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Abstract: It is widely pointed out in the literature that misspecification
of a parametric model can lead to inconsistent estimators and wrong infer-
ence. However, even a misspecified model can provide some valuable infor-
mation about the phenomena under study. This is the main idea behind
the development of an approach known, in the literature, as parametrically
guided nonparametric estimation. Due to its promising bias reduction prop-
erty, this approach has been investigated in different frameworks such as
density estimation, least squares regression and local quasi-likelihood. Our
contribution is concerned with parametrically guided local quasi-likelihood
estimation adapted to randomly right censored data. The generalization to
censored data involves synthetic data and local linear fitting. The asymp-
totic properties of the guided estimator as well as its finite sample perfor-
mance are studied and compared with the unguided local quasi-likelihood
estimator. The results confirm the bias reduction property and show that,
using an appropriate guide and an appropriate bandwidth, the proposed
estimator outperforms the classical local quasi-likelihood estimator.
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1. Introduction

The concept of quasi-likelihood estimation was proposed by [43] as a flexible
extension of the maximum likelihood estimation method for generalized linear
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models (GLMs). The latter, as introduced by [32], relies on strong parametric
assumption about the distribution of the data that can be hard to verify in
practice. In such situations, the quasi-likelihood estimation may be a suitable
alternative, since it relies only on assumptions about the first two moments.
Moreover, the quasi-likelihood function has similar properties as the classical
full log-likelihood function; see [31] for more details.

Likelihood and quasi-likelihood provide consistent and powerful estimators if
the required assumptions imposed on the data are met. However, a misspecified
model can create an important bias in the estimation of the underlying target
function. For this reason, nonparametric techniques, that are more robust, have
been investigated by many studies. This include [20], [34], [37], [23], and [36], to
cite just a few examples. More recent contributions include the work of [14] and
[11], who investigated local polynomial fitting for likelihood and quasi-likelihood
in the context of GLMs, [4], who studied local quasi-likelihood for missing data.

Even when the proposed model is misspecified, parametric estimation can
provide a useful information about the target function. This information can
be injected into a nonparametric estimator in order to improve its performance
in terms of bias and mean-squared error (MSE). In the literature, there exists
an attractive method that allows for that, namely the parametrically guided
nonparametric estimation. In contrast to a traditional semi-parametric method,
a parametrically guided estimator is fully nonparametric in the sense that no
global parametric structure is imposed on the data. In the complete data case,
considerable attention has recently been paid to this approach in the litera-
ture. First, [22] introduced the parametric guided kernel scheme for density
estimation. Then, [17], [18] and [30] investigated this method for mean regres-
sion function. Later, the same approach has been extended to GLMs and local
quasi-likelihood by [16]. Very recently, [15] applied the guided estimation to
generalized additive models and [7] studied the guided estimation for varying
coefficient models. These papers noticed and showed the interesting property
of bias reduction for their guided nonparametric estimators compared with the
unguided ones without any increase in the variance.

There exist three different schemes allowing to guide parametrically a non-
parametric estimator. The first scheme has been developed by [22] using a multi-
plicative correction that requires a nonzero value for the parametric part which
is not always respected in practice. In the second scheme, the correction is car-
ried out in an additive rather than a multiplicative scale. Such guided scheme
has been introduced in kernel regression by [35] and used later in different
frameworks. Finally, the last guided scheme combines both the additive and the
multiplicative scheme in a unified family indexed by a calibration parameter
that controls the balance between the two corrections. The unified family has
the advantage of being more general than the two other corrections. However,
the additional calibration parameter needs to be selected, which is not an easy
task. In the context of local quasi-likelihood, [16] studied in detail the three
different schemes. For the sake of simplicity, we first restrict our attention to
the additive scheme, and next we give an extension of our results to the uni-
fied family of corrections. In the following, we give a brief description of the
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guided additive scheme in the context of local quasi-likelihood, more details are
provided in Section 2.

Suppose for the moment that we have completely observed and i.i.d. data
(Yi, Xi), i = 1, . . . , n, and let m(x) = E(Y |X = x) be the true mean regression
function. In classical parametric GLMs, m(x) is modeled linearly using a known
link function g(·), that is g(m(x)) = η(x), with η(x) = θ0+θ1x. The parameter of
interest θ = (θ0, θ1)

T can be estimated via the likelihood or the quasi-likelihood.
However, in practice, the linearity assumption is not met in many situations.
In such cases, local quasi-likelihood is more appropriate since it allows the esti-
mation of η(x) without any explicit specification of its form. In between these
two “extreme” approaches, [16] proposed a guided local quasi-likelihood esti-
mator with the objective of combining the advantages of both parametric and
local quasi-likelihood estimators. As stated before, we focus on the additively
guided local quasi-likelihood estimator. The additive scheme starts with a para-
metric quasi-likelihood estimator which is not necessarily correctly specified.
Then, in a second step, this crude parametric approximation is adjusted using
a local quasi-likelihood estimator. More formally, let η(x, θ̂) be a “naive” quasi-
likelihood estimator of η(x, θ), a given, possibly misspecified, parametric model

for η(x). [16] proposed to estimate the error term rθ̂(x) := η(x)−η(x, θ̂) using a
nonparametric weighted local quasi-likelihood (LQL) estimator that we denote
by r̂θ̂(x). The additive parametrically guided local quasi-likelihood (GLQL) es-

timator is defined by η̂(x) = η(x, θ̂) + r̂θ̂(x). When the parametric model is
properly chosen, rθ̂ may be flatter and easier to adjust non-parametrically than
the original function η. In this case, the guided local quasi-likelihood estimator
should be of smaller MSE than the classical LQL estimator. Otherwise, the non-
parametric correction is expected to correct for the misspecification and there
should not be much loss in accuracy for the resulting GLQL estimator compared
to the classical LQL estimator.

Regression problems in which the response is subject to censoring have been
widely studied in the literature. Many investigations have been devoted to para-
metric regression, among them, [3], [25], [26] and [8]. An extensive field of re-
search has been developed for nonparametric regression, see for example [2],
[12], [21], [10] and [28], among others. However, only few papers extending
parametric quasi-likelihood to censored data exist in the literature. The first
extension of quasi-likelihood to the right censored data case has been estab-
lished in the framework of partially linear single-index models by [29]. In the
generalized linear model, [44] adapted the parametric quasi-likelihood to cen-
sored data. Recently, [45], [47] and [46] proposed different semi-parametric quasi-
likelihood estimators in the framework of accelerated failure time models. Note
that, none of the papers mentioned above has considered a fully nonparametric
quasi-likelihood. Thus, one of the main objectives of this paper is to extend the
local quasi-likelihood of [14] to the censored data case.

Regarding the parametrically guided nonparametric estimation, as far as we
know, except the recent work of [39], [40], the guided nonparametric estimation
has never been studied in the context of censored data. A well known challenge
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in the presence of censoring is that the response is not always available. Con-
sequently, the parametrically guided local quasi-likelihood method can not be
directly applied. In order to address this problem, we first need to transform the
data before applying the GLQL. Several transformations have been proposed in
the literature. In this work we investigate the transformation proposed by [25]
since it does not require any iterative procedure.

The paper is organized as follows. Section 2 explains in detail the different
steps of the proposed methodology. Section 3 provides some asymptotic results
for the proposed method, while Section 4 illustrates the performance of the
proposed estimator via simulation studies. Finally, some general conclusions are
drawn in Section 5. The proofs are given in the Appendix.

2. Model and methodology

Regression techniques are commonly used to describe a relationship between
a variable of interest Y ∈ � and a covariate X ∈ �. In a right censored re-
gression framework, the response Y is not directly available. Indeed, in the
presence of a censoring variable C one can only observe an i.i.d. random sample
(Xi, Ti, δi), i = 1, . . . , n, from (X,T, δ), where T = min(Y,C) and δ = I(Y ≤ C).
In the following we suppose that given the covariate X, the censoring variable
C is independent of the variable of interest Y . Set F (y|x) = P (Y ≤ y|X = x)
and G(y|x) = P (C ≤ y|X = x) the conditional distribution function of Y and
C given X = x, respectively. Suppose that there exists a known positive func-
tion V (·) that relates the conditional mean and the conditional variance of φ(Y )
given X as follows:

m(x) = E(φ(Y )|X = x) and V ar(φ(Y )|X = x) = V (m(x)),

where φ is a known function used to cover various parameters of interest. For
example, when φ(y) = y1{y≤τ}, for some known τ , we get the truncated mean

m(x) =
∫ τ

−∞ ydF (y|x). Our main objective is to estimate η(x) = g(m(x)), where
g(·) is a known link function. Since only the relationship between the conditional
mean and the conditional variance is known, the likelihood estimation method
can not be used. In the following, we first introduce the guided local quasi-
likelihood for complete data, and then we adapt the method to handle censoring.

2.1. Guided local quasi-likelihood for complete data

[43] defined the quasi-log-likelihood function as any function Q(μ, y) satisfying

∂

∂μ
Q(μ, y) =

y − μ

V (μ)
.

Assuming that η(x) = θ0 + θ1x, the parameters θ0 and θ1 can be estimated via
maximizing the parametric quasi-likelihood

∑n
i=1 Q

(
g−1(θ0 + θ1Xi), Yi

)
, that

plays the role of the log-likelihood in the classical GLM model. Because the
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assumption of linearity does not hold in many situations, [14] proposed a lo-
cal polynomial quasi-likelihood method to estimate η(·) without assuming any
specific form for it. The maximum local quasi-likelihood estimator of order p
(p ≥ 1) of η(x) is η̂(x) = β̂0, where (β̂0, . . . , β̂p) is the maximizer of

n∑
i=1

Q
(
g−1(β0 + . . .+ βp(Xi − x)p), Yi

)
Kh

(
Xi − x

)
,

where K(·) is a kernel density, h ≡ hn is a smoothing bandwidth, and Kh(·) =
h−1K(·/h).

Let η(x, θ) be a parametric model which belongs to some family of param-
eterized functions {η(x, θ) : θ ∈ Θ ⊂ �d} and define the parametric maximum
quasi-likelihood estimator of θ as

θ̂ = argmax
θ∈Θ

n∑
i=1

Q
(
g−1(η(Xi, θ)), Yi

)
. (2.1)

As discussed in the introduction, the parametric estimator given in (2.1) pro-
vides some useful and interesting information about the target function η(·)
that may help us to improve the local quasi-likelihood estimator. To simplify
the presentation, we focus on the local linear case (p = 1). Under the addi-

tive scheme, [16] proposed to estimate the error term rθ̂(x) = η(x)− η(x, θ̂) by

r̂θ̂(x) = β̂0, where (β̂0, β̂1) is the maximizer, with respect to (β0, β1), of the local

quasi-likelihood function
∑n

i=1 Q
(
g−1(β0+β1(Xi−x)+η(Xi, θ̂)), Yi

)
Kh

(
Xi−x

)
.

η(x) can then be estimated by η̂(x) = η(x, θ̂)+r̂θ̂(x). The latter can, equivalently
and directly, be derived by maximizing

n∑
i=1

Q
(
g−1(β0 + β1(Xi − x) + η(Xi, θ̂)− η(x, θ̂)), Yi

)
Kh

(
Xi − x

)
,

and taking η̂(x) = β̂0, where (β̂0, β̂1) maximizes the above function with respect
to (β0, β1).

2.2. Guided local quasi-likelihood and censoring

In the presence of censoring, as E(φ(T )|X = x) �= m(x), one cannot directly
use the observed data to estimate η(x) = g(m(x)). In order to overcome this
problem, we will use the synthetic data approach. In this approach, the observed
response T is substituted by a synthetic response Y ∗, such that, under the
conditional independence of Y and C given X, E(Y ∗|X = x) = m(x). Different
transformations satisfying this equality exist in the literature, see for instance
[27] and [48], among others. We limit ourselves to the transformation of [25]
defined by

Y ∗ =
δφ(T )

1−G(T−|X)
. (2.2)

This transformation is not directly applicable in practice, since it depends on
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G(y|x), the conditional distribution of C given X = x, which is unknown. An
estimator of this function was proposed by [2] and is given by

Ĝ(y|x) = 1−
n∏

i=1

(
1−

(1− δi)1{Ti≤y}wi(x)∑n
j=1 1{Ti≤Tj}wi(x)

)
,

where wi(x) = K0((Xi − x)/h0)/
∑n

j=1 K0((Xj − x)/h0), are the Nadaraya-
Watson weightsK0 is a kernel density function and h0 is a bandwidth parameter.
Note that if wi(x) = n−1, i = 1, . . . , n, then Ĝ reduces to the well known Kaplan-
Meier estimator. Beran’s estimator was studied by many authors, among them
we cite [9], [6], [19] and [42]. We define the synthetic response Ŷ ∗ by plugging
Beran’s estimator into the transformation (2.2) as follows:

Ŷ ∗ =
δφ(T )

1− Ĝ(T−|X)
. (2.3)

Following [16], we define our parametrically guided local quasi-likelihood estima-

tor of η, based on the synthetic sample (Ŷ ∗
i , Xi), i = 1, . . . , n , as η̂Ĝ,θ̂(x) = β̂0,

where β̂ = (β̂0, β̂1)
T is the maximizer of

n∑
i=1

Q
(
g−1(β0 + β1(Xi − x) + η(Xi, θ̂)− η(x, θ̂)), Ŷ ∗

i

)
Kh

(
Xi − x

)
, (2.4)

with respect to β = (β0, β1)
T , and θ̂ is a pseudo parametric quasi-likelihood

estimator of θ adapted to censored data. The estimation approach that we
adopt will be discussed in detail in Section 3.2. Note that the parametrically
guided local quasi-likelihood given in (2.4) raises new challenges when compared
to the equivalent estimator with completely observed data since the synthetic

observations Ŷi
∗
, i = 1, . . . , n defined by (2.3) are estimated using the whole

sample.

Remark 2.1. We didn’t find any results in the literature concerning the esti-
mation of a general misspecified parametric model using quasi-likelihood under
censoring. We also note that using a linear guide reduces the estimator to the
classical local quasi-likelihood estimator of η, which means that our GLQL es-
timator η̂Ĝ,θ̂(x) is a generalization of the classical LQL estimator that can be

obtained by maximizing (2.4) with η = 0.

3. Theoretical properties

In order to show the bias reduction property of our new estimator, we investigate
in this section the asymptotic distribution of η̂Ĝ,θ̂(·). First of all, we derive in

Theorem 3.1 the asymptotic properties of η̃Ĝ(·) an estimator of η(·) guided by
a given non stochastic approximation η̃(·). Then, in Theorem 3.2 we generalize
the results to cover the case of a data-driven parametric guide.
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3.1. The model with non-random guide

Let η̃(x) be a non stochastic guide that approximates the true function η(x)

and let β̃ = (β̃0, β̃1) maximize the following function:

n∑
i=1

Q
(
g−1(β0 + β1(Xi − x) + η̃(Xi)− η̃(x)), Ŷ ∗

i

)
Kh

(
Xi − x

)
. (3.1)

Define the corresponding GLQL estimator as η̃Ĝ(x) = β̃0. In the following, we
provide the assumptions required for the main results.

Assumption 3.1. A1. i. X has a compact support SX ⊂ �.
ii. fX(.), the marginal density of X, is twice continuously differentiable
and infx∈SX

fX(x) > 0.
A2. The function φ is bounded and vanishes outside the interval [0, τ ] for some

τ < infx∈SX
τx with τx = sup{y : H(y|x) < 1}, that is, the right endpoint

of the support of H(y|x) = P (T ≤ y|X = x).
A3. The functions Hj(y|x) = P (T ≤ y, δ = j|X = x), j = 0, 1, have four

derivatives with respect to x. Furthermore, the derivatives are bounded
uniformly for all y ≤ τ and x ∈ SX .

A4. E(φ(Y )2) < ∞.
A5. i. K is a symmetric probability density function with compact support, say

SK = [−1, 1].
ii. K0 is a symmetric, twice continuously differentiable probability density
function with compact support SK0 .
iii.

∫
x2K(x)dx = μK

2 < ∞,
∫
x2K0(x)dx = μK0

2 < ∞ and
∫
xjK2(x)dx =

νKj < ∞ for j = 0, 1, 2.

A6. nh5 = O(1), nh5
0/ logn = O(1), nh → ∞ and nh0 → ∞ as n → ∞.

A7. η(·), V (·), η̃(·) and g′(·) are twice continuously differentiable.

Assumptions A1 and A7 are regularity assumptions needed for the consis-
tency and the asymptotic normality of the guided estimator. Assumptions A2
and A3 are usual assumptions in nonparametric regression with censored data
allowing to avoid the problem of inconsistency of Beran’s estimator on the right
tail of the distribution. Assumption A4 insures a finite variance for the guided
estimator. Finally, assumption A5 and A6 concerns the supports of the kernels
and the sequence of bandwidths, respectively. The supports are supposed to
be compact to control the bias and the rate of convergence of both Beran’s
estimator and the guided estimator.

Let ql(x, y) = ∂l

∂xlQ(g−1(x), y) and ρl(x) =
(
g′(g−1(x))lV (g−1(x))

)−1
, l =

1, 2. Note that ql is linear in y for a fixed x, q1(η(x),m(x)) = 0 and q2(η(x)
,m(x)) = −ρ2(η(x)). The following additional assumptions are also required.

Assumption 3.2. B1. The function q2(x, y) < 0 for all x ∈ SX and y ≤ τ .
B2. The function σ2

∗(x) = V ar(Y ∗|X = x) is continuous on SX .
B3. For all x ∈ SX , ρ2(x) �= 0, σ2

∗(x) �= 0 and g′(m(x)) �= 0.
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Assumption B1 implies the concavity of the quasi-likelihood function (ex-
pression 3.5) on β and so the uniqueness of the guided maximum local quasi-
likelihood. Assumptions B2 and B3 are needed to ensure a bounded and non-zero
asymptotic variance for the guided estimator. These assumption are similar to
the assumptions in [14] and [16] for uncensored case. The following Theorem
provides the asymptotic distribution of η̃Ĝ(·).
Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then,

(nh)1/2
{
η̃Ĝ(x)− η(x)− B̃(x) +Op

((
logn

nh0

)1/2)}
d→ N

(
0, σ2

∗(x)g
′(m(x))2f−1

X (x)νK0

)
,

with

B̃(x) =
1

2
h2μK

2

(
η′′(x)− η̃′′(x)

)
{1 + o(1)}.

Remark 3.1. The bias produced by Beran’s estimator is bounded by
(
logn
nh0

)1/2
.

This extra term vanishes when the bandwidths are chosen such that h0

h logn → ∞.
Therefore, there is no loss of accuracy when one replaces the response by syn-
thetic data, provided that the bandwidth for Beran’s estimator is asymptoti-
cally larger than the bandwidth used in the local linear fit. This fact has also
been pointed out by [39] in the context of guided nonparametric regression with

censored data. The bias term B̃(x) is similar to the fully observed data case
and reveals the effect of the parametric guide. If the guide is chosen such that
|η′′(x) − η̃′′(x)| ≤ |η′′(x)|, then the bias of the GLQL estimator will be smaller
compared with that of the classical LQL estimator. If the second derivatives of
the parametric guide and the true function are equal, then the bias term B̃(x)
vanishes. Regarding the variance, there is no difference compared with the clas-
sical LQL under censorship. The only difference appears when one compares the
variance term of the GLQL estimator in the presence and the absence of censor-
ing. In fact, the term σ2

∗(x) = σ2(x)+E
[
φ(Y )2G(Y −|X)/(1−G(Y −|X))|X = x

]
replaces σ2(x) = V ar(φ(Y )|X = x) and this is due to the synthetic data. Note
that, if the parametric guide is chosen to be constant, then the GLQL estimator
reduces to the classical LQL estimator. Therefore, the result of our Theorem 3.1
is a generalization of Theorem 1.a (for p = 1, r = 0) in [14] to right censored
data. Finally, we note that Theorem 1 in [39] is a special case of Theorem 3.1
using an identity link function g = I and a constant variance function V .

3.2. The model with an estimated guide

In the previous section, Theorem 3.1 investigated the simple case of a fixed
guide. However, in practice, the guide needs to be estimated. In the following,
we consider the case where the parametric guide η(x, θ̂) is obtained from a first
stage estimation procedure. Following [16], we denote by

f(x, y) = fX(x) exp(Q(g−1(η(x)), y)),
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the true unknown joint density of (X,Y ) and by

f(x, y; θ) = fX(x) exp(Q(g−1(η(x, θ)), y)),

the proposed parametric joint density. Define θ∗ ∈ Θ ⊂ �d, the value of θ which
maximizes the following function:∫∫

Δ

Q(g−1(η(x, θ)), y)dF (x, y), (3.2)

where F (x, y) is the joint distribution function of (X,Y ) and Δ = SX ×(−∞, τ ]
is needed because the right tail of the distribution F (x, y) cannot be estimated
consistently when the response Y is censored. θ∗ is the parameter value that min-
imizes the Kullback-Leibler distance between the true joint density f(x, y) and
the parametric joint density f(x, y; θ), that is, θ∗ = argminθ∈Θ EΔ

[
log

(
f(X,Y )/

f(X,Y ; θ)
)]

with EΔ(A) = E(A.1{(X,Y )∈Δ}). If the parametric model is correct,
i.e. there exists θ0 ∈ Θ such that f(x, y) = f(x, y; θ0), then θ0 = θ∗.

In the spirit of [38], we estimate θ by θ̂, the maximizer of a suitable analogue
of (2.1) that we define as∫∫

Δ

Q(g−1(η(x, θ)), y)dF̂ (x, y), (3.3)

where F̂ is an estimator of F satisfying the following assumptions:

Assumption 3.3. 1.

sup
θ∈Θ

∣∣∣∣
∫∫

Δ

∇r
θ log f(x, y; θ)d(F̂ − F )(x, y)

∣∣∣∣ = op(1), for r = 0, 2.

2. √
n

∫∫
Δ

∇1
θ log f(x, y; θ∗)d(F̂ − F )(x, y)

d−→ N (0,Σ),

where Σ is a nonnegative-definite matrix and ∇r
θΦ(x, y; θ) = ∂rΦ(x, y; θ)/∂θr

for a twice differentiable function θ → Φ(x, y; θ) and r = 0, 1, 2.

Note that, the first assumption is the uniform convergence condition (in prob-
ability) required for the proof of the first point of Proposition 3.1. The second
condition is needed for verifying asymptotic normality of the parametric esti-
mator.

When the data are completely observed, the estimator F̂ may be replaced by
the usual bivariate empirical distribution function Fn(x, y) =

1
n

∑n
i=1 1Xi≤x,Yi≤y.

In this case, the pseudo quasi-likelihood defined by (3.3) reduces to (2.1), mean-
ing that our approach is more general. In the censored data framework, there
have been few proposals for estimating F (x, y) in the literature. For example,
[28] has developed an estimator of F (x, y) satisfying Assumption 3.3 (see The-
orem 3.1 and Theorem 3.6 in [28]) and given by the following expression

F̂L(x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1− Ĝ(T−
i |Xi)

. (3.4)
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Another different and interesting approach was introduced by [41]. Their es-
timator is constructed through an integrated version of Beran’s estimator as
follows

F̂VA(x, y) =

∫ x

−∞
F̂ (y|u)dFn(u), (3.5)

where Fn(x) is the empirical distribution function of X and F̂ (y|x) is Beran’s
estimator of F (y|x) = P (Y ≤ y|X = x). We note that both estimators can
be used in practice. However, to the best of our knowledge, Assumption 3.3
has not yet been investigated for F̂VA. Therefore, for sake of consistency, we
only investigate the estimator of [28] in our simulation studies. Next, we give
additional conditions that are also needed.

Assumption 3.4. D1. η(x, θ) belongs to a parametrically indexed class of
functions defined by the following characteristics:
1. θ ∈ Θ, Θ is a compact subset of �d.
2. The function (x, θ) 
→ η(x, θ) is twice continuously differentiable with
respect to x and θ.

D2. The function log f(x, y; θ) is twice continuously differentiable with respect
to θ.

D3. EΔ

(
log f(X,Y )

)
exists and there exists a function �(x, y) such that

| log f(x, y; θ)| ≤ �(x, y) for any θ ∈ Θ and EΔ�(X,Y ) < ∞.
D4. |∂2 log f(x, y; θ)/∂θiθj | and |∂ log f(x, y; θ)/∂θi × ∂ log f(x, y; θ)/∂θj |, for

i, j = 1, . . . , d, are dominated by integrable functions with respect to F (., .)
for all (x, y) in Δ and all θ in Θ.

D5. θ∗ = argminθ∈Θ EΔ

(
log(f(X,Y )/f(X,Y ; θ))

)
is unique.

D6. The matrix of second derivatives ∇2
θ log f(x, y; θ∗) is nonsingular.

Conditions D1.1, D2 and D5 are respectively, the compactness of the param-
eter set, the continuity condition, and the condition for the limiting objective
function to have a unique maximum. These three conditions are needed for the
consistency of the parametric guide. Conditions D2, D3 and D4 are classical con-
ditions in the uncensored case that allow to take derivatives under the integrals.
The following proposition provides the weak consistency and the asymptotic
normality of the estimator θ̂.

Proposition 3.1. Under Assumptions 3.3 and 3.4, we have

1. θ̂ converges to θ∗ in probability as n → ∞.

2.
√
n(θ̂ − θ∗)

d−→ N (0,Ω−1ΣΩ−1), with Ω ≡ Ω(θ∗) and
Ω(θ) = EΔ

[
∇2

θ log f(X,Y ; θ)
]
.

Note that, the results of Proposition 3.1 reveal the
√
n-consistency of the

estimator θ̂, that is
√
n(θ̂ − θ∗) = Op(1). Now, given this result and some

additional conditions, the next Theorem states that there is no loss in accuracy
when the parametric guide is estimated.
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Theorem 3.2. Suppose that Assumptions 3.3 and 3.4 hold. Then, under as-
sumptions of Theorem 3.1, we have

(nh)1/2
{
η̂Ĝ,θ̂(x)− η(x)−B(x, θ∗) +Op

((
logn

nh0

)1/2)}
d→ N

(
0, σ2

∗(x)g
′(m(x))2f−1

X (x)νK0

)
,

with

B(x, θ∗) =
1

2
h2μK

2

(
η′′(x)− η′′(x, θ∗)

)
{1 + o(1)}.

Comparing this last result with the result of Theorem 3.1, we notice that
the estimation of the parameter θ∗ does not affect the asymptotic bias and the
asymptotic variance. A crucial issue that arises in any nonparametric method
is the choice of the bandwidth parameters. From Theorem 3.2, the asymptotic
mean integrated squared error is given by

1

4
h4(μK

2 )2
∫
SX

(
η′′(x)−η′′(x, θ∗)

)2
dx+

νK0
nh

∫
SX

σ2
∗(x)g

′(m(x))2f−1
X (x)dx. (3.6)

If η′′(x) − η′′(x, θ∗) = 0, then B(x, θ∗) = 0. In such a case, one can choose
an arbitrary large bandwidth so that the variance is reduced to its minimum
possible value, which is impossible in a fully nonparametric framework (except
for a linear η). If η′′(x)− η′′(x, θ∗) �= 0, then minimizing (3.6) with respect to h
gives the following theoretical optimal bandwidth:

hopt =

(
νK0

∫
SX

σ2
∗(x)g

′(m(x))2f−1
X (x)dx

(μK
2 )2

∫
SX

(η′′(x)− η′′(x, θ∗))2dx

)1/5

n−1/5. (3.7)

This last expression indicates that, if the parametric guide is chosen so that its
second derivatives η′′(x, θ∗) is close to the second derivative of the true function
η′′(x), then the optimal bandwidth for the GLQL estimator will be larger than
the optimal bandwidth of the classical LQL estimator. This allows to reduce
also the variance compared with the classical LQL estimator. This fact is widely
noticed in our simulation studies. In practice, expression (3.7) cannot be used
directly since it depends on a number of unknown quantities. [13] (see Section
4.9) and [14] proposed some guidelines for the selection of the bandwidth h
based on the bias-variance tradeoff. Their procedures can be easily extended
to censored data framework by simply substituting the censored response Yi

by the synthetic data Ŷ ∗
i . Finally, the bandwidth for Beran’s estimator can be

chosen using for example the plug-in method (see [6]) or the bootstrap method
investigated by [42].

3.3. Extension to unified family of corrections

As mentioned in the introduction, we investigate the additive correction in or-
der to simplify our presentation. However, in addition to the additive scheme,
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[30] proposed a unified family of corrections in the uncensored data case. In
the following we give some guidelines allowing to generalize their proposal to
our framework. Starting from a parametric model η(x, θ̂), the basic idea of the
guided estimation can be generalized using the following more general identity:

η(x) = η(x, θ̂) + rθ̂,α(x)η(x, θ̂)
α,

where rθ̂,α(x) = [η(x)−η(x, θ̂)]/η(x, θ̂)α and α ≥ 0. We propose to estimate the

correction factor rθ̂,α(x) by r̂θ̂,α(x) = β̂0, where (β̂0, β̂1) is the maximizer of

n∑
i=1

Q
(
g−1(η(Xi, θ̂) + (β0 + (Xi − x)β1)η(Xi, θ̂)

α), Ŷi
∗)
Kh(Xi − x).

Therefore, the extended guided local quasi-likelihood estimator is given by
η̂Ĝ,θ̂,α(x) = η(x, θ̂) + r̂θ̂,α(x)η(x, θ̂)

α. Similarly as in Section 2.1, the extended

guided estimator η̂Ĝ,θ̂,α(x) can be defined directly as the first component of the
maximizer of

n∑
i=1

Q
(
g−1(η(Xi, θ̂)+(β0+(Xi−x)β1−η(x, θ̂))η(Xi, θ̂)

α/η(x, θ̂)α), Ŷi
∗)
Kh(Xi−x)

with respect to β = (β0, β1). All the results established before can be gener-
alized to the guided estimator based on the unified family of corrections, the
generalization of the proof is straightforward and is omitted here. Theorem 3.3
generalizes the result of Theorem 3.2.

Theorem 3.3. Suppose that Assumption 3.3 and 3.4 hold and η(x, θ∗) �= 0.
Then, under the Assumptions of Theorem 3.1, we have

(nh)1/2
{
η̂Ĝ,θ̂,α(x)− η(x)−B(x, θ∗, α) +Op

((
logn

nh0

)1/2)}
d→ N

(
0, σ2

∗(x)(g
′(m(x))2f−1

X (x)νK0

)
,

with B(x, θ∗, α) = 1
2h

2μK
2 η(x, θ∗)

αr′′θ∗,α(x){1 + o(1)} and rθ∗,α(x) = [η(x) −
η(x, θ∗)]/η(x, θ∗)

α.

Note that, the additive correction is a special case of the unified family for
α = 0. The choice of the parameter α was investigated by [16]. However, using
the best α does not enhance the performance considerably compared with the
additive correction. Therefore, to simplify our simulation studies we investigate
the additive correction.

4. Simulation results

This section is concerned with the evaluation of the finite sample performance
of the GLQL estimator. To this end, we conduct two Monte Carlo simulation
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studies. In the first study, a Poisson model is investigated under right censoring.
Such model is widely used in studies dealing with quasi-likelihood and discrete
responses, see for example [16] and [7]. Then, in a second time, an exponential
model is considered to cover the case of continuous responses. Our target func-
tion is η(x) = g

( ∫ τ

0
ydF (y|x)

)
where g is the canonical link, τ = infx{τx} and

τx is the 99.99% upper quantile of H(y|x) = P (T ≤ y|X = x). The parametric
guides are estimated via maximizing the pseudo QL given in (3.3) combined
with the estimator (3.4) proposed by [28]. Along the simulations we use local
linear fitting and the Epanechnikov kernel for both K0 and K. To reduce our
calculation time, we first selected the value of the bandwidths h0 and h by
minimizing the average mean squared error (MSE) using a small number of
simulations. Then, we applied both guided and traditional LQL to 1000 other
simulated data sets using the selected “optimal” bandwidths for each method.

4.1. Poisson model

In this model, the covariate X is generated from a uniform distribution over the
interval [−2, 2]. On the other hand, given X = x, the response Y is generated
from a Poisson distribution with mean exp(Λ(x)) and Λ(x) = 6+3 sin(π4x−

π
2 ).

Given X = x and independently from Y , the censoring variable C is also drawn
from a Poisson distribution with mean exp(Λ(x)+λ). The parameter λ allows us
to control the rate of censoring. The values λ = 0.22, 0.135, and 0.078 correspond
to a fixed censoring rate of 10%, 20% and 30%, respectively. Following [16], three
different parametric guides are investigated. The first two guides are misspecified
and are given by η1(x, θ) = θ0+θ1x+θ2x

2 and η2(x, θ) = θ0+θ1x+θ2x
2+θ3x

3,
respectively. The third parametric guide is correctly specified and is given by the
following sinusoidal function η3(x, θ) = θ0+θ1 sin(

π
4x−

π
2 ). As a quasi-likelihood

function we used Q(μ, y) = y log |μ|−μ. We investigate the performance of both
the GLQL estimator and the LQL estimator at ten equidistant data points in
the interval [−2, 2] using three sample sizes n = 100, 250 and 500.

As stated before, to select the bandwidths we repeat the simulation 200 times.
Figure 1 shows how the squared bias, the variance and the MSE change with the
bandwidth h, for sample size n = 250 and a censoring rate of 20%. As established
in the asymptotic results, the bias is substantially reduced for the three guided
estimators compared with the unguided estimator, while the variance remains
unchanged or is slightly reduced especially when a large bandwidth is used. We
also note that when the appropriate guide (sinusoidal) is used, the bias of the
GLQL estimator is almost zero. This allows us to choose a larger bandwidth
and so to reduce the variance substantially.

Now, using the selected bandwidths, we compute the different estimators 1000
times. The average squared bias (Bias2 × 103), the average variance (V ar ×
103), the average mean squared error AMSE (×103) as well as the selected
bandwidths are given in Table 1 for each setting. Generally speaking, the results
show that the GLQL estimators have lower MSE compared to the classical
LQL even if the parametric guide is not completely correct. As expected, the
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Fig 1. Average squared bias, average variance and average MSE as a function of h, for the
LQL estimator (solid curve), GLQL1 estimator (dot-dashed curve), GLQL2 (dotted curve),
GLQL3 (dashed curve). The sample size is n = 250, the proportion of censoring is p = 0.20.

best results are obtained when the guide is correctly specified, namely with
the sinusoidal guide. Overall, we can say that the GLQL estimator considerably
outperforms the classical LQL estimator. As expected, increasing the sample size
improves the quality of all the estimators, in terms of AMSE, but increasing the
censoring rate affects negatively the results. A comparison between the censored
and uncensored (p = 0%) data cases shows that the AMSE of the GLQL is less
affected by the presence of censoring compared to that of the LQL. Therefore,
using a parametric guide allows to reduce the negative effect of the censoring on
the efficiency of the local quasi-likelihood estimator. As expected, the selected
bandwidths under censoring are larger compared with those selected with fully
observed data.

Finally, we investigated the selection of the parameter α for the generalized
guided local quasi-likelihood estimator. Simulations not given here show that
using the optimal α (which minimizes the AMSE) does not enhance the perfor-
mance considerably compared with the additive correction. Moreover, choosing
an additional parameter is highly time-consuming under censoring. Therefore,
we would recommend to use the additive correction which is less time-consuming
and significantly improves the efficiency of the local quasi-likelihood estimator.

4.2. Exponential model

This section addresses the case of a continuous response. Given X = x, the re-
sponse Y is generated from an exponential distribution with parameter Λ(x) =
(0.5x2+1)+a(sin(2πx))2, where a = 0, 0.1, 0.3, 0.5, while the covariate X is uni-
formly distributed on [0, 4]. The censoring variable C is independent of Y given
X = x and is also generated from an exponential distribution with parameter
Λ(x)/2 which leads to almost 33.4% rate of censoring. Regarding the parametric
guide, we consider a second order polynomial guide η(x, θ) = θ0 + θ1x + θ2x

2.
The parameter a allows to control the difference between the true function and
the parametric guide. Figure 2 gives the shapes of different target functions.
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Table 1

Average squared bias (×103), average variance (×103), average MSE (×103), the optimal bandwidth h, four censoring rates
p = (0%, 10%, 20%, 30%), three sample sizes n = (100, 250, 500) and N = 1000 replications.

p 0% 10% 20% 30%

Method Bias2 Var MSE h Bias2 Var MSE h Bias2 Var MSE h Bias2 Var MSE h

n= 100

GLQL1 0.391 1.296 1.687 0.8 1.454 2.578 4.032 2 4.005 3.679 7.684 2 6.630 4.930 11.56 2
GLQL2 0.361 1.363 1.724 0.8 1.387 2.626 4.013 2 3.738 3.835 7.573 2 6.333 5.034 11.37 2
GLQL3 0.011 1.995 2.006 0.7 0.099 2.604 2.703 2 1.224 3.632 4.856 2 3.011 4.770 7.781 2
LQL 0.703 3.027 3.730 0.6 30.36 4.740 35.10 2 37.23 6.660 43.89 2 40.90 8.650 49.55 2

n= 250

GLQL1 0.158 0.715 0.873 0.6 1.688 1.120 2.807 2 4.662 1.493 6.155 2 7.953 1.887 9.840 2
GLQL2 0.151 0.731 0.882 0.6 1.582 1.281 2.863 2 4.425 1.712 6.137 2 7.589 2.017 9.606 2
GLQL3 9× 10−5 0.832 0.832 0.6 0.127 1.136 1.263 2 1.463 1.486 2.949 2 3.616 1.843 5.459 2
LQL 4.394 0.756 5.150 0.3 32.42 1.900 34.32 2 40.76 2.530 43.29 2 46.53 3.220 49.75 2

n= 500

GLQL1 0.142 0.335 0.477 0.6 1.795 0.488 2.283 2 4.640 0.700 5.340 2 8.177 0.876 9.053 2
GLQL2 0.066 0.420 0.486 0.5 1.711 0.596 2.307 2 4.471 0.803 5.274 2 7.824 1.038 8.862 2
GLQL3 10−4 0.400 0.400 0.6 0.138 0.503 0.641 2 1.399 0.692 2.091 2 3.696 0.853 4.549 2
LQL 0.264 0.729 0.993 0.3 33.62 0.850 34.47 2 41.55 1.220 42.77 2 47.55 1.520 49.07 2
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Fig 2. Target function η(x) = g
( ∫ τ

0 ydF (y|x)
)
for different values of a.

The case a = 0 is the only situation where the guide is correct. Similarly to
the Poisson model, the bandwidths are selected using 200 simulations. Note
that the four settings are not comparable to each other since the target func-
tion changes for each value of a. Therefore, one can only compare the GLQL
and the LQL estimators within each setting. As a quasi-likelihood function we
choose Q(μ, y) = − y

μ − log |μ|. Using N = 1000 replications and samples of
size n = 400, we calculate the estimators at ten equidistant data points in
the interval [0, 4]. For a data point xi, i = 1, ..., 10, we calculate the empiri-

cal bias by bi = N−1
∑N

j=1

[
η̂j
Ĝ,θ̂

(xi) − η(xi)
]
and the empirical variance by

v2i = N−1
∑N

j=1

[
η̂j
Ĝ,θ̂

(xi) −N−1
∑N

j=1 η̂
j

Ĝ,θ̂
(xi)

]2
, where η̂j

Ĝ,θ̂
(xi) is the GLQL

estimator for the jth replication. Then we calculate B2 = 10−1
∑10

i=1 b
2
i , the aver-

age squared bias, V = 10−1
∑10

i=1 v
2
i , the average variance and MSE = B2+V ,

the average mean squared error. The obtained results are summarized in Ta-
ble 2. When the guide is correct (a = 0) the GLQL estimator clearly outperforms
the LQL estimator. In fact, in this case, the average squared bias is approxi-
mately reduced by half. For a = 0.1, 0.3, 0.5, even if the parametric guide is not
correctly specified, the GLQL estimator behaves better than the classical LQL
estimator. Regarding the variance, the guided estimator has generally smaller
variance, except for the case a = 0.5 where we observe a slightly larger variance
for the GLQL estimator. Finally, as noticed in the first example, the bandwidth
selected for the GLQL method is generally larger than the one selected for the
classical LQL method.
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Table 2

Average squared bias (×10), average variance (×10), average MSE (×10) and the optimal
bandwidth h of the estimators for different conditional mean functions (a = 0, 0.1, 0.3, 0.5)
computed for ten equidistant data points. The samples are of size n = 400 with a censoring

rate of 33.4%, and N = 1000 replications.

a Method Bias2 Var AMSE h

0 GLQL 0.269 1.298 1.567 1.612
LQL 0.489 1.369 1.858 1.263

0.1 GLQL 0.268 1.319 1.587 1.574
LQL 0.493 1.391 1.884 1.264

0.3 GLQL 0.287 1.320 1.608 1.573
LQL 0.549 1.369 1.918 1.263

0.5 GLQL 0.204 1.472 1.676 1.186
LQL 0.518 1.440 1.958 1.147

5. Conclusions

Thanks to its bias reduction property, parametrically guided nonparametric
estimation is more and more investigated in different areas of statistics. The
application of the guided nonparametric method to density estimation, non-
parametric regression, local quasi-likelihood, additive models and very recently
varying coefficient models has revealed an improved performance for the guided
estimator compared with the classical nonparametric estimator. However, most
of these investigations are based on completely observed data.

In this paper, we focused on the adaptation of the parametrically guided
local quasi-likelihood estimation to the censored data case. To deal with censor-
ing, we considered the synthetic data approach. We investigated the simplest
guided scheme which is based on the additive correction. We also generalized
the asymptotic results to an unified family of additive-multiplicative corrections.
Our results provide a generalization to the censored data case of both the results
of [14] and [16]. The asymptotic results confirm the bias reduction property of
the guided local quasi-likelihood estimator in the presence of censoring. The re-
sults also show that when an optimal bandwidth and an appropriate parametric
guide are used the variance can also be reduced. Our finite sample simulation
investigated both the case of discrete and continuous responses. The simulation
results corresponded quite closely to the theoretical results and proved that the
guided local quasi-likelihood estimator outperforms the unguided local-quasi-
likelihood estimator in terms of bias and mean squared error.

Appendix: Proofs

We start this section with some notations. Set ψ(x) = η(x) − η̃(x), η̄(x, u) =
ψ(x) + ψ′(x)(u − x) and Xk = (1, (Xk − x)/h)T for k = 1, . . . , n. Let S and
S∗ be the (2× 2) matrices given by S = (μK

i+j−2)1≤i,j≤2, S
∗ = (νKi+j−2)1≤i,j≤2,

and set UK = (μK
2 , μK

3 )T and μl =
∫
xlK(x)dx for l = 0, · · · , 3. Let β̃∗ be a
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normalized estimator defined as follows:

β̃∗ = (nh)1/2
(
β̃0 − η(x), h{β̃1 − ψ′(x)}

)T
.

If β̃ = (β̃0, β̃1) maximizes (3.1), then β̃∗ maximizes

n∑
k=1

Q
(
g−1(η̃(Xk) + η̄(x,Xk) + (nh)−1/2β∗TXk), Ŷ

∗
k

)
K

(
Xk − x

h

)
,

with respect to β∗. Also define the following quantities:

Vn,Ĝ = (nh)−1/2
n∑

k=1

q1
(
η̃(Xk) + η̄(x,Xk), Ŷ

∗
k

)
XkK

(
Xk − x

h

)
,

Bn,Ĝ = (nh)−1
n∑

k=1

q2
(
η̃(Xk) + η̄(x,Xk), Ŷ

∗
k

)
XkX

T
kK

(
Xk − x

h

)
,

where q1(x, y) = (y− g−1(x))ρ1(x) and q2(x, y) = (y− g−1(x))ρ′1(x)− ρ2(x). In
order to prove Theorem 3.1, the following lemmas are needed.

Lemma A.1. Under the assumptions of Theorem 3.1 we have,

Bn,Ĝ = −ρ2(η(x))fX(x)S + op(1) ≡ B+ op(1).

Proof. Set Bn,G = (nh)−1
∑n

k=1 q2
(
η̃(Xk) + η̄(x,Xk), Y

∗
k

)
XkX

T
kK

(
Xk−x

h

)
. In

view of conditions A1 and A7, for 1 ≤ i, j ≤ 2, we have∣∣Bn,Ĝ −Bn,G

∣∣
ij

= (nh)−1

∣∣∣∣
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

ρ′1(η̃(Xk) + η̄(x,Xk))

×K

(
Xk − x

h

)(
Xk − x

h

)i+j−2∣∣∣∣
≤ Op(1)× sup

t≤τ,x∈SX

∣∣Ĝ(t−|x)−G(t−|x)
∣∣

× (nh)−1
n∑

k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i+j−2

.

The above supremum tends to zero in probability by Proposition 4.3 in [41] and
the empirical sum is bounded in probability by assumptions A1 and A5. Hence,

Bn,Ĝ −Bn,G = op(1). (A.1)

Now, note that (Bn,G)ij = (EBn,G)ij+Op

(
V ar{(Bn,G)ij}1/2

)
. Since q2 is linear

in y and using A2, A5 and A7, we obtain that

(EBn,G)ij

= h−1E

[
q2

(
η̃(X1) + η̄(x,X1),m(X1)

)
K

(
X1 − x

h

)(
X1 − x

h

)i+j−2]
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= h−1

∫
q2

(
η̃(u) + η̄(x, u),m(u)

)
fX(u)K

(
u− x

h

)(
u− x

h

)i+j−2

du

=

∫
q2

(
η̃(x+ vh) + η̄(x, x+ vh),m(x+ vh)

)
fX(x+ vh)K(v)vi+j−2dv

−→ −ρ2(η(x))fX(x)μK
i+j−2 as n → ∞.

In view of Assumption 3.1, we have

(nh)V ar(Bn,G)ij

≤ h−1E

[
q2

(
η̃(X1) + η̄(x,X1), Y

∗
1

)2
K2

(
X1 − x

h

)(
X1 − x

h

)2(i+j−2)]

≤
∫

E
[
q2

(
η̃(X1) + η̄(x,X1), Y

∗
1

)2|X1 = x+ vh
]
fX(x+ vh)K2(v)v2(i+j−2)dv

= O(1).

Therefore,
Bn,G = −ρ2(x)fX(x)S + op(1). (A.2)

The result of Lemma A.1 is now a direct consequence of (A.1) and (A.2).

Lemma A.2. Suppose that the assumptions of Theorem 3.1 hold. Then,

Vn,G − EVn,G
d→ N

(
0, σ2

∗(x)fX(x)ρ21(η(x))S
∗
)
,

where Vn,G = (nh)−1/2
∑n

k=1 q1
(
η̃(Xk) + η̄(x,Xk), Y

∗
k

)
XkK

(
Xk−x

h

)
.

Proof. Using Taylor’s expansion of ψ(·), we have

η̃(x+ vh) + η̄(x, x+ vh) = η(x+ vh)− ψ′′(x)

2
(vh)2 + o(h2). (A.3)

Since q1
(
η(·),m(·)) = 0 and using Taylor expansion and (A.3), we obtain

q1
(
η̃(x+vh)+η̄(x, x+vh),m(x+vh)) =

ψ′′(x)

2
(vh)2ρ2(η(x+vh))+o(h2). (A.4)

Note that q1(·, y) is linear in y. For 1 ≤ i ≤ 2, we have

E(Vn,G)i (A.5)

= (n/h)1/2E

[
q1

(
η̃(X1) + η̄(x,X1),m(X1)

)
K

(
X1 − x

h

)(
X1 − x

h

)i−1]

= (nh)1/2
∫

q1
(
η̃(x+ vh) + η̄(x, x+ vh),m(x+ vh)

)
fX(x+ vh)K(v)vi−1dv

= (nh)1/2ρ2(η(x))fX(x)h2ψ
′′(x)

2
μK
i+1{1 + o(1)}. (A.6)

Thus,

E(Vn,G) = (nh)1/2ρ2(η(x))fX(x)h2ψ
′′(x)

2
UK{1 + o(1)}.
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Now, from Assumption 3.1, we obtain

V ar(Vn,G) = h−1V ar

[
q1

(
η̃(X1) + η̄(x,X1), Y

∗
1

)
X1K

(
X1 − x

h

)]

= h−1E

[
V ar

{
q1

(
η̃(X1) + η̄(x,X1), Y

∗
1

)
X1K

(
X1 − x

h

)∣∣∣∣X1

}]

+ h−1V ar

[
E

{
q1

(
η̃(X1) + η̄(x,X1), Y

∗
1

)
X1K

(
X1 − x

h

)∣∣∣∣X1

}]
= W1n,G +W2n,G.

For 1 ≤ i ≤ 2, we have

(W1n,G)ij

= h−1E

{
V ar(Y ∗

1 |X1)ρ
2
1(η̃(X1) + η̄(x,X1))

(
X1 − x

h

)i+j−2

K2

(
X1 − x

h

)}

=

∫
σ2
∗(x+ vh)fX(x+ vh)ρ21(η̃(x+ vh) + η̄(x, x+ vh))K2(v)vi+j−2dv

= σ2
∗(x)fX(x)ρ21(η(x))ν

K
i+j−2 +O(h).

The second term W2n,G can be bounded as follows:

W2n,G ≤ h−1E

[
q21

(
η̃(X1) + η̄(x,X1),m(X1)

)
X1X

T
1 K

2

(
X1 − x

h

)]
.

In view of expression (A.4) and conditions A1 and A7, we get

(W2n,G)ij ≤
∫

q21
(
η̃(x+ vh) + η̄(x, x+ vh),m(x+ vh)

)
vi+j−2K2(v)dv

= O(h4), for 1 ≤ i, j ≤ 2.

Thus,
V ar(Vn,G) = σ2

∗(x)fX(x)ρ21(η(x))S
∗ + o(1).

Finally, it suffices to check the Lyapunov condition. Let c ∈ �2, based on
similar arguments to those used to develop (A.5), we can easily show that
{cTV ar(Vn,G)c}−3/2

∑n
k=1 |cT vG,k − EcT vG,k| = Op

(
(nh)−1/2

)
, where vG,k =

q1
(
η̃(Xk)+ η̄(x,Xk), Y

∗
k

)
XkK

(
Xk−x

h

)
. The result of Lemma A.2 is now a direct

consequence of the Cramér-Wold device.

Proof of Theorem 3.1. Consider �n,Ĝ(β
∗) the normalized function defined as fol-

lows

�n,Ĝ(β
∗) =

n∑
k=1

{
Q

(
g−1(η̃(Xk) + η̄(x,Xk) + (nh)−1/2β∗TXk), Ŷ

∗
k

)

−Q
(
g−1(η̃(Xk) + η̄(x,Xk)), Ŷ

∗
k

)}
K

(
Xk − x

h

)
.
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Then, β̃∗ maximizes �n,Ĝ(β
∗). Using a Taylor expansion of Q{g−1(·, Ŷ ∗

i )}, we
have

�n,Ĝ(β
∗) = VT

n,Ĝ
β∗ +

1

2
β∗TBn,Ĝβ

∗{1 + op(1)}.

Now by Lemma A.1 and the quadratic approximation lemma of [13], we obtain

β̃∗ = B−1Vn,Ĝ + op(1). (A.7)

Next, write Vn,Ĝ = (Vn,Ĝ −Vn,G) + (Vn,G − EVn,G) + EVn,G. For i = 1, 2,
we have∣∣Vn,Ĝ −Vn,G

∣∣
i

= (nh)−1/2

∣∣∣∣
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

ρ1(η̃(Xk) + η̄(x,Xk))

×K

(
Xk − x

h

)(
Xk − x

h

)i−1∣∣∣∣
≤ (nh)1/2Op(1)× sup

t≤τ,x∈SX

∣∣Ĝ(t−|x)−G(t−|x)
∣∣

× (nh)−1
n∑

k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i−1

.

From Proposition 4.3 in [41], it follows that if
nh5

0

logn = O(1), then,

sup
t≤τ,x∈SX

|Ĝ(t−|x)−G(t−|x)| = Op((nh0)
−1/2(logn)1/2).

Since (nh)−1
∑n

k=1 K
(
Xk−x

h

)∣∣Xk−x
h

∣∣i−1
= Op(1), we get

Vn,Ĝ −Vn,G = Op

((
h logn

h0

)1/2)
. (A.8)

Finally, from Lemma A.2 and equation (A.8), we obtain

β̃∗ − (nh)1/2
1

2
h2

(
η′′(x)− η̃′′(x)

)
S−1UK{1 + o(1)}+Op

((
h logn

h0

)1/2)
d→ N

(
0, σ2

∗(x)fX(x)ρ21(η(x))B
−1S∗B−1

)
. (A.9)

The result of Theorem 3.1 is a special case of (A.9).

Proof of Proposition 3.1.

1. Define

L(θ) = EΔ log f(X,Y ; θ),

L̂(θ) =

∫∫
Δ

log f(x, y; θ)dF̂ (x, y).
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Then, it is obvious that θ∗ = argmaxθ∈Θ L(θ) and θ̂ = argmaxθ∈Θ L̂(θ).
The proof of the first point is a direct consequence of Theorem 2.1 in [33],
under conditions D1.1, D2, D3, D5 and the first condition in Assump-
tion 3.3.

2. In view of Corollary 5.8 in [1], conditions D2, D3 and D4 ensure an inter-
change of differentiation and integration. Since Ω = Ω(θ∗) is non-singular
by condition D6 and using Assumption 3.3, we get

sup
θ∈Θ

|| ∇2
θL̂(θ)− Ω(θ) ||= op(1),

and √
n∇1

θL̂(θ∗)
d−→ N (0,Σ).

Therefore, the second point results directly from the first point together
with Theorem 3.1 in [33].

Proof of Thereom 3.2. Similarly to the proof of Theorem 3.1, we now define β̂∗

and β̃∗ the normalized guided estimators of β∗ based on the estimated guide
η(., θ̂) and the fixed guide η(., θ∗), respectively. Define ψ(x, θ) = η(x)− η(x, θ),
η̄(x, u; θ) = ψ(x, θ) + ψ′(x, θ)(u− x) and

Bn,Ĝ(θ) = (nh)−1
n∑

k=1

q2
(
η(Xk, θ) + η̄(x,Xk; θ), Ŷ

∗
k

)
XkX

T
kK

(
Xk − x

h

)
,

Vn,Ĝ(θ) = (nh)−1/2
n∑

k=1

q1
(
η(Xk, θ) + η̄(x,Xk; θ), Ŷ

∗
k

)
XkK

(
Xk − x

h

)
.

Write Bn,Ĝ(θ̂) = [Bn,Ĝ(θ̂)−Bn,G(θ̂)] + [Bn,G(θ̂)−Bn,G(θ∗)] +Bn,G(θ∗), where

Bn,G(θ) = (nh)−1
∑n

k=1 q2
(
η(Xk, θ) + η̄(x,Xk; θ), Y

∗
k

)
XkX

T
kK

(
Xk−x

h

)
. Using a

Taylor expansion, for i, j = 1, 2, we have

(Bn,G(θ̂)−Bn,G(θ∗))i,j

= (nh)−1
n∑

k=1

∇1
θq2

(
η(Xk, θ̃) + η̄(x,Xk; θ̃), Y

∗
k

)
(θ̂ − θ∗)

×K

(
Xk − x

h

)(
Xk − x

h

)i+j−2

,

for θ̃ between θ̂ and θ∗. By assumptions A1, A7 and D1, there exists a constant
c > 0 such that

|Bn,G(θ̂)−Bn,G(θ∗)|i,j ≤ c
∥∥θ̂ − θ∗

∥∥ × (nh)−1
n∑

k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i+j−2

.

Note that θ̂ − θ∗ converges to zero in probability by Proposition 3.1 and the
empirical sum is bounded in probability by assumptions A1 and A5. Thus,
Bn,G(θ̂)−Bn,G(θ∗) = op(1). Now, we have

|Bn,Ĝ(θ̂)−Bn,G(θ̂)| ≤ |D1n|+ |D2n|,
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where

(D1n)i,j

= (nh)−1
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

K

(
Xk − x

h

)(
Xk − x

h

)i+j−2

× [ρ1(η(Xk, θ̂) + η̄(x,Xk; θ̂))− ρ1(η(Xk, θ∗) + η̄(x,Xk; θ∗))],

and

(D2n)i,j

= (nh)−1
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

ρ1(η(Xk, θ∗) + η̄(x,Xk; θ∗))

×K

(
Xk − x

h

)(
Xk − x

h

)i+j−2

.

By a Taylor expression and assumptions A1, A7 and D1, we have

|(D1n)i,j | ≤ Op(1)× sup
t≤τ,x∈SX

∣∣Ĝ(t−|x)−G(t−|x)|
∥∥θ̂ − θ∗

∥∥
× (nh)−1

n∑
k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i+j−2

.

From Assumptions 3.1, 3.4, Proposition 4.3 in [41] and Proposition 3.1, we get

D1n = op(1). Similar arguments give D2n = op(1). Thus, Bn,Ĝ(θ̂) = Bn,G(θ∗)+

op(1). Therefore, by Lemma A.1, we get

Bn,Ĝ(θ̂) = B+ op(1). (A.10)

Using (A.10) and similar arguments to those used to get equation (A.7), we
have

β̂∗ − β̃∗ = B−1[Vn,Ĝ(θ̂)− Vn,Ĝ(θ∗)] + op(1).

Now, write Vn,Ĝ(θ̂) − Vn,Ĝ(θ∗) = [Vn,G(θ̂) − Vn,G(θ∗)] + [Vn,Ĝ(θ̂) − Vn,G(θ̂)] +

[Vn,G(θ∗)− Vn,Ĝ(θ∗)], where

Vn,G(θ) = (nh)−1/2
∑n

k=1 q1
(
η(Xk, θ) + η̄(x,Xk; θ), Y

∗
k

)
XkK

(
Xk−x

h

)
. Using a

Taylor expansion, for θ̇ between θ̂ and θ∗, we have

Vn,G(θ̂)− Vn,G(θ∗)

= (nh)−1/2
n∑

k=1

∇1
θq1

(
η(Xk, θ̇) + η̄(x,Xk; θ̇), Y

∗
k

)
(θ̂ − θ∗)XkK

(
Xk − x

h

)
.

By assumptions A1, A7 and D1, there exists a constant c > 0 such that for
i = 1, 2, we get
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|Vn,G(θ̂)− Vn,G(θ∗)|i

≤ (nh)1/2c
∥∥θ̂ − θ∗

∥∥ × (nh)−1
n∑

k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i−1

.

Since
∥∥θ̂ − θ∗

∥∥ = Op(n
−1/2), we have Vn,G(θ̂) − Vn,G(θ∗) = Op(h

1/2). Using

expression (A.8), we get Vn,G(θ∗)− Vn,Ĝ(θ∗) = Op

((
h logn

h0

)1/2)
. Finally, write

Vn,Ĝ(θ̂)− Vn,G(θ̂) = I1n + I2n,

where ( for i = 1, 2)

(I1n)i

= (nh)−1/2
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

K

(
Xk − x

h

)(
Xk − x

h

)i−1

× [ρ1(η(Xk, θ̂) + η̄(x,Xk; θ̂))− ρ1(η(Xk, θ∗) + η̄(x,Xk; θ∗))],

(I2n)i

= (nh)−1/2
n∑

k=1

δkφ(Tk)[Ĝ(T−
k |Xk)−G(T−|Xk)]

(1− Ĝ(T−
k |Xk))(1−G(T−|Xk))

K

(
Xk − x

h

)(
Xk − x

h

)i−1

× ρ1(η(Xk, θ∗) + η̄(x,Xk; θ∗)).

By a Taylor expression and conditions A1, A7 and D1, we have

|I1n|i
≤ Op(1)× (nh)1/2 × sup

t≤τ,x∈SX

∣∣Ĝ(t−|x)−G(t−|x)
∣∣

×
∥∥θ̂ − θ∗

∥∥ × (nh)−1
n∑

k=1

K

(
Xk − x

h

)∣∣∣∣Xk − x

h

∣∣∣∣i−1

.

From Proposition 3.4 in [41] and Proposition 3.1, we get I1n = Op

((
h logn
nh0

)1/2)
.

Similar arguments give I2n = Op

((
h log n

h0

)1/2)
. Hence,

Vn,Ĝ(θ̂)− Vn,Ĝ(θ∗) = Op

((
h log n

h0

)1/2)
+ op(1).

Therefore,

β̂∗ − β̃∗ = Op

((
h logn

h0

)1/2)
+ op(1). (A.11)

Finally, write β̂∗ = [β̂∗ − β̃∗] + β̃∗. Form expressions (A.9) and (A.11), we get

β̂∗ − (nh)1/2
1

2
h2

(
η′′(x)− η′′(x, θ∗)

)
S−1UK{1 + o(1)}+Op

((
h logn

h0

)1/2)
d→ N

(
0, σ2

∗(x)fX(x)ρ21(η(x))B
−1S∗B−1

)
.
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This concludes the proof of Theorem 3.2 which is a special case of this last
result.
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