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Abstract: Sketching techniques scale up machine learning algorithms by
reducing the sample size or dimensionality of massive data sets, without sac-
rificing their statistical properties. In this paper, we study sketching from an
optimization point of view. We first show that the iterative Hessian sketch
is an optimization process with preconditioning and develop an accelerated
version using this insight together with conjugate gradient descent. Next,
we establish a primal-dual connection between the Hessian sketch and dual
random projection, which allows us to develop an accelerated iterative dual
random projection method by applying the preconditioned conjugate gra-
dient descent on the dual problem. Finally, we tackle the problems of large
sample size and high-dimensionality in massive data sets by developing the
primal-dual sketch. The primal-dual sketch iteratively sketches the primal
and dual formulations and requires only a logarithmic number of calls to
solvers of small sub-problems to recover the optimum of the original prob-
lem up to arbitrary precision. Our iterative sketching techniques can also
be applied for solving distributed optimization problems where data are
partitioned by samples or features. Experiments on synthetic and real data
sets complement our theoretical results.
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1. Introduction

Machine learning is nowadays successfully applied to massive data sets collected
from various domains. One of the major challenges in applying machine learning
methods to massive data sets is how to effectively utilize available computational
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resources when building predictive and inferential models, while utilizing data
in a statistically optimal way. One approach to tackling massive data sets is via
building distributed computer systems and developing distributed learning algo-
rithms. However, distributed systems may not always be available. Furthermore,
the cost of running a distributed system can be much higher than one can afford,
making distributed learning unsuitable for all scenarios. An alternative approach
is to use the state-of-the-art randomized optimization algorithms to accelerate
the training process. For example, many optimization algorithms are available
for solving regularized empirical risk minimization problems, with provably fast
convergence and low computational cost per iteration (see [16, 51, 7] for exam-
ples). It is worth pointing out at this point that the speed of these optimization
methods still heavily depends on the condition number of the problem at hand,
which is undesirable for many real world problems.

Sketching has emerged as a technique for big data analytics [46]. The idea
behind sketching is to approximate the solution of the original problem by solv-
ing a sketched, smaller scale problem. For example, sketching has been used
to approximately solve various large-scale problems, ranging from least square
regression and robust regression to low-rank approximation and singular value
decomposition (see [12, 23, 21, 2, 46, 34, 48, 29, 30, 9] and references therein),
and has been implemented in high-quality software packages of least-square
solvers [3, 25]. However, one major drawback of sketching is that it is typically
not suitable in scenarios where a highly accurate solution is needed. To obtain a
solution with exponentially smaller approximation error, we often also need to
increase the sketching dimension exponentially as well.

Recent work on “iterative sketch”, namely iterative Hessian sketch (IHS) [33]
and iterative dual random projection (IDRP) [53], has improved the situation.
These methods are able to refine the accuracy of their solution by iteratively
solving small scale sketched problem. Hessian sketch [33] is designed to only
reduce the sample size of the original problem, while dual random projection
[53] is proposed to only reduce the dimensionality of data. As a consequence,
when the sample size and feature dimension are both large, IHS and IDRP
still need to solve relatively large-scale subproblems as they can only sketch the
problem from one perspective.

In this paper, we address the problem of the recovery of optimal solution for
big and high-dimensional data by solving small sketched problems of original
problem. We make the following contributions. First, we propose an accelerated
version of IHS that is computationally as effective as IHS at each iteration, but
requires provably fewer number of sketching iterations to reach a certain ac-
curacy. Next, we reveal a primal-dual connection between IHS [33] and IDRP
[53], that were independently proposed by two different groups of researchers.
We show that these two methods are equivalent in the sense that the dual ran-
dom projection is essentially performing the Hessian sketch in the dual space.
This connection allows us to provide a unified analysis of IHS and IDRP, and
also develop an accelerated iterative sketching schema. Finally, we alleviate the
computational issues raised by big and high-dimensional learning problems. We
propose a primal-dual sketching method that can simultaneously reduce the
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sample size and dimension of the problem, and recover the optimal solution
to the original large-scale high-dimensional problem with provable convergence
guarantees. We also demonstrate applicability of the iterative sketching tech-
niques for the distributed optimization problems where the data are partitioned
across machines, either by samples or features.

Organization The rest of this paper is organized as follows: in Section 2 we
review the iterative Hessian sketch as an optimization process and propose a
new algorithm with faster convergence rate. In Section 3 we show that the dual
random projection is equivalent to the Hessian sketch. This equivalence allows us
to propose the corresponding accelerated dual random projection. In Section 4
we combine the sketching from both primal and dual perspectives, and propose
an iterative algorithm that reduces both sample size and problem dimension.
Theoretical properties of are investigated in Section 5, while technical details
are deferred to Appendix. In Section 6 we discuss an application of the iterative
sketching for distributed optimization. We present experiments in Section 7 to
support our theoretical results, while Section 8 provides a final summary and a
discussion of several future directions.

Notation We use bold-faced letters, such as w, to denote vectors, and bold-
faced capital letters, such as X, to denote matrices. The set of real numbers is
denoted by R. Given a matrix X ∈ R

n×p, we define the following matrix induced
norm for any vector w ∈ R

p,

‖w‖X =

√
w�X�Xw

n
.

We use N (μ,Σ) to denote the multivariate normal distribution with mean μ
and covariance Σ. We use In to denote the identity matrix of size n × n. The
maximum and minimum eigenvalues of H are λmax(H) and λmin(H), respec-
tively. The condition number of a matrix H is denoted by κ(H), which is the
ratio of the largest to smallest singular value in the singular value decomposition
of H. For two sequences {an}∞n=1 and {an}∞n=1, we denote an � bn if an ≤ Cbn
always holds for n large enough with some constant C, and denote an � bn if

bn � an. We also use the notation an = O(bn) if an � bn, and use Õ(·) for O(·)
to hide logarithmic factors.

2. Iterative Hessian sketch as optimization with preconditioning

In this section, we first review the iterative Hessian sketch proposed in [33]. We
present the iterative Hessian sketch as an iterative preconditioned optimization
process. This allows us to propose a faster iterative algorithm by solving a
different sketched problem.

Consider the following �2 regularized least-squares problem, also known as
the ridge regression:

min
w∈Rp

P (X,y;w) = min
w∈Rp

1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 . (2.1)
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where X ∈ R
n×p is the data matrix, y ∈ R

n is the response vector, and λ is the
tuning parameter. Let w∗ denote the optimum of problem (2.1) which can be
computed in a closed form as

w∗ =

(
λIp +

X�X

n

)−1
X�y

n
,

however, to compute the closed-form solution requires one to construct and
invert the covariance matrix, which can take O(np2 + p3) time to finish.

Sketching has become a widely used technique for efficiently finding an ap-
proximate solution to (2.1) when both n and p are large [10, 23, 46]. To avoid
solving a problem of huge sample size, the traditional sketching techniques (for
example, [38, 31]) reduce the sample size from n to m, with m � n, and solve
the following sketched �2 regularized least-squares problem:

min
w∈Rp

P (Π�X,Π�y;w) = min
w∈Rp

1

2n

∥∥Π�y −Π�Xw
∥∥2
2
+

λ

2
‖w‖22 , (2.2)

where Π ∈ R
n×m is a sketching matrix. The problem (2.2) can be solved faster

and with less storage as long as we can choose m � n. Typical choice of Π in-
cludes a random matrix with Gaussian or Rademacher entries, sub-sampled ran-
domized Hadamard transform [4], and sub-sampled Randomized Fourier Trans-
form [36]. See discussions in Section 2.1 of [33] for more details.

Though the classical sketching has been successful in various problems and
has provable guarantees, as shown in [33], there is an approximation precision
limit for classical sketching methods could achieve, given a fixed sketching di-
mension. To obtain an approximate solution with high precision, the sketching
dimension m often needs to be of the same order as n. This is impractical as
the goal of sketching is to speed up the algorithms via reducing the sample size.

The main idea behind the Hessian sketch [33] is based on the following equiv-
alent formulation of (2.1):

min
w∈Rp

P (X,y;w) = min
w∈Rp

1

2n
‖y‖22 +

1

2n
‖Xw‖22 −

1

n
〈y,Xw〉+ λ

2
‖w‖22 . (2.3)

In the Hessian sketch one only sketches the quadratic part ‖Xw‖22 with respect
to X, but not the linear part 〈y,Xw〉, leading to the following problem:

min
w∈Rp

PHS(X,y;Π,w) = min
w∈Rp

1

2n
‖y‖22 +

1

2n

∥∥Π�Xw
∥∥2
2
− 1

n
〈y,Xw〉+ λ

2
‖w‖22 .
(2.4)

The solution to the problem (2.4) has the following closed form solution:

ŵHS =

(
λIp +

X�ΠΠ�X

n

)−1
X�y

n
. (2.5)



Sketching meets random projection in the dual 4901

Algorithm 1: Iterative Hessian Sketch (IHS).

1 Input: Data X,y, sketching matrix Π.

2 Initialization: ŵ
(0)
HS = 0.

3 for t = 0, 1, 2, . . . do

4 Update the approximation by ŵ
(t+1)
HS = ŵ

(t)
HS + û(t), where û(t) is obtained by

solving the sketched problem (2.6).
5 end

Compared to the classical sketch where both the data matrixX and the response
vector y are sketched, in the Hessian sketch one only sketches the Hessian ma-
trix, through the following transform:

X�X → X�ΠΠ�X.

The Hessian sketch suffers from the same approximation limit as the classi-
cal sketch. However, one notable feature of the Hessian sketch is that one can
implement an iterative extension to refine the accuracy of the approximation.

Define the initial Hessian sketch approximation as ŵ
(1)
HS:

ŵ
(1)
HS = argmin

w
w�
(
X�ΠΠ�X

2n
+

λ

2
Ip

)
w − 1

n
〈y,Xw〉.

A refinement of ŵ
(1)
HS can be obtained by considering the following optimization

problem

argmin
u

1

2n

∥∥∥y −X(u+ ŵ
(1)
HS)
∥∥∥2
2
+

λ

2

∥∥∥(u+ ŵ
(1)
HS)
∥∥∥2
2

= argmin
u

u�
(
X�X

2n
+

λ

2
Ip

)
u−

〈
X�(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
,

whose optimum is w∗− ŵ
(1)
HS. The main idea of the iterative Hessian sketch is to

approximate the residual solution w∗− ŵ
(1)
HS by the Hessian sketch. At iteration

t, w∗ − ŵ
(t)
HS is approximated by û(t) that minimizes the following problem

û(t) = argmin
u

u�
(
X�ΠΠ�X

2n
+

λ

2
Ip

)
u−

〈
X�(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
,

(2.6)

and the new approximation ŵ
(t+1)
HS is updated as

ŵ
(t+1)
HS = ŵ

(t)
HS + û(t).

The algorithm for IHS is shown in Algorithm 1. Since (2.6) is a sketched
problem with sample size m, it can be solved more efficiently than the original
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problem (2.1). Notice that we can reuse the previously sketched data matrix
Π�X without constructing any new random sketching matrices. [33] showed
that the approximation error of IHS is exponentially decreasing with the number
of sketching iterations. Thus IHS can find an approximate solution with an
ε-approximation error within O(log(1/ε)) iterations, as long as the sketching
dimension m is large enough. IHS was originally developed for the least-squares
problem in (2.1), the idea can be extended to solve more general problems, such
as constrained least-squares [33], optimization with self-concordant loss [32], as
well as non-parametric methods [49].

Though IHS improved the classical sketching by enabling us to find a high
quality approximation more efficiently, it is imperfect due to the following two
reasons. First, the guarantee that the approximation error decreases exponen-
tially for IHS relies on the sketching dimension being large enough. The neces-
sary sketching dimension depends on the intrinsic complexity of the problem,
and, if the sketching dimension is too small, IHS can diverge, obtaining arbi-
trary worse approximation. Second, even when the sketching dimension is large
enough, the speed at which the approximation error decreases in IHS can be
significantly improved.

Now, we show that the iterative Hessian sketch is in fact an optimization
process with preconditioning. This view allows us to develop better iterative
algorithms by searching the conjugate directions. For notation simplicity, let

H =
X�X

n
+ λIp and H̃ =

X�ΠΠ�X

n
+ λIp.

Let

∇P (w) = −X�(y −Xw)

n
+ λw

denote the gradient of P (X,y;w) with respect to w. Then the IHS algorithm
can be seen as performing the following iterative update

ŵ
(t+1)
HS = ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS),

which is like a Newton update where we replace the true Hessian H with the
sketched Hessian H̃. Another way to think about this update is via the change
of variable z = H̃1/2w and then applying the gradient descent in the z space

ẑ(t+1) = ẑ(t) −∇zP (H̃−1/2ẑ(t)) = ẑ(t) − H̃−1/2∇xP (H̃−1/2ẑ(t)).

Multiplying by H̃−1/2, changes the update back to the original space, leading
back to the IHS update

ŵ
(t+1)
HS = ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS).

With above discussion, we see that the iterative Hessian sketch is in fact an
optimization process with the sketched Hessian as preconditioning.
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2.1. Accelerated IHS via preconditioned conjugate gradient

In this section, we present the accelerated iterative Hessian sketch (Acc-IHS)
algorithm by utilizing the idea of preconditioned conjugate gradient. Conjugate
gradient is known to have better convergence properties than gradient descent in
solving linear systems [15, 28]. Since the iterative Hessian sketch is performing

the gradient descent (with stepsize 1) in the transformed space z = H̃1/2w,
it can be accelerated by performing the conjugate gradient descent instead.
Equivalently, we can implicitly transform the space by defining inner product
as 〈x,y〉 = x�H̃y.

This leads to the algorithm Acc-IHS as detailed in Algorithm 2. At each
iteration, the solver is called for the following sketched linear system:

û(t) = argmin
u

u�
(
X�ΠΠ�X

2n
+

λ

2
Ip

)
u−

〈
r(t),u

〉
. (2.7)

Unlike IHS, which uses H̃−1∇P (ŵ
(t)
HS) as the update direction at iteration t,

Acc-IHS uses p(t) as the update direction where p(t) is chosen to satisfy the
conjugate condition: ∀t1, t2 ≥ 0, t1 �= t2(

p(t1)
)�

H̃−1/2HH̃−1/2p(t2) = 0.

Since the updating direction is conjugate to the previous directions, it is guar-
anteed that after p iterations we reach the exact minimizer, that is,

ŵ
(t)
HS = w∗, ∀t ≥ p.

Moreover, Acc-IHS has the same computational cost as the standard IHS in
solving each sketched sub-problem. However, the convergence rate of Algorithm
2 is much faster than IHS, that is, it requires solving much smaller number
of sketched sub-problems compared to IHS to reach the same approximation
accuracy.

3. Equivalence between dual random projection and Hessian sketch

While Hessian sketch [33] tries to resolve the issue of huge sample size, Dual
Random Projection [52, 53] is aimed at resolving the issue of high-dimensionality
by using random projections as a tool for reducing the dimension of data. Again,
we consider the standard ridge regression problem in (2.1). A random projec-
tion is now used to transform the original problem (2.1) to a low-dimensional
problem:

min
z∈Rp

PRP(XR,y; z) = min
z∈Rd

1

2n
‖y −XRz‖22 +

λ

2
‖z‖22 , (3.1)

where R ∈ R
p×d is a random projection matrix, and d � p.
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Algorithm 2: Accelerated Iterative Hessian Sketch (Acc-IHS).

1 Input: Data X,y, sketching matrix Π.

2 Initialization: ŵ
(0)
HS = 0, r(0) = −X�y

n
.

3 Compute û(0) by solving (2.7), and update p(0) = −û(0), calculate

v(0) =
(

X�X
n

+ λIp
)
p(0).

4 for t = 0, 1, 2, . . . do

5 Calculate α(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

6 Update the approximation by ŵ
(t+1)
HS = ŵ

(t)
HS + α(t)p(t).

7 Update r(t+1) = r(t) + α(t)v(t).

8 Update u(t+1) by solving (2.7).

9 Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

10 Update p(t+1) = −u(t+1) + β(t+1)p(t).

11 Update v(t+1) =
(

X�X
n

+ λIp
)
p(t+1).

12 end

Let ẑ = argminz PRP(XR,y; z). If we want to recover the original high-
dimensional solution, [53] observed that the naive solution ŵRP = Rẑ results
in a bad approximation. Instead, the optimal solution of the original problem,
w∗, is recovered from the dual solution, leading to the dual random projection
(DRP) approach that we explain below. The dual problem of the optimization
problem in (2.1) is

max
α∈Rn

D(X,y;α) = max
α∈Rn

− 1

2n
α�α+

y�α

n
− 1

2λn2
α�XX�α. (3.2)

Let α∗ = argmaxα∈Rn D(X,y;α) be the dual optimal solution. By the standard
primal-dual theory [6], we have the following connection between the optimal
primal and dual solutions:

α∗ = y −Xw∗ and w∗ =
1

λn
X�α∗. (3.3)

The dual random projection procedure works as follows. First, we construct
and solve the low-dimensional, randomly projected problem (3.1) and obtain
the solution ẑ. Next, we calculate the approximated dual variables by

α̂DRP = y −XRẑ, (3.4)

based on the approximated dual solution α̂DRP. Finally, we recover the primal
solution as:

ŵDRP =
1

λn
X�α̂DRP. (3.5)

Combining the steps above, it is easy to see that the dual random projection
for ridge regression has the following closed form solution:

ŵDRP =
X�

n

(
λIn +

XRR�X�

n

)−1

y. (3.6)
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Algorithm 3: Iterative Dual Random Projection (IDRP).

1 Input: Data X,y, projection matrix R.

2 Initialization: ŵ
(0)
DRP = 0.

3 for t = 0, 1, 2, . . . do

4 Solve the projected problem in (3.8) and obtain solution ẑ(t).

5 Update dual approximation: α̂
(t+1)
DRP = y −Xw

(t)
DRP −XRẑ(t).

6 Update primal approximation: ŵ
(t+1)
DRP = 1

λn
X�α̂

(t+1)
DRP .

7 end

The recovered solution from the dual, ŵDRP, has much better approximation
compared to the solution recovered directly from primal problem ŵRP. Specifi-
cally, ŵRP is always a poor approximation of w∗, because ŵRP lives in a random
subspace spanned by the random projection matrix R, while ŵDRP can be a
good approximation of w∗ as long as the projected dimension d is large enough
[53]. Finally, an iterative extension of DRP can exponentially reduce the ap-
proximation error [53], that we explain next.

Suppose at iteration t we have the approximate solution ŵ
(t)
DRP. Consider the

following optimization problem:

min
u∈Rp

1

2n

∥∥∥y −X(u+ ŵ
(t)
DRP)

∥∥∥
2
+

λ

2

∥∥∥u+ ŵ
(t)
DRP

∥∥∥2
2
, (3.7)

with optimum atw∗−ŵ
(t)
DRP. Similar to the iterative Hessian sketch, the idea be-

hind the iterative dual random projection (IDRP) is to approximate the residual

w∗−ŵ
(t)
DRP by applying dual random projection again. Given ŵ

(t)
DRP we construct

the following randomly projected problem:

min
z∈Rd

1

2n

∥∥∥y −Xw
(t)
DRP −XRz

∥∥∥2
2
+

λ

2

∥∥∥z+R�w
(t)
DRP

∥∥∥2
2
. (3.8)

Let ẑ(t) to be the solution of (3.8), which is used to refine the dual and primal
variables as:

α̂
(t+1)
DRP = y −Xw

(t)
DRP −XRẑ,

and

ŵ
(t+1)
DRP =

1

λn
X�α̂

(t+1)
DRP .

The iterative dual random projection (IDRP) algorithm is shown in Algo-
rithm 3. Here we presented the idea in the context of �2 regularized least-
squares. However, the iterative dual random projection can be used to solve
any �2 regularized empirical loss minimization problem, as long as the loss func-
tion is smooth [53], such as, logistic regression or support vector machines with
smoothed hinge loss.

The iterative dual random projection algorithm is a powerful algorithm for
dealing with high-dimensional problems, but it suffers from the same limitations
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as the iterative Hessian sketch. First, the projection dimension needs to be large
enough to guarantee that the approximation error decreases exponentially. Sec-
ond, the convergence speed is not optimal. We address both of these issues next.
We will show that the dual random projection is equivalent to an application of
the Hessian sketch procedure on the dual problem. This connection will allow us
to develop an accelerated iterative dual random projection akin to accelerated
the iterative Hessian sketch algorithm presented earlier.

3.1. Dual random projection is Hessian sketch in dual space

We present the equivalence connection between Hessian sketch and dual random
projection. Note that the Hessian sketch is used for sample reduction, while the
dual random projection is utilized for dimension reduction. Recall that the dual
maximization objective (3.2) is quadratic with respect to α. We can write it in
the equivalent form as:

min
α∈Rn

α�
(
XX�

2λn
+

1

2
In

)
α− 〈y,α〉. (3.9)

By applying the Hessian sketch with sketching matrix R ∈ R
p×d, we find an

approximate solution for α∗ as:

α̂HS = arg min
α∈Rn

α�
(
XRR�X�

2λn
+

1

2
In

)
α− 〈y,α〉, (3.10)

which has the closed form solution as

α̂HS = λ

(
λIn +

XRR�X�

n

)−1

y.

Substituting α̂HS in the primal-dual connection (3.3), gives us the following
approximation to the original problem

ŵ =
X�

n

(
λIn +

XRR�X�

n

)−1

y,

which is the same as the DRP approximation in (3.6). From this discussion, we
see that the Dual Random Projection is the Hessian sketch applied in the dual
space. To summarize, for ridge regression problem (2.1) one has closed form
solutions for various sketching techniques as:

Original : w∗ =

(
λIp +

X�X

n

)−1
X�y

n

=
X�

n

(
λIn +

XX�

n

)−1

y;

Classical Sketch : ŵCS =

(
λIp +

X�ΠΠ�X

n

)−1
X�ΠΠ�y

n
;
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Algorithm 4: Accelerated Iterative Dual Random Projection (Acc-
IDRP)—Primal Version.

1 Input: Data X,y, projection matrix R.

2 Initialization: ŵ
(0)
DRP = 0, α̂

(0)
DRP = 0, r(0) = −y.

3 Compute z(0) by solving (3.11), and update u(0) = r(0) −XRz(0), p(0) = −u(0),

v(0) =
(

XX�
n

+ λIn
)
p(0).

4 for t = 0, 1, 2, . . . do

5 Calculate a(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

6 Update the dual approximation by α̂
(t+1)
DRP = α̂

(t)
DRP + a(t)p(t).

7 Update primal approximation: ŵ
(t+1)
DRP = 1

λn
X�α̂

(t+1)
DRP .

8 Update r(t+1) = r(t) + a(t)v(t).

9 Solve the projected problem in (3.11) and obtain solution ẑ(t+1).

10 Update u(t+1) = r(t+1) −XRẑ(t+1).

11 Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

12 Update p(t+1) = −u(t+1) + β(t+1)p(t).

13 Update v(t+1) =
(

XX�
n

+ λIn
)
p(t+1).

14 end

Random Projection : ŵRP = R

(
λId +

R�X�XR

n

)−1

R�X�y

n
;

Hessian Sketch : ŵHS =

(
λIp +

X�ΠΠ�X

n

)−1
X�y

n
;

Dual Random Projection : ŵDRP =
X�

n

(
λIn +

XRR�X�

n

)−1

y.

As we can see above, the Hessian sketch is sketching the covariance matrix :

X�X → X�ΠΠ�X,

while DRP is sketching the Gram matrix :

XX� → XRR�X�.

3.2. Accelerated iterative dual random projection

Based on the equivalence between dual random projection and Hessian sketch
established in Section 3.1, we propose an accelerated iterative dual random pro-
jection algorithm, which improves the convergence speed of standard iterative
DRP procedure [53]. The algorithm is shown in Algorithm 4. Notice that in
each iteration t, we call the solver for the following randomly projected problem
based on the residual r(t):

ẑ(t) = arg min
z∈Rd

z�
(
R�X�XR

2n
+

λ

2
Id

)
z− 〈R�X�r(t), z〉. (3.11)
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Algorithm 5: Accelerated Iterative Dual Random Projection (Acc-
IDRP)—Dual Version.

1 Input: Data X,y, projection matrix R.

2 Initialization: ŵ
(0)
DRP = 0, α̂

(0)
DRP = 0, r(0) = −y.

3 Compute u(0) by solving (3.12), and update p(0) = −u(0), v(0) =
(

XX�
n

+ λIn
)
p(0).

4 for t = 0, 1, 2, . . . do

5 Calculate a(t) =
〈r(t),u(t)〉
〈p(t),v(t)〉

6 Update the dual approximation by α̂
(t+1)
DRP = α̂

(t)
DRP + a(t)p(t).

7 Update primal approximation: ŵ
(t+1)
DRP = 1

λn
X�α̂

(t+1)
DRP .

8 Update r(t+1) = r(t) + a(t)v(t).

9 Update u(t+1) by solving (3.12).

10 Update β(t+1) =
〈r(t+1),u(t)〉
〈r(t),r(t)〉 .

11 Update p(t+1) = −u(t+1) + β(t+1)p(t).

12 Update v(t+1) =
(

XX�
n

+ λIn
)
p(t+1).

13 end

The accelerated IDRP algorithm runs the Acc-IHS Algorithm 2 in the dual
space. However, Acc-IDRP is still a primal algorithm, since it updates the cor-
responding dual variables after solving the randomly projected primal problem
(3.11). The dual version of Acc-IDRP algorithm would at each iteration solve
the following dual optimization problem

min
u∈Rn

u�
(
XRR�X�

2n
+

λ

2
In

)
u− 〈r(t),u〉, (3.12)

where r(t) is the dual residual. This, however, is not a practical algorithm as
it requires solving relatively more expensive dual problem. We present it in
Algorithm 5 as it is easier to understand since it directly borrows the ideas of
Acc-IHS described in Section 2.1.

Though the computational cost per iteration of Acc-IDRP and standard
IDRP are the same, Acc-IDRP has two main advantages over IDRP. First,
as a preconditioned conjugate gradient procedure, Acc-IDRP is guaranteed to
converge, and reach the optimum w∗ within n iterations, even when the pro-
jection dimension d is very small. Second, even when the projection dimension
d is large enough for the standard IDRP converge quickly to the optimum,
Acc-IDRP converges even faster.

4. Primal-dual sketch for big and high-dimensional problems

In this section, we combine the idea of the iterative Hessian sketch and iterative
dual random projection from the primal-dual point of view. We propose a more
efficient sketching technique named Iterative Primal-Dual Sketch (IPDS), which
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Approach Suitable Situation Reduced Dimension Recovery Iterative

Classical Sketch large n, small p sample reduction × ×
Random Projection small n, large p dimension reduction × ×
Hessian Sketch large n, small p sample reduction � �

DRP small n, large p dimension reduction � �
Table 1

Comparison of various algorithms for data sketching in solving large-scale problems.

simultaneously reduces the sample size and dimensionality of the problem, while
recovering the original solution to a high precision.

The Hessian sketch is particularly suitable for the case where the sample
size is much larger than the problem dimension and the computational bottle-
neck is “big n”. Here the Hessian sketch reduces the sample size significantly,
and as a consequence, speeds up the computation. By utilizing the iterative
extension approximation error can be further reduced to recover the original
solution to a high precision. In contrast, the dual random projection is aimed at
dimensionality reduction and is suitable for the case of high-dimensional data,
with relatively small sample size. Here the computational bottleneck is “large
p” and the random projection is used to reduce dimensionality and speedup
computations.

Hessian sketch is particularly suitable for the case where sample size is much
larger than problem dimension, where the computational bottleneck is “big n”.
Therefore, it is possible to use Hessian sketch to reduce the sample size signif-
icantly and consequently speed up the computation. It also possible to utilize
the iterative extension to reduce the approximation error further to recover
the original solution to a high precision. In contrast, dual random projection
is aimed at dimension reduction and is mostly suitable for the case of high-
dimensional data but relatively small sample size, where the computational
bottleneck is “large p”, and we would like to use random projection to perform
dimension reduction and gain speedup. Table 1 summarizes these characteris-
tics.

As shown in Table 1, the Hessian sketch and dual random projection are
suitable for problems where the number of observations n and the number of
variables p are not balanced, that is, when one is much larger than the other.
Modern massive data-sets have a characteristic that both n and p are very
large, for example, the click-through rate (CTR) prediction data sets provided
by Criteo1 has n ≥ 4× 109 and p ≥ 8× 108. To tackle problems of this size, it
is desirable to have a sketching method capable of simultaneously reducing the
sample size and dimensionality.

Inspired by the primal-dual view described in Section 3.1, we propose the
iterative Primal-Dual Sketch. The iterative Primal-Dual Sketch only involves
solving small scale problems where the sample size and dimension are both
small. For the original problem (2.1) with data {X,y}, we first construct the

1Available at http://labs.criteo.com/downloads/download-terabyte-click-logs/.

http://labs.criteo.com/downloads/download-terabyte-click-logs/


4910 J. Wang et al.

Algorithm 6: Iterative Primal-Dual Sketch (IPDS).

1 Input: Data X ∈ R
n×p,y ∈ R

n, sketching matrix R ∈ R
p×d,Π ∈ R

n×m.

2 Initialization: ŵ
(0)
DS = 0.

3 for t = 0, 1, 2, . . . do

4 Initialization: z̃(0) = 0, k = 0
5 if not converged then

6 Solve the sketched problem in (4.2) and obtain solution Δz(k).

7 Update z̃(k+1) = z̃(k) +Δz(k).
8 Update k = k + 1.

9 end

10 Update dual approximation: α̂
(t+1)
DS = y −Xŵ

(t)
DS −XRz̃(k+1).

11 Update primal approximation: ŵ
(t+1)
DS = 1

λn
X�α̂

(t+1)
DS .

12 end

randomly projected data, as well as the doubly sketched data, as follows:

X → XR, XR → Π�XR,

where XR is the randomly projected data, and Π�XR is doubly sketched data.

Let ŵ
(0)
DS = 0. At every iteration of IPDS, we first apply random projection

on the primal problem (which is equivalent to the Hessian sketch on the dual
problem), and obtain the following problem:

min
z∈Rd

1

2n

∥∥∥y −Xŵ
(t)
DS −XRz

∥∥∥2
2
+

λ

2

∥∥∥z+R�ŵ
(t)
DS

∥∥∥2
2
, (4.1)

which is the same as the iterative dual random projection subproblem (3.8).
However, different from IDRP, we do not directly solve (4.1). Instead, we apply
the iterative Hessian sketch to find an approximate solution to

min
z∈Rd

z�
(
R�X�XR

2n
+

λ

2
Id

)
z−
〈
(y −Xŵ

(t)
DS)

�XR

n
− λR�ŵ

(t)
DS, z

〉
.

Let z̃(0) = 0. At iteration k in the inner loop, we solve the following sketched
problem:

Δz(k) =argmin
Δz

Δz�
(
R�X�ΠΠ�XR

2n
+

λ

2
Id

)
z

−
〈
R�X�(y −Xŵ

(t)
DS −XRz̃(k))

n
− λR�ŵ

(t)
DS − λz̃(k),Δz

〉
(4.2)

and update z̃(k+1) as
z̃(k+1) = z̃(k) +Δz(k).

The key point is that for the subproblem (4.2), the sketched data matrix is only
of size m×d, compared to the original problem size n×p, where n  m, p  d.
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In contrast, the IHS still needs to solve sub-problems of size m× p, while IDRP
needs to solve sub-problems of size n× d. We only need to call solvers of m× d
problem (4.2) logarithmic times to obtain a solution of high approximation
quality.

The pseudo code of Iterative Primal-Dual Sketch (IPDS) is summarized in
Algorithm 6. It is also possible to perform iterative Primal-Dual Sketch via
another direction, that is, first perform primal Hessian sketch, and then apply
dual Hessian sketch to solve the sketched primal problem:

X → Π�X, Π�X → Π�XR.

The idea presented in Section 2.1 can also be adopted to further reduce the
number of calls to m × d scale sub-problems, which leads to the accelerated
iterative primal-dual sketch (Acc-IPDS) algorithm, of which the pseudo code is
summarized in Algorithm 7. In Acc-IPDS, we maintain both the vectors in the
primal space uP,vP, rP and the vectors in the dual space uD,vD, rD, to make
sure that the updating directions for both primal variables and dual variables are
conjugate with previous updating directions. Moreover, based on the residual
vector rP, Acc-IPDS iteratively calls the solver to find a solution of the following
sketched linear system of scale m× d:

û
(k)
P = argmin

u
u�
(
R�X�ΠΠ�XR

2n
+

λ

2
Id

)
u−

〈
r
(k)
P ,u

〉
. (4.3)

As we will show in the subsequent section, the number of calls for solving prob-
lem (4.3) only grows logarithmically with the inverse of approximation error.

5. Theoretical analysis

We present theoretical properties of various iterative sketching procedures, while
the proofs are deferred to Appendix A. First, we provide a unified analysis of
the Hessian sketch and dual random projection. The unified analysis basically
follows the analysis of [53] and [33], but provides recovery guarantees for both
the primal and dual variables of interest, simultaneously. Next, we present con-
vergence analysis for the proposed accelerated IHS and IDRP algorithms. We
show improved convergence speed compared to the standard IHS and IDRP al-
gorithms. Finally, we prove that the iterative primal-dual sketch converges to the
optimum with the number of iterations growing only logarithmically with the
target approximation accuracy. This makes the proposed primal-dual sketching
schema suitable for large-scale learning problems with huge number of features.

5.1. A unified analysis of Hessian sketch and dual random
projection

In this section we provide a simple and unified analysis for the recovery perfor-
mance of the Hessian sketch and dual random projection. First, we define the
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Algorithm 7: Accelerated Iterative Primal-Dual Sketch (Acc-IPDS).

1 Input: Data X ∈ R
n×p,y ∈ R

n, sketching matrix R ∈ R
p×d,Π ∈ R

n×m.

2 Initialization: ŵ
(0)
DS = 0, α̂

(0)
DS = 0, r

(0)
Dual = −y.

3 Initialization: k = 0, z̃(k) = 0, r
(0)
P = R�X�r

(0)
D .

4 Compute û
(0)
P by solving (4.3), and update p

(0)
P = −u

(0)
P , calculate

v
(0)
P =

(
R�XXR

n
+ λId

)
p
(0)
P .

5 if not converged then

6 Calculate a
(k)
P =

〈r(k)
P ,u

(k)
P 〉

〈p(k)
P ,v

(k)
P 〉

, and update the approximation by

z̃(k+1) = z̃(k) + a
(k)
P p

(k)
P .

7 Update r
(k+1)
P = r

(k)
P + a

(k)
P v(k), and update u

(k+1)
P by solving (4.3).

8 Update β
(k+1)
P =

〈r(k+1)
P ,u

(k)
P 〉

〈r(k)
P

,r
(k)
P

〉
, and update p

(k+1)
P = −u

(k+1)
P + β

(k+1)
P p

(k)
P .

9 Update v
(k+1)
P =

(
R�X�XR

n
+ λIp

)
p
(t+1)
P , and update k = k + 1.

10 end

11 Compute u
(0)
D = r

(0)
D −XRz̃(k+1), p

(0)
D = −u

(0)
D , v

(0)
D =

(
XX�

n
+ λIn

)
p
(0)
D .

12 for t = 0, 1, 2, . . . do

13 Calculate a
(t)
D =

〈r(t)
D

,u
(t)
D

〉
〈p(t)

D ,v
(t)
D 〉

, and update the dual approximation by

α̂
(t+1)
DS = α̂

(t)
DS + a

(t)
D p

(t)
D .

14 Update primal approximation: ŵ
(t+1)
DS = 1

λn
X�α̂

(t+1)
DS , and update

r
(t+1)
D = r

(t)
D + a

(t)
D v

(t)
D .

15 Initialization: k = 0, z̃(k) = 0, r
(0)
P = R�X�r

(t+1)
D .

16 Compute û
(0)
P by solving (4.3), and update p

(0)
P = −u

(0)
P , calculate

v
(0)
P =

(
R�XXR

n
+ λId

)
p
(0)
P .

17 if not converged then

18 Calculate a
(k)
P =

〈r(k)
P ,u

(k)
P 〉

〈p(k)
P ,v

(k)
P 〉

, and update the approximation by

z̃(k+1) = z̃(k) + a
(k)
P p

(k)
P .

19 Update r
(k+1)
P = r

(k)
P + a

(k)
P v(k), and update u

(k+1)
P by solving (4.3).

20 Update β
(k+1)
P =

〈r(k+1)
P ,u

(k)
P 〉

〈r(k)
P ,r

(k)
P 〉

, and update p
(k+1)
P = −u

(k+1)
P + β

(k+1)
P p

(k)
P .

21 Update v
(k+1)
P =

(
R�X�XR

n
+ λIp

)
p
(t+1)
P , and update k = k + 1.

22 end

23 Update u
(t+1)
D = r

(t+1)
D −XRz̃

(k+1)
D , and update β

(t+1)
D =

〈r(t+1)
D

,u
(t)
D

〉
〈r(t)D ,r

(t)
D 〉

.

24 Update p
(t+1)
D = −u

(t+1)
D + β

(t+1)
D p

(t)
D , and update v

(t+1)
D =

(
XX�

n
+ λIn

)
p
(t+1)
D .

25 end

following notion of the Gaussian width, which will be useful in the statement of
our results. For any set K ⊆ R

p, the Gaussian width is defined as:

W(K) = E

[
sup
w∈K

〈w,g〉
]
, (5.1)
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where g is a random vector drawn from a Normal distribution N (0, Ip). In-
tuitively, if the set K is restricted to certain directions and magnitude, then
W(K) will be small [43]. Given a set K and a random matrix R ∈ R

p×d, and a
unit-length vector v ∈ R

p, the following quantities will be important:

ρ1(K,R) = inf
u∈K∩Sp−1

u�RR�u

ρ2(K,R,v) = sup
u∈K∩Sp−1

∣∣u� (RR� − Ip
)
v
∣∣ ,

where Sp−1 = {x ∈ R
p | ‖x‖ = 1} is the p-dimensional Euclidean unit-sphere.

The sketching matrix R will be constructed to satisfy

E
[
RR�] = Ip,

and, as the sketching dimension d increases, the matrix RR� will get closer
to Ip. Thus, we would like to have ρ1(K,R) be close to 1, and ρ2(K,R,v) be
close to 0. To simplify presentation, assume that the entries of a random matrix
R are sampled i.i.d. from a sub-Gaussian distribution and E

[
RR�] = Ip. The

following lemma states how large the sketching dimension d should be in order
to control ρ1(K,R) and ρ2(K,R,v).

Lemma 1 ([31]). When R is sampled i.i.d. from a sub-Gaussian distribution
and E

[
RR�] = Ip, then there exists universal constants C0 such that

ρ1(K,R) ≥ 1− C0

√
W2(K ∩ Sp−1)

d
log

(
1

δ

)
(5.2)

and

ρ2(K,R,v) ≤ C0

√
W2(K ∩ Sp−1)

d
log

(
1

δ

)
, (5.3)

with probability at least 1− δ.

For a set K ⊆ R
p, define the transformed set XK with X ∈ R

n×p as

XK = {u = Xv ∈ R
n | v ∈ K}.

Before presenting the main unifying result, let us recall the reductions in the
Hessian sketch and dual random projection. For the Hessian sketch, we perform
sample reduction with the transformationX → Π�X, while for the dual random
projection, we perform dimension reduction with the transformation X → XR,
where Π ∈ R

n×m and R ∈ R
p×d. Let ŵHS be an approximate solution obtained

via the Hessian sketch by solving (2.4). The corresponding dual variables are
obtained using the following transformation

α̂HS = y −XŵHS.

Likewise, let α̂DRP and ŵDRP be the approximate dual and primal variables
obtained by the dual random projection. The following theorem established the
recovery bound for α̂HS, α̂DRP and ŵHS, ŵDRP simultaneously.
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Theorem 2. Suppose we perform the Hessian sketch or the dual random pro-
jection for the problem (2.1) with a sub-Gaussian sketching matrix Π ∈ R

n×m

(for HS) or R ∈ R
p×d (for DRP), satisfying E

[
RR�] = Ip and E

[
ΠΠ�] = In.

Then there exists a universal constant C0 such that with probability at least 1−δ,
the following approximation error bounds hold for HS or DRP: For Hessian
sketch:

‖ŵHS −w∗‖X ≤
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w∗‖X , and (5.4)

‖α̂HS −α∗‖2 ≤
√
nC0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w∗‖X . (5.5)

For dual random projection:

‖ŵDRP −w∗‖2 ≤
C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

) ‖w∗‖2 , and (5.6)

‖α̂DRP −α∗‖X� ≤
C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

) ‖α∗‖X� . (5.7)

Theorem 2 is proven in Appendix A.1. We have the following remarks on
Theorem 2.

Remark 1. For a general low-dimensional problem where n  p, W2(XR
p ∩

Sn−1) = p. Thus we have ‖ŵHS −w∗‖X �
√

p
m log

(
1
δ

)
‖w∗‖X. This is the

recovery bound proved in [Proposition 1, 33].

Remark 2. For high-dimensional problems when p is large, W2(X�
R

n∩Sp−1) =
n. Thus we have ‖ŵDRP −w∗‖2 �

√
n
d log

(
1
δ

)
‖w∗‖2. Moreover, when X is low-

rank, that is rank(X) = r and r � min(n, p), we have W
2(X�

R
n ∩ Sp−1) = r,

leading to ‖ŵDRP −w∗‖2 �
√

r
d log

(
1
δ

)
‖w∗‖2. This recovery bound removes a√

log r factor from a bound obtained in Theorem 1 of [53].

5.1.1. Analysis of IHS and DRP when X is approximately low-rank

In this section we provide recovery guarantees for the case when the data matrix
X is approximately low rank. To make X be well approximated by a rank r
matrix where r � min(n, p), we assume σr+1, the r + 1-th singular value of X,
is small enough. Let us decompose X into two parts as

X = UΣV� = UrΣrV
�
r +Ur̄Σr̄V

�
r̄ = Xr +Xr̄,
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where Xr corresponds to the largest r singular values and Xr̄ corresponds to the
remaining singular values with r̄ = {r+1, ...,max(n, p)}. Furthermore, suppose
that the solution to (2.1), w∗, is well approximated by the a linear combination
of the top r left singular vectors of X and that the remaining singular vectors are
almost orthogonal to w∗. We can represent this notion more formally depending
on the particular method. For the Hessian sketch we assume that for some ρ we
have

‖Xr̄w
∗‖2 ≤ ρ ‖Xw∗‖2 ,

while for the dual random projection we assume that∥∥V�
r̄ w

∗∥∥
2
≤ 	 ‖w∗‖2 ,

for some 	. For simplicity, assume that the entries of the sketching matrix
Π ∈ R

m×n and R ∈ R
p×d are sampled i.i.d. from a zero-mean sub-Gaussian

distributions, and satisfying E
[
RR�] = Ip and E

[
ΠΠ�] = In respectively. We

have the following recovery bounds for the Hessian sketch and the dual random
projection.

Theorem 3. With probability at least 1− δ, we have:
For the Hessian sketch:

m ≥ max

(
32(r + 1), 4 log

(
2m

δ

)
,
784σ2

r+1

9λ

)
log
(n
δ

)
then

‖ŵHS −w∗‖X ≤4

√
1

1− ε1
+

σ2
r+1

λn
·

√
ε21 + τ21 ρ

2

1− ε1
+

τ21σ
2
r+1 + ρ2υ2

1σ
2
r+1

λn
‖w∗‖X ;

For the dual random projection: if

d ≥ max

(
32(r + 1), 4 log

(
2d

δ

)
,
784pσ2

r+1

9λn

)
log
(p
δ

)
then

‖ŵDRP −w∗‖2 ≤4

√
1

1− ε2
+

σ2
r+1

λn
·

√
ε22 + τ22 	

2

1− ε2
+

τ22σ
2
r+1 + 	2υ2

2σ
2
r+1

λn
‖w∗‖2 ,

(5.8)

where ε1, ε2, τ1, τ2, υ1, υ2 are defined as

ε1 =2

√
2(r + 1)

m
log

2r

δ
, ε2 = 2

√
2(r + 1)

d
log

2r

δ
,

τ1 =
7

3

√
2(n− r)

m
log

n

δ
, τ2 =

7

3

√
2(p− r)

d
log

p

δ
,

υ1 =2

√
2(n− r + 1)

m
log

2(n− r)

δ
, υ2 = 2

√
2(p− r + 1)

d
log

2(p− r)

δ
.
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The proof is provided in Appendix A.2. We make the following comments on
Theorem 3.

Remark 3. When σr+1 = 0 and X is of exact rank r, the above result simplifies
to

‖ŵHS −w∗‖X �
√

r

m
‖w∗‖X , ‖ŵDRP −w∗‖2 �

√
r

d
‖w∗‖2 (5.9)

These are the results of Theorem 2.

Remark 4. We see that if we have σr+1, ρ, and 	 sufficiently small, then the
guarantees (5.9) still hold. In particular, for the Hessian sketch we need that

σr+1 �
√
λ, ρ �

√
r

n
,

while for the dual random projection we need

σr+1 �
√

λn

p
, 	 �

√
r

p
.

5.2. Analysis of the accelerated IHS and IDRP methods

In this section we provide convergence analysis for the Acc-IHS and Acc-IDRP
algorithms. Recall that Acc-IHS and Acc-IDRP algorithms are preconditioned
conjugate gradient methods on primal and dual problems, with a sketched Hes-
sian as a pre-conditioner. Therefore, we will use a classical analysis of precondi-
tioned conjugate gradient [22] to obtain the following convergence guarantees.

Proposition 4. Iterates obtain by Acc-IHS satisfy∥∥∥ŵ(t)
HS −w∗

∥∥∥
X

≤ 2

(√
κHS(X,Π, λ)− 1√
κHS(X,Π, λ) + 1

)t

‖w∗‖X , (5.10)

where

κHS(X,Π, λ) =κ

((
X�ΠΠ�X

n
+ λIp

)−1(
X�X

n
+ λIp

))
.

Iterates obtain by Acc-IDRP satisfy∥∥∥α̂(t)
DRP −α∗

∥∥∥
X�

≤ 2

(√
κDRP(X,R, λ)− 1√
κDRP(X,R, λ) + 1

)t

‖α∗‖X� , (5.11)

where

κDRP(X,R, λ) =κ

((
XRR�X�

n
+ λIn

)−1(
XX�

n
+ λIn

))
.

From Proposition 4, we see that the convergence of Acc-IHS and Acc-IDRP
heavily depend on the respective condition number, κHS(X,Π, λ) or
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κDRP(X,R, λ). Therefore, it is crucial to obtain a refined upper bound on these
condition numbers. We make use of the following result in [24].

Lemma 5. Suppose the elements of Π ∈ R
n×m are sampled i.i.d. from a zero-

mean sub-Gaussian distribution satisfying E
[
ΠΠ�] = In, then there exists a

universal constant C0 such that, for any subset K ⊆ R
n, we have

sup
u∈K∩Sn−1

∣∣u� (ΠΠ� − In)
)
u
∣∣ ≤ C0

√
W2(K)

m
log

(
1

δ

)
with probability at least 1− δ.

An application of this lemma gives us the following bounds on the condition
numbers κHS(X,Π, λ) and κDRP(X,R, λ).

Theorem 6. If the sketching matrices Π ∈ R
n×m and R ∈ R

p×d are sampled
from sub-Gaussian distributions, and satisfying E

[
RR�] = Ip and E

[
ΠΠ�] =

In respectively, then

κHS(X,Π, λ) ≤
(
1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1

and

κDRP(X,R, λ) ≤
(
1− 2C0

√
W2(X�Rn ∩ Sp−1)

d
log

(
1

δ

))−1

with probability at least 1− δ.

Proof is provided in Appendix A.3. With Theorem 6, we immediately obtain
the following corollary, which states the overall convergence of Acc-IHS and
Acc-IDRP.

Corollary 7. Suppose conditions of Theorem 6 hold. If the number of iterations
of Acc-IHS satisfy

t ≥

⎡⎢⎢⎢
(
1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1/2

log

(
2 ‖w∗‖X

ε

)⎤⎥⎥⎥ ,
then with probability at least 1− δ, we have∥∥∥ŵ(t)

HS −w∗
∥∥∥
X

≤ ε.

If the number of iterations of Acc-IDRP satisfies

t ≥

⎡⎢⎢⎢
(
1− 2C0

√
W2(X�Rn ∩ Sp−1)

d
log

(
1

δ

))−1/2

log

(
2 ‖w∗‖2

ε

)⎤⎥⎥⎥
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then with probability at least 1− δ, we have∥∥∥ŵ(t)
DRP −w∗

∥∥∥
2
≤ ε.

We can compare the convergence rate of Acc-IHS and Acc-IDRP with that
of the standard IHS [33] and the IDRP [53].

Remark 5. The number of iterations to reach ε-accuracy for IHS is

O
((

1+ρ
1−ρ

)
log
(

2‖w∗‖X

ε

))
, where ρ = C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
[Corollary 1

33]. Acc-IHS reduces the number of iterations to O
((√

1
1−2ρ

)
log
(

2‖w∗‖X

ε

))
,

which is significantly smaller when ρ is relatively large. Furthermore, IHS re-
quires m � W

2(XR
p ∩ Sn−1) for the convergence to happen, while Acc-IHS is

always guaranteed to converge. This will be illustrated in simulations.

Remark 6. In a setting with low-rank data, [Theorem 7 53] showed that IDRP

requires O
(

1+ρ
1−ρ

)
log
(

2‖w∗‖2

ε

)
to ε-accuracy where ρ = C0

√
r
d log

(
r
δ

)
. Acc-

IDRP reduces the number of iterations to O
(√

1
1−2ρ

)
log
(

2‖w∗‖2

ε

)
and, further-

more, relaxes the stringent condition d � r log r needed for IDRP to converge,
since Acc-IDRP always converges.

5.3. Analysis of the primal-dual sketch method

In this section, we provide analysis for the primal-dual sketch method. Recall
that here the sketched dual problem is not solved exactly, but is approximately
solved by sketching the primal problem again.

Consider an outer loop iteration t. The analysis of the iterative Hessian sketch
gives us the following lemma on the decrease of the error.

Lemma 8. Let ŵ
(t+1)
HS be the iterate defined in Algorithm 1. Then we have

∥∥∥ŵ(t+1)
HS −w∗

∥∥∥
X

≤
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ∥∥∥ŵ(t)
HS −w∗

∥∥∥
X
.

Note, however, that in the iterative primal-dual sketch, we do not have ac-

cess to the exact minimizer ŵ
(t+1)
HS . Instead, we have an approximate minimizer

w̃
(t+1)
HS , which is close to ŵ

(t+1)
HS . So it remains to analyze the iteration complex-

ity of the inner loop and see how close the approximate minimizer w̃
(t+1)
HS is to

the optimal solution w∗. We have the following theorem.

Theorem 9. With probability at least 1−δ, we have the following approximation

error bound for w̃
(t+1)
HS in the iterative primal-dual sketch:
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HS −w∗

∥∥∥
X

≤

⎛⎝ C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
⎞⎠t

‖w∗‖X

+
10λ2

max

(
X�X

n

)
λ2

⎛⎝ C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k

‖w∗‖2 .

The proof is given in Appendix A.5.
With Theorem 9, we have the following iterative complexity for the proposed

IPDS approach.

Corollary 10. If the number of outer iterations t and number of inner iterations
k in the IPDS satisfy

t ≥

⎡⎢⎢⎢
1 + C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
⎤⎥⎥⎥ log

(
4 ‖w∗‖X

ε

)
,

k ≥

⎡⎢⎢⎢1 + C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎤⎥⎥⎥ log

⎛⎝40λ2
max

(
X�X

n

)
‖w∗‖2

λε

⎞⎠ ,

then with probability at least 1− δ:∥∥∥w̃(t+1)
IPDS −w∗

∥∥∥
X

≤ ε.

Proof. The result directly follows by an application of Theorem 9.

Remark 7. The total number of sketched subproblem to solve in iterative primal-
dual sketch is t · k. To obtain ε approximation error, the total number of sub-
problems is

tk �

⎡⎢⎢⎢
1 +
√

W2(XRp∩Sn−1)
m

1−
√

W2(XRp∩Sn−1)
m

·
1 +

√
W2(X�Rn∩Sp−1)

d

1−
√

W2(X�Rn∩Sp−1)
d

⎤⎥⎥⎥ log2
(
1

ε

)
.

Thus the iterative primal-dual sketch will be efficient when the Gaussian width
of set XR

p and X�
R

n is relatively small. For example, when rank(X) = r �
min(n, p), we can choose the sketching dimension in IPDS to be m, d � r. In
this case the IPDS can return a solution with ε-approximation error by solving
log2 (1/ε) small scale subproblems of scale r × r.

We next provide iteration complexity for the proposed Acc-IPDS algorithms
in Algorithm 7.
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Corollary 11. If the number of outer loops t and number of inner loops k in
IPDS satisfy

t ≥

⎡⎢⎢⎢
(
1− 2C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))−1/2
⎤⎥⎥⎥ log

(
4 ‖w∗‖X

ε

)
,

k ≥

⎡⎢⎢⎢
(
1− 2C0

√
W2(X�Rn ∩ Sp−1)

d
log

(
1

δ

))−1/2
⎤⎥⎥⎥

× log

⎛⎝40λ2
max

(
X�X

n

)
‖w∗‖2

λε

⎞⎠ ,

then with probability at least 1− δ:∥∥∥w̃(t+1)
IPDS −w∗

∥∥∥
X

≤ ε.

Proof. The proof is similar to the proof of Theorem 9. We simply need to sub-
stitute the lower bounds for t and k to obtain the desired result.

5.4. Runtime comparison for large n, large p, and low-rank data

To solve problem (2.1), the runtime usually depends on several quantities in-
cluding the sample size n, the dimension p, as well as the condition number. To
make the comparison between different algorithms, we simply assume X is of
rank r, noting that r might be much smaller than n and p. In (2.1), the regu-
larization parameter λ is generally chosen at the order of O(1/

√
n) to O(1/n)

[42, 8]. Here, we simply consider the large value for λ, that is, of order O(1/
√
n),

which gives a better condition number for the problem. For iterative optimiza-
tion algorithms, the convergence depends on the smoothness parameter of the

problem. In (2.1), the smoothness parameter is λmax

(
X�X

n + λIp

)
, which is

often of the order O(p), for example, under a random sub-Gaussian design. To
attain the runtime of solving (2.1) in different scenarios, we consider the follow-
ing methods which are summarized in Table 2 with their time complexities in
terms of stated parameters:

Solving Linear System: which solves the problem exactly using matrix
inversion, and requires O(np2 + p3).

Linear System with Low-rank SVD: if we have the factorization
X = UV� available, where U ∈ R

n×r, V ∈ R
p×r, then we can solve the

matrix inversion efficiently using the Sherman-Morrison-Woodbury formula:(
λIp +

X�X
n

)−1

= 1
λIp −

1
λ2VU�U(Ir +V�VU�U)−1V�. This can be done

in O(npr + r3) in total.
Gradient Descent: standard analysis [27] shows that the gradient descent

requires O
((

L
λ

)
log
(
1
ε

))
iterations, with each iteration has a time complexity of
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Approach / Runtime O(·) Comment

Linear System np2 + p3

LS with Low-rank SVD npr + r3

Gradient Descent
(
n1.5p2

)
log
(
1
ε

)
Acc.Gradient Descent

(
n1.25p1.5

)
log
(
1
ε

)
Coordinate Descent

(
n1.5p

)
log
(
1
ε

)
SVRG,SDCA,SAG

(
np+ n0.5p2

)
log
(
1
ε

)
Catalyst,APPA

(
np+ n0.75p1.5

)
log
(
1
ε

)
DSPDC npr +

(
nr + n0.75p1.5r

)
log
(
1
ε

)
IHS + Catalyst np log p+ n0.25p1.5r log2

(
1
ε

)
Fast when p � n

DRP + Exact np logn+ (nr2 + r3) log
(
1
ε

)
Fast when n � p

Iter.primal-dual sketch np log p+ (n+ r3) log2
(
1
ε

)
Fast when r � max(p, n)

Table 2

Comparison of runtime of different approaches for solving the large scale optimization
problem in (2.1) stated in terms of number of samples n, the dimensionality of data points

p, the rank of data matrix r, and the target accuracy of recovered solution ε.

O(np) to compute the full gradient for all training samples. Since L = O(p), λ =
O (1/

√
n), the overall runtime becomes O

((
n1.5p2

)
log
(
1
ε

))
.

Accelerated Gradient Descent [27]: which requires O
(√(

L
λ

)
log
(
1
ε

))
iterations, where the cost of each iteration is O(np). For the stated values
of parameters L = O(p) and λ = O (1/

√
n), the overall runtime would be

O
((
n1.25p1.5

)
log
(
1
ε

))
.

Randomized Coordinate Descent [26]: which requires O
(
p
(
1
λ

)
log
(
1
ε

))
iterations, with each iteration O(n), since λ = O (1/

√
n). We have the overall

runtime is O
((
n1.5p

)
log
(
1
ε

))
.

SVRG, SDCA, SAG [16, 51, 39, 37]: which requires O
((
n+ L

λ

)
log
(
1
ε

))
iterations, with the time complexity of O(p) for each iteration to computed the
gradient of simple sample. Since L = O(p), λ = O (1/

√
n), the overall runtime

for this family of algorithms would be O
((
np+ n0.5p2

)
log
(
1
ε

))
.

Accelerated SVRG: Catalyst, APPA, SPDC, RPDG [20, 11, 54, 18]:

thanks to acceleration, this algorithm requires O
((

n+
√

nL
λ

)
log
(
1
ε

))
iter-

ations, with each iteration shares the same O(p) complexity per iteration as
SVRG. Since L = O(p), λ = O (1/

√
n), the overall runtime becomes

O
((
np+ n0.75p1.5

)
log
(
1
ε

))
.

DSPDC [50]: requires O
((

n+
√
nL

λ p
)
log
(
1
ε

))
iterations, and each iter-

ation is in order of O(r). Here L = O(p), λ = O (1/
√
n). Also, to apply

DSPDC, one should compute the low-rank factorization as a preprocessing step
which takes O(npr). Thus we have the overall runtime for this algorithm as
O
(
npr +

(
nr + n0.75p0.5r

)
log
(
1
ε

))
.

Iterative Hessian Sketch + Accelerated SVRG [33]: computing the
sketched problem takes O(np log p) (e.g., via fast Johnson-Lindenstrauss trans-
forms [1]). The algorithms solves O

(
log
(
1
ε

))
sketched problems using acceler-

ated SVRG type algorithm that takes O
(
n0.25p1.5r log

(
1
ε

))
. This leads to the

overall runtime of O
(
np log p+ n0.25p1.5r log2

(
1
ε

))
.
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DRP + Matrix inversion [53]: computing the sketched problem takes
O(np log n). The algorithms needs to solve O

(
log
(
1
ε

))
reduced problems where

each of them requires a matrix inversion with time complexity of O
(
nr2 + r3

)
.

This leads to the overall runtime of O
(
np log n+ (nr2 + r3) log

(
1
ε

))
for this

algorithm.
Iterative Primal-Dual Sketch: computing the sketched problem takes

O(np log p). The algorithms iterates for O
(
log2

(
1
ε

))
rounds, and at each it-

eration it needs to solve a reduced problem that exactly takes O
(
n+ r3

)
. As a

result the overall runtime becomes as O
(
np log p+ (n+ r3) log2

(
1
ε

))
.

6. Application to distributed optimization

In this section we apply the improved iterative sketching in the distributed
optimization problems. Typically, distributed optimization approaches can be
divided into two categories, depending how the data set is partitioned across
different machines: data could be partitioned across features [14, 13, 45, 47] or
it could be partitioned by samples [40, 55, 19, 44, 17, 41]. For the setting where
features are partitioned across machines, we propose the (accelerated) iterative
distributed dual random projection (DIDRP). In the setting where samples are
partitioned across machines, we propose the (accelerated) iterative distributed
Hessian sketch (DIHS). We discuss in detail how these proposals compare to
and improve over existing work.

6.1. Distributed iterative dual random projection

We first consider a setting where features are distributed across different ma-
chines. In this setting, LOCO [14] and Dual-LOCO [13] considered sketching
based approaches, where randomly projected data are transmitted across ma-
chines to approximate the original data. However, as predicted by theory, these
one-shot approaches require communicating a very large number of vectors in
order to obtain a high accuracy solution for the original optimization problem.
On the other hand, iterative sketching methods are very powerful in reducing
the approximation error by solving a different problem using the same sketched
data. At the same time, once we have transmitted the sketched data matrix, at
every iterative sketching round each machine only needs to communicate two
vectors in R

n to solve the next sketched problem.
Suppose X ∈ R

n×d is partitioned across features over m machines, X =
[X[1],X[2], . . . ,X[m]], such that machine k holds X[k] consisting of p/m features
(for simplicity we assume that m divides p). Without loss of generality, assume
the first machine serves as the master machine, and it contains the local data
X[1], as well as the transmitted, randomly projected data [X[2]R[2],X[3]R[3], . . . ,

X[m]R[m]]. Let X̃ = [X[1],X[2]R[2],X[3]R[3], . . . ,X[m]R[m]] be the concatenated
data matrix which contains full local data and the sketched global data. Here
each random matrix R[k], k = 2, . . . ,m is of dimension (p/m)× (d/(m− 1)), so
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that the dimension of X̃ is n× (p/m)+d. At each iteration, the master machine
solves the following problem:

min
z

1

2n

∥∥∥y −Xŵ(t) − X̃z
∥∥∥2
2
+

λ

2

∥∥∥z+ ŵ(t)
∥∥∥2
2
, (6.1)

where ŵ(t) = [w
(t)
[1] ;R

�
[2]w

(t)
[2] ; . . . ;R

�
[m]w

(t)
[m]]. In order to do so, each machine

communicates X[k]ŵ
(t)
[k] , and the master machine aggregates and computes

Xŵ(t) =
∑m

k=1 X[k]ŵ
(t)
[k] . With ẑ obtained by solving (6.1), the master machine

can update the dual solution α̂(t+1) and communicate it back to each machine.
Each machine, in turn, uses the obtained α̂(t+1) to updated their local primal

solution as ŵ
(t+1)
[k] = 1

λnX
�
[k]α̂

(t+1). The details of the algorithm are presented

in Algorithm 8. It is noteworthy to point out that after the initial transmission
stage, in each iteration, each worker only communicates two vectors in R

n to
the master machine.

The following corollary states the communication complexity of Algorithm 8
which is a direct consequence of Theorem 2.

Corollary 12. Suppose that sub-Gaussian sketching matrices were used in Al-
gorithm 8. For Algorithm 8 to reach ε accuracy,

∥∥ŵ(t) −w∗∥∥
2
≤ ε, the total

number of vectors (in R
n) each machine needs to communicate is upper bounded

by

O
(
W

2(XR
p)

m− 1
+ log

(‖w∗‖2
ε

))
.

Remark 8. We can compare our result with that established for Dual-LOCO
[13]. Dual-LOCO requires the number of communication rounds to linearly with
1/ε2. On the other hand, the number of communication rounds of DIDRP only
grow logarithmically with 1/ε. Therefore, DIDRP presents a significant improve-
ment over Dual-LOCO. This is also verified by the empirical results.

6.2. Distributed iterative Hessian sketch

Next, we consider a setting where the data are partitioned by samples. The
data matrix X is partitioned as X = [X(1);X(2); . . . ;X(m)] where each machine

k holds the local data X(k) ∈ R
n/m×p, which contains n/m samples. In this

setting, our main idea is to approximate the Hessian matrix with a mix of local
data and sketched global data. Again, assume the first machine serves as the
master. At the beginning of the algorithm, workers compute and communicate
their sketched local dataΠ�

(k)X(k). The master constructs the sketched data ma-

trix as X̃ = [X(1);Π
�
(2)X(2); . . . ;Π

�
(m)X(m)], which will be used for constructing

an approximation to the Hessian matrix as H̃ = X̃�X̃
n/m+d . At each iteration of

the algorithm, the master solves a sub-problem of form

û(t) = argmin
u

u�
(
H̃+

λ

2
Ip

)
u−

〈
X�(y −Xŵ(t))

n
− λŵ(t),u

〉
, (6.2)
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Algorithm 8: Distributed Iterative Dual Random Projection (DIDRP).

1 Input: Data X,y.

2 Initialization: ŵ(0) = 0.
3 for Each worker k = 2, ...,m do
4 Compute and communicate randomly projected data X[k]R[k].

5 end
6 for t = 0, 1, 2, . . . do

7 The master machine solves the projected problem in (6.1), and obtains ẑ(t).
8 The master machine computes and communicates the dual approximation:

α̂(t+1) = y −Xŵ(t) − X̃ẑ(t).
9 for Each worker k = 2, ...,m do

10 Update local primal approximation: ŵ
(t+1)
[k]

= 1
λn

X�
[k]

α̂(t+1).

11 Compute and communicate X[k]ŵ
(t+1)
[k]

.

12 end

13 end

which is inspired by the iterative Hessian sketch. The quantity X�Xŵ(t) is com-
puted by communicating and aggregating the local information X�Xŵ(t) =∑m

k=1 X
�
(k)X(k)ŵ

(t). The details of the algorithm DIHS are presented in Al-
gorithm 9. The following corollary on its communication efficiency is a direct
consequence of Theorem 2.

Corollary 13. Suppose we use sub-Gaussian sketching in Algorithm 8 and for
Algorithm 9 to reach ε approximation:

∥∥ŵ(t) −w∗∥∥
X

≤ ε, the total number of
vectors (in R

p) each machine need to communicate is upper bounded by

O
(
W

2(XR
p)

m− 1
+ log

(‖w∗‖X
ε

))
.

Acceleration The acceleration techniques presented in Section 2 and 3 can
also be applied in the distributed optimization setting to further improve the
communication efficiency of DIDRP and DIHS. In the experiments, we found
that the accelerated algorithms can often help in saving communication because
of their faster convergence.

7. Experiments

In this section we present extensive comparisons for the proposed iterative
sketching approaches on both simulated and real world data sets. We first
demonstrate the improved convergence of the proposed Acc-IHS and Acc-IDRP
algorithms on simulated data sets. Then we show that the proposed iterative
primal-dual sketch procedure and its accelerated version could simultaneously
reduce the sample size and dimension of the problem, while still maintaining
high approximation precision. Finally, we evaluate these algorithms on some
real world data sets.
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Algorithm 9: Distributed Iterative Hessian Sketch (DIHS).

1 Input: Data X,y.

2 Initialization: ŵ(0) = 0.
3 for Each work k = 2, ...,m do
4 Compute and communicate randomly projected data Π�

(k)
X(k).

5 end
6 for t = 0, 1, 2, . . . do
7 for Each worker k = 2, ...,m do

8 Compute and communicate X�
(k)

X(k)ŵ
(t).

9 end

10 The master machine computes ŵ(t+1) = ŵ(t) + û(t), where û(t) is obtained by

solving the sketched problem (6.2), and communicates ŵ(t+1).
11 end

7.1. Simulations for Acc-IHS and Acc-IDRP

We first examine the effectiveness of the proposed Acc-IHS and Acc-DRP algo-
rithms on simulated data. We generate the response {yi}i∈[n] from the following
linear model

yi = 〈xi,β
∗〉+ εi,

where the noise εi is sampled from a standard Normal distribution. The true
model β∗ is a p-dimensional vector where the entries are sampled i.i.d. from a
uniform distribution in [0, 1].

We first compare the proposed Acc-IHS with the standard IHS on some “big
n”, but relatively low-dimensional problems. We generate {xi}i∈[n] from a mul-
tivariate Normal distribution with mean zero vector, and covariance matrix Σ,
which controls the condition number of the problem. We will varying Σ to see
how it affects the performance of various methods. We set Σij = 0.5|i−j| for
the well-conditioned setting, and Σij = 0.5|i−j|/10 for the ill-conditioned set-
ting. We fix the sample size n = 105 and vary the dimension p ∈ {50, 100, 300}.
The results are shown in Figure 1. For each problem setting, we test 3 differ-
ent sketching dimensions (number inside parentheses in legend). We have the
following observations:

• For both IHS and Acc-IHS, the larger the sketching dimension m, the
faster the iterative algorithms converges to the optimum, which is consis-
tent with the theory that characterize the benefit of using larger sketching
dimension. And this has also been observed in [33] and [53] for IHS and
IDRP algorithms.

• When compared with IHS, we observe that Acc-IHS converges significantly
faster. Moreover, when the sketching dimension is small, IHS can diverge
and go far away from the optimum, while Acc-IHS still converges.

• For all the simulation setting we tried, Acc-IHS converges faster than IHS,
even when its sketching dimension is only 1/3 of the sketching dimension
of IHS.
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Fig 1. Comparison of IHS and Acc-IHS on various simulated datasets. The sketching dimen-
sion for each algorithm is shown inside parentheses.

Next, we compare the proposed Acc-IDRP with the standard IDRP on high-
dimensional, but relatively low-rank data. We generate {xi}i∈[n] from a low-

rank factorization X = UV�, where the entries in U ∈ R
n×r and V ∈ R

p×r

are sampled i.i.d. from a standard Normal distribution. We fix the sample size
n = 104 and vary the dimensions p ∈ {2000, 5000, 20000}. We also vary the
rank r ∈ {20, 50}. The results are shown in Figure 2. For each problem setting,
we test 3 different sketching dimensions (number inside parentheses in legend).
We have similar observations as in the IHS case. Acc-IDRP always converges
significantly faster than IDRP. When the low sketching dimension causes IDRP
to diverge, Acc-IDRP still converges to the optimum.

Above simulations validate the theoretical analysis, which showed that the
accelerated procedures for IHS and IDRP could significantly boost the conver-
gence speed of their standard counterparts. Since the computational cost per
iteration of the standard iterative sketching techniques and their accelerated
versions is almost the same, Acc-IHS and Acc-IDRP will be useful practical
techniques.

7.2. Simulations for IPDS and Acc-IPDS

In this section we demonstrate how iterative primal-dual sketch and its ac-
celerated version work on simulated data. We generated the data using the
same procedure described in the previous section for Acc-DRP. We generate
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Fig 2. Comparison of IDRP and Acc-IDRP on various simulated datasets.

the low-rank data matrix X with rank 10 and vary the sample size n and di-
mension p. For primal-dual sketching, we reduce the sample size to m and the
dimension to d, with m � n, d � p. We compare with the standard IHS and
IDRP. For IHS, we perform the sample reduction from n to m, while for IDRP
we perform data dimension reduction from p to d. Thus the sizes of the sub-
problems for IPDS (and Acc-IPDS), IHS, and IDRP are m × d, m × p, and
n× d, respectively. For IPDS and Acc-IPDS, we terminate the inner loop when
the �∞ distance between two inner iterations is less than 10−10. The results
are shown in Figure 3, where the sketched dimension (m, d) is shown in leg-
end.

We have the following observations:

• IPDS and Acc-IPDS are able to recover the optimum to a very high preci-
sion, even though they simultaneously reduce the sample size and data di-
mension. However, they generally require more iterations to reach certain
approximation level compared with IHS and IDRP, which, on the other
hand, need to solve a substantially larger subproblem at each iteration.
Therefore, primal-dual sketching approach still enjoys computational ad-
vantages. For example, on a problem of size (n, p) = (10000, 20000), IHS
and IDRP need to solve 5 sub-problems of scale (m, p) = (500, 20000)
and (n, d) = (10000, 500), respectively, while Acc-IPDS is only required
to solve 35 sub-problems of scale (m, d) = (500, 500) to obtain the same
approximation accuracy.

• Acc-IPDS converges significantly faster than IPDS, which again verifies
the effectiveness of the proposed acceleration procedure for the sketching
techniques.



4928 J. Wang et al.

Fig 3. Comparion of IPDS and Acc-IPDS versus with IHS and DRP various simulated
datasets.

7.3. Experiments on real data sets

In this section, we present experiments conducted on real-world data sets. Ta-
ble 3 summarizes their statistics. Among these data sets, the first 3 are cases
where sample size is significantly larger than the data dimension. We use them
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Table 3

List of real-world data sets used in the experiments.

Name #Instances #Features

connect4 67,557 126
slice 53,500 385
year 51,630 90

colon-cancer 62 2,000
duke breast-cancer 44 7,129

leukemia 72 7,129
cifar 4,047 3,072
gisette 6,000 5,000
sector 6,412 15,000
mnist 60,000 780
tomes 28,179 96
twitter 582,350 77

to compare the IHS and Acc-IHS algorithms. The middle 3 data sets are high-
dimensional data sets with small sample sizes. We use them to compare the
DRP and Acc-DRP algorithms. Finally, the last 3 data sets are cases where the
sample size and data dimensions are both relatively large, which is suitable for
iterative primal-dual sketching methods. For the last 3 data sets, we found that
standard IHS and DRP often fail, unless a very large sketching dimension is
used. As a result, we compared with Acc-IHS and Acc-DRP algorithms. We fol-
low the same experimental setup used in the simulation study. The convergence
plots are summarized in Figure 4.

We have the following observations:

• Acc-IHS and Acc-DRP converge significantly faster than IHS and DRP,
respectively. This is consistent with the observation drawn from simulation
studies.

• For the last 3 data sets, where n and p are both large, and the data are
not exactly low-rank, IHS, DRP, and IPDS often diverge. This is because
the requirement on the sketching dimension to ensure convergence is high.
The accelerated versions still converge to the optimum. It is notable that
the Acc-IPDS only requires solving several least squares problems with
both sample size and dimension being relatively small.

7.4. Experiments for distributed optimization

We consider distributed optimization in both partition by features and partition
by samples settings. We follow the data generating process as in the simulation
study for Acc-DRP, where we fix a low-rank data matrix X with rank 10, and
vary the sample size n and dimension p, as well as number of machines m. For
partition by features scenario, we compare with LOCO and Dual-LOCO [14, 13].
We plot the relative approximation error versus the number of vectors (in R

n)
communicated. The results are shown in Figure 6. We LOCO and Dual-LOCO
fail to quickly decrease the approximation error even with relatively large com-
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Fig 4. Comparion of various iterative sketching approaches on real-world data sets. Top row:
Acc-IHS versus IHS, middle row: Acc-DRP versus DRP, bottom row: Acc-IPDS versus Acc-
IHS and Acc-DRP.

Fig 5. Comparion of various approaches for distributed optimization on several real world
data sets under the partition by sample setting.
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Fig 6. Comparion of various approaches for distributed optimization under the partition by
feature scenario, with different settings of (n, p,m).

munication, this is consistent with theory that characterize the limit of one-shot
sketching methods. The proposed DIDRP algorithm clearly outperforms LOCO
methods as the number of communicated vectors grows. We further observe
that Acc-DIDRP is more efficient than DIDRP, which again illustrates that the
acceleration techniques can be helpful in further reducing the communication.

For the partition by sample scenario, we compare with several state-of-the-
art algorithms including accelerated gradient descent (AccGD) [27], ADMM [5],
DANE [40] and DiSCO [55]. The results are summarized in Figure 7. We observe
that the methods leveraging higher-order information (DANE,DiSCO,DIHS,Acc-
DIHS) are significantly more communication-efficient compared to AccGD and
ADMM. Generally speaking Acc-DIHS has a slight advantage over existing ap-
proaches. We also tested on several real world data sets and the results are
shown in Figure 5, where we observed a similar behavior.

8. Conclusion and discussion

In this paper, we focused on sketching techniques for solving large-scale �2 reg-
ularized least square problems. We established the equivalence between two
recently proposed techniques, Hessian sketch and dual random projection, from
a primal-dual point of view. We proposed accelerated methods for IHS and
IDRP, from the preconditioned optimization perspective. By combining the pri-
mal and dual sketching techniques, we proposed a novel iterative primal-dual
sketching approach, which substantially reduces the computational cost when
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Fig 7. Comparion of various approaches for distributed optimization under the partition by
sample scenario, with different settings of (n, p,m).

solving sketched subproblems. We demonstrated applications of the iterative
sketching techniques for distributed optimization when the data is partitioned
by features or by samples.

The proposed approach can be extended to solve more general problems. For
example, by sketching the Newton step in a second-order optimization method,
as done in [32], we will be able to solve regularized risk minimization problems
with self-concordant losses. It will be interesting to examine its empirical per-
formance compared with existing approaches. More generally, Hessian sketch
and dual random projection are designed for solving convex problems. It will
be interesting to extend them for some structured non-convex problems, such
as principle component analysis.

Appendix A: Appendix

The appendix contains proofs of theorems stated in the main paper.

A.1. Proof of Theorem 2

Proof. Based on the optimality condition for w∗ and ŵHS, we have(
X�X

n
+ λIp

)
w∗ =

X�y

n
and

(
X�ΠΠ�X

n
+ λIp

)
ŵHS =

X�y

n
.



Sketching meets random projection in the dual 4933

Therefore (
X�X

n
+ λIp

)
w∗ −

(
X�ΠΠ�X

n
+ λIp

)
ŵHS = 0,

and 〈(
X�X

n
+ λIp

)
w∗ −

(
X�ΠΠ�X

n
+ λIp

)
ŵHS,w

∗ − ŵHS

〉
= 0.

By adding and subtracting
〈
w∗ − ŵHS,

(
X�ΠΠ�X

n + λIp

)
w∗
〉
, we have〈(

X�ΠΠ�X

n
− X�X

n

)
w∗, ŵHS −w∗

〉
= (w∗ − ŵHS)

�
(
X�ΠΠ�X

n
+ λIp

)
(w∗ − ŵHS)

The term on right hand side is lower bounded as

(w∗ − ŵHS)
�
(
X�ΠΠ�X

n

)
(w∗−ŵHS) + λ ‖w∗ − ŵHS‖22

≥ ρ1(XR
p,Π) ‖w∗ − ŵHS‖2X .

(A.1)

For the left hand side, we have the following upper bound〈(
ΠΠ� − In

) Xw∗
√
n

,
X√
n
(ŵHS −w∗)

〉
≤ ρ2(XR

p,Π,w∗) ‖w∗‖X ‖ŵHS −w∗‖X . (A.2)

Combining (A.1) and (A.2) we have

‖ŵHS −w∗‖X ≤ ρ2(XR
p,Π,w∗)

ρ1(XRp,Π)
‖w∗‖X .

For the recovery of dual variables, we have

‖α̂HS −α∗‖2 = ‖y −XŵHS − (y −Xw∗)‖2
=
√
n ‖ŵHS −w∗‖X

≤
√
n
ρ2(XR

p,Π,w∗)

ρ1(XRp,Π)
‖w∗‖X .

This completes the proof for the Hessian sketch.
For the dual random projection, the proof is mostly analogous. Based on the

optimality condition for α∗ and α̂DRP, we have(
XX�

n
+ λIn

)
α∗ = λy and

(
XRR�X�

n
+ λIn

)
α̂DRP = λy.
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Therefore (
XX�

n
+ λIn

)
α∗ −

(
XRR�X�

n
+ λIn

)
α̂DRP = 0,

and 〈(
XX�

n
+ λIn

)
α∗ −

(
XRR�X�

n
+ λIn

)
α̂DRP,α

∗ − α̂DRP

〉
= 0.

Simple algebra gives us〈(
XRR�X�

n
− XX�

n

)
α∗, α̂DRP −α∗

〉
= (α∗ − α̂DRP)

�
(
XRR�X�

n
+ λIn

)
(α∗ − α̂DRP).

The term on right hand side is lower bounded as

(α∗ − α̂DRP)
�
(
XRR�X�

n

)
(α∗ − α̂DRP) + λ ‖α∗ − α̂DRP‖22

≥ ρ1(X
�
R

n,R) ‖α∗ − α̂DRP‖2X� .

(A.3)

The term on the left hand side is upper bounded as〈(
RR� − Ip

) X�α∗
√
n

,
X�
√
n
(α̂DRP −α∗)

〉
≤ ρ2(X

�
R

n,R,α∗) ‖α∗‖X� ‖α̂DRP −α∗‖X� . (A.4)

Combining (A.3) and (A.4) we have

‖α̂DRP −α∗‖X� ≤ ρ2(X
�
R

n,R,α∗)

ρ1(X�Rn,R)
‖α∗‖X� .

For the recovery of primal variables, we have

‖ŵDRP −w∗‖2 =
1

λ
√
n
‖α̂DRP −α∗‖X� ≤ 1

λ
√
n

ρ2(X
�
R

n,R,α∗)

ρ1(X�Rn,R)
‖α∗‖X�

=
ρ2(X

�
R

n,R,α∗)

ρ1(X�Rn,R)
‖w∗‖2 .

An application of Lemma 1 concludes the proof.

A.2. Proof of Theorem 3

We only prove the result for the Hessian sketch here as the proof for the dual
random projection is analogous. We will make usage of the following concentra-
tion result for sub-Gaussian random matrices.
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Lemma 14 (Lemma 3 in [53]). Let B ∈ R
r×m be a random matrix with entries

sampled i.i.d. from zero-mean sub-Gaussian distribution with variance 1/m, then

∥∥BB� − Ir
∥∥
2
≤ 2

√
2(r + 1)

m
log

2r

δ
:= ε1

with probability at least 1− δ.

Lemma 15 (Theorem 3.2 in [35]). Let B ∈ R
r×m, A ∈ R

(n−r)×m be two ran-
dom matrices with entries sampled i.i.d. from a zero-mean sub-Gaussian distri-
bution with variance 1/m, then

∥∥AB�∥∥
2
≤ 7

3

√
2(n− r)

m
log

n

δ
:= τ1

with probability at least 1− δ.

Let Δw = w∗ − ŵHS. Then

‖Δw‖2X =

∣∣∣∣∣∣∣∣XΔw√
n

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣ (UΣrV
� +UΣr̄V

�)Δw√
n

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

Consider the term Δw�
(

X�ΠΠ�X
n + λIp

)
Δw. We have

Δw�
(
X�ΠΠ�X

n
+ λIp

)
Δw

≥ Δw�
(
V�ΣrU

�ΠΠ�UΣrV
�

n

)
Δw + λ ‖Δw‖22

+ 2Δw�
(
V�Σr̄U

�ΠΠ�UΣrV
�

n

)
Δw.

Since

Δw�
(
V�ΣrU

�ΠΠ�UΣrV
�

n

)
Δw ≥ (1− ε1)

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

,

and

λ ‖Δw‖22 ≥ λ

σ2
r+1

∥∥Σr̄V
�Δw

∥∥2
2
=

λn

σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

,

where
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2Δw�
(
V�Σr̄U

�ΠΠ�UΣrV
�

n

)
Δw

= 2Δw�
(
V�Σr̄U

�
r̄ ΠΠ�UrΣrV

�

n

)
Δw

≥ −τ1

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣
2

,

we have

Δw�
(
X�ΠΠ�X

n
+ λIp

)
Δw

≥ (1− ε1)

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
λn

σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

− 2τ1

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣
2

≥
(
1

2
− ε1

2

) ∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
λn

2σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

.

Consider the term
〈(

ΠΠ� − In
)

Xw∗
√
n
,−XΔw√

n

〉
, we have〈(

ΠΠ� − In
) Xw∗

√
n

,
X√
n
(ŵHS −w∗)

〉
=

〈(
ΠΠ� − In

) Xrw
∗

√
n

,−XrΔw√
n

〉
+

〈(
ΠΠ� − In

) Xr̄w
∗

√
n

,−XrΔw√
n

〉
+

〈(
ΠΠ� − In

) Xrw
∗

√
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,−Xr̄Δw√
n

〉
+

〈(
ΠΠ� − In

) Xr̄w
∗

√
n

,−Xr̄Δw√
n

〉
.

Notice that the random matrix Π�Ur and Π�Ur can be treated as two Gaus-
sian random matrices with entries sampled i.i.d from N (0, 1/m). Applying
Lemma 14 and Lemma 15, we can bound above terms separately:〈(

ΠΠ� − In
) Xrw

∗
√
n

,−XrΔw√
n

〉
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By Cauchy-Schwarz inequality, we have〈(
ΠΠ� − In

) Xw∗
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2

+τ1

∣∣∣∣∣∣∣∣ΣrV
�w∗

√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣
2

+ υ1

∣∣∣∣∣∣∣∣Σr̄V
�w∗

√
n

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣
2

≤ 4ε21
1− ε1

∣∣∣∣∣∣∣∣ΣrV
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

+
1− ε1

8

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
4τ21

1− ε1

∣∣∣∣∣∣∣∣Σr̄V
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

+
1− ε1

8

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
4τ21σ

2
r+1

λn

∣∣∣∣∣∣∣∣ΣrV
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

+
λn

8σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
4υ2

1σ
2
r+1

λn

∣∣∣∣∣∣∣∣Σr̄V
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

+
λn

8σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

.

From the proof of Theorem 2, we know

1− ε1
2

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
λn

2σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

≤ Δw�
(
X�ΠΠ�X

n
+ λIp

)
Δw

=

〈(
ΠΠ� − In

) Xw∗
√
n

,
X√
n
(ŵHS −w∗)

〉
.

Combining the above, we have

1− ε1
4

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
λn

4σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

≤
(

4ε21
1− ε1

+
4τ21σ

2
r+1

λn

) ∣∣∣∣∣∣∣∣ΣrV
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

+

(
4τ21

1− ε1
+

4υ2
1σ

2
r+1

λn

) ∣∣∣∣∣∣∣∣Σr̄V
�w∗

√
n

∣∣∣∣∣∣∣∣2
2

≤
(

4ε21
1− ε1

+
4τ21σ

2
r+1

λn
+

4τ21 ρ
2

1− ε
+

4ρ2υ2
1σ

2
r+1

λn

)
‖w∗‖2X .

Thus

‖Δw‖2X =

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2
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≤
(

4

1− ε1
+

4σ2
r+1

λn

)(
1− ε1

4

∣∣∣∣∣∣∣∣ΣrV
�Δw√
n

∣∣∣∣∣∣∣∣2
2

+
λn

4σ2
r+1

∣∣∣∣∣∣∣∣Σr̄V
�Δw√
n

∣∣∣∣∣∣∣∣2
2

)

≤
(

4

1− ε1
+

4σ2
r+1

λn

)(
4ε21

1− ε1
+

4τ21σ
2
r+1

λn
+

4τ21 ρ
2

1− ε1
+

4ρ2υ2
1σ

2
r+1

λn

)
‖w∗‖2X,

which concludes the proof.

A.3. Proof of Theorem 6

For notation simplicity, let

H̃ =
X�ΠΠ�X

n
+ λIp and H =

X�X

n
+ λIp.

Based on the property of similarity matrices, we have

κ(H̃−1H) = κ(H̃−1/2HH̃−1/2) =
maxw w�H̃−1/2HH̃−1/2w

minw w�H̃−1/2HH̃−1/2w
.

Consider the quantity |w�H̃−1/2(H− H̃)H̃−1/2w|. We have

|w�H̃−1/2(H− H̃)H̃−1/2w| =
〈(

H− H̃
)
H̃−1/2w, H̃−1/2w

〉
=

〈(
ΠΠ� − In

) X√
n
H̃−1/2w,

X√
n
H̃−1/2w

〉
≤ρ2

(
XR

p,Π,
X√
n
H̃−1/2w

)∥∥∥H̃−1/2w
∥∥∥2
X

≤C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

)∥∥∥H̃−1/2w
∥∥∥2
X
.

For any vector u ∈ R
p, we have∥∥∥H̃1/2u

∥∥∥2
2
=u�

(
X�ΠΠ�X

n
+ λIp

)
u

=u�
(
X�ΠΠ�X

n

)
u+ λ ‖u‖22

≥ρ1(XR
p,Π) ‖u‖2X

≥
(
1− C0

√
W2(XRp ∩ Sn−1)

m
log

(
1

δ

))
‖u‖2X .

Let u = H̃−1/2w, we have∥∥∥H̃−1/2w
∥∥∥2
X

≤ 1

1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22 .
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Combining, we get

|w�H̃−1/2(H− H̃)H̃−1/2w| ≤
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22 ,

which implies

max
w

w�H̃−1/2HH̃−1/2w ≤‖w‖22 +
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22

=
1

1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22 ,

and

min
w

w�H̃−1/2HH̃−1/2w ≥‖w‖22 −
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22

=
1− 2C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ‖w‖22 .

Thus we know

κ(H̃−1H) ≤ 1

1− 2C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) .
The proof for κDRP(X,R, λ) is analogous.

A.4. Proof of Lemma 8

Note that (2.6) is sketching the following problem

argmin
u

u�
(
X�X

2n
+

λ

2
Ip

)
u−

〈
X�(y −Xŵ

(t)
HS)

n
− λŵ

(t)
HS,u

〉
,

where w∗ − ŵ
(t)
HS is the optimal solution. Thus applying Theorem 2, We have

∥∥∥û(t) − (w∗ − ŵ
(t)
HS)
∥∥∥
X

≤
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ∥∥∥ŵ(t)
HS −w∗

∥∥∥
X
.

Using the definition that ŵ
(t+1)
HS = ŵ

(t)
HS + û(t), we obtain the desired result.

A.5. Proof of Theorem 9

By triangle inequality we have the following decomposition:



4940 J. Wang et al.∥∥∥w̃(t+1)
HS −w∗

∥∥∥
X

≤
∥∥∥ŵ(t+1)

HS −w∗
∥∥∥
X
+
∥∥∥w̃(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X

≤
C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

) ∥∥∥ŵ(t)
HS −w∗

∥∥∥
X
+
∥∥∥w̃(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X

≤

⎛⎝ C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
⎞⎠t

‖w∗‖X +
∥∥∥w̃(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X
.

For the term
∥∥∥w̃(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X
, we can further bridge w̃

(t+1)
HS and ŵ

(t+1)
HS by

w̄
(t+1)
HS , which is the result of one exact step of IHS initialized at w̃

(t)
HS. Thus we

have the following decomposition∥∥∥w̃(t+1)
HS − ŵ

(t+1)
HS

∥∥∥
X

≤
∥∥∥w̃(t+1)

HS − w̄
(t+1)
HS

∥∥∥
X
+
∥∥∥w̄(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X
.

Applying the Theorem 2 for DRP we have the following bound for
∥∥∥w̃(t+1)

HS −
w̄

(t+1)
HS Big‖X:∥∥∥w̃(t+1)

HS − w̄
(t+1)
HS

∥∥∥
X

≤ λmax

(
X�X

n

)∥∥∥w̃(t+1)
HS − w̄

(t+1)
HS

∥∥∥
2

≤ λmax

(
X�X

n

)⎛⎝ C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k ∥∥∥w̄(t+1)

HS

∥∥∥
2

≤ λmax

(
X�X

n

)⎛⎝ C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k

×
(∥∥∥w̄(t+1)

HS −w∗
∥∥∥
2
+ ‖w∗‖2

)

≤ 2λmax

(
X�X

n

)⎛⎝ C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k

‖w∗‖2 .

We can relate the error
∥∥∥w̄(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X

to the error term at t-th outer

loop iteration:
∥∥∥w̃(t)

HS − ŵ
(t)
HS

∥∥∥
X
:∥∥∥w̄(t+1)

HS − ŵ
(t+1)
HS

∥∥∥
X

=
∥∥∥w̃(t)

HS − H̃−1∇P (w̃
(t)
HS)− ŵ

(t)
HS − H̃−1∇P (ŵ

(t)
HS)
∥∥∥
X

=
∥∥∥H̃−1(H̃−H)(w̃

(t)
HS − ŵ

(t)
HS)
∥∥∥
X

≤
∥∥∥H̃−1

∥∥∥
2

∥∥∥H̃−H
∥∥∥
2

∥∥∥w̃(t)
HS − ŵ

(t)
HS

∥∥∥
X
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≤
4λmax

(
X�X

n

)
λ

∥∥∥w̃(t)
HS − ŵ

(t)
HS

∥∥∥
X

≤
8λ2

max

(
X�X

n

)
λ

⎛⎝ C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k

‖w∗‖2 .

Combining above inequalities we obtained the following iterative error bound

for w̃
(t+1)
HS :

∥∥∥w̃(t+1)
HS −w∗

∥∥∥
X
≤

⎛⎝ C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
1− C0

√
W2(XRp∩Sn−1)

m log
(
1
δ

)
⎞⎠t

‖w∗‖X

+
10λ2
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(
X�X

n

)
λ
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√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
1− C0

√
W2(X�Rn∩Sp−1)

d log
(
1
δ

)
⎞⎠k

‖w∗‖2.
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