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1. Introduction

The construction of tests for hypotheses on the coefficient vector in linear re-
gression models with dependent errors is highly practically relevant and has
received lots of attention in the statistics and econometrics literature. The main
challenge is to obtain tests with good size and power properties in situations
where the nuisance parameter governing the dependence structure of the er-
rors is high- or possibly infinite-dimensional and allows for strong correlations.
The large majority of available procedures are autocorrelation-corrected F-type
tests, based on nonparametric covariance estimators trying to take into account
the autocorrelation in the disturbances. The tests currently used can roughly be
categorized into two groups, the distinction depending on the choice of the criti-
cal values. The first group of such tests is based on critical values obtained from
an asymptotic framework in which the nonparametric covariance estimators are
consistent, and where the asymptotic distribution of the F-type test statistic un-
der the null hypothesis is a x? distribution. Quantiles of this limiting distribution
are then used for testing. Concerning these tests, important contributions in the
econometrics literature are Newey and West (1987), Andrews (1991), Andrews
and Monahan (1992), and Newey and West (1994). Tt is safe to say that using F-
type tests based on x? critical values and the covariance estimators introduced
in the latter two articles currently constitutes the gold standard for the testing
problem under consideration. In contrast to the estimator suggested earlier by
Newey and West (1987) - structurally 27 times a standard kernel spectral den-
sity estimator (Bartlett (1950), Jowett (1955), Hannan (1957), and Grenander
and Rosenblatt (1957) Section 7.9) evaluated at frequency 0 - the covariance
estimators suggested in Andrews and Monahan (1992) and Newey and West
(1994) both incorporate an additional prewhitening step based on an auxiliary
vector autoregressive (VAR) model, as well as a data-dependent bandwidth pa-
rameter. A distinguishing feature of the estimators introduced by Andrews and
Monahan (1992) on the one hand and Newey and West (1994) on the other hand
is the choice of the bandwidth parameter: Andrews and Monahan (1992) used
an approach introduced by Andrews (1991), where the bandwidth parameter is
chosen based on auxiliary parametric models. In contrast to that, Newey and
West (1994) suggested a nonparametric approach for choosing the bandwidth
parameter. Even though simulation studies have shown that the inclusion of a
prewhitening step and the data-dependent choice of the bandwidth parameter
can improve the finite sample properties of the tests obtained, these more so-
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phisticated tests still suffer from size distortions and power deficiencies. For this
reason Kiefer, Vogelsang and Bunzel (2000), Kiefer and Vogelsang (2002), and
Kiefer and Vogelsang (2005) suggested a different asymptotic framework for ob-
taining critical values. Their framework, in which the bandwidth parameter is a
fixed proportion of the sample size, leads to inconsistent covariance estimators
and to a non-standard limiting distribution of the corresponding test statistic
under the null hypothesis, the quantiles of which are used to obtain tests. In
simulation studies it has been observed that these tests still suffer from size dis-
tortions in finite samples, but less so than tests based on x? critical values. How-
ever, this is at the expense of some loss in power. Furthermore, simulation results
in Kiefer and Vogelsang (2005) and Rho and Shao (2013) suggest that the finite
sample properties of tests based on non-standard critical values can be improved
by incorporating a prewhitening step. In the latter paper it was also shown that
the asymptotic distribution under the null of the test suggested by Kiefer, Vo-
gelsang and Bunzel (2000) is the same whether or not prewhitening is used.

A number of recent studies (Velasco and Robinson (2001), Jansson (2004),
Sun, Phillips and Jin (2008, 2011), Zhang and Shao (2013)) tried to use higher
order expansions to uncover the mechanism leading to size distortions and power
deficiencies of the above mentioned tests. These higher-order asymptotic results
(and also the first-order results discussed above) are pointwise in the sense that
they are obtained under the assumption of a fixed underlying data-generating-
process. Hence, while they inform us about the limit of the rejection probability
and the rate of convergence to this limit for a fixed underlying data-generating-
process, they do not inform us about the size of the test or its limit as sample
size increases, nor about the power function or its asymptotic behavior. Size
and power properties of tests in regression models with dependent errors were
recently studied in Preinerstorfer and Potscher (2016): In a general finite sam-
ple setup and under high-level conditions on the structure of the test and the
covariance model, they derived conditions on the design matrix under which
a concentration mechanism due to strong dependencies leads to extreme size
distortions or power deficiencies. Furthermore, they suggested an adjustment-
procedure to obtain a modified test with improved size and power properties.
Specializing their general theory to a covariance model that includes at least all
covariance matrices corresponding to stationary autoregressive processes of or-
der one (AR(1)), they investigated finite sample properties of F-type tests based
on non-prewhitened covariance estimators with data-independent bandwidth pa-
rameters (covering inter alia the procedures in Newey and West (1987), Sections
3-5 of Andrews (1991), Hansen (1992), Kiefer, Vogelsang and Bunzel (2000),
Kiefer and Vogelsang (2002, 2005), Jansson (2002, 2004), but not the methods
considered by Andrews and Monahan (1992), Newey and West (1994) or Rho
and Shao (2013)). In this setup Preinerstorfer and P6tscher (2016) demonstrated
that these tests break down in terms of their size or power behavior for generic
design matrices. Despite this negative result, they also showed that the adjust-
ment procedure can often solve these problems, if elements of the covariance
model which are close to being singular can be well approximated by AR(1)
covariance matrices.
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Preinerstorfer and Pétscher (2016), however, did not consider tests based on
prewhitened covariance estimators or data-dependent bandwidth parameters.
Therefore the question remains, whether the more sophisticated tests typically
used in practice, i.e., tests based on Y2 critical values and the estimators by
Andrews and Monahan (1992) or Newey and West (1994), and the prewhitened
tests based on non-standard critical values and data-independent bandwidth
parameters, i.e., tests as considered in Rho and Shao (2013), also suffer from
extreme size distortions and power deficiencies, or if prewhitening and the use
of data-dependent bandwidth parameters can indeed resolve or at least sub-
stantially alleviate these problems. In the present paper we investigate finite
sample properties of tests based on prewhitened covariance estimators or data-
dependent bandwidth parameters. In particular our analysis covers tests based
on prewhitened covariance estimators using auxiliary AR(1) models for the con-
struction of the bandwidth parameter as discussed in Andrews and Monahan
(1992), tests based on prewhitened covariance estimators as discussed in Newey
and West (1994), and prewhitened tests based on non-standard critical values
as discussed in Rho and Shao (2013). We show that the tests considered, albeit
being structurally much more complex, exhibit a similar behavior as their non-
prewhitened counterparts with data-independent bandwidth parameters: First,
we establish conditions on the design matrix under which the tests considered
have (i) size equal to one, or (ii) size not smaller than one half, or (iii) nuisance-
minimal power equal to zero, respectively. We then demonstrate that at least
one of these conditions is generically satisfied, showing that the tests considered
break down for generic design matrices.

It is important to stress that this generic negative result does not only apply
to tests based on x? critical values, or to tests based on one of the non-standard
critical values mentioned above. The result is applicable to every F-type test
based on one of the nonparametric covariance estimators considered and com-
bined with any (data-independent) critical value 0 < C' < co. Hence, the prob-
lem described by our generic negative result can not be resolved by simply
adjusting (data-independently) the critical value used.

Motivated by this negative result, we introduce an adjustment procedure.
Under the assumption that elements of the covariance model which are close to
being singular can be well approximated by AR(1) covariance matrices, we show
that the adjustment procedure, if applicable, leads to tests that do not suffer
from extreme size distortions or power deficiencies. Finally, it is shown that
the adjustment procedure is applicable under generic conditions on the design
matrix, unless the regression includes the intercept and the hypothesis to be
tested restricts the corresponding coefficient. On a technical level we employ
the general theory developed in Preinerstorfer and Potscher (2016). We remark,
however, that the genericity results in particular do not follow from this general
theory. Rather they are obtained by studying and carefully exploiting the specific
structure of the procedures under consideration.

The paper is organized as follows: The framework is introduced in Section 2.
In Section 3 we introduce the test statistics, covariance estimators, and band-
width parameters we analyze. In Section 4 we establish our negative result and
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its genericity. In Section 5 we discuss the adjustment-procedure and its generic
applicability. Numerical results are presented in Section 6. Section 7 concludes.
The proofs are collected in Appendices B-D. Appendix E contains tables for the
numerical results.

2. The framework

Consider the linear regression model
Y=X5+1U, (1)

where X is a (real) n x k dimensional non-stochastic design matrix satisfying
n > 2, rank(X) = k and 1 < k < n. Here, € R* denotes the unknown
regression parameter vector, and the disturbance vector U = (uy,...,u,)" is
Gaussian, has mean zero and its unknown covariance matrix is given by o2X.
The parameter o2 satisfies 0 < 02 < oo and ¥ is assumed to be an element of
a prescribed (non-void) set of positive definite and symmetric n x n matrices
¢, which we shall refer to as the covariance model. Throughout we impose the
assumption on € that the parameters ¢ and ¥ can be uniquely determined
from o2¥.

Remark 2.1. The leading case we have in mind is the situation where uy, ..., u,
are n consecutive elements of a weakly stationary process. In such a setup a co-
variance model is typically obtained from a prescribed (non-void) set of spectral
densities F. Assuming that no element of F vanishes identically almost every-
where, the covariance model corresponding to F is then given by

C(F) ={%(f): feF},
with

S0 = ([ ew-oi-prmar/ [Cron) e

n

—m i,j=1
and where ¢ denotes the imaginary unit. Every such X(f) is positive definite and
symmetric. Furthermore, since Y(f) is a correlation matrix, 02 and X(f) can
uniquely be determined from o?%(f). As outlined in the Introduction the tests
we focus on in this article are particularly geared towards setups where F is a
nonparametric class of spectral densities, i.e., where the corresponding set €(F)
is rich. A typical example is the class F¢, which consists of all spectral densities of
linear processes the coefficients of which satisfy a certain summability condition,
i.e., spectral densities of the form
2

R

f) = @m)™

ch exp(—tjA)
7=0

where, for a fixed £ > 0, the summability condition 0 < 372, §élej] < oo is
satisfied. We observe that €(F¢) contains in particular all correlation matrices
corresponding to spectral densities of stationary autoregressive moving average
models of arbitrary large order.
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The linear model described in (1) induces a collection of distributions on
(R™, B(R™)), the sample space of Y. Denoting a Gaussian probability measure
with mean € R™ and covariance matrix 02X by P, ;s and denoting the
regression manifold by 9t = span(X), the induced collection of distributions is
given by

{Puoes i p €M 0<0? <o0,% €C}. (3)

Since every ¥ € € is positive definite by definition, each element P, ,25 of
the set in the previous display is absolutely continuous with respect to (w.r.t.)
Lebesgue measure on R™.

In this setup we shall consider the problem of testing a linear hypothesis on
the parameter vector 3 € R¥, i.e., the problem of testing the null R = r against
the alternative RS # r, where R is a ¢ X k matrix of rank ¢ > 1 and r € RY.
Define the affine space

My={peM:pu=Xpand R3 =r}

and let
My =MM\My={peM:u=Xpand RB#1r}.

Adopting these definitions, the above testing problem can be written as
Hoy:p€eMy, 0<0? <00, 8€C vs. Hi:peM,0<0? <00, Led, (4)

where it is emphasized that the testing problem is a compound one. It is imme-
diately clear that size and power properties of tests in this setup depend in a
crucial way on the richness of the covariance model €.

Before we close this section by introducing some further terminological and
notational conventions, we comment on how the fixed-design-assumption and
the Gaussianity-assumption above can be relaxed:

1. We remark that even though our setup assumes a non-stochastic design
matrix, the results immediately carry over to a setting where the data
generating processes of the design and the disturbances are independent
of each other. In such a setup, which covers many relevant scenarios, e.g.,
most simulation examples in our key references Andrews and Monahan
(1992), Newey and West (1994), and Rho and Shao (2013), our results
then deliver size and power properties conditional on the design, which,
in the tradition of conditional inference, might be considered as the more
relevant criterion, because X is observable (e.g., Robinson (1979)).

2. The Gaussianity assumption might seem to be restrictive. However, as in
Section 5.5 of Preinerstorfer and Potscher (2016), we mention that the
negative results given in Section 4 of the present paper immediately ex-
tend in a trivial way without imposing the Gaussianity assumption on the
error vector U in (1), as long as the assumptions on the feasible error
distributions are weak enough to ensure that the implied set of distribu-
tions for Y contains the set in Equation (3), but possibly contains also
other distributions. Furthermore, by applying an invariance argument (ex-
plained in Preinerstorfer and Pétscher (2016) Section 5.5) one can easily
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show that all statements about the null-behavior of the procedures under
consideration derived in the present paper carry over to the more general
distributional setup where U is assumed to be elliptically distributed. This
is to be understood as U having the same distribution as moX'/2E, where
0 <o <o, X €€ Eisarandom vector uniformly distributed on the
unit sphere S"~!, and m is a random variable distributed independently
of E and which is positive with probability one.

We next collect some further terminology and notation used throughout the
whole paper. A (non-randomized) test is the indicator function of a set W €
B(R™), i.e., the corresponding rejection region. The size of such a test (rejection
region) is the supremum over all rejection probabilities under the null hypothesis
I’I()7 i.e.,

sup  sup sup P, 25 (W).
HEMH 0<o2< 00 LEC

Throughout the paper we let Bx(y) = (X’X)f1 X'y, where X is the design
matrix appearing in (1) and y € R™. The corresponding ordinary least squares
(OLS) residual vector is denoted by ix (y) = y — XBx (y). The subscript X is
omitted whenever this does not cause confusion. Random vectors and random
variables are always written in bold capital and bold lower case letters, respec-
tively. We use Pr as a generic symbol for a probability measure and denote
by E the corresponding expectation operator. Lebesgue measure on R™ will be
denoted by Agn. The Euclidean norm is denoted by ||-||, while d(z, A) denotes
the Euclidean distance of the point € R™ to the set A C R™. For a vector x in
Euclidean space we define the symbol (z) to denote +x for  # 0, the sign being
chosen in such a way that the first nonzero component of (x) is positive, and we
set (0) = 0. The j-th standard basis vector in R"™ is denoted by e;(n). Let B’
denote the transpose of a matrix B and let span (B) denote the space spanned
by its columns. For a linear subspace £ of R™ we let £ denote its orthogonal
complement and we let 11, denote the orthogonal projection onto L. The set
of real matrices of dimension m x n is denoted by R"*™. Lebesgue measure
on this set equipped with its Borel o-algebra is denoted by Agmx~. We use the
convention that the adjoint of a 1 X 1 dimensional matrix D, i.e., adj(D), equals
one. Given a vector v € R™ the symbol diag(v) denotes the m x m diagonal
matrix with main diagonal v. We define

Xo={X e R : rank(X) = k},
i.e., the set of n x k design matrices of full rank, and whenever k > 2 we define
X0 = {X’ e R =1 rank((ey, X)) = k} )

which is canonically identified (as a set) with the set of n x k design matrices of
full column rank the first column of which is the intercept ey = (1,...,1)" € R™.
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3. Tests based on prewhitened covariance estimators

In the present section we formally describe the construction of tests based on
prewhitened covariance estimators. These tests (cf. Remark 3.4 below and the
discussion preceding it) reject for large values of a statistic

NQZ%M@WQ%MM@mim¢mm%

else,

(5)

where

Qy) = nR(X'X) " (y)(X'X) 'R,

and

N*(Q) = {y € R™ : Q(y) is not invertible or not well deﬁned} .

The quantity 1\ appearing in the definition of Q) above denotes a (VAR-) pre-
whitened nonparametric estimator of n = E(X'UU’X) that incorporates a band-
width parameter which might depend on the data. Such an estimator is com-
pletely specified by three core ingredients: First, a kernel x : R — R, i.e., an even
function satisfying «(0) = 1, such as, e.g., the Bartlett or Parzen kernel; second,
a (non-negative) possibly data-dependent bandwidth parameter M; and third, a
deterministic prewhitening order p, i.e., an integer satisfying 1 <p <n/(k+1)
(cf. Remark 3.2). Specific choices of M are discussed in detail in Section 3.1.
All possible combinations of k, M and p we analyze are specified in Assumption
1 of Section 3.2. Once these core ingredients have been chosen, one obtains a
prewhitened estimator \il, which is computed at an observation y following the
Steps (1) - (3) outlined subsequently (cf. also den Haan and Levin (1997)). We
here assume that the quantities involved (e.g., inverse matrices) are well defined,
cf. Remark 3.1 below, and follow the convention in the literature and leave the
estimator undefined at y else. Using this convention \il(y) is obtained as follows:

1. To prewhiten the data a VAR(p) model is fitted via ordinary least squares
to the columns of V(y) = X' diag(%(y)). One so obtains the VAR(p) resid-
ual matrix Z(y) € RF*("=P) with columns

p
2 ) = V(y) = D AP W)V () forj=p+1,....n
=1

The k x (kp)-dimensional VAR(p)-OLS estimator is given by

A0) = (AP ), AP W) = L) ()W)

where V,(y) = (V.(,H_l) )y, Vin (y)) € RF*("=P) and the j-th column of

~ . . /
Voly) € R¥X ) equals (V)1 (), -, Vs (), V5 () € R¥P for j =

1,...,n — p. In matrix form we clearly have Z(y) = V,(y) — A®) (y)Vo(y).
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2. Then, one computes the quantities

1 n—p 5 71 : ; —p—
fz(y) _Jn» Ej:i+1 Zj (y)Z.(jfi)(y) f0<i<n-p-1,
I'(y) if0<—i<n—p—1,

and defines the preliminary estimate
Uy)= Y,  w(i/My)Tiy),

where in case M (y) = 0 one sets x(i/M(y)) = 0 for i # 0 and «(i/M(y)) =

k(0) for i = 0. )
3. Finally, the preliminary estimate W(y) is ‘recolored’ using the transforma-
tion

Remark 3.1. The construction of U (y) outlined above clearly assumes that (i)
A®)(y) is well defined, which is equivalent to rank(Vy(y)) = kp; that (i) M(y)
is well defined, which depends on the specific choice of M (cf. Section 3.1); and

that (iil) Iy — >0, Az(-p)(y) is invertible.

Remark 3.2. By assumption, all possible VAR orders p we consider must
satisfy p < n/(k + 1). This is done to rule out degenerate cases: for if p >
n/(k + 1), then rank(Vy(y)) < kp would follow because of Vy(y) € RFP*(n=p),
Hence the covariance estimator would nowhere be well defined for such a choice,
because (i) in Remark 3.1 would then clearly be violated at every observation
Y.

Remark 3.3. In the present paper we focus on VAR prewhitening based on
the OLS estimator. This is in line with the original suggestions by Newey and
West (1994), as well as with Rho and Shao (2013). Alternatively, for p = 1,
Andrews and Monahan (1992) suggested to use an eigenvalue adjusted version

of the OLS estimator, the adjustment being applied if the matrix I, — flgl)(y)
is close to being singular. We shall focus on the unadjusted OLS estimator for
the following reasons: Newey and West (1994) reported that the finite sample
properties show little sensitivity to this eigenvalue adjustment. Furthermore, it
is the unadjusted estimator that is often used in implementations of the method
suggested by Andrews and Monahan (1992) in software packages for statistical
and econometric computing (e.g., its implementation in the R (R Core Team
(2016)) package sandwich by Zeileis (2004), or its implementation in EViews,
e.g., Schwert (2009), p. 784.). We remark, however, that one can obtain a neg-
ative result similar to Theorem 4.2, and a positive result concerning an adjust-
ment procedure similar to Theorem 5.4, also for tests based on prewhitened
estimators with eigenvalue adjustment. Furthermore, we conjecture that it is
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possible to prove (similar to Proposition 4.5) the genericity of such a negative
result, and to show that one can (similar to Proposition 5.5) generically resolve
this problem by using the adjustment procedure. We leave the question of which
estimator to choose for prewhitening to future research.

In a typical asymptotic analysis of tests based on prewhitened covariance
estimators the event N*(2) is asymptotically negligible (since ) converges to a
positive definite, or almost everywhere positive definite matrix). Hence there is

no need to be specific about the definition of the test statistic for y € N*(£2),
and one can work directly with the statistic

y = (RB(y) —r)' Q@ (y)(RB(y) — 7). (6)

which is left undefined for y € N*(Q). In a finite sample setup, however, one

has to think about the definition of the test statistic also for y € N*(Q). Our
decision to assign the value 0 to the test statistic for y € N*(Q) is of course
completely arbitrary. That this assignment does not affect our results at all is

discussed in detail in the following remark.

Remark 3.4. Given that the estimator § is based on a triple k, M, p that
satisfies Assumption 1 introduced below (which is assumed in all of our main
results, and which is satisfied for covariance estimators using auxiliary AR(1)
models for the construction of the bandwidth parameter as considered in An-
drews and Monahan (1992), for covariance estimators as considered in Newey
and West (1994), and for covariance estimators as considered in Rho and Shao
(2013)), it follows from Lemma 3.10 that N*(f2) is either a Agn-null set, or that
it coincides with R™. In the first case, which is generic under weak dimension-
ality constraints as shown in Lemma 3.11, the definition of the test statistic on
N* (Q) does hence not influence the rejection probabilities, because our model
is dominated by Ag» (€ contains only positive definite matrices). Therefore, size
and power properties are not affected by the definition of the test statistic for
y € N*(Q). In the second case, i.e., if N*(Q) coincides with R", the statistic in
(6) is nowhere well defined, and hence, regardless of which value is assigned to

it for observations y € N*(£2), the resulting test statistic is constant, and thus
any test based on it breaks down trivially.

3.1. Bandwidth parameters

In the following we describe bandwidth parameters M that are typically used in
Step 2 in the construction of the prewhitened estimator U as discussed above:
The parametric approach (based on auxiliary AR(1) models) suggested by An-
drews (1991) and Andrews and Monahan (1992), the nonparametric approach
introduced by Newey and West (1994), and a data-independent approach which
was already investigated in Kiefer and Vogelsang (2005) in simulation studies
and which has recently been theoretically investigated by Rho and Shao (2013).
Since the bandwidth parameter M is computed in Step 2 in the construction
of \il(y), we assume that x, p and y are given and that Step 1 has already been
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successfully completed, i.e., all operations in Step 1 are well defined at y, in
particular Z (y) is available for the construction of M. If not, we leave the band-
width parameter (and hence the covariance estimator) undefined at y. We also
implicitly assume that the quantities and operations appearing in the procedures
outlined subsequently are well defined and leave the bandwidth parameter (and
hence the covariance estimator) undefined else. A detailed structural analysis
of the subset of the sample space where a prewhitened estimator Q) is well de-
fined is then later given in Lemma 3.9 in Section 3.3. Finally, we emphasize
that the bandwidth parameters discussed subsequently all require the choice of
additional tuning parameters. These tuning parameters are typically chosen in-
dependently of y and X, an assumption we shall maintain throughout the whole
paper (but see Remark 3.8 for some generalizations).

3.1.1. The parametric approach of Andrews and Monahan (1992)

Let w € R* be such that w # 0 and w; > 0 for i = 1,...,k, ie., wis a
weights vector. Based on this weights vector the bandwidth parameter is now
obtained as follows: First, univariate AR(1) models are fitted via OLS to Z;.(y)
fori=1,...,k, giving

n—p R n— p 1
pi(y) = Zij(y) z(g 1) / Zw (y)? fori=1,...,k,

67(y)=n—-p—-1)" Z (sz( ) — pily )Zi(j_l)(y)>2 fori=1,...,k,

=2

Where we note that n — p — 1 > 0 holds as a consequence of n > 2 and 1 < p <
Then, one calculates

k k
493 (1) () ohy)
Z“’Zlf )°(1+ pi(y))? /;“lumy»“

. M dpi(y)2e &4
o) = L / ;“%1/3%)4'

=1

k+1

Finally, bandwidth parameters are obtained via
Man jwe(y) = e (a;(y)n)*  for j=1,2,

where to obtain a bandwidth parameter, one has to fix the constants ¢; > 0,
ca > 0 and j and where ¢ = (¢1,cq). Typically the choice of these constants
and the choice of j depends on certain characteristics of x (for specific choices
see Andrews (1991), Section 6, in particular p. 834). For example, if  is the
Bartlett kernel one uses ¢; = 1.1447, ¢co = 1/3 and j = 1, or if k is the Quadratic-
Spectral kernel one would use ¢; = 1.13221, ¢ = 1/5 and j = 2. Since we do
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not need such a specific dependence to derive our theoretical results, we do not
impose any further assumptions on these constants beyond being positive (and
independent of y and X). We shall denote by M4y, the set of all bandwidth
parameters that can be obtained as special cases of the method in the present
section, by appropriately choosing - functionally independently of y and X - a
weights vector w, constants ¢; > 0, co > 0 and a j € {1,2}.

Remark 3.5. Since n, k and ¢ are fixed quantities, the tuning parameters w,
¢; for i = 1,2 and j might also depend on them, although we do not signify
this in our notation. A similar remark applies to the constants appearing in
Section 3.1.2 and in Section 3.1.3. Although we do not provide any details, we
furthermore remark that one can extend our analysis to bandwidth parameters
as above, but based on estimators other than p;, e.g., all estimators satisfying
Assumption 4 of Preinerstorfer and Potscher (2016) such as the Yule-Walker
estimator or variants of the OLS estimator.

3.1.2. The non-parametric approach of Newey and West (1994)

Let w € R* be as in Section 3.1.1 and let w(i) > 0 for |i| = 0,...,n—p—1 be real
numbers such that w(0) = 1. For example, Newey and West (1994) suggested
to use rectangular weights, i.e.,

1 if [i] < [4(n/100)%/°

wey = {1 < LaG/10027,
0 else,

where |.| denotes the floor function. Define for every |i| =0,...n —p—1

n—p
Gi(y) =wTilpw=m—-p) ™" > Z;W)Z ;W
g=lil+1
A bandwidth parameter is then obtained via

n—p—1 n—p—1 2 °
Mywowe) =2 | [ liFw@a)/ Y wab)| n
i=—(n—p—1) i=—(n—p—1)

where ¢; is a positive integer, where ¢; and ¢3 are positive real numbers and
where ¢ = (¢;,Ca,¢3). These numbers are constants independent of y and X
and have to be chosen by the user. The choice typically depends on the kernel
(for the specific choices we refer the reader to Newey and West (1994), Section
3). As in the previous section, we do not impose any assumptions beyond posi-
tivity (and independence of y and X) on the constants. Furthermore, we shall
denote by My the set of all bandwidth parameters that can be obtained as
special cases of the method in the present section, by appropriately choosing -
func