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Abstract: Consider an experiment in which p independent populations
πi with corresponding unknown means θi are available, and suppose that
for every 1 ≤ i ≤ p, we can obtain a sample Xi1, . . . , Xin from πi. In this
context, researchers are sometimes interested in selecting the populations
that yield the largest sample means as a result of the experiment, and then
estimate the corresponding population means θi. In this paper, we present
a frequentist approach to the problem and discuss how to construct simul-
taneous confidence intervals for the means of the k selected populations,
assuming that the populations πi are independent and normally distributed
with a common variance σ2. The method, based on the minimization of the
coverage probability, obtains confidence intervals that attain the nominal
coverage probability for any p and k, taking into account the selection pro-
cedure.
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1. Introduction

Given a set of p available features, researchers must often determine which one
is the best, or simply rank them according to a certain prespecified criteria. For
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instance, researchers may be interested in determining what treatment is more
efficient in fighting a certain disease, or ranking the level of gene expression in a
genomics experiment. This type of problems is commonly referred to as ranking
and selection procedures and specific solutions and methods have been proposed
in the literature since the second half of the 20th century, with a start that is
usually traced back to the pathbreaking works of Bechhofer [2] and Gupta &
Sobel [16].

In his paper, Bechhofer presents a single sample multiple decision procedure
for ranking means of normal populations. Assuming the variances of the popula-
tions are known, he is able to obtain closed form expressions for the probabilities
of a correct selection for a number of cases. The solution is based on the use of
an indifferent zone, that allows him to determine a minimum guaranteed prob-
ability of selecting the population with the largest mean, as long as that mean
is separated from the second largest by a prespecified distance δ [see 3]. Alter-
natively, Gupta and coauthors have pioneered the subset selection approach, in
which a subset of populations is selected with a minimum probability guarantee
of containing the largest mean with certain probability P ∗ [see 15].

Note that both of these approaches are mainly concerned with the problem of
correct selection of the population with the largest mean rather than estimation
of the selected mean. This second problem has also been widely discussed in the
literature, and in the following two sections we present a brief summary of the
main findings, giving separate consideration to the point estimation and interval
estimation procedures.

1.1. Point estimation

There are two formulations of the point estimation problem under selection,
with subtle differences between them. Suppose that we have p populations,
with unknown means θi (1 ≤ i ≤ p). Assuming that for every 1 ≤ i ≤ p we can
obtain a sample Xi1, . . . , Xini from the population πi, we can either:

1. Attempt to select the population that has the largest parameter, i.e.
max{θ1, . . . , θp}, and estimate its value.

2. Select the population that gives the largest sample mean, and estimate
the corresponding θi.

The first of these problems has been widely discussed in the literature. For
example, Blumenthal & Cohen [6] consider estimating the larger mean from two
normal populations and compare different estimators, but they do not discuss
how to make the selection. In this direction, Guttman & Tiao [17] propose a
Bayesian procedure consisting of the maximization of the expected posterior
utility for a certain utility function U(θi). In the same direction, but from a
frequentist perspective, Saxena & Tong [27], Saxena [26], and Chen & Dudewicz
[9] consider point and interval estimation of the largest mean.

Surprisingly, despite its relevance from a practitioner’s perspective, the sec-
ond problem has received less attention. In this context, a common and widely
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used estimator is δ(X) =
∑p

i=1 XiI(Xi = X(1)), where Xi is the sample mean
of the i-th population, X(1) = max{X1, . . . , Xp}, and I(·) denotes the indicator
function. Properties of this estimator have been discussed in the literature and
is known to be biased [see 21]. This is particularly evident when all the popula-
tions are identically distributed (the iid case), where the problem of bias arises
from the estimation of the common mean using an extreme observation.

Other properties of the estimator have also been evaluated. In particular,
minimaxity and admissibility of the naive estimator δ(X) were first established
by Stein [29] for the case p = 2. For larger dimensions, Sackrowitz & Samuel-
Cahn [25] proved the estimator is not minimax for the normal family when p ≥ 3.
Standard techniques to determine admissibility, following the ideas in Berger [5],
Brown [7] and Lele [20], are not straightforward in this problem. However, Brown
[8] is often credited to have shown admissibility of the estimator for the general
case.

Nevertheless, the problem of improving the intuitive estimator is technically
difficult. Dahiya [12] addresses this problem for the case of two normal popula-
tions and proposed estimators that perform better in terms of mean squared er-
ror (MSE). In this direction, progress was made by Cohen & Sackrowitz [10, 11]
and Gupta & Miescke [14], where Bayes and generalized Bayes rules were ob-
tained and studied. Venter [31] considered a bias correction approach for the
problem obtaining estimators that perform well in terms of frequentist risk, and
following this idea, Venter & Steel [33] introduced later the ω-estimators which
basically are a weighted average of the order statistics. Despite of these results,
performance theorems are scarce. Some exception are Hwang [18], who proposes
an empirical Bayes estimator and shows that it performs better in terms of the
Bayes risk with respect to any normal prior, and Sackrowitz & Samuel-Cahn
[24] who find UMVUE and minimax estimators of the mean of the selected
population for the negative exponential distribution.

For the selection problem under sparsity, Reid & Tibshirani [23] implicitly
make such assumption, with many effect sizes θi = 0. They adapted theory
developed in Lee et al. [19] and consider doing post-selection inference with the
Lasso. Simon & Simon [28] considered adjusting the selection bias of the naive
estimate from a frequentist perspective. They start by estimating the mean
by maximum likelihood, and then estimate the bias in order to achieve bias
reduction. To further improve on this estimate the authors suggested estimating
the second order bias as well. They also compare the bias from their frequentist
approach to the bias from the empirical Bayes approach in Efron [13], which
turn out to be very similar. However, an advantage of the approach in [28] is
that it is not limited to the Gaussian setting.

1.2. Interval estimation

The problem of interval estimation is equally challenging. Typically, confidence
intervals are constructed in the usual way, using the standard normal distribu-
tion as a reference to attain the desired confidence level. However, these intervals
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Fig 1. Confidence coefficient versus number of populations for the iid case. The solid line
corresponds to the nominal level at 95%. The dashed lines correspond to the confidence coef-
ficients for the traditional intervals and Bonferroni intervals after adjusting for p and k = 5
correspondingly.

fail to maintain the nominal coverage probability as the number of populations
increase. As a correction, the intervals are sometimes constructed using the
Bonferroni bounds determined by the number of selected populations k. This
approach is clearly a misuse of the Bonferroni correction and, in practice, the
constructed intervals also fail to achieve the desired nominal level. To illustrate
this issue, Figure 1 shows the results of a small numerical experiment in which
we observe the behavior of the confidence coefficient against the number of pop-
ulations in the iid case for the traditional intervals (Trad), Bonferroni adjusting
by k = p populations (Bonfp) and Bonferroni adjusting by k = 5 (Bonf5), us-
ing a nominal level of 95%. A valid approach would be to obtain simultaneous
intervals for all the populations under consideration (and not just the selected
ones) using the Bonferroni bounds. However, such approach is typically unin-
teresting either because Bonferroni intervals are known to be too conservative
as the number of populations p increases, or simply because they do not offer a
direct solution to the problem.

Venter [32] considers this problem and discusses how to construct confidence
intervals when only one population is selected. By examination and optimiza-
tion of the coverage probability, he proposes the construction of asymmetric
intervals obtained as the intersection of two one-sided confidence regions. These
intervals perform better than Bonferroni’s simultaneous intervals in terms of
length, but he does not extend his results to higher dimensions. More recently,
Qiu & Hwang [22] propose an empirical Bayes approach to construct simulta-



62 C. Fuentes et al.

neous confidence intervals for K selected means. Using a Bayesian framework,
they consider a normal-normal model for the mean of the selected population,
assuming that each population mean θi follows a normal distribution. Under
these assumptions, they make use of a James-Stein type estimator to center
the intervals and obtain simultaneous confidence intervals that asymptotically
maintain the nominal coverage probability and are substantially shorter than
the ones obtained using the Bonferroni bounds. However, these intervals are not
guaranteed to attain the nominal level for any p and their solution does not
take in consideration the selection mechanism. Moreover, since their coverage
probabilities are obtained by averaging over both sample space and prior, they
do not give a valid frequentist interval.

With the explosion of big data, modern variations of this problem have be-
come popular calling for the development of new methodologies. For instance,
Benjamini & Yekutieli [4] and Zhao & Hwang [35] focus on multiplicity correc-
tion and discuss how to control for the false coverage rate (FCR), that is, the
proportion of confidence intervals that fail to cover the parameter of interest.
In their approach, given 0 < q < 1 they discuss how to construct confidence
intervals so that the expected FCR for the selected intervals does not exceed
q. In that context, the number of selected populations is a random quantity
depending on q, and the resulting intervals (by construction) do not necessarily
achieve the joint nominal level, which is the main purpose of this paper. We
are not aware of any other attempts to solve this problem, in particular of any
solutions that take explicit consideration of the selection mechanism.

In this paper, we focus on the problem of interval estimation following selec-
tion from a frequentist perspective and discuss how to construct simultaneous
confidence intervals for the selected means. In Section 2 we obtain closed form
expressions for the coverage probability of interest in the context and find tight
lower bounds by minimizing the coverage probability function. In Section 3 we
use these bounds to obtain valid confidence intervals, when the common vari-
ance σ2 is known or unknown, introducing asymmetric intervals. In Section 4
we present some numerical results that illustrate the performance of the pro-
posed intervals and we finish with a brief discussion in Section 5. Some technical
details are included in the Appendix.

2. Coverage probability results

Let X1, . . . , Xp be independent random variables such that Xi ∼ N(θi, σ
2)

where θi is unknown, but the common variance σ2 is known. For simplicity,
we take σ2 = 1. Define the order statistics X(1), . . . , X(p) as the sample values
placed in descending order, that is, the order statistics satisfy X(1) ≥ . . . ≥ X(p).
In this context, the problem is to construct confidence intervals for the mean of
the populations that give the largest sample means as a result of the experiment.
Formally, for any 0 < α < 1 and 1 ≤ k ≤ p specified prior to the experiment,
our aim is to construct simultaneous confidence intervals for θ(1), . . . , θ(k), based
on X(1), . . . , X(k), such that the joint confidence coefficient is (at least) 1 − α,
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where

θ(j) =

p∑
i=1

θiI(Xi = X(j)),

for 1 ≤ j ≤ k and I(·) is the indicator function.
Even for k = 1 it is not difficult to realize that the traditional confidence

intervals fail to maintain the nominal coverage probability. For instance, if
X1, . . . , Xp ∼ iid N(θ, 1), we have

P (θ(1) ∈ X(1) ± zα/2) = Φp(zα/2)− Φp(−zα/2),

where Φ(·) is the cumulative distribution function (cdf) of the standard normal
distribution, and zα/2 is the corresponding (1 − α/2)-th percentile. Then, for
p = 3, we obtain

P (θ(1) ∈X(1) ± zα/2)

= Φ3(zα/2)− Φ3(−zα/2)

= [Φ(zα/2)− Φ(−zα/2)][Φ
2(zα/2) + Φ(zα/2)Φ(−zα/2) + Φ2(−zα/2)]

= [2Φ(zα/2)− 1][1− Φ(zα/2) + Φ2(zα/2)]

< 2Φ(zα/2)− 1,

for any 0 < α < 1. In fact, it is easy to show that the coverage probability of
the traditional intervals maintains the nominal level only for p = 1, 2, and then
decreases as p approaches infinity. A similar argument shows why the Bonferroni
correction based on k < p lead to the construction of invalid intervals, and
constitutes a misinterpretation of the Bonferroni procedure. The problem with
both of these approaches is that they fail to take into account the selection
mechanism, resulting in symmetric intervals centered at X(j), and therefore
ignoring the possible bias of the naive estimators. We address these issues by
considering the partition of the sample space induced by the order statistics and
obtaining a closed form expression for the coverage probability, which allow us
to construct asymmetric intervals.

2.1. Selecting the best population

We begin by considering the case k = 1. The coverage probability of interest is
of the form

P (X(1) − c ≤ θ(1) ≤ X(1) + d) =

p∑
i=1

P (Xi − c ≤ θi ≤ Xi + d,Xi = X(1)), (1)

where c, d > 0 are constants. Typically, we are interested in the case d ≤ c to
correct for the selection bias. Assuming that the variance σ2 is known, we define
Zj = (Xj − θj)/σ for j = 1, . . . , p, and obtain

1. Z1, . . . , Zp are iid N(0, 1)
2. X1 ≥ Xj ⇔ Z1 − Zj ≥ Δj1, with Δj1 = (θj − θ1)/σ.
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Hence, considering the transformation T : (z1, z2, . . . , zp) → (z, y2, . . . , yp)
with z = z1 and yj = z1 − zj (j = 2, . . . , p), we can write the first term of the
sum in (1) in terms of the parameters Δ21, . . . ,Δp1. We obtain

P (X1 − c ≤θ1 ≤ X1 + d,X1 = X(1))

= P (−d ≤ Z ≤ c, Y2 ≥ Δ21, . . . , Yp ≥ Δp1)

=
1

(2π)p/2

∫ c

−d

⎧⎨
⎩

p∏
j=2

∫ ∞

Δj1

e−
1
2 (yj−z)2dyj

⎫⎬
⎭ e−

1
2 z

2

dz,

where, without loss of generality, we have taken σ2 = 1 to ease the notation.
Noticing that for fixed z, the integrals within the curly { } brackets are

essentially the tail probabilities of a normal distribution centered at z, we can
write

P (−d ≤ Z ≤ c, Y2 ≥ Δ21, . . . , Yp ≥ Δp1) =

∫ c

−d

⎧⎨
⎩

p∏
j=2

Φ(z −Δj1)

⎫⎬
⎭φ(z)dz,

where φ(·) denotes the probability density function (pdf) of the standard normal
distribution. It follows that we can entirely describe the probability P (X(1)−c ≤
θ(1) ≤ X(1) + d) in terms of a new set of parameters Δij , where Δij = θi − θj
(1 ≤ i, j ≤ p) satisfy

1. Δjj = 0, for every j.
2. Δij = −Δji, for every i, j.
3. For j > k, Δjk = Δj,j−1 +Δj−1,j−2 + . . .+Δk+1,k.

Under this representation, the values of the coverage probability are com-
pletely determined by the relative distances between the population means θi
(1 ≤ i ≤ p) and therefore, we can think of the coverage probability as a function
h = h(Δ|c, d), where Δ denotes the vector of possible configurations of the Δij .

For instance, when p = 3, we can fully describe the problem in terms of the
parameters Δ21 and Δ32. Figure 2 shows the form of the coverage probability
surface in terms of these parameters for two different values of c, d. If we further
assume, without any loss of generality, that θ1 ≤ θ2 ≤ θ3, we can write the
probability of interest as

P (X(1) − c ≤ θ(1) ≤ X(1) + d) =

∫ c

−d

Φ(z −Δ21)Φ(z −Δ32 −Δ21)φ(z)dz (2)

+

∫ c

−d

Φ(z +Δ21)Φ(z −Δ32)φ(z)dz

+

∫ c

−d

Φ(z +Δ32)Φ(z +Δ32 +Δ21)φ(z)dz

= h(Δ21,Δ32|c, d),
where Δ21, Δ32 ≥ 0. Observe that a trivial lower bound for the probability in
(2) is given by Φ(c)−Φ(−d), obtained by conveniently setting the values of Δij

equal to 0 or ∞ in each term of the expression. In order to obtain a sharper
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bound we look at the behavior of the coverage probability in order to find its
minimum. Looking at the partial derivatives, we obtain

∂h(Δ21,Δ32|c, d)
∂Δ21

=

∫ c

−d

Φ(z +Δ32)φ(Δ32 +Δ21 + z)φ(z)dz (3)

−
∫ c

−d

Φ(z −Δ21)φ(Δ32 +Δ21 − z)φ(z)dz

+

∫ c

−d

Φ(z −Δ32)φ(Δ21 + z)φ(z)dz

−
∫ c

−d

Φ(z −Δ32 −Δ21)φ(Δ21 − z)φ(z)dz.

Combining terms and changing variables, we can rewrite (3) as ∂h/∂Δ21 =
D1 +D2, where

D1 =

{∫ Δ32+Δ21+c

Δ32+Δ21−d

−
∫ c

−d

}
Φ(z −Δ21)φ(Δ32 +Δ21 − z)φ(z)dz,

D2 =

{∫ Δ21+c

Δ21−d

−
∫ c

−d

}
Φ(z −Δ32 −Δ21)φ(Δ21 − z)φ(z)dz.

The values of c, d can be chosen so that D1 and D2 are both positive (see
Lemma A.1 in the Appendix), and therefore, ∂h/∂Δ21 > 0. A similar argument
gives ∂h/∂Δ32 > 0, and we obtain that the coverage probability is minimized
at Δ21 = Δ32 = 0, or equivalently, at θ1 = θ2 = θ3. The general result follows
from induction on p, leading to the following theorem:

Theorem 1. Let X1, . . . , Xp be independent random variables with Xi ∼
N(θi, σ

2) for i = 1, . . . , p. Then, for any c > 0 there exists 0 < d0 ≤ c such that:

i) If d0 < d,

min
θ1,...,θp

P (θ(1) ∈ (X(1) − c,X(1) + d)) = Φp(c)− Φp(−d). (4)

ii) If 0 < d < d0,

min
θ1,...,θp

P (θ(1) ∈ (X(1) − c,X(1) + d)) ≥ Φq(c)− Φq(−d), (5)

for some 1 ≤ q ≤ p.

2.2. Selecting the top k populations

For general k, the coverage probability of interest is of the form

P (θ(1) ∈ (X(1) − c,X(1) + d), . . . , θ(k) ∈ (X(k) − c,X(k) + d)) (6)

=

(pk)∑
j=1

P [θj1 ∈ (Xj1 − c,Xj1 + d), . . . , θjk ∈ (Xjk − c,Xjk + d),

min{Xj1 , . . . , Xjk} ≥ max{Xjk+1
, . . . , Xjp}].
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Observe that each term of the sum in (6) is determined by the joint distribu-
tion of X1, . . . , Xp. For instance, when (j1, . . . , jk) = (1, . . . , k), the correspond-
ing piece of relevant probability is

P (θ1 ∈ (X1 − c,X1 + d), . . . , θk ∈ (Xk − c,Xk + d),min{X1, . . . , Xk} ≥ (7)

max{Xk+1, . . . , Xp})

=

∫ θ1+c

θ1−d

· · ·
∫ θk+c

θk−d

p∏
j=k+1

Pθj (Xj ≤ min{x1, . . . , xk})f(x1, . . . , xk)dx1 · · · dxk

=

∫ c

−d

· · ·
∫ c

−d

p∏
j=k+1

Φ(min{z1 + θ1, . . . , zk + θk} − θj)

k∏
i=1

φ(zi)dzi,

where zi = xi − θi for i = 1, . . . , k.
Combining (6) and (7), it is not difficult to obtain the following expression

for the coverage probability

P (θ(1) ∈ (X(1) − c,X(1) + d), . . . , θ(k) ∈ (X(k) − c,X(k) + d))

=

(pk)∑
j=1

∫ c

−d

· · ·
∫ c

−d

∏
m∈Ic

j

Φ

(
min
�∈Ij

{z� + θ�} − θm

) ∏
�∈Ij

φ(z�)dz�, (8)

where Ij = {j1, . . . , jk} and Icj = {jk+1, . . . , jp} are respectively the set of indices
for the top k variables and the bottom p− k variables in the j-th arrangement.

Before we move forward, let us take a closer look at the formula in (8) and
consider the case p = 6 and k = 3. Then, the sum will have

(
6
3

)
= 20 terms

determined by the configurations

123|456 234|156 345|126 456|123
124|356 235|146 346|125
125|346 236|145 356|124
126|345 245|136
134|256 246|136
135|246 256|134
136|245
145|236
146|235
156|234

where the numbers to the left of the vertical line correspond to the indices of the
set Ij (the populations being selected in the respective arrangement) and the
numbers on the right to the indices of the set Icj (the non-selected populations).
Observe that all the indices appear on the left side (and on the right side) the
same number of times.

Now, suppose that θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5 ≤ θ6 and let θ6 ↑ ∞. Then,
all the terms where population 6 is on the right side approach to zero. On
the other hand, for those terms where 6 appears on the left, the value of



Post-selection confidence intervals 67

Φ (min�=1,...,k{z� + θ�} − θm) becomes independent of θ6. It follows that, as
θ6 ↑ ∞, the coverage probability is determined by the configurations

12|345 23|145 34|125 45|123
13|245 24|135 35|124
14|235 25|134
15|234

which correspond to the number of ways to choose 2 out of 5 populations.

Repeating the argument, but letting θ5 ↑ ∞, we obtain the configurations

1|234 3|124
2|134 4|123

which are the possible ways to choose 1 out of 4 populations and we know, from
Section 2, that the minimum is reached at θ1 = θ2 = θ3 = θ4.

To extend this argument for the general case (1 ≤ k < p), we first notice that
the number of possible configurations is(

p

k

)
=

(
p− 1

k

)
+

(
p− 1

k − 1

)

where
(
p−1
k

)
is the number of times that any given index i appears on the right

side (population i is not selected) and
(
p−1
k−1

)
is the number of arrangements that

have the index i on the left side (population i is selected).

Due to the symmetry of the problem, we assume (without any loss of gener-
ality) that θ1 ≤ . . . ≤ θp. Also, for every j such that p ∈ Ij we define

Ij(θp) = I

(
min

�∈Ij−{p}
{z� + θ�} ≥ zp + θp

)

Ic
j (θp) = I

(
min

�∈Ij−{p}
{z� + θ�} < zp + θp

)

where I(·) is the indicator function. Then, we can write

min
�∈Ij

{z� + θ�} = (zp + θp)Ij(θp) + min
�∈Ij−{p}

{z� + θ�}Ic
j (θp),

and therefore

lim
θp↑∞

∏
m∈Ic

j

Φ

(
min
�∈Ij

{z� + θ�} − θm

)
=

∏
m∈Ic

j

Φ

(
min

�∈Ij−{p}
{z� + θ�} − θm

)
.

At the same time, for every j such that p ∈ Icj , we have

∏
m∈Ic

j

Φ

(
min
�∈Ij

{z� + θ�} − θm

)
→ 0
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and consequently, as θp ↑ ∞, the coverage probability converges to

(p−1
k−1)∑
j=1

∫ c

−d

· · ·
∫ c

−d

∏
m∈Ic

j

Φ

(
min

�∈Ij−{p}
{z� + θ�} − θm

) ∏
�∈Ij

φ(z�)dz�. (9)

Integrating (9) with respect to zp, we obtain

(Φ(c)− Φ(−d))

×

⎡
⎢⎣
(p−1
k−1)∑
j=1

∫ c

−d

· · ·
∫ c

−d

∏
m∈Ic

j

Φ

(
min

�∈Ij−{p}
{z� + θ�} − θm

) ∏
�∈Ij−{p}

φ(z�)dz�

⎤
⎥⎦

where the quantity in square [ ] brackets is exactly the coverage probability for
selecting k − 1 out of p− 1 populations.

Repeating the argument, but now letting θp−1 ↑ ∞, we obtain

(Φ(c)− Φ(−d))
2

×

⎡
⎢⎣
(p−2
k−2)∑
j=1

∫ c

−d

· · ·
∫ c

−d

∏
m∈Ic

j

Φ

(
min

�∈Ij−{p,p−1}
{z� + θ�} − θm

) ∏
�∈Ij−{p,p−1}

φ(z�)dz�

⎤
⎥⎦.

Continuing this process (k − 1 times) until the sets Ij consist of only one
element, we find that the coverage probability converges to

(Φ(c)− Φ(−d))
k−1

⎡
⎣p−k+1∑

j=1

∫ c

−d

∏
m∈Ic

j

Φ (z + θj − θm)φ(z)dz

⎤
⎦ , (10)

as θp−k increases to infinity.

Finally, we observe that the expression in square [ ] brackets in (10) corre-
sponds to the coverage probability for selecting 1 out of p−k+1 populations, and
we showed in Theorem 1 that the sum is minimized at θ1 = . . . = θp−k+1 when-
ever d > d0. We obtain the following general result that we prove in Appendix
A.2.

Theorem 2. Let X1, . . . , Xp be independent random variables with Xi ∼
N(θi, σ

2) for i = 1, . . . , p. Then, for any c > 0 and 1 ≤ k ≤ p there exists
0 < d0 ≤ c such that if d > d0,

inf
θ1,...,θp

P (θ(1) ∈ (X(1) − c,X(1) + d), . . . , θ(k) ∈ (X(k) − c,X(k) + d)) (11)

= (Φ(c)− Φ(−d))
k−1 [

Φp−k+1(c)− Φp−k+1(−d)
]
.
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Fig 2. Coverage probability surface for the case p = 3 and k = 1 for Δ32 = θ3 − θ2 and
Δ21 = θ2 − θ1, with θ3 ≥ θ2 ≥ θ1. Panel (a) shows the probability surface corresponding to
c = 1, d = 0.85, and panel (b) the probability surface for c = 1, d = 0.55.

3. Post-selection confidence intervals

For 1 ≤ i ≤ p, let Xi1, . . . , Xin be a random sample from a population πi with
unknown mean θi and variance σ2. We assume the populations πi are indepen-
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dent and normally distributed or that n is large enough so we can safely apply
the central limit theorem. In other words, we assume that for every i, the corre-
sponding sample mean Xi = n−1

∑n
j=1 Xij follows a N(θi, σ

2/n) distribution.
We now apply the bounds obtained in Section 2 to obtain the desired confidence
intervals. The proof of these results is a direct consequence of Theorem 2.

Theorem 3. Let 0 < α < 1 and for i = 1, . . . , p, suppose that Xi1, . . . , Xin

is a random sample from a N(θi, σ
2) population, where θi is unknown, but the

variance σ2 is known. Then, simultaneous confidence intervals for θ(1), . . . , θ(k),
with a joint confidence coefficient of (at least) 1− α are given by(

X(j) −
σ√
n
c,X(j) +

σ√
n
d

)
, j = 1, . . . , k ≤ p,

where d0 < d ≤ c (for some d0) and satisfy

(Φ(c)− Φ(−d))
k−1 [

Φp−k+1(c)− Φp−k+1(−d)
]
= 1− α. (12)

Corollary 1. Let 0 < α < 1 and for i = 1, . . . , p, suppose that Xi1, . . . , Xin is a
random sample from a N(θi, σ

2), where θi is unknown, but σ2 is known. Then,
a confidence interval for θ(1), with a confidence coefficient of (at least) 1− α is
given by (

X(1) −
σ√
n
c,X(1) +

σ√
n
d

)
,

where d0 < d ≤ c (for some d0) and satisfy

Φp(c)− Φp(−d) = 1− α.

For given 0 < α < 1, the specific values of c, d can be determined numerically
using the conditions in Theorem 1, optimizing for the length of the intervals.
For the case k = 1, we can use equation (1) in Corollary 1, to explore the
asymptotic behavior of the cutoff value c. It can be shown that the length of
the intervals grow approximately at the rate 2

√
log p, as p increases. However,

more interestingly, we observe that the limits of the intervals are determined by
the cdf of the first order statistic of a random sample from a standard normal
population and therefore, from extreme value theory results, we obtain

|Φp(c)− exp{− exp{−(c− ap)/bp}}| → 0, as p ↑ ∞,

where ap = (2 log p− log log p− log 4π)1/2 and bp = 1/ap (see [1]). The problem
of determining the asymptotic behavior of the intervals for the general case is
more involved and will not be addressed in this note.

3.1. The unknown variance case

If the variance σ2 is unknown, we need to estimate its value. We assume that
we have an independent estimate s2 of σ2, such that t = s/σ has a pdf f(t). In a
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normal experiment, where we observe a sample of size n from each population, s2

can be taken as the pooled variance estimate, so that νs2/σ2 ∼ χ2
ν , a chi-square

distribution with ν = p(n− 1) degrees of freedom.
For k = 1 we observe that conditioning on t = s/σ, we can rewrite coverage

probability as a mixture and obtain

P (θ(1) ∈ (X(1) − sc,X(1) + λsc))

=

∫ ∞

0

P (σ−1θ(1) ∈ (σ−1X(1) − tc, σ−1X(1) + λtc)|t)f(t)dt,

where, for fixed t, the probability in the integrand is minimized by the expression
in Corollary 1.

Using the same strategy, we can determine a lower bound for the general case
and obtain the following result:

Theorem 4. Let 0 < α < 1 and for i = 1, . . . , p, suppose that Xi1, . . . , Xin

is a random sample from a N(θi, σ
2), where θi is unknown. If the variance

σ2 is unknown, consider the estimate of σ2 given by s2 = p−1
∑p

i=1 s
2
i , with

s2i = (n−1)−1
∑n

j=1(Xij −Xi)
2 for i = 1, . . . , p. Then, simultaneous confidence

intervals for θ(1), . . . , θ(k), with a joint confidence coefficient of (at least) 1− α
are given by (

X(j) −
s√
n
c,X(j) +

s√
n
d

)
, j = 1, . . . , k,

where d0 < d ≤ c (for some d0) and satisfy∫ ∞

0

(Φ(ct)− Φ(−dt))
k−1 [

Φp−k+1(ct)− Φp−k+1(−dt)
]
f(t)dt = 1− α.

4. Numerical studies

In order to evaluate the performance of the new intervals we need to look at
width and coverage probability. For the case k = 1, we first look at the behavior
of the actual confidence coefficient in terms of the total number of populations
p. As we discussed in Section 2, the use of intervals of the form X(1) ± zα/2σ
(traditional intervals) or even using a Bonferroni correction based on k < p
populations will result in intervals that have a poor performance in terms of
coverage probability and do not deliver the desired confidence coefficient. This
feature is particularly noticeable when all the populations have similar popula-
tion means, in which case, the confidence coefficient of the procedures that do
not take into account the selection mechanism approaches zero rapidly.

In terms of length, in order to maintain the desired confidence coefficient
the intervals need to get wider as the number of population increases. However,
even for c = d (the symmetric case), the new intervals perform better than
Bonferroni. Venter’s method produces asymmetric intervals that are substan-
tially shorter than Bonferroni, but optimizing the length in our approach we
can obtain asymmetric confidence intervals that are consistently shorter then
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Fig 3. Length of the intervals versus number of populations for Bonferroni, Venter and the
new intervals for the symmetric and asymmetric case at a nominal level of 95%.

Venter’s while maintaining the desired confidence coefficient. In Figure 3 we
can find a plot of the interval lengths against the number of populations for
each one of these procedures for α = 0.05. We observe that the new intervals
are significantly shorter than the other methods, even for a small number of
populations.

In applied situations, the population means θi (1 ≤ i ≤ p) will rarely be
equal. If the largest θi is far apart from the rest, then, the selected population
is likely to be the population with the largest mean. When this is the case, the
selection mechanism will have little or negligible effect on the outcome of the
experiment and the traditional intervals will be adequate. On the other hand,
by construction, the proposed intervals will have a larger confidence coefficient
than the nominal level for any configuration of the θi that does not correspond
to the iid case. Therefore, it is important to evaluate the performance of the
intervals for different configurations of the population means. We observe that
the confidence coefficient of the traditional intervals is below the nominal level
even when the population means are relatively separate. At the same time, the
new intervals will have a coverage probability closer to the nominal level than
Bonferroni and Venter intervals for any configuration. In Table 1 we summa-
rize some of these results obtained for the case p = 6. The first column shows
the true values of the population means corresponding to independent normal
populations with variance one, and the remaining columns correspond to the
actual coverage probabilities for the traditional intervals, Venter’s, Bonferroni’s
and the new procedure. Notice that even when the population means are rel-
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Table 1

Exact coverage probability of the 95% confidence intervals for the mean of the selected
population obtained using the traditional approach, Venter’s, Bonferroni and the new
procedure for the case p = 6 and different configurations of the population means.

(θ1, θ2, θ3, θ4, θ5, θ6) Trad Venter New Bonf
(0,0,0,0,0,0) 0.859 0.975 0.951 0.975

(0,0.25,0.5,0.75,1,1.25) 0.870 0.976 0.953 0.976
(0,0.5,1,1.5,2,2.5) 0.896 0.979 0.960 0.979

(0,1,2,3,4,5) 0.933 0.986 0.972 0.987
(0,2,4,6,8,10) 0.949 0.983 0.967 0.991
(0,0,0,0,3,3) 0.942 0.987 0.976 0.988

atively far apart (rows 5 and 6) the traditional intervals fail to maintain the
nominal coefficient and that the new intervals perform better than Bonferroni
and Venter’s intervals for any configuration.

For k > 1 (number of selected populations) the width of the intervals will
also grow as k and p increase. Of course, for fixed p the length of the new
intervals will approach the length of Bonferroni’s intervals when k gets closer
to p, but it is important to study the behavior of the new intervals as the
number of populations p increases and k is fixed or increases at a certain rate.
Numerical studies show that in either case, the new intervals will be shorter
than Bonferroni, for any value of k. In Figure 4 we show the results of one of
these studies where we considered the number of selected population to be k = 5
(fixed) regardless the total number of populations, and k (variable) equal to 5%
of the total number of populations p. In both cases we observe that the proposed
new intervals improve in length Bonferroni’s intervals and the difference can be
significant, even when the total number of populations is relatively small.

Regarding the coverage probability, we conducted numerical studies to deter-
mine the actual confidence coefficient of the intervals for different configurations
of the population means. In Table 2 we summarize the results of one of these
studies for the case p = 6. Again, the first column shows the true values of
the population means corresponding to independent normal populations with
variance one, and the remaining columns indicate the observed coverage prob-
abilities for the corresponding number of selected populations k. The results
are based on 10 replications of 25K simulations reporting and standard error
< 0.0001. We observe the actual confidence coefficient is never below to the
nominal level and do not exceed Bonferroni. Interestingly, the coverage proba-
bilities get closer to the nominal level when we have some separation between
the true population means (rows 5 and 6), however to establish an accurate
pattern is difficult, since the actual value coverage probability depends not only
on the configuration of the θi, but also on k and p as can be seen in equation (8).

5. Discussion

A practitioner might wish to use the data to select scientifically relevant vari-
ables and then make inference on the selected ones. In this article we framework
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Fig 4. Length of the intervals versus number of populations for Bonferroni and the new
intervals when k = 5 (fixed) and k = 5% of the total number of populations at a nominal
level of 95%.

Table 2

Observed coverage probabilities for 95% CI for the mean of the k deleted populations using
the new method and different configurations of the population means.

(θ1, θ2, θ3, θ4, θ5, θ6) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
(0,0,0,0,0,0) 0.951 0.969 0.974 0.975 0.970 0.950

(0,0.25,0.5,0.75,1,1.25) 0.953 0.970 0.973 0.975 0.968 0.968
(0,0.5,1,1.5,2,2.5) 0.960 0.970 0.974 0.972 0.964 0.967

(0,1,2,3,4,5) 0.972 0.972 0.966 0.960 0.957 0.960
(0,2,4,6,8,10) 0.967 0.960 0.957 0.953 0.952 0.954
(0,0,0,0,3,3) 0.976 0.964 0.960 0.962 0.961 0.951

for post-selection inference by constructing simultaneous confidence intervals for
the means of k ≥ 1 selected populations. In this context, we were able to derive
a closed form exact expression for the coverage probability of such intervals and
minimize it to determine a lower bound. As a result we are able to obtain simul-
taneous confidence intervals that do not fail to maintain the nominal confidence
coefficient and retain the frequentist interpretation.

The proposed intervals do take into account the selection mechanism and
therefore their length increases as the number of populations grow. Further-
more, the approach allow us to construct asymmetric intervals that correct the
selection bias of the order statistics used as point estimators and shorten the
length of the intervals. For k = 1, the proposed intervals perform better than
Venter’s and Bonferroni’s intervals in both length and coverage probability.

Although the assumptions of normality and equal variances are necessary
in order to obtain the exact results in closed form, the results in Theorem 2
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are still valid under some mild degree of asymmetry and therefore hold for
a larger family of distributions. This, in conjunction with the length of the
intervals, allows the methodology to perform well under mild violations of the
assumptions.

Finally, we observe that for k > 1 we do not need to consider a fixed common
values of c, d for all the intervals. This open the door to further investigate
alternatives to optimize the length of the intervals obtained using this method
and improve the results.

The approach of this article should be contrasted to the asymptotic ap-
proaches of Van de Geer & Dezeure [30] and Zhang & Zhang [34]. These articles
approached the post-selection inference issue by first applying a lasso procedure
to select relevant features and then use a debiased version of the lasso estimator
to account the inherent randomness in the selection procedure. Symmetric in-
tervals are then constructed based on the scaled debiased lasso estimator. The
confidence intervals we construct maintain exact, not asymptotic, coverage and
do not depend on the implicit selection of tuning parameters.

Appendix A: Proof of results

A.1. Lemma in Theorem 1

We begin by proving the following lemma which may be of independent interest:

Lemma A.1. Let Δ > 0 and suppose that f1(z) and f2(z) are integrable func-
tions over the real line such that f1(z) > 0 is non-decreasing and f2(z) > 0 is
concave and symmetric with respect to Δ/2 and non-decreasing in (−∞,Δ/2).
Then, for g(z) = f1(z)f2(z) we have

i) For any d > 0, ∫ ∞

Δ−d

g(z)dz −
∫ ∞

−d

g(z)dz ≤ 0

ii) For any c > 0, ∫ Δ+c

−∞
g(z)dz −

∫ c

−∞
g(z)dz ≥ 0

iii) For any c > 0, there exists 0 < d0 ≤ c such that

a)

∫ Δ+c

Δ−d

g(z)dz −
∫ c

−d

g(z)dz ≥ 0, if d0 ≤ d

b)

∫ Δ+c

Δ−d

g(z)dz −
∫ c

−d

g(z)dz ≤ 0, if 0 < d ≤ d0

The inequalities are strict if the function f1(·) is strictly increasing in z.

Proof. Since Δ > 0, cases (i) and (ii) are straightforward. For (iii), we have
two possibilities for the intervals of integration:
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−d < Δ− d < c < Δ+ c, or

−d < c < Δ− d < Δ+ c,

depending on whether the intervals overlap or not. Consequently, if we denote
by R1 and R2 the non-common regions of integration, there are two possible
cases

1) R1 = (−d,Δ− d) and R2 = (c,Δ+ c)

2) R1 = (−d, c) and R2 = (Δ− d,Δ+ c)

Regardless the case, R1 and R2 are intervals of the same length. Also, since
f2(z) is symmetric around Δ/2, we have f2(−c) = f2(Δ + c) and therefore,
g(−c) ≤ g(Δ + c). In fact, for any 0 < δ < length(R1), we have g(−c + δ) ≤
g(Δ + c− δ) and therefore ∫

R1

g(z)dz ≤
∫
R2

g(z)dz

which completes the proof for part (a) when d0 = 1. Observe that the argument
is till valid for 0 < d0 < 1 as long as f1(z) is strictly increasing in some inter-
val contained in R2. In such case, the value of d0 will depend on the rate at
which f1(z) increases. For part (b) the inequalities reverse and the result follows
completing the proof of the Lemma.

Following a similar argument, cases (i) and (ii) in Lemma A.1 lead to the
construction of one-sided intervals discussed in [32].

A.2. Proof of Theorem 2

Proof. For general k, we observe that the expression for the coverage probabil-
ity in (8) is non-decreasing in θp for all the terms where θp ∈ Ij and strictly
decreasing in those terms where θp ∈ Icj . As a result, the coverage probability
will be smaller either at θp = θp−1 or θp = ∞. Repeating this argument for
θp−1, . . . , θp−k+1, we obtain the coverage probability is minimized either at i)
θ1 = . . . = θp = θ or at ii) θ1 = . . . = θp−k+1 = θ, θp−k+2 = . . . = θp = ∞. For
each case, the corresponding coverage probabilities are:

i) Hp(k) =

(
p

k

)∫ c

−d

. . .

∫ c

−d

Φp−k(min{z1, . . . , zk})φ(z1, . . . , zk)dz1 . . . dzk

ii) Mp(k) = (p− k + 1)

∫ c

−d

. . .

∫ c

−d

Φp−k(z1)φ(z1, . . . , zk)dz1 . . . dzk

= (Φ(c)− Φ(−d))
k−1 [

Φp−k+1(c)− Φp−k+1(−d)
]
.

In this context, we want to show that for any p > 1, Hp(k) ≥ Mp(k) for
1 ≤ k ≤ p. Observe that both Hp(k) and Mp(k) are decreasing in k (they
correspond to probabilities of k-simultaneous events) and that Hp(1) = Mp(1)
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and Hp(p) = Mp(p). Furthermore, Mp(k) is convex as a function of k and Hp(k)
is either convex, concave or changes from concave to convex. Regardless the case,
it is sufficient to prove the Hp(p− 1) ≥ Mp(p− 1) to obtain the result.

For j = 1, . . . , k, define Rj = {(z1, . . . , zk) ∈ (−d, c)k : zj = min{z1, . . . , zk}}.
Then, we can write

Hp(k) =

(
p

k

) k∑
j=1

∫
· · ·

∫
Rj

Φp−k(zj)φ(z1, . . . , zk)dz1 . . . dzk

Mp(k) = (p+ 1− k)

k∑
j=1

∫
· · ·

∫
Rj

Φp−k(z1)φ(z1, . . . , zk)dz1 . . . dzk

and taking advantage of the symmetry of the regions of integration we obtain

Hp(p− 1)−Mp(p− 1) = [p(p− 1)− 2]

∫
· · ·

∫
R1

Φ(z1)φ(z1, . . . , zk)dz1 . . . dzp−1

− 2(p− 2)

∫
· · ·

∫
R2

Φ(z1)φ(z1, . . . , zk)dz1 . . . dzp−1.

The case p = 2 is straightforward. For p = 3 we obtain

H3(2)−M3(2) = 4

∫ ∫
R1

Φ(z1)φ(z1)φ(z2)dz1dz2

− 2

∫ ∫
R2

Φ(z1)φ(z1)φ(z2)dz1dz2

= Φ2(c)Φ(−d) + Φ3(−d)− 2Φ2(−d)Φ(c)

= Φ(−d)[Φ2(c) + Φ2(−d)− 2Φ(c)Φ(−d)].

Since Φ2(c) + Φ2(−d) ≥ 2Φ(c)Φ(−d) for any c, d > 0, we obtain that H3(2) −
M3(2) ≥ 0. The general case follows from induction on p, completing the proof
of the Theorem.
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