
T ~ i (T) , :
fid(mo)~ lim 3 o 0ilm)e;(0),

1,7=1

where f&TUZ is the spectral density matrix of the Fourier coefficients in (44). Imple-
mentation was done in R together with the fda package. For the simulations, we
choose the Fourier basis functions on [0, 1]. The construction of the estimator in
(33) requires specification of smoothing kernels and corresponding bandwidths
in time- as well as frequency direction. Although the choice of the smoothing
kernels usually does not affect the performance significantly, bandwidth selection
is a well-known problem in nonparametric statistics. As seen from Theorem 5.3,
both bandwidths influence the bias-variance relation. Depending on the persis-
tence of the autoregressive process a smaller bandwidth in frequency direction is
desirable around the peak (at A = 0 for the above process), while slow changes
in time direction allow for tapering (i.e., smoothing in time direction) over more
functional observations. It would therefore be of interest to develop an adaptive
procedure as proposed in van Delft and Eichler (2015) to select the bandwidth
parameters. Investigation of this is however beyond the scope of the present
paper. In the examples below, the bandwidths were set fixed to by p = T—/6
and by p = 2775 — b, 7. We chose as smoothing kernels

Ko@) = Ki(e) =6(; ~2%) zel-5,3]

which have been shown to be optimal in the time series setting (Dahlhaus,
1996b).

In order to construct the matrix %%’1, we first generate a matrix A, with
entries that are mutually independent Gaussian where the (7, j)-th entry has
variance

wi ™2+ (1 —u)e ",

The entries will tend to zero as ¢,7 — o0, because the operator B%)l is re-
quired to be bounded. The matrix B, ; is consequently obtained as B, =
nAy/||Aulloo- The value of n thus determines the persistence of the process.
Additionally, the collection of innovation functions {e;} is specified as a linear
combination of the Fourier basis functions with independent zero-mean Gaus-
sian coefficients such that the I-th coefficient (&, ;) has variance 1/[(I — 1.5)x]>.
The parameters were set to ¢ = 3 and n = 0.4. To visualize the variability of
the estimator, figure 2 depicts the amplitude of the true spectral density kernel
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0.25

u =

u=0.5

u = 0.25

Fig 2: Contour plots of the true and estimated spectral density of the FAR(1)

at different time points at frequencies A\ = 0, A = 27 and \ = 11

10 o’

of the process for various values of u and A with 20 replications of the corre-
sponding estimator superposed for different sample sizes T'. For each row, the
same level curves were used where each level curve has the same color-coding
within that row. The first two rows of figure 2 give the different levels for the
estimator around the peak in frequency direction, while the last row provides
contour plots further away from the peak. Increasing the sample size leads to
less variability, as can be seen from the better aligned contour lines. It can also
be observed that the estimates become more stable as we move further away
from the peak. Nevertheless, the peaks and valleys are generally reasonably well
captured even for the contour plots in the area around the peak.

As a second example, we consider a FAR(2) with the location of the peak

varying with time. More specifically, the Fourier coefficients are now obtained
by means of a VAR(2)

XET) = s3%,1)(55)1 + ‘3%,2Xg)2 + €,

where By, 1 = Nu14u1/||Auillee and By o = ny 2442/l Auz2lle. The entries

of the matrices A, 1 and A, are mutually independent and are generated

such that [A,.1]; ; = N(0,e=(=3)=(=3)) and [Auz2]; ; = N(O, (182 + j2/2)71),
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respectively. The norms are specified as
Ny,1 = 0.4 cos(1.5 — cos(mu)) and 1,2 = —0.5.

This will result in the peak to be located at A = arccos(0.3 cos[1.5 — cos(mu)]).
The collection of innovation functions {e;} is chosen such that the I-th coefficient
(&4, W) has variance 1/[(I — 2.65)7]°. Figure 3 provides the contour plots for
different local time values where the frequency was set to A = 1.5 — cos(mu),
i.e., the direction in which most change in time-direction is visible in terms
of amplitude. We observe good results in terms of identifying the peaks and
valleys overall where again the variability clearly reduces for T' > 512. For the
value u = 0.5, one is really close to the location of a peak and observe wrongful
detection of a small peak in the middle of the contour plot. This is an indication
some over-smoothing occurs which, to some extent, is difficult to prevent for
autoregressive models, even in the stationary time series case.

7. Concluding remarks

This paper forms a basis for the development of statistical techniques and meth-
ods for the analysis of nonstationary functional time series. We have provided
a theoretical framework for meaningful statistical inference of functional time
series with dynamics that change slowly over time. For this, the notion of local
stationarity was introduced for time series on the function space. We focused
on a class of functional locally stationary processes for which a time-varying
functional Cramér representation exists. The second-order characteristics of pro-
cesses belonging to this class are completely captured by the time-varying spec-
tral density operator. We moreover introduced time-varying functional ARMA
processes and showed that these belong to the class of locally stationary func-
tional processes. In the last section, we considered the nonparametric estimation
of the time-varying spectral density operator. To derive the asymptotic distri-
bution, a weaker tightness criterion is used than what is common in the existing
literature. The results derived in this paper give rise to consider Quasi-likelihood
methods on the function space as well as the development of prediction and ap-
propriate dimension reduction techniques for nonstationary time series on the
function space. This is left for future work.

Appendix Al: Proofs

In this appendix, we prove the main theoretical results of the paper.

A1.1. Proofs of Section 2
Proof of Proposition 2.3. For fixed t € {1,...,T} and T € N, let Uy, =
elw(t=s) Ag). We have

)

T(Us,) = f =) A az, = A e,
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u = 0.75 u = 0.625 u =0.5 u = 0.375 u = 0.25 u=0.1

u=20.9
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Fig 3: Contour plots of the true and estimated spectral density of the FAR(2)
at different time points for A = 1.5 — cos(mu).
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where 7T is the mapping defined by linear extension of 7 (U 1[4,5)) = U(Zs —
Zy) (see section B2.3). By definition of the operator Us,., we have |Us,.[3, <

A2, §7 [|F5 ]l dw < oo and thus U, € Bu. Similarly, 3, 7(Us.) € Bo
from which it follows that

lim Z elw(t—s) Agz;) — vt Z e iws AE?;) — vt -Ai(t,j(:;) € By.
N=o |s|<N seZ

The continuity of the mapping 7 then implies

Xer=2TWUs.) =T Us,.) = J et AT dz,  ae. inH. O

—T

A1.2. Proofs of Section 3

Proof of Lemma 3.2. We follow the lines of Bosq (2000, Theorem 5.2, Corollary
5.1). To ease notation, we shall write I and O for the identity and zero oper-
ator on H, respectively while we denote the identity operator on H™ by [gm.
Consider the bounded linear operator P,()\) on H

P,(\) = A"T —A""'B,1 — ... = ABum-1— Bum, AeC.

It is straightforward to derive that, under the assumption Z;’;l [|1Bujlleo < 1,

non-invertibility of P,(\) implies that X has modulus strictly less than 1. Define
the invertible matrices U, (\) and M, (\) on the complex extension H™ by

N7y if j >,

Uuij(A) = {

Oy otherwise
fori,j=1,...,m and
_ OH(m—l)xl _IHm—l
Mu(A) = ( Puo(N) Put(N)sees Pamoi(V))

where P, o(A) = I and P, ;(A) = APy j—1(A) — By,j for j =1,...,m. Then

IH(m—l) OH(ml)xl)
D )

M, (M) ()\ Igm — BZ‘Z) Uu(A) = <OH1x(m1) Pu(A)

from which it follows that (A Igm — B¥) is not invertible when P,()\) is not
invertible. In other words, the spectrum S, of B over the complex extension
of H™, which is a closed set, satisfies

Sy = {\eC: Agn — B¥ not invertible} c {\ € C: P,(\) not invertible}
={AeC:|N <1}
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Hence, the assumption that 377", || B.,;
tral radius of B} satisfies

oo <1 for all u, implies that the spec-

1

T (AL.1)

r(BY) = sup 3] = lim || B2/ <

for some 0 > 0. The equality is a well-known result for the spectral radius
of bounded linear operators! and can for example be found in Dunford and
Schwartz (1958). From (A1.1) it is now clear that there exists a ko € Z, o € (0, 1)
and a constant ¢; such that for all & > kg

1B oo < era®. (A1.2)

Finally, it has been shown in Bosq (2000, p.74) that this is equivalent to the
condition || B¥*||,, < 1 for some integer ko > 1. O

Proof of Theorem 3.4. The moving average representation (7) and the difference
equation (11) together imply that the process can be represented as

o0
Xor = ZA(T)C, , EBt L (Xeir).
0

Using the linearity of the operators and applying a change of variables I’ = [+ j,
this can be written as

Xt,T = Z 2 At l/—]Ct_ L’ Bt l’+; (thl”T)7

=035=0
where AE l,) .= Og for I’ < j. For a purely nondeterministic solution we require
m .
IH if l/ = 0,
Z t l/f‘] t— l’+] Bt L/+] J = {OH 1f l/ ” 0 (A13)
Because ¢; is white noise in H, it has spectral representation
us
= (2#)_1/2J e“tdz,,  tel. (A1.4)

Since a solution of the form (7) exists, we also have
Xz = J et A dz,,

where Aﬁ, \/ﬂ Zl 0 tTl) e~ !, Substituting the spectral representations of
X, and e, into (11), we get together with the linearity of the operators B, ;

and .A(T)
f Z “U=N B, ;AL dZ, = (27r)*1/2J et Cy dZ,,
™ j=0 -7

1Gelfand’s formula.
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Given the operator A%’w satisfies equation (12), the previous implies we can

write
1 &
L, =Y eiB, A,
27-(- T J:O T
m
= 2 eIy A, +Z e IBy (Agw— A )

<
Il
o

From the last equation, it follows that

iw(t—j iw(t—j
Ze ( J)B%J('At jw_A’ = Ze ( ])B%J(‘A%,w_A%j,w)
=0, ), (A1.5)
where Q = Op, t < 0. We will show that this operator is of order O(7)

in S (H@). By Proposltion B1.6, the smooth transfer operator satisfies A, ., €
Sp(H@). Under the conditions of Theorem 3.4, we have that for any element
¢ € He and fixed w € II, the mapping u — A, .,(¢)(7) is continuous and, from
the properties of the B, j, is differentiable and has bounded derivatives with
respect to u. By the Mean Value Theorem, we obtain

, =0

u,w|u=uo

supll Ay~ A, <sup  sup
t,w tw t— j <U0<%
for all w € II, uniformly in w. It then easily follows from equation (A1.5) and

Proposition B1.3 that ||C'¢ Q \Hp = O(+) uniformly in ¢,w. From (A1.3), we
additionally have

t
Z A(T) QtTg ;W = Z Z Atl —J Cf_ l+J B l+ i iw(t_l) [Ai(Eig w At—;l,w]

1=0 1=0j=0
_iwt (T)
=€ [ tyw _A%,w]'

Since the moving average operators are either in So(H) or in So, (H), the above
together with another application of Holder’s inequality for operators yields

I < sup(HlAtoH\ I, +Z 41, 25 1) <§,

for some constant K independent of T. We remark that the state space repre-
sentation of the previous section allow similarly to derive that (Al) and (A2)
still hold for p = o0 under the weaker assumption of Lemma 3.2. O

sup |H.A§ — Az
t,w

T

A1.3. Proofs of Section 4
Proof of Proposition 4.1. For fixed ¢t and T, we have by Minkowski’s inequality

2 l|eum (X |ur—s/2), 1 X{ur+s/21,7) 2
S



142 A. van Delft and M. FEichler

= e [ AR O ALy ) TN e

S

= > [[aPRs >, lesm 2

s{(1<|uT—s/2|<T)u s{(1<|uT—s/2|<T)u
(I<[uT+s/2|<T)} (I<|uT+s/2|<T)}°

where {-}* denotes the complement event. Now since Ag} = Ap,, fort <1 and

A,E w = Ao for t > T, we can write

1)\19
B Z 5 o2 J luT—s/2], M1 ®A uT+s/2J )FR dAi |2

+Z|H—f (Ao, ® A1y, ) F5 €25 dM |2, (A1.6)

s:BC
where B = {(1 < |[uT — /2] < T) v (1 < |uT + s/2] < T)}. Because the first

sum is finite, an application of proposition B1.3 implies it can be bounded by

K sup [JAL 121772 < oo,

t,T\w

for some constant K. For the second term, we note that
1 .
- f (Ao, ® A1y, ) F5,e™od, = cum(X(2,, X(V).
™ Ju

It thus corresponds to the cross-covariance operator of the two stationary pro-

cesses Xt(o) and Xt(l) at lag s. By Propsosition B2.4, we can alternatively express
this as

cum(XS(O)7 X(()l)) = Z(Ao,l ® Ay g)eum(esys—i, €4 k)-

Lk

Using then that &; is functional white noise, we find for the second term in
(A1.6)

DTHC2 < I DS (Aos ® Ask)eum(zo, £0) |2

s:BC 1,keZ

(€0,€0)]2 < .
lezZ keZ

The result now follows. O

A1l.4. Proofs of Section 5
Proof of Proposition 5.1. We have by Theorem B2.2 and by Proposition B2.1,

cum(f ei)‘”lAgl)’/\leAl e J e ARTE Ag;) /\deA,C)
I I 7

= f . f cum(ei’\”lAgl))\le)\1 e ,ei’\’“r’“Agi)7/\de>\k)
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X T " T
:f J (XA @ @M Al | Yeum(dZy,.. ., dZy,)
II II

_ IA171 4 A AT (T) (1)
_Jnke( 171+ AR TE) (Atr17/\1®"'®“4trk,>\k)
xn(A+ ...+ )\k)]-ilxuwkk—ld)\l <o dAg,

where the equality holds in the tensor product space He ® - - - ® H¢. Note that
the last line corresponds to the inversion formula of the cumulant tensor of order
k. For fixed t € {1,...,T} and T € N, the k-th order cumulant spectral tensor
of the linear functional process {X; 1} can thus be given by

t,T T T T
‘7:)(\1,“?,)\)“_1 = <A§T1),)\1 ® e ® AE ) ® Agrk),f)ur) ilmu,)\kfl’ (A17)

rEp_1'%k—1

and is well-defined in the tensor product space @le He¢. In particular, Propo-
sition B1.3 implies the corresponding operator is Hilbert-Schmidt for k > 2

T T T
1Fns i lle < BA @ @A o @A lllFS, s lle

T 2k
= (sup AL o) IS, oras s 2 < 0.

.
TjiAj

We therefore have that the kernel function f)(\tlT) Aeos (T1,...,7k) is a properly
defined element in L([0,1]%). In case k = 2, we moreover have that Fy, €
S1(He). This follows by the fact that the e; are white noise and thus [|F5 |1 <
3¢ lleum(ee, o)l = lIC5 1l = Efleo|l3 < oo 0

Proof of Theorem 5.2. Under assumption (A1)-(A2) we have for all ¢t =1,..,T
and T" € N that X, r are locally stationary random elements in H. Therefore,
by Proposition 5.1 and (29),

Ty L (1) T
E(Iuj,w) 271' H2,N(0) Cum(Duj,u,H D’LLJ,—W)
1

- T L (HN (AT L w =) @Hy (AT | - w)) F5dA.

In order to replace the transfer function kernels with their continuous approxi-
mations, we write

A;TZA ® Agl—x —Auj w0 @A 0
(T) (T) T)
= (AL = Auy) ® AT+ Ao @ (AT = Ay,

(A1.8)

We focus on finding a bound on the first term as the second term can be bounded
similarly. Since Hy(+,-) is linear in its first argument, we have by the triangle
inequality
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|HH ('A(T) - 'AUJ rowy W T /\) |Hoo

377

< (A 3 = Augnow = )L+ 1 (A ox = Auy o0 = M)

For the first term of this expression, assumption (A2) and Lemma B3.3 imply

Ug,r,

—1
T
£ o N (Agj,z,x —A

N e—i“w—”mw <cx (AL.9)

for some generic constant C' independent of T'. Next, we consider the second
term. Similarly as in the proof of Lemma B3.3, we have

HN (Aujy.,)\ - Au_jy.,waw - >\)
= HN(W - )\) (Auj A AUj,w) + HN(W - )‘) (Auj,N—lJ\ - Au_;’,N—lyw)

- Z [( wjr A —Auj,rfl,x) - (Auj,r,w—Aum,w)]ﬂs(w—x).

Since the transfer function operator is twice continuously differentiable in v and
w, we find by two applications of the mean value theorem

[COR T W —|

< sup H FAus || )~ ol
h uel0,1]wert Il Qudw T
Hence we obtain the upper bound
[ (Auy = Ay s = N[, < C Liv(w=X) [w=A|+C Ly (@A) oA,

Moreover, Lemma B3.3 implies
1w (AL w = M), < O Ly(w =)

With these bounds and Proposition B1.3 and Lemma B3.1, we now obtain

LH\ (Hn (Ao = Auy o = A) @ Hx (AT 0= 0)) 75|

< fn N (A3 = A0 = N 1 (AL 0 = W) 175 a0

< CJ- Ly(w—X)?d\ < C log(N).
II

The second term of (A1.8) is similar and thus the error from replacing .AEJT) N

and .A _A by Ay, . and Ay, ., respectively, is of order O(%) in L2.

Uj,r,
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The expectation of the periodogram tensor can therefore be written as

E(I5)
- m L (HN (Ag.),,\aw - )\) ® Hy (Agzﬂ\’ N w)) F
- m L (HN(Auj,.,w,w —A) @ Hy (A, oo A — w)) Fidr+ By
- mHZ’N(AUj,.,w ® Au, . —,0) FE + Ry
- mH2vN(Fuj,.,w,0) + Ry

where the remainder term Ry is of order O(%). Correspondingly, the local
periodogram kernel is given by

E(ITL(7:0) = gy & B (i) + O(ED),

Since by the conditions of the theorem, the operator-valued function A, is

twice continuously differentiable with respect to u, Theorem B1.8 implies that

the spectral density operator F, . is also twice continuously differentiable in
€ (0,1). Hence, by a Taylor approximation of F,; . ., about u;, we find for the

mean of the periodogram tensor

O*Fuo
ou?

E(ISD),) = Fuyw + bt Tt

O

where we have used the definition in (32) of the smoothing kernel K in time
direction. As by the assumption on the taper function this kernel is symmetric
about zero, the first order term in the Taylor approximation is zero.

This proves the first part of from Theorem 5.2. For the covariance, we note
that the product theorem for cumulants (see section B2) and the fact that the
means are zero imply

cov (I(T) 1) )

Uj,w1? U w2

:;[Cum(l)@) p™  p™ . pm) )

471'2H2,N(0)2 wj,w1? Uy, —wr) T ug,—we Hug,wa

Sz (Cum (D(T) D“J W2) ® Cum(D(T)ﬂm ) ijﬂa)*a& )>

Uj w1

+ S1324 (Cum (DfLT)w1 , Dg}_w,“) ® cum (Dq(iT)_w1 , Dg)wz))] )
where S;;; denotes the permutation operator on ®?_; L2([0, 1]) that permutes
the components of a tensor according to the permutation (1,2,3,4) — (4, j, k, 1),
that is, Siju(21 ®@ - @ z4) =2, Q@ - - Q@ xy.
We first show that the first term of this expression is of lower order than the
other two. By (29), the cumulant is equal to
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J HN(A( )M )\1)®HN(Ag_)A2,—w1 —)\2)®HN(A£?7/\37_W2_)\3)
H )
® Hy (A ), w2 = M) A+ M) F5, agn, dA1 - dg

and hence, by Lemma B3.3, is bounded in L?-norm by
C LN(wl—)\l) LN(—wl—)\g) LN<—w2—>\3) LN(/\I +>\2+>\3+w2) dA1dAo dA3
113
<C 1og(N)2f Ly(wz + X3)*dXs < C N log(N)?.
113

Next we consider the second term of (A1.10). A similar derivation as for the
expectation of the periodogram tensor shows that the term equals

Jo AT = M) @ B (AT 20) @ (A, e = )
1T
® Hy (A7) ) da —wa) F§, ® F5, dAi d)s

2HN (Au, or s w1=A1) @ Hy (Au, =215 w2t A1) ® Hy (A, ungs —w1—X2)
m

® Hy (Aujargs A2 — w2) F§, ® F5, dA1 d)a + Ry
B HQ’N (Au7 oW1 ® AuJ o—wi W1 CUQ) ® szN (Auj,.,un ® Auj,.y—wl y W2 — wl)
x Fo, ®F,,

= Hy N (Fuyon w1 — wa) ® Ho N (Fuy s iy s w2 — wi)-

Proceeding in an analogous matter for the third term of (A1.10), we obtain the
stated result. |

Proof of Theorem 5.3. By Theorem 5.2, the expectation of the periodogram ten-
sor can be written as

E(I(),) = Hon (Fu, o w,0) + Ry =

Uj,w

Hy.n(0) 2, (
where the remainder term Ry is of order O ( logN ) ) Because the operator-valued
function A, ., is twice differentiable with respect to both u and w, it follows from
Theorem B1.8 that the tensor F,,, is twice continuously differentiable in both
u, and w. We can therefore apply a Taylor expansion of F,; . about to the
point = = (u;,w,) to obtain

0
%—Fu,w

2

+(w—2A)

(u,w)=z

_ 2(r—N/2)2 0?

T ou2” " (u,w)=z

()N (G

(u,w)=z

1 , 0

gl N g e
52

(u,w)=x + owou

(u,w)=x

R
(u,w):ac) + AT,
(A1.11)

U,w
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where the remainder can generally be bounded by

|w — a| 821+i2
Rr, = t iy su ” — fu w”
T,p ilhen\g}ﬂ_ﬁp (i1)!(iz)! p U Oz Ju, 9
= > o(bifT|w - a|i2) p=2. (A1.12)

i1,i2€Ni1 +ig=p
In order to derive the mean of the estimator, we set vb, 1 = T_év /2 and recall
that the taper function relates to a smoothing kernel Ky in time direction by

K, (v) = Eiﬂ(”;l) (A1.13)

for v € [-1, 3] with bandwidth b7 = N/T. It then follows from (A1.11) that
a Taylor expansion about to the point = = (u;,w,) yields

2 : O'F,
)= E i 0 uw
E(FSTL,) = Fuy oo + b fv Ki(v)dv JH Ki(a)da e

2 .
1, i 0" Fuw
+ Zl EbfﬁT fn o! Kf(a)dafKt(v)dv e

0 Fuw N O*Fuw
oudw owou

(u,w)=x

(u,w)=z

1
+ §bt7be7T JvKt(v)dv f

; aKi(a)da [

] + RT,p.
u UJ =T

Because the smoothing kernels are symmetric around 0, we obtain

N 0?2 02
E(FT),) = Fuyw b t g Fuuw b 2,15 Fuw
( u],wo) e gt S du? T l(uw)=x T3 TS Ow? (u,w)=x
+o(b 1) + o(bf ) + O(M% (A1.14)

bor T

where the error terms follow from (A1.12) and Theorem 5.2, respectively. This
establishes Result i) of Theorem 5.3.

For the proof of the covariance structure, we note that

cov(FT) | FT

u,wi’ u UJQ

J KfT w1 )\1)Kf T((UQ — )\2) COV(I(T) I (T) )d)q d)\g,

UA1? T U A

where by Theorem 5.2
I(T) I(T) )

U AT T UL
B 1
" 472 Hy n(0)2

+ S1324 (HQ,N(]:u.,)\l AL+ A2) @ Ho v (Fuu—ags —A1 — /\2))]

ro(22),

cov (

[51423 (H2,N (Fueris A1 — A2) @ Ho N (Fuu—nys A2 — )\1))
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We treat the two terms of the covariance tensor separately. Starting with the
first term, we have

K p(w — >\1)[Kf,T(w2 —A2)

2
X I:HQ,N (Fu.,)\l,)\l - )\2) ® Ha N (-Fu.ﬁ)\m)‘? - )‘1)]
— Kf,T(WQ — )\1) |H27N()\1 — )\2)|2 (]:u,)\l ®]:u,f)\1)] dXy dXo
2
< ' . Kip(wr — A1) Ki (w2 — A2)
IT

X [HQ,N (Fusnis M1 — A2) @ Ho v (Fue,—xis A2 — A1)

— [Hayn (M1 = A)|* (Fun ® ]-'u,_Al)] Ay dXs

2

fnz Ker(wr — A1) [Ker(we — A2) — Kep(we — A1)

x | Han (M = 20)| (Fury ® Fu—x, ) dAr dAs

2

Since F,x is uniformly Lipschitz continuous in u, we have || Fy, x — Fuxrllz <

C % and hence the first term on the right hand side is bounded by

2
cJ Br Lo (@1 = M) L (wa = Mo)? LyOa =22 Y an e <o N
T ber T

For the second term, we exploit uniform Lipschitz continuity of the kernel func-
tion K to get the upper bound

log(NN)
bir

C f Ker(wr — A)2 b2 A — Aol Ly (A1 — A2)?dAp dhy < C
112 ’

In total we obtain

Jeow (B2, AL = 0(553) + O (i,

u,wi? U,w2 N2

)o252)

ber T
uniformly in wy,w2 € [—7, 7] and u € [0, 1]. O

Proof of Proposition 5.4. A change of variables shows that (36) can be written
as

bt T bf TTCOV(< u w17gl ®92>H c®He 7<ﬁ1g,122793 ®g4>HC®HC)
— b | K2 f K1 —ws — ) Krr ()
I
X <]:u,w27)\ 937gl><]:~u,7w27/\ g4vg2>d)\

+ 27 bf’T HKtH%J Kf,T(wl + wo — )\) KﬂT(}\)
IT
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X <]:u,—wz+)\ g4, 91> <‘Fu,w2—>\ g3, 92> dA
+ O(be,rlog(be,r T)) + ObF pbe.7) + O((berber T) ™). (AL15)

The error terms will tend to zero under assumption (A8). Since the product of
the two kernels in the first integral is exactly zero whenever |A— (w1 —w2)| > by 1
or A > be 1, the first integral vanishes for large enough 7" unless w; = wy. For
w1 = wa, the integral in the first term becomes

[ B () KO0 s 9390 P 0,92
II

and further by symmetry of the kernel

= J Ko (N (Fuwr+2 93 910 {Fur—won -1, 9a)g2 dA.
I

We note that | K|, Krr()\)? satisfies the properties of an approximate iden-
tity (e.g., Edwards, 1967). Hence application of Lemma F.15 of Panaretos and
Tavakoli (2013b), which covers approximate identities in a functional setting,
yields that the integral converges to

HKf”% <]:u7w1 937gl><]:u,7w1 94, 92>7

with respect to | - ||2. Since the integral in the second term in (A1.15) vanishes
unless w1 = —ws, we can apply a similar argument, which proves the proposition.
U

Proof of Theorem 5.7. We decompose the difference in terms of its variance and
its squared bias. That is,

| ENAD - EAD + EFD - Rl
II

- fn El ) — EAT)2 dw + fn EJEED) — FuolZdo.  (ALI6)

The cross term cancels which is easily seen by noting that [E(]:ZSIB — [E(ﬁ,g?)) =

O, and hence
E(CE ~ BED)LEED) - Fawd g ) =0
for all w € [0,1] and w € [—m,«]. Consider the first term of (A1.16). Self-
adjointness of .7315? and E|X; 7|3 < oo imply that
tr (cov(]:"éi), fq(LTw)))

= > CE[(FEE) = EEED)Q(FL) = E(FEED) s nmy
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0
—E Y, K(FE) —EFED)), bumls = E|IFD) — EFDE < o

n,m=1

for some orthonormal basis {t,,,,, } of L2 ([0, 1]?). By Fubini’s theorem and Corol-
lary 5.5, we thus find

| ENED - e DI = [ | var(FDr0)) drdo do = O(7)-
o “ 1 J[0,1]2 ’ bebeT

Theorem 5.3 then yields for the second term of (A1.16)
| 1~ EEDI o = [ [ | funlrio) ~ B0 dr dord
II 11 J[o,1]2

log by T\ 2
:0(b§+b?+ OliTt ) .

Proof of Proposition 5.10. We have

(T) A(T) (be,rbe rT)*? k
Cum(Eu w1 (wm1n1)7 e >Eu,wk (wmknk)) = T Ik —_ H K T( )‘j)

Ho n(0)F
X cum (D;Tw1 (¢’m1) D(T —w1 (w7l1) DQ(Lka (wmk) (wnk)> d>‘1 e dAkv
(A1.17)
where DqST) <Du o (;5> for ¢ € L2([0, 1]). Application of the product theo-

rem for cumulants (e.g. Brillinger, 1981, Theorem 2.3.2) yields for the cumulant

cum (D7(J,TL/.))1 (Ym,) D’(U,lel (Yny), - D7(J,Tu))k (T/Jmk) DvST—wk (wnk ))
(A1.18)
= 2 l];[l cum(Dq(ng (¢r,),p € Pl),

where the summation extends over all indecomposable partitions P = {Py, ...,
Py} of the table

(1,0) (1,1)
(k,0) (k1)
and, for p = (4,7), ¥ = vij = (=1)2 \; as well as 7, = 7 = mg_jng for

i=1,...,kand j € {0, 1}. For the next steps, we further denote the elements of
P, with |P,| = d; by pi1, ..., pia,- Then, by (29), we obtain further for the above
cumulant

dy €
® Atu s Yous T )]:al,‘..,ad 1 (7—17"'7sz)
l 1Jmdi=t J[o,1]% s= l

x H Uy, U (1) dry---drg n(ar + ... + ag) doy - - - dog,.
(A1.19)
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Noting that the inner integral is a inner product in the tensor product space,
we get

d;
e d
’<s: (Atu oasr Tpis as)falwnyadl—l7®3:1wr1’ls>’
(T) 3
HN (Atu,o’a:ﬂ/)/pls - 045) fa17~~~>adl—l 2

€
Fe IH\Q H%s

dy

HN (Agz—i).,a_ypypls - QS)

Noting that by Lemma B3.3

T
‘HHN (Al(fu‘).,a,g"szs - O‘S) ‘oo < KLN(’Yp“ - as)

for some constant K, we get together with |H‘F§1w.,ad,_1”‘2 < K’ as an upper
bound for (A1.19)

dy
K H T LGy, =) nlen + -+ aa) dan - dag,
L s=

and further by repeated use of Lemma B3.1(v)
il d—1 koM N 10
<K [T La() log(N)4 ' < K log(N)* ™ [T Ly ().

Substituting the upper bound for the cumulant in (A1.17) and noting that
+Hy n(0) > |h]} as N — oo,we find

|Cum u w1 (wmlnl) ’ E&,Tozk kamm

Cbk/2 log(N)Qk—M M
< — Z H Ker(wy — X)) TT L) dAg -+ d.
1.p. = =1

(A1.20)

It is sufficient to show that for each indecomposable partition {P, ..., Py} the
corresponding term in the above sum tends to zero. First, suppose that M = k.
Bounding the factors K 1 (w;—A;) by | K¢|oo/bs,r fori = 2,..., k and integrating
over As, ..., A, we obtain by Lemma B3.2(i) as an upper bound

C log(N)* M _ 2
W - KfﬁT(wl )\1) LN()\l i )\2) d)\l d)\2

C log(N)?k—2
< % LQ nglT (w1 — A)? Ly (A £ Xo)2dhad)y

ClOg 2k 2 9 ClOg( )21@72
< RN gNk/Q N Ly = M) A < A
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where we have K¢ r(w) < b Ly (w) and repeatedly Lemma B3.1(iv). Next, if

M < k we select variables A, , ..., A;,_, according to Lemma B3.2(ii) and bound
all corresponding factors K¢ p(w;, —Ai;) for j = 1,...,k—2 by || K¢| o /bg, 7. Then
integration over the k — 2 selected variables yields the upper bound

C log(N)3k7M72
b?/;—Q Nk/2—-1 2
_ Cher log(IN)3k—M=2

= k/2—1 _

bf,T Nk/2—1

Kf,T(wik—1 - >‘ik—1) Kf,T(Wik - )\ik) d)\ik—l d>\ik

)

since |K¢ |1 = 1. Since bgr N = bgpbyrT — 0 and k/2 — 1 > 0, the upper
bounds tend to zero as T — o0, which completes the proof. O

Appendix B

In Appendix B, we provide additional technical material necessary to complete
the proofs of the main part of this paper. Section B1 contains background ma-
terial on operator theory. Section B2 provide background on the higher order
structure of random functions as well as an important result on the existence of
a stochastic integral, necessary to define functional Cramér representations. Sec-
tion B3 introduces the necessary background on tapering on function spaces.

Appendix B1l: Some operator theory

We start with a general characterization of a tensor product of a finite sequence
of vector spaces, which in particular holds for sequences of Hilbert spaces.

Definition B1.1 (Algebraic tensor product of Banach spaces). Given a finite
sequence of vector spaces Vi,...,Vy over an arbitrary field F, we define the
algebraic tensor product V1 ® --- ® Vi, as a vector space with a multi-linear
map Vi x -+ x Vi — W given by (f1,...,fx) = (/1 ® -+ ® fi) such that,
for every linear map 7 : V; x .-+ x V — W, there is unique k-linear map

T:Vi x -+ xV, — W that satisfies
T(f17"'afk) :7:(fl®®fk)

Here, uniqueness is meant up to isomorphisms. The tensor product can be
viewed as a linearized version of the product space Vi x --- x Vj satisfying
equivalence relations of the form a(vy,ve) ~ (avi,ve) ~ (v1,ave) where a € K
and v; € V4, v € Vi, which induce a quotient space. These relationships uniquely
identify the points in the product space Vi x ... x Vi that yield multi-linear
relationships. In a way, the tensor product ®§=1 V; can thus be viewed as the
‘freest’ way to put the respective different vector spaces Vi, ..., V} together. We
mention in particular that the algebraic tensor product satisfies the associative
law, i.e., (V1 ®V2)® V3 = V1 ® (Vo ® V3), and hence it will often be sufficient to

restrict attention to k = 2.
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The algebraic tensor product of two Hilbert spaces Hy and Hs is itself not
a Hilbert space. We can however construct a Hilbert space by considering the
inner product acting on H; ® Hs given by

@y, 2 @Y )men, = {x, 2 )Xy,y), =,2" € Hy, yy €H

and then taking the completion with respect to the induced norm ||| g, @z, - The
completed space, denoted by H ®H>, is identifiable with the Hilbert-Schmidt
operators and is referred to as the Hilbert Schmidt tensor product. Throughout
this work, when reference is made to the tensor product space of Hilbert spaces
we mean the latter space. When no confusion can arise, we shall moreover abuse
notation slightly and denote H- 1®H, simply by H; ® Hs.

Definition B1.2. The tensor product (A® B) € Sp(H)® S,(H) = S,(S,(H))
between two operators A, B € S,(H) is defined as

(A®B)(z®y) = Az ® By (B1.1)
for z,y € H. It follows straightforwardly from the property
(z®y)z ={z,y)x, z€H, (B1.2)
that for any C € S,(H), we have the identity
(A® B)C = ACB, (B1.3)

where BT denotes the adjoint operator of B.

Proposition B1.3 (Hélder’s Inequality for operators). Let H be a separable
Hilbert space and A, B € Sy, (H). Then the composite operator AB also defines a
bounded linear operator over H, i.e., AB € So,(H). This operation satisfies the
associative law. Moreover, let 1 < p,q,r < 00, such that % = %—1— %. IfAe S,(H)
and B € S,(H) then AB e S.(H) and

IABIll- < Al Bll-

Proposition B1.4. Let H = L% (T, 1) be a separable Hilbert space, where (T )
18 a measure space. The functions a,b,c € L%(T x T, pu® u) induce operators
A, B,C on H such that for all x € H

Az(r) = J a(r,0)x(o)du(o), (B1.4)
D
and the composition operator AB has kernel
[4B)(r,0) = | a(r.m)b(, o) (BL5)
D

for all 7,0 € T p-almost everywhere. The tensor product operator (A ® B) €
So(S2(H)) in composition with C has kernel

[(A® B)C](r,0) = L fD a(r, 1)@ e, po)dpndpis. (BL6)
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Because (AQ B)C has a well defined kernel in LE(T x T, p®u), it can moreover
be viewed as an operator on H. Using identity (B1.3), this is the operator AC BT,
where BY has kernel bf(u2,0) = b(o, u2).

Corollary B1.5. Let A;,i =1,--- ,k for k finite belong to S,(H) and let
Y=11® @)

be an element of ®f=1 H. Then we have that the linear mapping
A= (41®..QAy)

satisfies 1) | A2 < o and i) || A|l, < .

Proof of Corollary B1.5. For i), we have by proposition B1.3,

APz = [(A1 @ ... ® Ak) ]2 = | (A1 ® ... @ Ak) [loo||¥ ]2
< (A2 ® ... @ Ag) oo [ A1 [l o0 9|2

k k

<[ TlAllwllz < ] TllAllpl]2 < o.

=1

[ =1

In case p = 2, the latter equals Hle [a:|l2]®]l2 by proposition B1.7. Property
i1) holds since for any A;, A2 € S,(H), we have |41 ® Az, = || A1l Az2]l,-
To illustrate the second property, observe that if p = 2 we obtain

HAHg = HAl ®---®AkH§ = J |a1(7'17,Ul)uak(TIw,Uk)|2d7'1--d7'kdﬂl--d,uk

[071]2k
= f a1(717/$1)a1(7'1,M1)d717dul-~J ap(Te, k) Ok (Th, pore ) dTrd i,
[0,1]2 [0,1]2

= Jlasl3- Jax|3 < . U

Proposition B1.6 (Neumann series). Let A be a bounded linear operator on
H and Iy be the identity operator. If ||Alloo < 1, the operator Iy — A has a
unique bounded inverse on H given by

(Ig — A= i AP, (B1.7)
k=0

If Ae So(H) with ||All2 < 1, then this equality holds in Hilbert-Schmidt norm.

Proof. We only show the case A € Sy(H). Note that the space So(H) is a Hilbert
space. Then for m < n,

150~ 520, =, 5 0t < 12
k=0 P R [ R I Y PS

which shows that the partial sum forms a Cauchy sequence and hence has a
limit A* in Sy(H). Furthermore, we have
n

(IH—A)A*: hm (IH—A) Z An: hm (IH—An+1):IH

in So(H), which shows that A* is the inverse of Iy — A. O
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Proposition B1.7 (Hilbert-Schmidt operators as kernel operator). Let H =
L&(T, 1) be a separable Hilbert space, where (T, ) is a measure space, and let A
be an operator on H. Then A € So(H) if and only if it is an integral operator,
that is, there exists a function a € LA(T x T, u® p) such that

Az(t) = JQ(T, o) x(o) du(o)
for all T € T p-almost everywhere. Moreover, we have ||Al|2 = |alz2-

Proof. First, suppose A is an integral operator on H with kernel a € LA(T x
T, u®u). Because H is separable, it has a countable orthonormal basis {¢,, }nen-
For fixed 7 € M, the function a,(o) = a(7,0) defines a measurable function on
L&(T, ). We can therefore write

Ao (7) = j( o) bn(@)(0) = (ar, T

Observe that {1, },>1 also forms a orthonormal basis of H. An application of the
Cauchy-Schwarz Inequality gives |(ar,¥n)|* < |las||?||¢n]? < o0 and therefore

m o 0 -
2 Kar bl < D) Kar, $n)? = a3 < o0,
n=1 n=1

by Parseval’s Identity. Hence, as a corollary of the Monotone and Dominated
Convergence Theorem we find

lAlIZ = Z | A [* = lim Z Kar, )l dr —J lim Z [z, )l dr

n=1

= [larlPar = [ [ latr.o)Pdodr = al} <

showing A is Hilbert Schmidt and ||A||2 = |a]2. Now suppose A is Hilbert
Schmidt. In this case, we have by definition >}, | A1, [? < o0 and consequently
the series Zfil A, converges in L (T, 1). Therefore the function

) = > Ay (r) (o)

will be well-defined on LZ(T x T, ® p). Hence, for any element z € LZ(T, ),
the Dominated Convergence Theorem yields

Aa(r) = A( Tim 3w ) () = lim 3 () A (7)

~ lim Y] (f (0)n(o )do—)Awn< )

m—00
n=1

Il
%
M
?
D>
<=

B
||
—
B
2
2
\]
2
o N
R)
O
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Theorem B1.8 (Product Rule on Banach spaces). Let E, Fy, F5, G be Banach
spaces and let U < E be open. Suppose that f : U — Fi, and G : U € Fy
are Fréchet differentiable of order k. Let Z(-,-) : F1 x F5 — G be a continuous
bilinear map. Then, Z(f,q) : U — G is Fréchet differentiable of order k and

2ty = 2 gy + 2(rw), D) (BLs)

For the proof, see for example Nelson (1969).

Appendix B2: Moment and cumulant tensors

Let X be a random element on a probability space (€2, .o, P) that takes values
in a separable Hilbert space H. More precisely, we endow H with the topology
induced by the norm on H and assume that X : 0 — H is Borel-measurable.
Then the mean E(X) of X in H exists and is given by

E(X) = gq E((X, ) i,

where (1;)ien is an orthonormal basis of H, provided that E(|X[3) < oo.

For higher moments, it is appropriate to consider these as tensors in a ten-
sor product space H ® --- ® H of appropriate dimension. More precisely, let
Xi,..., X, be random elements in H. Then we define the moment tensor
E(X1®- - ® Xx) by

k
B @ ®X) = 3 E(TTG0)) v, ® - @,
I

91 ,..51L EN
Similarly, we define the cumulant tensor cum(Xj, ..., Xy) by
cum(Xy,..., Xp) = >0 cum (X0, ), (X i) i, @ @ 4y,
91,..,1kEN

(B2.9)

The cumulants on the right hand side are as usual given by

(X1, v, K i)) = YL (=17 (p=1)! ﬁl[( [T X,00)).

v=(v1,...,Vp) Jevr

where the summation extends over all unordered partitions v of {1,..., k}.

More generally, we also require the case where the X; are themselves ten-
sors, that is, X; = ®§-’;1 Xij, ¢ = 1,...,k, for random elements X;; in H
with j = 1,...,0; and i = 1,...,k. In this case, the joint cumulant tensor
cum(Xy,...,Xy) is given by an appropriate generalization of the product the-
orem for cumulants (Brillinger, 1981, Theorem 2.3.2) to the tensor case,

cum(Xy, ..., Xg)

= Z Z IBI Cum(<Xij7 ¢TU>|(ZJ) € Vn) UV, @ ® wmk,

n=
r11,- Tk, ENv=(v1,...,0p)
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where the summation extends over all indecomposable partitions v = (v4,...,1,)
of the table
L1y - (Lh)
Formally, we also abbreviate this by
cam(Xy,..., Xp) = ) Sy< c%l cum (X;)(i, j) € yn)), (B2.10)

V=(V17“'»V:D)

where S, is the permutation that maps the components of the tensor back into
the original order, that is, Sy(®f:1 ®(i7j)€,,rXij) =X1® - X,

Next, let Aq,..., Ax linear bounded operators on H. As in Appendix B1, let
A1 ® -+ ® Ay, be the operator on H® ---® H given by

(A1® - @A)(T1® @) = (A171) @+ ® (Ap 7p)

for all x1,...,x, € H. The next proposition states that moment tensors—and
hence also cumulant tensors by the above definitions—transform linearly.

Proposition B2.1. Let Ay,..., Ay be bounded linear operators on H and let
X1,..., X be random elements in H. Then

(41®  @ANEX:i®@ - ®Xy) =E((A1 X1) @ ® (Ar Xi)). (B2.11)

Proof. Let {t;};en be an orthonormal basis of H. Using the definition of a
moment tensor, we get

(A®- - @A EX1 ®- - ® Xy)
k
= Y E(I1¢X00)) (A1) @@ (4x )

il,..47ikED\|

and further, by representing A; 1);, with respect to the chosen orthonormal basis,

Z Z [E( fll <X17wzj>) ﬁl <Aj¢ija¢nj>('¢)n1 ®®wnk)

1yt ENNMY,...,nEN

" .Q,ENE[Jﬁ1<AJ’<-Z K3t ) ¥, ) | @ @)

ZjEIN

I
]

e[ {16400 (0,000

= [E((A1 Xl) X ® (Ak Xk))7

where we have used linearity of the operators, of the inner product, and of the
ordinary mean. O
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As a direct consequence of the above proposition, we also have linearity of
cumulant tensors. More precisely, for i = 1,...,k, let X; be a random tensor in
@le H and let A; be a linear bounded operator on the same tensor product
space. Then

(A1 Q- ®Ak) cum(Xl, e ,Xk) = cum(A1 Xq,..., A Xk). (B2.12)

B2.1. Higher order dependence under functional stationarity

For stationary processes, we follow convention and write the cumulant tensor
(B2.9) as a function of k —1 elements, i.e., we denote it by Cy, .. 4, ,. Under reg-
ularity conditions this operator is in Sy (H) and we can define the corresponding

k-th order cumulant kernel ¢, ..., , of the process X by

Ct1:~-~7tk—1

k
= 2 f Ctl,...,tk_l(’rlwu'rk) H¢ij(7j)d71"'diwh@"'@wik'
[0,1]* Jj=1

910,80 EN

(B2.13)

A sufficient condition that is often imposed for this to hold is E|Xg[5 < 0.
Similar to the second-order case, the tensor (B2.9) will form a Fourier pair with
a k-th order cumulant spectral operator given summability with respect to ||-[|,,
is satisfied. The k-th order cumulant spectral tensor is specified as

k—1
‘lex-wwk—l = (zﬂ)l_k Z Ctlyu;tk—l exp ( —i Z Wi tj)’ (B2'14)
j=1

t1,..,txk—1€Z
where the convergence is in [|-[|,. Properties on the kernels that are relevant in

the time-dependent framework are discussed in section 4 of the main paper.

Theorem B2.2. Let {X;};cz be a stationary stochastic process in L?([0,1])
such that E||Xo|5 < oo for all k € N and fo ICiy ... trslle < o0.
Furthermore let

lg—1=—00 H

N w
ij”:zi 3 th e IN g,
™
t=—N -7

Then there exists a 2m-periodic stochastic process {Z,}oer taking values in

L2([0,1]) with Z,, = Z_,, such that limpy_, [EHZO(JN) — Zu|% = 0. Furthermore,

{Z,} equals almost everywhere the functional orthogonal increment process of
the Cramer representation of {X;}, that is,

X; = f e“tdz, a.e. in H.
Finally, we have for k = 2
w1 Wi k
cum(Zy,, ... Zu,) :f J n( D Aj)f%___,%fl day - doy,  (B2.15)
-7 — j=1

which holds almost everywhere and in L2.
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The final statement of the above theorem suggests the use of the differential
notation

cum (dZ, (1), - AZu (k)
= (@1 + oo k) fur o (11, ) deon - deoe

Proof of Theorem B2.2. The theorem generalizes Theorem 4.6.1 of Brillinger
(1981). Let w be the measure on the interval [—m, 7] given by

p(A) = f I Fully do,
A

for all Borel sets A < [—m,n]. Similar to the time series setting, it has been
shown (Panaretos and Tavakoli, 2013a) that there is a unique isomorphism 7
of 5p{Xt}tez onto LZ([—m, x|, ) such that

TX=e"

for all ¢t € Z. The process defined by Z,, = 7! (1(_7,,@(-)) is then a func-
tional orthogonal increment process of which the second order properties are
completely determined by the spectral density operator F. We have

T(Zw - ZV) = ]-(u,w](')’ —T<V<w<m,

and forb; €eC,j=1,...,N

- Jr - J :
Jj=1 j=1

For the first part of the proof, we shall use that the function 1(_, .j(-) can be
approximated by the N-th order Fourier series approximation

bv(A) = X by e,

[t]<N
where the Fourier coefficients are given by
- 1 (™

b

w,it T 5
’ 2 J_,

L rw(A) e dA. (B2.16)

The approximation satisfies the properties listed in the following proposition
(Brockwell and Davis, 1991, Proposition 4.11.2).

Proposition B2.3. Let {by}n>1 be the sequence of functions defined in (B2.16).
Then for —-m <v <w <,
(i)  sup  [by(A) = Lpwj(A)| = 0 as N — oo, where € is an open subset
Ae[—m,m\E
of [-m, | containing both v and w;
(ii) sup |by(AN)| < C < forall N = 1.

Ae[—m,m]
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Note then that we can write

Zéf”—— > th Lmw V) ™ dr = 3 by X,
|t|<N [t|<N

where {Bw,t}teD\J are the Fourier coefficients of the indicator function 1(_r ..
Therefore,

cum(Z(f,]lV)7 RN Z(S]Z))

= 2 bwhtl .'.bwk7tk cum(th,...,th)
[t ], | <NV

and by stationarity of the process X,

= Z Ban ty " l;wk tr J ei(altl-‘rm-‘ruktk)n(
s s . )
]t <N " J

X Foy.iap_, dag -+ - do

S e T ([ an) ot o

i=1|t;|<N

k
= [ (£ 5) Faroncs borv(n) by ) da o
11k J

=

To show convergence, recall that the kernel function F,, ..o, , is bounded and

uniformly continuous in the manifold Z§=1 a; = 0 mod (27) with respect to
| - |2. An application of Hélder’s inequality yields

H fnk ia] .@kl[iﬁlbwi, (o) — ]f[l( i) (al)]dal dakH2

j=1

< sup H]:almaquQJ
1k

A1y X—1

da1 s dak.

wa“ () — lf[ L) (i)

1=

A standard telescoping argument together with Proposition B2.3 gives

k
KJHk Z 1_[ ’bwu aq ‘ 1_[ |]-(—7r,wl](al)‘

j= 1 = l=j+1

X |bwj,N(Oéj) - 1(—7r,w_7~](04j>| dag -+ - day

k—1
< Kk ( sup sup by, n()]) supf Do, (@) = 1 o) (@)|dor — 0
w Ji

1<j<k «

as N — oo. Hence, the dominated convergence theorem implies
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lim cum(Zglv), ey Z(N))

w
N—> k

1 k
= 1(—71' wl](al) ]-(—ﬂ' wk](ak)fa1mak_1n< Zl O‘j>dal - day,
j=

@k J f Foroap QA1 dAg

= currl(Z(,Jl,...7Zw,c)7 (B2.17)

which establishes the L? convergence in (B2.15). The almost everywhere con-
vergence is proved similarly by replacing F by f(7i,...,7%). In order to show
that X; = {" _e“!dZ, with probability 1, it remains to show that

T 2
[EHXt —f edewH2 ~ 0. (B2.18)
We refer to Panaretos and Tavakoli (2013a) for a proof. |

B2.2. Higher order dependence for time-dependent linear models

Proposition B2.4. Let {¢;}icz be a functional i.i.d. process in H with [E|eo|5 <
w, k € N and let {A,E’Ts)}sez be a sequence of operators in So(H) satisfying
D |\|Ag) llo < 00 for allt =1,...,T and T € N. Then the process Xt(g) =
Z|S|<N Ag)st_s has the following properties:

(4) X(T) converges to a process Xy in L% (Q,P);

(i6) cum(Xey 7y, Xopr) = (2 At1,51 ® - ® Atk Sk)cum(atl,sl,...,

s1€Z speEZ
Et,—s, ), Where the convergence is with respect to | - 2.

Proof of Proposition B2.4. For the first equality, we need to show that

. N
dim E|X;7 X, rl5 =0

We will do this by demonstrating that the the tail series Xf(N) =

Ziw:NH Ag)z—:t_s converges. Since HA(T)&Hz < |HA(T)\H00||&H2, an application

of the generalized Holder’s Inequality yields

M
—(N
EX D < > AT e A Moo E ety —sa 2+ letu—s,]12]
81,08, =N+1
T T) 1/k
< X AT e A Moo [Ellety—sa |15 - Eller,—s 5]
Is1]mm| s> N

k
< (X 1AM Eleolls < oo,

|s|>N
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uniformly in M. Hence, limy_,q ([EHXtT I5 )Uk

We now prove (2). By Proposition B2.1 and (1), we have

(T (T)
Cum(At1 s1€ti—s19 -+ Atk Gkstk—sk)

T
(A§1 ?51 ® ® Atk bk)cum(gh—slv .. 7€tk—sk)-
It is therefore sufficient to show that

Cum( Z Atl Slgtl 819 Z Atk Skstk 5k>

s1€Z spEZ

_ (T
= Z Cum(Atl s1Et1—s19 s AskythTEtk*Slc)’

S1,.-,SKEZL

Let {11 }ien be an orthonormal basis of H. Then {¢;, ® - ® ¢y, }1,
an orthonormal basis @?:1 H. For the partial sums

,,,,, 1,>1 forms

N
Z AE?:)Sjgtj—S]‘7 ] = ]-7 T ,ka

Sj—l

we obtain by virtue of the triangle inequality, the Cauchy-Schwarz Inequality
and generalized Holder Inequality

k

HHZAW,%MMH ZAﬂ]%MI

Jj=1ls;= )= sj=1

T
<pzméﬂm)mww<w

The result now follows by the dominated convergence theorem. O

B2.3. Existence of the stochastic integral

In order to provide sufficient conditions for local stationarity of functional pro-
cesses in terms of spectral representations, we turn to investigating the condi-
tions under which stochastic integrals S:r U, dZ,, for Se,(Hg)-valued functions
U, are well-defined. For this, let ;1 be a measure on the interval [—m, 7] given
by

=fmamm (B2.19)
A

for all Borel sets A < [—m, 7], and let By, = L2SOO(HC)<[—7T,7T],M) be the cor-

responding Bochner space of all strongly measurable functions U : [—m, 7] —
Se(Hg) such that

013, = [ LI due) < = (B220)

Panaretos and Tavakoli (2013a) showed that the stochastic integral is well de-
fined in H¢ for operators that belong to the Bochner space By = L?%(HC) ([, 7],
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1), which is a subspace of By. In particular, it contains all functions U :
[—m, 7] — Sa(Hc) of the form

Uw = g(w)I+Aw7

where g and A are, respectively, C and S3(Hc)-valued functions that are both
cadlag with a finite number of jumps and A additionally satisfies §; || A |3 dp(w)
< . Here, continuity in S3(Hc) is meant with respect to the operator norm
I llloo - Because the space By is too restrictive to include interesting processes such
as general functional autoregressive processes, we first show that the integral is
properly defined in H¢ for all elements of By,. To do so, consider the subspace
Qo < By of step functions spanned by elements U 1(, gy for U € Sy, (He) and
a < f € [-m,n]. Additionally, denote its closure by Q = Q. Define then the
mapping 7 : Qg — Hg by linear extension of

T(U o) = U(Zs = Za). (B2.21)
The following lemma shows that the image of T is in Hg.

Lemma B2.5. Let X; be a functional process with spectral representation X; =
SWW ewtdz,, for some functional orthogonal increment process Z,, that satisfies

E|Z.3 = §, I1FllidX. Then for Uy, Us € Sin(He) and o, B € [—m, ]

anB i
(i) (U1 Z, UsZ gD, = tr (Ulu F, dw] UQ)
and
(i) 101 Za |3, < H\U1|H§of [ Fll[+ dA.

Proof of Lemma B2.5. Firstly, we note that by Cauchy-Schwarz inequality

1
[EL U1Za(T)U2Zp(7)|dT < E|UsZa|2|U2Z8]2 < U]l Uzl o Ell Za 2] Z5 2
anp

< H|U1‘HOO|HU2|HOOJ [[FxllidX < oo (B2.22)
Secondly, U;Z, and UsZg _are elements in Hc and therefore the (complete)
tensor product U1Z, ® UzZs belongs to S2(£@). By Proposition B1.7, it is
thus a kernel operator with kernel [U1Z, ® Us Zg](T,0) = U1 Zo(T)U2Zg(0). An
application of Fubini’s Theorem yields

1 1
E f Ur Zo (T Us Zg(7)dr = f E(U1Zo @ UaZg) (1, 7)dT
0
1

0
1 anf

= f (U1 ® Us)E(Z, ®Z_5) (r,7)dr = f (U1 ®Us) Fo dw(T,T)dT
0

0 -7

1 anpB
= f Uy Foo dw(T,T) U; dr,
0 -
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where the second equality follows because the expectation commutes with
bounded operators for integrable random functions (Proposition B2.1) and the
last equality follows from the identity (B1.3) of definition B1.2. This shows the
first result of Lemma B2.5. The second result follows straightforwardly from
(B2.22). 0

It is easily seen from the previous lemma that for Ay > Ao = A3 > Ay

Ui(Zx, = Zx,),U2(Zxg — Zx,))mc = 0,

demonstrating orthogonality of the increments is preserved. Since every element
U, € Qg can be written as Z;.Lzl Ujl[a; ,,,) the lemma moreover implies

n

”T(U)Hﬂz-ﬂc = 2 <Uj<Z)\j+1 - Z)\j)7Uk7(Z)\k+1 - Z>\k>>H@
k=1
n
= Z HU]‘(ZA]'JA - Z>\j)“]12-]14;
=1
=1

j
Aj+1
< DI [ 1 Falada = U1,
j j

The mapping T : Qg — Hg is therefore continuous. Together with the complete-
ness of the space H¢ this establishes that, for every sequence {U,}n>1 < Qo
converging to some element U € Q, the sequence {7 (U,)},>1 forms a Cauchy
sequence in He with limit 7(U) = lim,—,o 7 (Uy). By linearity and continuity
of the mapping 7, the limit is independent of the choice of the sequence. Fur-
thermore, since Qg is the subspace spanned by step functions that are square
integrable on [—m, w] with respect to the finite measure p and hence is dense
in ng(HC)([—w,ﬁ],u), we have By, € Q. Since ||T(U)|u. < |U|s,,, the above
extension 1s well-defined for all U € B,,.

Appendix B3: Data taper

In order to show convergence of the higher order cumulants of the estimator
in (33), we will make use of two lemmas from Dahlhaus (1997) (Lemma A.4
and A.5 resp.). Both rely on the function L7 : R — R, T € R™, which is the
27-periodic extension of

T if [A| < 1T,

B3.23
YA YT <N < (B3.23)

Lr()\) = {

The function Ly satisfies some nice properties. The following lemma lists those
required in the current paper:

Lemma B3.1. Let k,I,T € N\, o,w, pu,vy € R and II : (—7,w]. The following
inequalities then hold with a constant C' independent of T .
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(¢) Lr(X\) is monotone increasing in T and decreasing in A € [0,7];
(i) M Lr(\) < C for all [N < 7

(i) J Lr(Vd\ < C log T
II

(iv) f LrWEax< T for k> 1;
11

(0) JH Lo(a— N Le(r+4)dA < C Ly(a + 7) log T.

In addition, we also make use of Lemma 2 from Eichler (2007).

Lemma B3.2. Let {Py,..., Py} be an indecomposable partition of the table

ap  —og

Qo —Qp

with n = 3. For Py = {vj1,...,%d,}, let ¥j = vj1 + ... + Yja; -
(i) If m = n then for any n — 2 variables a;,, ..., «;, _, we have

[T Lr(%;) day, -+ -devi, , < C Ly (i, _, + a;,)? log(T)" 2.
k=2 j=1

(i) If m < n then there exists n — 2 variables o, , ..., q;, _, such that

f [T Lr(3)) devi, -+ dai,,_, < CT log(T)" 2.
k-2 j=1
The usefulness of the Ly function stems from the fact that it gives an up-

perbound for the function Hj nx which was defined in section 5. Namely, we
have

|HO | < Lv(X), Yk € N. (B3.24)

We also require an adjusted version of Lemma A.5 of Dahlhaus (1997):

Lemma B3.3. Let N,T € N. Suppose h is a data-taper of bounded varia-

tion and let the operator-valued function G, : [0,1] — S,(H) be continuously

differentiable in u such that | agf ‘H < oo uniformly in w. Then we have for
P

0<t<N,

i)

Hy(Gs,w) = Hy(w)G 1 + o(s%p H%Gu

N

Ha%Gu T

N
= O( sup ||Gullp=Ln(w) + sup LN(w)), (B3.25)
u<N/T T u

where Hy(Ge,w) is as in (30) The same holds if Gs on the left hand side is
replaced by operators el for which sup, H|G£T) —Gelp= O(%).
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Proof. Summation by parts gives

N—-1
Hy(Ge,w) —HN(w)G% = [G% — G%]hs,Neilws
s=0
N-1
=~ NG — Gt [Ho(he )
s=0
+ I:GN;I —G%]HN(W)

It has been shown in Dahlhaus (1988) that |Hy(he v, w)| < KLs(w) < KLy (w).
The result in (B3.25) then follows since

Gy = Gallp < sup

st <bma Gl gm b—al, abeR,

by the Mean Value Theorem. The lemma holds additionally for operators GET)

that satisfy sup, \HGET) — G2 |l = O(). This is a consequence of Minkowski’s
inequality since

IHN (G =G s w) + H (G oy 0],
= IHHN G -G w H|p+ \HHN( 2@)llp
= o( + Ly(A) = O(Ln(N)). (B3.26)

Hence, the replacement error is negligible compared to the error of B3.25. O
If p = 2, the above implies that the kernel function g, € HZ of G, satisfies
I1Hn (94, w) — Hn(w)gell2 = RN,

|Hn (94, w)| = Ran + Rin,

where
0 N
IR1 ]2 = O(sup | 5o 0ullp e Lv ().

N
|Rala = O( sup lguly7Ln (@) (B3.27)

Similarly if g on the left hand side is replaced by the kernel function gET) € HE

of GET). If the kernels are bounded uniformly in their functional arguments,
Lemma A.5 of Dahlhaus (1997) is pointwise applicable.
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