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1. Introduction

The construction of tests for hypotheses on the coefficient vector in linear re-
gression models with dependent errors is highly practically relevant and has
received lots of attention in the statistics and econometrics literature. The main
challenge is to obtain tests with good size and power properties in situations
where the nuisance parameter governing the dependence structure of the er-
rors is high- or possibly infinite-dimensional and allows for strong correlations.
The large majority of available procedures are autocorrelation-corrected F-type
tests, based on nonparametric covariance estimators trying to take into account
the autocorrelation in the disturbances. The tests currently used can roughly be
categorized into two groups, the distinction depending on the choice of the criti-
cal values. The first group of such tests is based on critical values obtained from
an asymptotic framework in which the nonparametric covariance estimators are
consistent, and where the asymptotic distribution of the F-type test statistic un-
der the null hypothesis is a χ2 distribution. Quantiles of this limiting distribution
are then used for testing. Concerning these tests, important contributions in the
econometrics literature are Newey and West (1987), Andrews (1991), Andrews
and Monahan (1992), and Newey and West (1994). It is safe to say that using F-
type tests based on χ2 critical values and the covariance estimators introduced
in the latter two articles currently constitutes the gold standard for the testing
problem under consideration. In contrast to the estimator suggested earlier by
Newey and West (1987) - structurally 2π times a standard kernel spectral den-
sity estimator (Bartlett (1950), Jowett (1955), Hannan (1957), and Grenander
and Rosenblatt (1957) Section 7.9) evaluated at frequency 0 - the covariance
estimators suggested in Andrews and Monahan (1992) and Newey and West
(1994) both incorporate an additional prewhitening step based on an auxiliary
vector autoregressive (VAR) model, as well as a data-dependent bandwidth pa-
rameter. A distinguishing feature of the estimators introduced by Andrews and
Monahan (1992) on the one hand and Newey and West (1994) on the other hand
is the choice of the bandwidth parameter: Andrews and Monahan (1992) used
an approach introduced by Andrews (1991), where the bandwidth parameter is
chosen based on auxiliary parametric models. In contrast to that, Newey and
West (1994) suggested a nonparametric approach for choosing the bandwidth
parameter. Even though simulation studies have shown that the inclusion of a
prewhitening step and the data-dependent choice of the bandwidth parameter
can improve the finite sample properties of the tests obtained, these more so-
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phisticated tests still suffer from size distortions and power deficiencies. For this
reason Kiefer, Vogelsang and Bunzel (2000), Kiefer and Vogelsang (2002), and
Kiefer and Vogelsang (2005) suggested a different asymptotic framework for ob-
taining critical values. Their framework, in which the bandwidth parameter is a
fixed proportion of the sample size, leads to inconsistent covariance estimators
and to a non-standard limiting distribution of the corresponding test statistic
under the null hypothesis, the quantiles of which are used to obtain tests. In
simulation studies it has been observed that these tests still suffer from size dis-
tortions in finite samples, but less so than tests based on χ2 critical values. How-
ever, this is at the expense of some loss in power. Furthermore, simulation results
in Kiefer and Vogelsang (2005) and Rho and Shao (2013) suggest that the finite
sample properties of tests based on non-standard critical values can be improved
by incorporating a prewhitening step. In the latter paper it was also shown that
the asymptotic distribution under the null of the test suggested by Kiefer, Vo-
gelsang and Bunzel (2000) is the same whether or not prewhitening is used.

A number of recent studies (Velasco and Robinson (2001), Jansson (2004),
Sun, Phillips and Jin (2008, 2011), Zhang and Shao (2013)) tried to use higher
order expansions to uncover the mechanism leading to size distortions and power
deficiencies of the above mentioned tests. These higher-order asymptotic results
(and also the first-order results discussed above) are pointwise in the sense that
they are obtained under the assumption of a fixed underlying data-generating-
process. Hence, while they inform us about the limit of the rejection probability
and the rate of convergence to this limit for a fixed underlying data-generating-
process, they do not inform us about the size of the test or its limit as sample
size increases, nor about the power function or its asymptotic behavior. Size
and power properties of tests in regression models with dependent errors were
recently studied in Preinerstorfer and Pötscher (2016): In a general finite sam-
ple setup and under high-level conditions on the structure of the test and the
covariance model, they derived conditions on the design matrix under which
a concentration mechanism due to strong dependencies leads to extreme size
distortions or power deficiencies. Furthermore, they suggested an adjustment-
procedure to obtain a modified test with improved size and power properties.
Specializing their general theory to a covariance model that includes at least all
covariance matrices corresponding to stationary autoregressive processes of or-
der one (AR(1)), they investigated finite sample properties of F-type tests based
on non-prewhitened covariance estimators with data-independent bandwidth pa-
rameters (covering inter alia the procedures in Newey and West (1987), Sections
3-5 of Andrews (1991), Hansen (1992), Kiefer, Vogelsang and Bunzel (2000),
Kiefer and Vogelsang (2002, 2005), Jansson (2002, 2004), but not the methods
considered by Andrews and Monahan (1992), Newey and West (1994) or Rho
and Shao (2013)). In this setup Preinerstorfer and Pötscher (2016) demonstrated
that these tests break down in terms of their size or power behavior for generic
design matrices. Despite this negative result, they also showed that the adjust-
ment procedure can often solve these problems, if elements of the covariance
model which are close to being singular can be well approximated by AR(1)
covariance matrices.
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Preinerstorfer and Pötscher (2016), however, did not consider tests based on
prewhitened covariance estimators or data-dependent bandwidth parameters.
Therefore the question remains, whether the more sophisticated tests typically
used in practice, i.e., tests based on χ2 critical values and the estimators by
Andrews and Monahan (1992) or Newey and West (1994), and the prewhitened
tests based on non-standard critical values and data-independent bandwidth
parameters, i.e., tests as considered in Rho and Shao (2013), also suffer from
extreme size distortions and power deficiencies, or if prewhitening and the use
of data-dependent bandwidth parameters can indeed resolve or at least sub-
stantially alleviate these problems. In the present paper we investigate finite
sample properties of tests based on prewhitened covariance estimators or data-
dependent bandwidth parameters. In particular our analysis covers tests based
on prewhitened covariance estimators using auxiliary AR(1) models for the con-
struction of the bandwidth parameter as discussed in Andrews and Monahan
(1992), tests based on prewhitened covariance estimators as discussed in Newey
and West (1994), and prewhitened tests based on non-standard critical values
as discussed in Rho and Shao (2013). We show that the tests considered, albeit
being structurally much more complex, exhibit a similar behavior as their non-
prewhitened counterparts with data-independent bandwidth parameters: First,
we establish conditions on the design matrix under which the tests considered
have (i) size equal to one, or (ii) size not smaller than one half, or (iii) nuisance-
minimal power equal to zero, respectively. We then demonstrate that at least
one of these conditions is generically satisfied, showing that the tests considered
break down for generic design matrices.

It is important to stress that this generic negative result does not only apply
to tests based on χ2 critical values, or to tests based on one of the non-standard
critical values mentioned above. The result is applicable to every F-type test
based on one of the nonparametric covariance estimators considered and com-
bined with any (data-independent) critical value 0 < C < ∞. Hence, the prob-
lem described by our generic negative result can not be resolved by simply
adjusting (data-independently) the critical value used.

Motivated by this negative result, we introduce an adjustment procedure.
Under the assumption that elements of the covariance model which are close to
being singular can be well approximated by AR(1) covariance matrices, we show
that the adjustment procedure, if applicable, leads to tests that do not suffer
from extreme size distortions or power deficiencies. Finally, it is shown that
the adjustment procedure is applicable under generic conditions on the design
matrix, unless the regression includes the intercept and the hypothesis to be
tested restricts the corresponding coefficient. On a technical level we employ
the general theory developed in Preinerstorfer and Pötscher (2016). We remark,
however, that the genericity results in particular do not follow from this general
theory. Rather they are obtained by studying and carefully exploiting the specific
structure of the procedures under consideration.

The paper is organized as follows: The framework is introduced in Section 2.
In Section 3 we introduce the test statistics, covariance estimators, and band-
width parameters we analyze. In Section 4 we establish our negative result and
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its genericity. In Section 5 we discuss the adjustment-procedure and its generic
applicability. Numerical results are presented in Section 6. Section 7 concludes.
The proofs are collected in Appendices B-D. Appendix E contains tables for the
numerical results.

2. The framework

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) n × k dimensional non-stochastic design matrix satisfying
n > 2, rank(X) = k and 1 ≤ k < n. Here, β ∈ Rk denotes the unknown
regression parameter vector, and the disturbance vector U = (u1, . . . ,un)

′ is
Gaussian, has mean zero and its unknown covariance matrix is given by σ2Σ.
The parameter σ2 satisfies 0 < σ2 < ∞ and Σ is assumed to be an element of
a prescribed (non-void) set of positive definite and symmetric n × n matrices
C, which we shall refer to as the covariance model. Throughout we impose the
assumption on C that the parameters σ2 and Σ can be uniquely determined
from σ2Σ.

Remark 2.1. The leading case we have in mind is the situation where u1, . . . ,un

are n consecutive elements of a weakly stationary process. In such a setup a co-
variance model is typically obtained from a prescribed (non-void) set of spectral
densities F . Assuming that no element of F vanishes identically almost every-
where, the covariance model corresponding to F is then given by

C(F) = {Σ(f) : f ∈ F} ,

with

Σ(f) =

(∫ π

−π

exp(−ιλ(i− j))f(λ)dλ

/∫ π

−π

f(λ)dλ

)n

i,j=1

, (2)

and where ι denotes the imaginary unit. Every such Σ(f) is positive definite and
symmetric. Furthermore, since Σ(f) is a correlation matrix, σ2 and Σ(f) can
uniquely be determined from σ2Σ(f). As outlined in the Introduction the tests
we focus on in this article are particularly geared towards setups where F is a
nonparametric class of spectral densities, i.e., where the corresponding set C(F)
is rich. A typical example is the class Fξ, which consists of all spectral densities of
linear processes the coefficients of which satisfy a certain summability condition,
i.e., spectral densities of the form

f(λ) = (2π)−1

∣∣∣∣
∞∑
j=0

cj exp(−ιjλ)

∣∣∣∣
2

,

where, for a fixed ξ ≥ 0, the summability condition 0 <
∑∞

j=0 j
ξ|cj | < ∞ is

satisfied. We observe that C(Fξ) contains in particular all correlation matrices
corresponding to spectral densities of stationary autoregressive moving average
models of arbitrary large order.
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The linear model described in (1) induces a collection of distributions on
(Rn,B(Rn)), the sample space of Y. Denoting a Gaussian probability measure
with mean μ ∈ Rn and covariance matrix σ2Σ by Pμ,σ2Σ and denoting the
regression manifold by M = span(X), the induced collection of distributions is
given by {

Pμ,σ2Σ : μ ∈ M, 0 < σ2 < ∞,Σ ∈ C
}
. (3)

Since every Σ ∈ C is positive definite by definition, each element Pμ,σ2Σ of
the set in the previous display is absolutely continuous with respect to (w.r.t.)
Lebesgue measure on Rn.

In this setup we shall consider the problem of testing a linear hypothesis on
the parameter vector β ∈ Rk, i.e., the problem of testing the null Rβ = r against
the alternative Rβ �= r, where R is a q × k matrix of rank q ≥ 1 and r ∈ Rq.
Define the affine space

M0 = {μ ∈ M : μ = Xβ and Rβ = r}

and let
M1 = M\M0 = {μ ∈ M : μ = Xβ and Rβ �= r} .

Adopting these definitions, the above testing problem can be written as

H0 : μ ∈ M0, 0 < σ2 < ∞, Σ ∈ C vs. H1 : μ ∈ M1, 0 < σ2 < ∞, Σ ∈ C, (4)

where it is emphasized that the testing problem is a compound one. It is imme-
diately clear that size and power properties of tests in this setup depend in a
crucial way on the richness of the covariance model C.

Before we close this section by introducing some further terminological and
notational conventions, we comment on how the fixed-design-assumption and
the Gaussianity-assumption above can be relaxed:

1. We remark that even though our setup assumes a non-stochastic design
matrix, the results immediately carry over to a setting where the data
generating processes of the design and the disturbances are independent
of each other. In such a setup, which covers many relevant scenarios, e.g.,
most simulation examples in our key references Andrews and Monahan
(1992), Newey and West (1994), and Rho and Shao (2013), our results
then deliver size and power properties conditional on the design, which,
in the tradition of conditional inference, might be considered as the more
relevant criterion, because X is observable (e.g., Robinson (1979)).

2. The Gaussianity assumption might seem to be restrictive. However, as in
Section 5.5 of Preinerstorfer and Pötscher (2016), we mention that the
negative results given in Section 4 of the present paper immediately ex-
tend in a trivial way without imposing the Gaussianity assumption on the
error vector U in (1), as long as the assumptions on the feasible error
distributions are weak enough to ensure that the implied set of distribu-
tions for Y contains the set in Equation (3), but possibly contains also
other distributions. Furthermore, by applying an invariance argument (ex-
plained in Preinerstorfer and Pötscher (2016) Section 5.5) one can easily
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show that all statements about the null-behavior of the procedures under
consideration derived in the present paper carry over to the more general
distributional setup where U is assumed to be elliptically distributed. This
is to be understood as U having the same distribution as mσΣ1/2E, where
0 < σ < ∞, Σ ∈ C, E is a random vector uniformly distributed on the
unit sphere Sn−1, and m is a random variable distributed independently
of E and which is positive with probability one.

We next collect some further terminology and notation used throughout the
whole paper. A (non-randomized) test is the indicator function of a set W ∈
B(Rn), i.e., the corresponding rejection region. The size of such a test (rejection
region) is the supremum over all rejection probabilities under the null hypothesis
H0, i.e.,

sup
μ∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ,σ2Σ(W ).

Throughout the paper we let β̂X(y) = (X ′X)
−1

X ′y, where X is the design
matrix appearing in (1) and y ∈ Rn. The corresponding ordinary least squares

(OLS) residual vector is denoted by ûX(y) = y −Xβ̂X(y). The subscript X is
omitted whenever this does not cause confusion. Random vectors and random
variables are always written in bold capital and bold lower case letters, respec-
tively. We use Pr as a generic symbol for a probability measure and denote
by E the corresponding expectation operator. Lebesgue measure on Rn will be
denoted by λRn . The Euclidean norm is denoted by ‖·‖, while d(x,A) denotes
the Euclidean distance of the point x ∈ Rn to the set A ⊆ Rn. For a vector x in
Euclidean space we define the symbol 〈x〉 to denote ±x for x �= 0, the sign being
chosen in such a way that the first nonzero component of 〈x〉 is positive, and we
set 〈0〉 = 0. The j-th standard basis vector in Rn is denoted by ej(n). Let B′

denote the transpose of a matrix B and let span (B) denote the space spanned
by its columns. For a linear subspace L of Rn we let L⊥ denote its orthogonal
complement and we let ΠL denote the orthogonal projection onto L. The set
of real matrices of dimension m × n is denoted by Rm×n. Lebesgue measure
on this set equipped with its Borel σ-algebra is denoted by λRm×n . We use the
convention that the adjoint of a 1×1 dimensional matrix D, i.e., adj(D), equals
one. Given a vector v ∈ Rm the symbol diag(v) denotes the m × m diagonal
matrix with main diagonal v. We define

X0 =
{
X ∈ Rn×k : rank(X) = k

}
,

i.e., the set of n× k design matrices of full rank, and whenever k ≥ 2 we define

X̃0 =
{
X̃ ∈ Rn×(k−1) : rank((e+, X̃)) = k

}
,

which is canonically identified (as a set) with the set of n×k design matrices of
full column rank the first column of which is the intercept e+ = (1, . . . , 1)′ ∈ Rn.
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3. Tests based on prewhitened covariance estimators

In the present section we formally describe the construction of tests based on
prewhitened covariance estimators. These tests (cf. Remark 3.4 below and the
discussion preceding it) reject for large values of a statistic

T (y) =

{
(Rβ̂(y)− r)′Ω̂−1(y)(Rβ̂(y)− r) if y /∈ N∗(Ω̂),

0 else,
(5)

where
Ω̂(y) = nR(X ′X)−1Ψ̂(y)(X ′X)−1R′,

and

N∗(Ω̂) =
{
y ∈ Rn : Ω̂(y) is not invertible or not well defined

}
.

The quantity Ψ̂ appearing in the definition of Ω̂ above denotes a (VAR-) pre-
whitened nonparametric estimator of n−1E(X ′UU′X) that incorporates a band-
width parameter which might depend on the data. Such an estimator is com-
pletely specified by three core ingredients: First, a kernel κ : R → R, i.e., an even
function satisfying κ(0) = 1, such as, e.g., the Bartlett or Parzen kernel; second,
a (non-negative) possibly data-dependent bandwidth parameter M ; and third, a
deterministic prewhitening order p, i.e., an integer satisfying 1 ≤ p ≤ n/(k + 1)
(cf. Remark 3.2). Specific choices of M are discussed in detail in Section 3.1.
All possible combinations of κ, M and p we analyze are specified in Assumption
1 of Section 3.2. Once these core ingredients have been chosen, one obtains a
prewhitened estimator Ψ̂, which is computed at an observation y following the
Steps (1) - (3) outlined subsequently (cf. also den Haan and Levin (1997)). We
here assume that the quantities involved (e.g., inverse matrices) are well defined,
cf. Remark 3.1 below, and follow the convention in the literature and leave the
estimator undefined at y else. Using this convention Ψ̂(y) is obtained as follows:

1. To prewhiten the data a VAR(p) model is fitted via ordinary least squares
to the columns of V̂ (y) = X ′ diag(û(y)). One so obtains the VAR(p) resid-
ual matrix Ẑ(y) ∈ Rk×(n−p) with columns

Ẑ·(j−p)(y) = V̂·j(y)−
p∑

l=1

Â
(p)
l (y)V̂·(j−l)(y) for j = p+ 1, . . . , n.

The k × (kp)-dimensional VAR(p)-OLS estimator is given by

Â(p)(y) =
(
Â

(p)
1 (y), . . . , Â(p)

p (y)
)
= V̂p(y)V̂

′
0(y)

(
V̂0(y)V̂

′
0(y)

)−1

,

where V̂p(y) =
(
V̂·(p+1)(y), . . . , V̂·n(y)

)
∈ Rk×(n−p) and the j-th column of

V̂0(y) ∈ Rkp×(n−p) equals
(
V̂ ′
·j+p−1(y), . . . , V̂

′
·j+1(y), V̂

′
·j(y)

)′
∈ Rkp for j =

1, . . . , n− p. In matrix form we clearly have Ẑ(y) = V̂p(y)− Â(p)(y)V̂0(y).
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2. Then, one computes the quantities

Γ̌i(y) =

{
1

n−p

∑n−p
j=i+1 Ẑ·j(y)Ẑ

′
·(j−i)(y) if 0 ≤ i ≤ n− p− 1,

Γ̌′
−i(y) if 0 < −i ≤ n− p− 1,

and defines the preliminary estimate

Ψ̌(y) =

n−p−1∑
i=−(n−p−1)

κ(i/M(y))Γ̌i(y),

where in case M(y) = 0 one sets κ(i/M(y)) = 0 for i �= 0 and κ(i/M(y)) =
κ(0) for i = 0.

3. Finally, the preliminary estimate Ψ̌(y) is ‘recolored’ using the transforma-
tion

Ψ̂(y) =

(
Ik −

p∑
l=1

Â
(p)
l (y)

)−1

Ψ̌(y)

⎡
⎣(Ik −

p∑
l=1

Â
(p)
l (y)

)−1
⎤
⎦
′

.

Remark 3.1. The construction of Ψ̂(y) outlined above clearly assumes that (i)
Â(p)(y) is well defined, which is equivalent to rank(V̂0(y)) = kp; that (ii) M(y)
is well defined, which depends on the specific choice of M (cf. Section 3.1); and

that (iii) Ik −
∑p

i=1 Â
(p)
i (y) is invertible.

Remark 3.2. By assumption, all possible VAR orders p we consider must
satisfy p ≤ n/(k + 1). This is done to rule out degenerate cases: for if p >
n/(k + 1), then rank(V̂0(y)) < kp would follow because of V̂0(y) ∈ Rkp×(n−p).
Hence the covariance estimator would nowhere be well defined for such a choice,
because (i) in Remark 3.1 would then clearly be violated at every observation
y.

Remark 3.3. In the present paper we focus on VAR prewhitening based on
the OLS estimator. This is in line with the original suggestions by Newey and
West (1994), as well as with Rho and Shao (2013). Alternatively, for p = 1,
Andrews and Monahan (1992) suggested to use an eigenvalue adjusted version

of the OLS estimator, the adjustment being applied if the matrix Ik − Â
(1)
1 (y)

is close to being singular. We shall focus on the unadjusted OLS estimator for
the following reasons: Newey and West (1994) reported that the finite sample
properties show little sensitivity to this eigenvalue adjustment. Furthermore, it
is the unadjusted estimator that is often used in implementations of the method
suggested by Andrews and Monahan (1992) in software packages for statistical
and econometric computing (e.g., its implementation in the R (R Core Team
(2016)) package sandwich by Zeileis (2004), or its implementation in EViews,
e.g., Schwert (2009), p. 784.). We remark, however, that one can obtain a neg-
ative result similar to Theorem 4.2, and a positive result concerning an adjust-
ment procedure similar to Theorem 5.4, also for tests based on prewhitened
estimators with eigenvalue adjustment. Furthermore, we conjecture that it is
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possible to prove (similar to Proposition 4.5) the genericity of such a negative
result, and to show that one can (similar to Proposition 5.5) generically resolve
this problem by using the adjustment procedure. We leave the question of which
estimator to choose for prewhitening to future research.

In a typical asymptotic analysis of tests based on prewhitened covariance
estimators the event N∗(Ω̂) is asymptotically negligible (since Ω̂ converges to a
positive definite, or almost everywhere positive definite matrix). Hence there is
no need to be specific about the definition of the test statistic for y ∈ N∗(Ω̂),
and one can work directly with the statistic

y �→ (Rβ̂(y)− r)′Ω̂−1(y)(Rβ̂(y)− r), (6)

which is left undefined for y ∈ N∗(Ω̂). In a finite sample setup, however, one
has to think about the definition of the test statistic also for y ∈ N∗(Ω̂). Our
decision to assign the value 0 to the test statistic for y ∈ N∗(Ω̂) is of course
completely arbitrary. That this assignment does not affect our results at all is
discussed in detail in the following remark.

Remark 3.4. Given that the estimator Ω̂ is based on a triple κ, M , p that
satisfies Assumption 1 introduced below (which is assumed in all of our main
results, and which is satisfied for covariance estimators using auxiliary AR(1)
models for the construction of the bandwidth parameter as considered in An-
drews and Monahan (1992), for covariance estimators as considered in Newey
and West (1994), and for covariance estimators as considered in Rho and Shao
(2013)), it follows from Lemma 3.10 that N∗(Ω̂) is either a λRn -null set, or that
it coincides with Rn. In the first case, which is generic under weak dimension-
ality constraints as shown in Lemma 3.11, the definition of the test statistic on
N∗(Ω̂) does hence not influence the rejection probabilities, because our model
is dominated by λRn (C contains only positive definite matrices). Therefore, size
and power properties are not affected by the definition of the test statistic for
y ∈ N∗(Ω̂). In the second case, i.e., if N∗(Ω̂) coincides with Rn, the statistic in
(6) is nowhere well defined, and hence, regardless of which value is assigned to
it for observations y ∈ N∗(Ω̂), the resulting test statistic is constant, and thus
any test based on it breaks down trivially.

3.1. Bandwidth parameters

In the following we describe bandwidth parameters M that are typically used in
Step 2 in the construction of the prewhitened estimator Ψ̂ as discussed above:
The parametric approach (based on auxiliary AR(1) models) suggested by An-
drews (1991) and Andrews and Monahan (1992), the nonparametric approach
introduced by Newey and West (1994), and a data-independent approach which
was already investigated in Kiefer and Vogelsang (2005) in simulation studies
and which has recently been theoretically investigated by Rho and Shao (2013).
Since the bandwidth parameter M is computed in Step 2 in the construction
of Ψ̂(y), we assume that κ, p and y are given and that Step 1 has already been
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successfully completed, i.e., all operations in Step 1 are well defined at y, in
particular Ẑ(y) is available for the construction of M . If not, we leave the band-
width parameter (and hence the covariance estimator) undefined at y. We also
implicitly assume that the quantities and operations appearing in the procedures
outlined subsequently are well defined and leave the bandwidth parameter (and
hence the covariance estimator) undefined else. A detailed structural analysis
of the subset of the sample space where a prewhitened estimator Ω̂ is well de-
fined is then later given in Lemma 3.9 in Section 3.3. Finally, we emphasize
that the bandwidth parameters discussed subsequently all require the choice of
additional tuning parameters. These tuning parameters are typically chosen in-
dependently of y and X, an assumption we shall maintain throughout the whole
paper (but see Remark 3.8 for some generalizations).

3.1.1. The parametric approach of Andrews and Monahan (1992)

Let ω ∈ Rk be such that ω �= 0 and ωi ≥ 0 for i = 1, . . . , k, i.e., ω is a
weights vector. Based on this weights vector the bandwidth parameter is now
obtained as follows: First, univariate AR(1) models are fitted via OLS to Ẑi·(y)
for i = 1, . . . , k, giving

ρ̂i(y) =

n−p∑
j=2

Ẑij(y)Ẑi(j−1)(y)

/ n−p−1∑
j=1

Ẑij(y)
2 for i = 1, . . . , k,

σ̂2
i (y) = (n− p− 1)−1

n−p∑
j=2

(
Ẑij(y)− ρ̂i(y)Ẑi(j−1)(y)

)2
for i = 1, . . . , k,

where we note that n− p− 1 > 0 holds as a consequence of n > 2 and 1 ≤ p ≤
n

k+1 . Then, one calculates

α̂1(y) =
k∑

i=1

ωi
4ρ̂2i (y)σ̂

4
i (y)

(1− ρ̂i(y))6(1 + ρ̂i(y))2

/ k∑
i=1

ωi
σ̂4
i (y)

(1− ρ̂i(y))4
,

α̂2(y) =
k∑

i=1

ωi
4ρ̂i(y)

2σ̂4
i (y)

(1− ρ̂i(y))8

/ k∑
i=1

ωi
σ̂4
i (y)

(1− ρ̂i(y))4
.

Finally, bandwidth parameters are obtained via

MAM,j,ω,c(y) = c1 (α̂j(y)n)
c2 for j = 1, 2,

where to obtain a bandwidth parameter, one has to fix the constants c1 > 0,
c2 > 0 and j and where c = (c1, c2). Typically the choice of these constants
and the choice of j depends on certain characteristics of κ (for specific choices
see Andrews (1991), Section 6, in particular p. 834). For example, if κ is the
Bartlett kernel one uses c1 = 1.1447, c2 = 1/3 and j = 1, or if κ is the Quadratic-
Spectral kernel one would use c1 = 1.13221, c2 = 1/5 and j = 2. Since we do
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not need such a specific dependence to derive our theoretical results, we do not
impose any further assumptions on these constants beyond being positive (and
independent of y and X). We shall denote by MAM the set of all bandwidth
parameters that can be obtained as special cases of the method in the present
section, by appropriately choosing - functionally independently of y and X - a
weights vector ω, constants c1 > 0, c2 > 0 and a j ∈ {1, 2}.
Remark 3.5. Since n, k and q are fixed quantities, the tuning parameters ω,
ci for i = 1, 2 and j might also depend on them, although we do not signify
this in our notation. A similar remark applies to the constants appearing in
Section 3.1.2 and in Section 3.1.3. Although we do not provide any details, we
furthermore remark that one can extend our analysis to bandwidth parameters
as above, but based on estimators other than ρ̂i, e.g., all estimators satisfying
Assumption 4 of Preinerstorfer and Pötscher (2016) such as the Yule-Walker
estimator or variants of the OLS estimator.

3.1.2. The non-parametric approach of Newey and West (1994)

Let ω ∈ Rk be as in Section 3.1.1 and let w(i) ≥ 0 for |i| = 0, . . . , n−p−1 be real
numbers such that w(0) = 1. For example, Newey and West (1994) suggested
to use rectangular weights, i.e.,

w∗(i) =

{
1 if |i| ≤ 
4(n/100)2/9�,
0 else,

where 
.� denotes the floor function. Define for every |i| = 0, . . . n− p− 1

σ̄i(y) = ω′Γ̌i(y)ω = (n− p)−1

n−p∑
j=|i|+1

ω′Ẑ·j(y)Ẑ
′
·(j−|i|)(y)ω.

A bandwidth parameter is then obtained via

MNW,ω,w,c̄(y) = c̄2

⎛
⎜⎝
⎡
⎣ n−p−1∑
i=−(n−p−1)

|i|c̄1w(i)σ̄i(y)

/ n−p−1∑
i=−(n−p−1)

w(i)σ̄i(y)

⎤
⎦
2

n

⎞
⎟⎠

c̄3

where c̄1 is a positive integer, where c̄2 and c̄3 are positive real numbers and
where c̄ = (c̄1, c̄2, c̄3). These numbers are constants independent of y and X
and have to be chosen by the user. The choice typically depends on the kernel
(for the specific choices we refer the reader to Newey and West (1994), Section
3). As in the previous section, we do not impose any assumptions beyond posi-
tivity (and independence of y and X) on the constants. Furthermore, we shall
denote by MNW the set of all bandwidth parameters that can be obtained as
special cases of the method in the present section, by appropriately choosing -
functionally independently of y and X - a weights vector, numbers w(i) ≥ 0 for
|i| = 0, . . . , n− p− 1, c̄1 a positive integer, c̄2 > 0 and c̄3 > 0.
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Remark 3.6. (i) The method described here is the ‘real-bandwidth’ approach
suggested in Newey and West (1994), as opposed to the ‘integer-bandwidth’
approach. In the latter approach one would use 1 + 
MNW,ω,w,c̄(y)� instead of
MNW,ω,w,c̄(y). Both approaches are asymptotically equivalent (Newey and West
(1994), Theorem 2) for most kernels (including the Bartlett kernel which is sug-
gested in Newey and West (1994)). Therefore, they are equally plausible in terms
of their theoretical foundation. For the sake of simplicity and comparability with
the bandwidth parameter as suggested by Andrews and Monahan (1992), which
is not an integer in general, we have chosen to focus on the ‘real-bandwidth’
approach.

(ii) Newey and West (1994), p. 637, in principle also allow for c̄1 = 0 (q = 0
in their notation) in the definition of their estimator. We do not allow for such a
choice. However, note that c̄1 = 0 implies MNW,ω,w,c̄(y) ≡ c̄2n

c̄3 . This is a data-
independent bandwidth parameter. These parameters are separately treated in
Section 3.1.3.

3.1.3. Data-independent bandwidth parameters

Kiefer and Vogelsang (2005) and Rho and Shao (2013) studied properties of tests
based on prewhitened covariance estimators and data-independent bandwidth
parameters. Here one sets M ≡ b(n − p) where b ∈ (0, 1] is functionally inde-
pendent of y and X. For example, in Rho and Shao (2013) the choice b = 1 is
studied. These approaches all lead to bandwidth parameters MKV > 0, that are
functionally independent of both X and y. We denote the set of such bandwidth
parameters by MKV .

3.2. Assumptions on κ, M and p

Different combinations of kernels κ, bandwidth parameters M and VAR orders
p obviously lead to different estimators. We indicate the dependence of the
estimator on these quantities by writing Ω̂κ,M,p. In the present paper we shall

consider estimators Ω̂κ,M,p based on a triple κ, M , p which satisfies the following
assumption:

Assumption 1. The triple κ, M , p satisfies:

1. κ : R → R is an even function and κ(0) = 1. Furthermore, κ is continuous,
satisfies limx→∞ κ(x) = 0, and for every real number s > 0 and every pos-
itive integer J the J ×J symmetric Toeplitz matrix with ij-th coordinate
κ((i− j)/s) is positive definite.

2. M ∈ MAM ∪MNW ∪MKV .
3. p is an integer satisfying 1 ≤ p ≤ n/(k + 1).

Remark 3.7. First, we remark that the positive definiteness assumption in Part
1 of Assumption 1 is natural in our context, because it guarantees that Ω̂κ,M,p

is nonnegative definite whenever it is well defined. Furthermore, it allows us to
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derive simple conditions for positive definiteness of Ω̂κ,M,p (cf. Lemma 3.10).
It is well known that many kernels used in practice satisfy the positive defi-
niteness assumption, e.g., the Bartlett, Parzen, and Quadratic-Spectral kernel.
Secondly, we note that in principle Assumption 1 does not prohibit a combi-
nation of MAM,1,ω,c ∈ MAM with a second order kernel, or the combination of
MAM,2,ω,c ∈ MAM with a first order kernel. It also allows for a combination of
elements of MNW with a prewhitening order p > 1 and for the combination of
elements of MKV with a kernel other than the Bartlett kernel. This goes well
beyond the original suggestions in Andrews and Monahan (1992), Newey and
West (1994) and Rho and Shao (2013), but we include these additional possi-
bilities for convenience. We also remark that since we assume throughout that
n > k, the set of VAR orders satisfying the third part of Assumption 1 always
includes the order p = 1.

Remark 3.8 (Tuning parameters depending on the design). The tuning param-
eters used in the construction of M ∈ MAM ∪MNW ∪MKV , e.g., the weights
vector ω used in the construction of M ∈ MAM ∪MNW , are by definition func-
tionally independent of y and X. Requiring that the tuning parameters are
independent of X is not a restriction in all results of the present paper in which
the design matrix X is fixed (i.e., Theorem 4.2, Proposition 5.2, and Theorem
5.4). To see this, suppose that a design matrix X as in (1) is given, that κ and
p satisfy the first and third part of Assumption 1, respectively, and that M is
constructed as in one of the Sections 3.1.1, 3.1.2, 3.1.3, but with a vector of tun-
ing parameters c∗(.), say, that is not constant on X0. The triple κ,M, p hence
does not satisfy Assumption 1. Let M̃ be the bandwidth parameter that is ob-
tained from M by replacing the vector of tuning parameters c∗(.) by c̃ ≡ c∗(X).
Clearly, κ, M̃, p satisfies Assumption 1, and the test statistics as in Equation (5)
based on Ω̂κ,M̃,p and Ω̂κ,M,p, respectively, coincide for this specific X.

3.3. Structural properties of prewhitened covariance estimators

The study of finite sample properties of a test based on the statistic in Equation
(5) with Ω̂ = Ω̂κ,M,p requires a detailed understanding of definiteness properties

of the covariance estimator Ω̂κ,M,p, and of the structure of the set N∗(Ω̂κ,M,p).

Denoting the subset of the sample space Rn where Ω̂κ,M,p is not well defined by

N(Ω̂κ,M,p), we can write

N∗(Ω̂κ,M,p) = N(Ω̂κ,M,p) ∪
{
y ∈ Rn\N(Ω̂κ,M,p) : det(Ω̂κ,M,p(y)) = 0

}
.

As a first step we study N(Ω̂κ,M,p) in the subsequent lemma, where it is shown

that N(Ω̂κ,M,p) is algebraic. The lemma also characterizes the dependence of

N(Ω̂κ,M,p) on the design matrix, which will later be useful for obtaining our
genericity results.

Lemma 3.9. Assume that the triple κ, M , p satisfies Assumption 1. Then,

N(Ω̂κ,M,p) = {y ∈ Rn : gκ,M,p(y,X) = 0} ,
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where gκ,M,p : Rn × Rn×k → R is a multivariate polynomial (explicitly con-

structed in the proof). As a consequence N(Ω̂κ,M,p) is an algebraic set. Further-
more, gκ,M,p does not depend on the hypothesis (R, r).

The subsequent lemma discusses definiteness and regularity properties of
Ω̂κ,M,p and shows that N∗(Ω̂κ,M,p) is an algebraic subset of Rn. Again the
dependence of this algebraic set on the design is clarified. Given a prewhitening
order p satisfying Part 3 of Assumption 1, we define for every y ∈ Rn such that

Â(p)(y) is well defined and such that Ik −
∑p

l=1 Â
(p)
l (y) is invertible the matrix

Bp(y) = R(X ′X)−1

(
Ik −

p∑
l=1

Â
(p)
l (y)

)−1

Ẑ(y). (7)

Lemma 3.10. Assume that the triple κ, M , p satisfies Assumption 1. Then the
following holds:

1. Ω̂κ,M,p(y) is nonnegative definite if and only if gκ,M,p(y,X) �= 0.

2. Ω̂κ,M,p(y) is singular if and only if gκ,M,p(y,X) �= 0 and rank(Bp(y)) < q.

3. Ω̂κ,M,p(y) = 0 if and only if gκ,M,p(y,X) �= 0 and Bp(y) = 0.

4. Ω̂κ,M,p(y) is positive definite if gκ,M,p(y,X) �= 0 and rank(Ẑ(y)) = k.
5. We have

N∗(Ω̂κ,M,p) =
{
y ∈ Rn : g∗κ,M,p(y,X,R) = 0

}
,

where g∗κ,M,p : Rn×Rn×k×Rq×k → R is a multivariate polynomial (explic-

itly constructed in the proof). As a consequence N∗(Ω̂κ,M,p) is an algebraic
set. Furthermore, g∗κ,M,p is independent of r.

It is a well known fact that an algebraic subset of Rn is either a closed λRn -
null set, or coincides with Rn (for a proof see, e.g., Okamoto (1973)). The latter
case occurs if and only if a (multivariate) polynomial defining the algebraic set
vanishes everywhere. Together with Part 5 of Lemma 3.10 this implies that
N∗(Ω̂κ,M,p) is either a closed λRn-null set, or coincides with Rn, depending on
whether g∗κ,M,p(., X,R) �≡ 0 or g∗κ,M,p(., X,R) ≡ 0 holds, respectively. In the
latter case, every test based on the test statistic defined in Equation (5) with
Ω̂ = Ω̂κ,M,p trivially breaks down, because in this case the test statistic vanishes
identically on Rn. Obviously, studying size and power properties of tests based
on this test statistic in a sample of size n is only interesting, if we can guarantee
that g∗κ,M,p(., X,R) �≡ 0 holds for a sufficiently large set of design matrices. That
this is indeed the case is the content of the subsequent lemma. More precisely
it is shown that g∗κ,M,p(., X,R) �≡ 0 is generically satisfied whenever n exceeds
a certain threshold. It is also shown that the threshold we give can not be
substantially improved. The notion of genericity employed is further discussed
in Remark 3.12 following the lemma.

Lemma 3.11. Assume that the triple κ, M , p satisfies Assumption 1. Then the
following holds:
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1. If n < k(p+ 1) + p and q = k, then

g∗κ,M,p(., X,R) ≡ 0 for every X ∈ X0.

2. If k(p+ 1) + p+ 1MAM
(M) ≤ n, then

g∗κ,M,p(., X,R) �≡ 0 for λRn×k -almost every X ∈ X0;

if k = 1 we have in particular g∗κ,M,p(., e+, R) �≡ 0.
3. If k ≥ 2 and k(p + 1) + p∗ + 1MAM

(M) ≤ n, where p∗ = p + (p mod 2),
then

g∗κ,M,p(., (e+, X̃), R) �≡ 0 for λRn×(k−1)-almost every X̃ ∈ X̃0.

Remark 3.12. (1) Part 1 demonstrates that if n is too small in the sense that
n < k(p+ 1) + p, then for every X ∈ X0 the test statistic in Equation (5) with
Ω̂ = Ω̂κ,M,p vanishes identically if q = k holds, because the estimator Ω̂κ,M,p is
either not well defined or singular at every observation y. This shows that one
can in general not expect that N∗(Ω̂κ,M,p) is generically a λRn -null set in case
n < k(p+ 1) + p.

(2) Under the assumption that k(p + 1) + p + 1MAM
(M) ≤ n holds, Part 2

establishes genericity of g∗κ,M,p(., X,R) �≡ 0 in that it shows that the statement
holds for λRn×k - almost every X ∈ X0. This notion of genericity is obviously
related to situations, where the data-generating process underlying the design
matrix X is assumed to be absolutely continuous w.r.t. λRn×k . In this situation,
a bandwidth parameter M ∈ MAM ∪ MNW would typically be based on the
weights vector ω = (1, . . . , 1)′ ∈ Rk. As a specific result of independent interest
it is also shown that if k = 1 then g∗κ,M,p(., e+, R) �≡ 0 holds, which means that

in the location model the set N∗(Ω̂κ,M,p) is a λRn - null set.
(3) Under the assumption that k ≥ 2 and k(p + 1) + p∗ + 1MAM

(M) ≤ n
holds, Part 3 establishes genericity of g∗κ,M,p(., (e+, X̃), R) �≡ 0 by showing that

the statement holds for λRn×(k−1) almost every X̃ ∈ X̃0. This is a genericity
statement concerning design matrices the first column of which is the intercept.
In contrast to (2) this notion of genericity is related to situations, where the first
column of the design matrix is fixed and the data-generating process underlying
the remaining columns is absolutely continuous w.r.t. λRn×(k−1) . In such a setup
the construction of a bandwidth parameter M ∈ MAM ∪MNW would typically
be based on the weights vector ω = (0, 1 . . . , 1)′ ∈ Rk.

4. A negative result and its generic applicability

In the first part of this section we obtain our main negative result concerning
finite sample properties of tests based on prewhitened nonparametric covariance
estimators. For this result to hold, we have to impose a richness assumption on
the covariance model C. Let CAR(1) denote the set of all correlation matrices
corresponding to stationary autoregressive processes of order one, i.e., CAR(1) =

{Λ(ρ) : ρ ∈ (−1, 1)}, where Λ(ρ)ij = ρ|i−j| for 1 ≤ i, j ≤ n. The assumption is
as follows.
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Assumption 2. CAR(1) ⊆ C.

Remark 4.1. Assumption 2 implies in particular that the singular boundary
of C ⊆ Rn×n, i.e., the set of singular matrices in bdC, contains at least the two
elements e+e

′
+ and e−e

′
−, where e+ = (1, . . . , 1)′ and e− = (−1, 1, . . . , (−1)n)′.

We note that these two singular matrices can be approximated by sequences
Λ(ρm) ∈ C with ρm → 1 and ρm → −1, respectively, where ρm ∈ (−1, 1).

Since the procedures we study in the present paper are geared towards situ-
ations such as C ⊇ Cξ for some ξ ≥ 0 (cf. Remark 2.1), covariance models which
clearly satisfy the above assumption, Assumption 2 is mild in our context (cf.
also the discussion in Section 3.2.2 of Preinerstorfer and Pötscher (2016)). Under
this assumption and given a hypothesis (R, r), the subsequent theorem provides
four sufficient conditions on the design matrix under which a test based on a test
statistic as in Equation (5) with Ω̂ = Ω̂κ,M,p, together with an arbitrary (but
data-independent) critical value 0 < C < ∞, breaks down in terms of its finite
sample size and/or power properties. More precisely, Conditions (1) and (4) im-
ply that the test has size equal to one, Condition (3) implies that the test has
size not smaller than 1/2, and Condition (2) implies that the nuisance-minimal
rejection probability equals zero at every point μ1 ∈ M1.

Theorem 4.2. Suppose that the triple κ, M , p satisfies Assumption 1 and
that C satisfies Assumption 2. Let T be the test statistic defined in (5) with
Ω̂ = Ω̂κ,M,p. Let W (C) = {y ∈ Rn : T (y) ≥ C} be the rejection region, where C
is a real number satisfying 0 < C < ∞. Then the following holds:

1. Suppose g∗κ,M,p(e+, X,R) �= 0 and T (e+ + μ∗
0) > C holds for some (and

hence all) μ∗
0 ∈ M0, or g∗κ,M,p(e−, X,R) �= 0 and T (e− + μ∗

0) > C holds
for some (and hence all) μ∗

0 ∈ M0. Then

sup
Σ∈C

Pμ0,σ2Σ (W (C)) = 1

holds for every μ0 ∈ M0 and every 0 < σ2 < ∞. In particular, the size of
the test is equal to one.

2. Suppose g∗κ,M,p(e+, X,R) �= 0 and T (e+ + μ∗
0) < C holds for some (and

hence all) μ∗
0 ∈ M0, or g∗κ,M,p(e−, X,R) �= 0 and T (e− + μ∗

0) < C holds
for some (and hence all) μ∗

0 ∈ M0. Then

inf
Σ∈C

Pμ0,σ2Σ (W (C)) = 0

holds for every μ0 ∈ M0 and every 0 < σ2 < ∞, and hence

inf
μ1∈M1

inf
Σ∈C

Pμ1,σ2Σ (W (C)) = 0

holds for every 0 < σ2 < ∞. In particular, the test is biased. Furthermore,
the nuisance-infimal rejection probability at every point μ1 ∈ M1 is zero,
i.e.,

inf
0<σ2<∞

inf
Σ∈C

Pμ1,σ2Σ(W (C)) = 0.

In particular, the infimal power of the test is equal to zero.
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3. Suppose g∗κ,M,p(e+, X,R) �= 0, T (e++μ∗
0) = C and gradT (e++μ∗

0) exists
for some (and hence all) μ∗

0 ∈ M0, or g
∗
κ,M,p(e−, X,R) �= 0, T (e−+μ∗

0) =
C and gradT (e− + μ∗

0) exists for some (and hence all) μ∗
0 ∈ M0. Then

sup
Σ∈C

Pμ0,σ2Σ (W (C)) ≥ 1/2

holds for every μ0 ∈ M0 and every 0 < σ2 < ∞. In particular, the size of
the test is at least 1/2.

4. Suppose that g∗κ,M,p(., X,R) �≡ 0. Suppose further that e+ ∈ M and

Rβ̂(e+) �= 0 holds, or e− ∈ M and Rβ̂(e−) �= 0 holds. Then

sup
Σ∈C

Pμ0,σ2Σ (W (C)) = 1

holds for every μ0 ∈ M0 and every 0 < σ2 < ∞. In particular, the size of
the test is equal to one.

Remark 4.3. (i) Lemma C.1 in Appendix C shows that the rejection probabil-
ities Pμ,σ2Σ(W (C)) depend on (μ, σ2,Σ) only through (〈(Rβ− r)/σ〉,Σ), where
β is uniquely determined by Xβ = μ.

(ii) Obviously, the conclusions of the preceding theorem also apply to any
rejection region W ∗ ∈ B(Rn) which differs from W (C) only by a λRn -null set.

(iii) In Part 1 of the theorem the condition g∗κ,M,p(e+, X,R) �= 0 (g∗κ,M,p(e−,
X,R) �= 0) is superfluous, because it is already implicit in T (e+ + μ∗

0) > C > 0
(T (e−+μ∗

0) > C > 0), which is readily seen from the definition of T in Equation
(5). A similar comment applies to Part 3 of the theorem, where the condition
g∗κ,M,p(e+, X,R) �= 0 (g∗κ,M,p(e−, X,R) �= 0) is already implicit in T (e+ + μ∗

0) =
C > 0 (T (e− + μ∗

0) = C > 0). The conditions are included for the sake of
comparability with Part 2 of the theorem.

(iv) In case M ∈ MKV , the assumption concerning the existence of the
gradient can be dropped in Part 3 of the theorem. This follows from Lemma
C.2 in Appendix C, where it is shown that if M ∈ MKV , then the existence of
gradT (e++μ∗

0) and gradT (e−+μ∗
0) is already implied by g∗κ,M,p(e+, X,R) �= 0

and g∗κ,M,p(e−, X,R) �= 0, respectively.
(v) Throughout the theorem, Assumption 2 can be replaced by the weaker

assumption that there exist two sequences Λ(ρ
(1)
m ) and Λ(ρ

(2)
m ) of AR(1) corre-

lation matrices in C, such that ρ
(1)
m → −1 and ρ

(2)
m → 1. In Parts 1 and 2 of

the theorem it is even enough to assume that there exist sequences Σ
(i)
m ∈ C for

i = 1, 2 with Σ
(1)
m → e+e

′
+ and Σ

(2)
m → e−e

′
−. Therefore, in these parts it is only

important that - and not how - these singular matrices can be approximated
from within C.

We shall now provide some intuition for Theorem 4.2 (cf. also the discussion
preceding Theorem 5.7 in Preinerstorfer and Pötscher (2016)). The repeated
appearance of the vectors e+ and e− in the theorem stems from the fact that
both e+e

′
+ and e−e

′
− are elements of the singular boundary of C ⊇ CAR(1) (cf.

Remark 4.1). Furthermore, for every μ∗
0 ∈ M0 and every 0 < σ2 < ∞ we have

that Pμ∗
0 ,σ

2Σ → Pμ∗
0 ,σ

2e+e′+
weakly as Σ → e+e

′
+ with Σ ∈ C, and similarly that
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Pμ∗
0 ,σ

2Σ → Pμ∗
0 ,σ

2e−e′−
weakly as Σ → e−e

′
− with Σ ∈ C. These limiting measures

are absolutely continuous w.r.t. λμ∗
0+span(e+) and λμ∗

0+span(e−), respectively. As
a consequence we see that the mass of Pμ∗

0 ,σ
2Σ concentrates on ‘neighborhoods’

of certain one-dimensional affine spaces as Σ approximates e+e
′
+ or e−e

′
− from

within C. From that it is intuitively clear that size and power properties crucially
depend on the behavior of the tests on ‘neighborhoods’ of these spaces. The first
and second part of the theorem provide sufficient conditions under which these
spaces are almost surely (w.r.t. λμ∗

0+span(e+) and λμ∗
0+span(e−)) contained in the

interior or exterior of the rejection region, respectively. The former case then
leads to size distortions, the latter to power deficiencies. The situation in the
third part of the theorem is quite different and more complex. In this case
the one-dimensional affine space supporting the respective limiting measure is
neither almost surely contained in the interior, nor almost surely contained in
the exterior of the rejection region. Rather it is almost surely contained in the
boundary of the rejection region. Therefore, in contrast to Parts 1 and 2, it is not
only important that the measures concentrate on the respective one-dimensional
space, but also how they concentrate (cf. Remark 4.3 (v)). The concentration
turns out to be such that eventually the measures put roughly equal weight onto
the rejection region and onto its complement, resulting in rejection probabilities
as large as 1/2 under the null. We point out that the proof idea used to establish
Part 3 is inspired by the proof of Theorem 2.18 in Preinerstorfer and Pötscher
(2017). The last part of the theorem considers the case where one of the vectors
e+ or e− is an element of M that is also ‘involved’ in the hypothesis. It is then
shown that the size of the test is one if the global condition g∗κ,M,p(., X,R) �≡ 0
is satisfied. We recall that if this condition fails to hold, then the test T based
on Ω̂κ,M,p breaks down in a trivial way, because T is then zero everywhere.
Therefore we see that under Assumption 2 one simply can not test a hypothesis
involving e+ ∈ M or e− ∈ M by means of a test T based on Ω̂κ,M,p with κ, M ,
p satisfying Assumption 1 (this in particular covers the location model where
X = e+, cf. also Lemma 3.11, Part 2).

Remark 4.4. Suppose that it is known a priori that for some (fixed) ε ∈ (0, 1]
the covariance model C does not contain AR(1) correlation matrices Λ(ρ) with
ρ ≤ −1 + ε; i.e., instead of Assumption 2 the covariance model C satisfies

CAR(1)(ε) = {Λ(ρ) : ρ ∈ (−1 + ε, 1)} ⊆ C.

Inspection of the proof of Theorem 4.2 then shows that a version of Theorem
4.2 holds, in which all references to e− are deleted in Parts 1-4. For example,
Part 4 of this version of Theorem 4.2 reads as follows:

“Suppose that g∗κ,M,p(., X,R) �≡ 0. Suppose further that e+ ∈ M and

Rβ̂(e+) �= 0 holds. Then

sup
Σ∈C

Pμ0,σ2Σ (W (C)) = 1

holds for every μ0 ∈ M0 and every 0 < σ2 < ∞. In particular, the
size of the test is equal to one.”
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This statement covers (in particular) the important special case of testing a
restriction on the mean in a location model. We make the following observations
concerning this version of Theorem 4.2:

• Since e−e
′
− is not necessarily an element of the singular boundary of the co-

variance model considered here, the result just described does not contain
“size equal to one”- or “nuisance-minimal-power equal to zero”-statements
that arise from covariance matrices approaching e−e

′
−. Note, however, that

the original Theorem 4.2 implies by a continuity argument that if ε is small
(compared to sample size), then considerable size distortions or power de-
ficiencies will nevertheless be present for covariance matrices in C that are
close to e−e

′
−.

• Consider the case where e+ ∈ M, i.e., the regression contains an intercept,
and where the hypothesis does not involve the intercept, i.e., Rβ̂(e+) = 0:
Then we see that Parts 1-4 of the version of Theorem 4.2 just obtained do
not apply. In fact, in this case we can establish a positive result concerning
a test based on T with Ω̂ = Ω̂κ,M,p, and based on a non-standard critical
value that depends on ε. This positive result, together with its restrictions,
is discussed in Remark 5.3.

Given a hypothesis (R, r) the four sufficient conditions provided in the preced-
ing theorem are conditions on the design matrix X. They depend on observable
quantities only. How these conditions can be checked is discussed in the subse-
quent paragraph: The first three parts of the theorem operate under the local
assumption that the multivariate polynomial g∗κ,M,p(., X,R) does not vanish at
the point e+ or e−, respectively. The multivariate polynomial g∗κ,M,p(., X,R) is
explicitly constructed in the proof of Lemma 3.10. Therefore, the condition that
it does not vanish at specific data points can readily be checked. Some addi-
tional conditions needed in Parts 1-3 of the theorem are formulated in terms
of T (e+ + μ∗

0) and T (e− + μ∗
0), which are in fact independent of the specific

μ∗
0 ∈ M0 chosen and therefore easy to calculate. Part 3 of the theorem requires

the existence of gradT (e+ + μ∗
0) or gradT (e− + μ∗

0) (which is immaterial if
M ∈ MKV as discussed in the preceding Remark). Again the existence of the
gradients is independent of the specific choice of μ∗

0 ∈ M0. Sufficient conditions
for the existence of the gradient, under the assumption that κ is continuously
differentiable on the complement of a finite number of points, are provided in
Lemma C.2 in Appendix C. These conditions amount to checking whether or
not M(e+) or M(e−), respectively, is an element of a certain set determined
by κ consisting of finitely many points. In contrast to Parts 1-3, the fourth
part of the theorem operates under the global assumption that the multivari-
ate polynomial g∗κ,M,p(., X,R) is not the zero polynomial. Since the polyno-
mial g∗κ,M,p(., X,R) is explicitly constructed in the proof of Lemma 3.10, the
global assumption g∗κ,M,p(., X,R) �≡ 0 can either be checked analytically, or by
using standard algorithms for polynomial identity testing. In addition to this
global assumption, the fourth part needs additional assumptions on the struc-
ture of M and the hypothesis (R, r) which can of course be easily checked by
the user.
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The preceding theorem has given sufficient conditions on the design matrix,
under which the test considered breaks down in terms of its size and/or power
behavior. However, for a given hypothesis (R, r) there exist elements of X0 ⊆
Rn×k to which the theorem is not applicable. As a consequence, the question
remains to ‘how many’ elements of X0 the theorem can be applied once (R, r)
has been fixed. This question is studied subsequently. It is shown that generically
in the space of all design matrices at least one of the four conditions of Theorem
4.2 applies. The first part of the proposition establishes this genericity result
in the class of all design matrices of full column rank, i.e., X0. The remaining
parts establish the genericity result in case k ≥ 2 and the first column of X is
the intercept, i.e., X = (e+, X̃) with X̃ ∈ X̃0. Before we state the proposition,
we introduce two assumptions on the kernel κ. The first assumption is satisfied
by all kernels typically used in practice.

Assumption 3. The kernel κ is continuously differentiable on the complement
of Δ(κ) ⊆ R, a set consisting of finitely many elements.

The second assumption, which is used in some statements of the second part
of the genericity result, imposes compactness of the support of the kernel. This
is satisfied by many kernels used in practice, e.g., the Bartlett kernel or the
Parzen kernel, but is not satisfied by the Quadratic-Spectral kernel.

Assumption 4. The support of κ is compact.

The genericity result is now as follows, where several quantities are equipped
with the additional subindex X to stress their dependence on the design matrix.

Proposition 4.5. Fix a hypothesis (R, r) such that rank(R) = q. Let κ, M ,
p satisfy Assumption 1. For X ∈ X0 let TX be the test statistic defined in (5)
with Ω̂ = Ω̂κ,M,p,X and let μ∗

0,X ∈ M0,X = {μ ∈ span(X) : μ = Xβ,Rβ = r} be
arbitrary (the sets defined below do not depend on the choice of μ∗

0,X). Fix a
critical value C such that 0 < C < ∞. Then, the following holds.

1. Suppose that k(p+ 1) + p+ 1MAM
(M) ≤ n, define

X1 (e+) =
{
X ∈ X0 : g∗κ,M,p(e+, X,R) = 0

}
X2 (e+) =

{
X ∈ X0\X1 (e+) : � (gradTX(.))|e++μ∗

0,X

and TX(e+ + μ∗
0,X) = C

}
,

and similarly define X1 (e−) and X2 (e−). Then, X1 (e+) and X1 (e−) are
λRn×k -null sets. If M ∈ MKV or if κ satisfies Assumption 3, then X2 (e+)
and X2 (e−) are λRn×k -null sets. If Assumption 2 holds, then the set of
all design matrices X ∈ X0 for which the first three parts of Theorem 4.2
do not apply is a subset of (X1 (e+) ∪ X2 (e+)) ∩ (X1 (e−) ∪ X2 (e−)) and
hence is a λRn×k -null set if M ∈ MKV or if κ satisfies Assumption 3; it
thus is a ‘negligible’ subset of X0 in view of the fact that X0 differs from
Rn×k only by a λRn×k -null set.

2. Let k ≥ 2 and assume further that k(p+ 1) + p∗ + 1MAM
(M) ≤ n, where

p∗ = p+ (p mod 2). Define
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X̃1 (e−) =
{
X̃ ∈ X̃0 : g∗κ,M,p(e−, (e+, X̃), R) = 0

}
,

X̃2 (e−) =

{
X̃ ∈ X̃0\X̃1 (e−) : � (gradT(e+,X̃)(.))|e−+μ∗

0,(e+,X̃)

and T(e+,X̃)(e− + μ∗
0,(e+,X̃)

) = C

}
.

Then, X̃1 (e−) is a λRn×(k−1)-null set. Furthermore, X̃2 (e−) is a λRn×(k−1)-
null set under each of the following conditions:

(a) M ∈ MKV .

(b) M ∈ MAM and κ satisfies Assumptions 3 and 4.

(c) M ∈ MNW , p is odd, ωi > 0 for some i > 1 and κ satisfies Assump-
tions 3 and 4.

(d) κ satisfies Assumption 3 and X̃ �→ T(e+,X̃)(e− + μ∗
0,(e+,X̃)

) �≡ C on

X̃0\X̃1 (e−).

Suppose that the first column of R consists of zeros and that Assumption
2 holds. Then, the set of all matrices X̃ ∈ X̃0 such that the first three
parts of Theorem 4.2 do not apply to the design matrix X = (e+, X̃) is a
subset of X̃1 (e−) ∪ X̃2 (e−) and hence is a λRn×(k−1)-null set if one of the
conditions in (a)-(d) holds; it thus is a ‘negligible’ subset of X̃0 in view of
the fact that X̃0 differs from Rn×(k−1) only by a λRn×(k−1)-null set.

3. Suppose k ≥ 2, that the first column of R is nonzero and that Assumption
2 holds. Then Theorem 4.2 (Part 4) applies to the design matrix X =(
e+, X̃

)
for every X̃ ∈ X̃0 satisfying g∗κ,M,p(., X,R) �≡ 0.

Remark 4.6. (i) If n < k(p+1)+p and q = k holds, the first part of Lemma 3.11
shows that the test trivially breaks down, since for every element X of X0 the
test statistic TX is then constant on Rn. Therefore, the assumption on n in the
first two parts of the proposition can in general not be substantially improved.

(ii) In the second part of the proposition, the analogously defined sets X̃1 (e+)
and X̃2 (e+) clearly satisfy X̃1 (e+) = X̃0 and X̃2 (e+) = ∅.

(iii) In the third part of the proposition, if X = (e+, X̃) does not satisfy
g∗κ,M,p(., X,R) �≡ 0, then the test breaks down in a trivial way, since TX is then
constant.

The first part of the preceding genericity result shows that if M ∈ MKV , or
if the kernel satisfies Assumption 3, then Theorem 4.2 can be applied to generic
elements of X0, i.e., to all elements besides a λRn×k -null set. Since all kernels
used in practice, in particular the kernels emphasized in Andrews and Monahan
(1992) and Newey and West (1994), i.e., the Quadratic-Spectral kernel and the
Bartlett kernel, respectively, satisfy Assumption 3, this additional restriction on
κ is practically immaterial. The second part of the proposition considers the
situation where the first column of the design matrix is the intercept, which in
addition is assumed not to be involved in the hypothesis in the sense that the first
column of R is zero. In this situation it is shown that Theorem 4.2 can generically
be applied to design matrices of the form (e+, X̃) with X̃ ∈ X̃0, under certain
sets of conditions on the triple κ, M , p. We first discuss Conditions (a)-(c):
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(a) In case M ∈ MKV no additional condition is needed for establishing
generic applicability of Theorem 4.2.

(b) If M ∈ MAM , generic applicability of the negative result follows if the
kernel satisfies Assumptions 3 and 4, which applies to many kernels used
in practice, but not to the Quadratic-Spectral kernel which is emphasized
in Andrews and Monahan (1992).

(c) In case M ∈ MNW , the result shows that the procedure breaks down
generically if p is odd, ωi > 0 for some i > 1 and κ satisfies Assumptions 3
and 4. This seems to be restrictive. However, the recommended procedure
in Newey and West (1994) is obtained by choosing κ the Bartlett kernel,
p = 1 and ω = (0, 1, . . . , 1)′, because in Part 2 the first column of X is the
intercept. Therefore, we see that the recommended procedure in Newey
and West (1994) satisfies this condition.

Summarizing, we see that the Conditions (a)-(c) in the proposition cover the
recommended choices of κ, M and p in Newey and West (1994) and Rho and
Shao (2013). For all procedures that are not covered by Conditions (a)-(c), e.g.,
the procedure in Andrews and Monahan (1992) based on the Quadratic-Spectral
kernel, one can typically obtain the genericity result by applying Condition (d),
which (under Assumption 3) is always satisfied apart from at most one excep-
tional critical value C∗. This is seen as follows: Clearly, Condition (d) depends
on the critical value C. We see that if Assumption 3 is satisfied, then (d) can be
violated for at most a single 0 < C∗ < ∞. If this C∗ happens to coincide with
C, the condition is not satisfied and we can not draw the desired conclusion for
this specific value of C. Moreover, we immediately see that the condition must
then be satisfied for any other choice C ′, say. Therefore, generic applicability of
the negative result follows for any value C ′ �= C in that case. This shows that
even if one chooses a triple κ, M , p that does not allow for an application of
(a)-(c), one can not expect to obtain a procedure that has good finite sample
size and power properties, because for all but at most one exceptional critical
value the corresponding test is guaranteed to break down generically. The third
part of the proposition considers the case where the first column of the design
matrix is the intercept, and where the coefficient corresponding to the intercept
is restricted by the hypothesis. In this case it follows that one can either apply
Part 4 of Theorem 4.2, or the test statistic is constant and hence the test breaks
down in a trivial way (cf. Remark 4.6).

5. A positive result, an adjustment procedure and its generic
applicability

In the previous section we have established a (generically applicable) negative
result concerning tests based on (5) and a prewhitened covariance estimator
Ω̂κ,M,p. In the present section we first present a positive result concerning these
tests under a non-generic condition on the design matrix. Then we introduce
an adjustment procedure and establish a condition on the design matrix un-
der which the adjustment procedure leads to improved tests. Finally we prove
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that this condition holds generically in the set of all design matrices. Both,
the positive result concerning tests as in (5) based on a prewhitened covari-
ance estimator Ω̂κ,M,p, and the results concerning the adjustment procedure are
established under the following assumption on the covariance model C.

Assumption 5. The set C ⊆ Rn×n is norm-bounded and satisfies CAR(1) ⊆ C.
Furthermore, for every sequence Σm ∈ C that converges to Σ̄ ∈ bd(C) satisfying
rank(Σ̄) < n there exists a corresponding sequence ρm ∈ (−1, 1) such that
Λ(ρm)−1/2ΣmΛ(ρm)−1/2 → In as m → ∞.

Remark 5.1. (i) We first note that Assumption 5 is stronger than Assumption
2. Therefore, under the former assumption the negative result established in
Section 4 concerning tests as in (5) based on a prewhitened covariance estimator
Ω̂κ,M,p does apply a fortiori. As a consequence, if C satisfies Assumption 5, then
positive results concerning size and power properties of tests of the form (5)
can only be established under non-generic assumptions on the design matrix.
However, as we shall show, positive results can generically be established for an
adjusted version of such tests.

(ii) Boundedness of C is typically satisfied in our setup, as it is always satisfied
if C consists only of correlation matrices.

(iii) The last part of the assumption states that elements of C that are ‘close’
to being singular can be well approximated by AR(1) correlation matrices. This,
together with CAR(1) being a subset of C, readily implies that the singular bound-

ary of C must coincide with
{
e+e

′
+, e−e

′
−
}
. Therefore, we see that the assump-

tion rules out the existence of rank deficient elements of bd(C) with rank strictly
greater than one. As an example, this rules out the case where C is the correla-
tion model corresponding to all stationary autoregressive processes of order less
than or equal to two (cf. Lemma G.2 in Preinerstorfer and Pötscher (2016)). If
this is not ruled out, however, further obstructions to good size and power prop-
erties can arise along suitable sequences approximating these boundary points
(cf. Section 3.2.3 in Preinerstorfer and Pötscher (2016)). The possibility of es-
tablishing positive results in settings like that is beyond the scope of the present
paper and will be discussed elsewhere.

(iv) We note that Assumption 5 is clearly satisfied for every covariance model
of the form C = CAR(1)∪C�, where C� ⊆ Rn×n is a closed set consisting of positive
definite correlation matrices. As an example, let d ∈ N be fixed and let CMA(d)

denote the set of all correlation matrices corresponding to stationary moving
average processes of an order not exceeding d, i.e.,

CMA(d) =
{
Σ(fα,δ) : α = (1, α1, . . . , αd)

′ ∈ Rd+1, δ > 0
}
,

where Σ(fα,δ) denotes the n×n-dimensional correlation matrix corresponding to

the spectral density fα,δ(λ) =
δ2

2π |
∑d

j=0 αj exp(−ιλj)|2 (cf. Equation (2)). Then
C = CAR(1) ∪ cl(CMA(d)) satisfies Assumption 5, because every element of the
closure of CMA(d) is a positive definite correlation matrix (the latter statement

follows from Equation (2), compactness of the unit sphere in Rd+1, and the
Dominated Convergence Theorem).
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Under Assumption 5 we shall subsequently establish a positive result con-
cerning tests based on a test statistic T as in (5) with Ω̂ = Ω̂κ,M,p. In light of
Part (i) of the preceding remark we already know that such a positive result
can only be established under non-generic conditions on the design matrix. In
particular, the subsequent positive result considers the non-generic case where
- besides g∗κ,M,p(., X,R) �≡ 0, a condition that is generically satisfied under a
mild constraint on n (cf. Lemma 3.11) - the column span of the design matrix

includes the vectors e+ and e− and where Rβ̂(e+) = Rβ̂(e−) = 0 holds.

Proposition 5.2. Suppose that the triple κ, M , p satisfies Assumption 1, and
that C satisfies Assumption 5. Let T be the test statistic defined in Equation
(5) with Ω̂ = Ω̂κ,M,p. Let W (C) = {y ∈ Rn : T (y) ≥ C} be the rejection region,
where C is a real number satisfying 0 < C < ∞. Suppose further that e+, e− ∈
M, Rβ̂(e+) = Rβ̂(e−) = 0 and g∗κ,M,p(., X,R) �≡ 0. Then, the following holds:

1. The size of the rejection region W (C) is strictly less than 1, i.e.,

sup
μ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ0,σ2Σ (W (C)) < 1.

Furthermore,

inf
μ0∈M0

inf
0<σ2<∞

inf
Σ∈C

Pμ0,σ2Σ (W (C)) > 0.

2. The infimal power is bounded away from zero, i.e.,

inf
μ1∈M1

inf
0<σ2<∞

inf
Σ∈C

Pμ1,σ2Σ(W (C)) > 0.

3. For every 0 < c < ∞

inf
μ1∈M1,0<σ2<∞
d(μ1,M0)/σ≥c

Pμ1,σ2Σm
(W (C)) → 1

holds for m → ∞ and for any sequence Σm ∈ C satisfying Σm → Σ̄ with
Σ̄ a singular matrix. Furthermore, for every sequence 0 < cm < ∞

inf
μ1∈M1,

d(μ1,M0)≥cm

inf
Σ∈C∗

Pμ1,σ2
mΣ(W (C)) → 1

holds for m → ∞ whenever 0 < σ2
m < ∞, cm/σm → ∞, and C∗ is a

(nonempty) closed subset of C. [The very last statement even holds if one

of the conditions e+, e− ∈ M and Rβ̂(e+) = Rβ̂(e−) = 0 is violated.]
4. For every δ, 0 < δ < 1, there exists a C(δ), 0 < C(δ) < ∞, such that

sup
μ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ0,σ2Σ(W (C(δ))) ≤ δ.

Under the maintained assumptions on the hypothesis and the design Proposi-
tion 5.2 shows that given any level of significance 0 < δ < 1, a critical value can
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be chosen in such a way that the test obtained holds its size, while its nuisance-
minimal power at every point μ1 in the alternative is bounded away from zero.
As Theorem 4.2 in combination with Proposition 4.5 shows, this is impossible
for generic elements of the space of all design matrices. Additionally, Part 3 of
the proposition shows that the power approaches one in certain parts of the pa-
rameter space corresponding to the alternative hypothesis. These parts are char-
acterized by ‖(Rβ(1) − r)/σ‖ being bounded away from zero and Σ → Σ̄ with
Σ̄ being singular, or ‖(Rβ(1) − r)/σ‖ → ∞ and Σ → Σ̄ with Σ̄ positive definite,
and where in both cases β(1) is the parameter vector corresponding to μ1 (note
that d(μ1,M0) is bounded from above and below by multiples of ‖Rβ(1) − r‖,
where the constants involved are positive and depend only on X, R and r).

Remark 5.3. Suppose that instead of Assumption 5 it is known that the co-
variance model satisfies the following variant of Assumption 5 that rules out
AR(1) correlation matrices Λ(ρ) with ρ arbitrarily close to −1:

The covariance model C ⊆ Rn×n is norm-bounded and there exists
an ε ∈ (0, 1] such that CAR(1)(ε) ⊆ C (cf. Remark 4.4). Furthermore,
for every sequence Σm ∈ C that converges to Σ̄ ∈ bd(C) satisfying
rank(Σ̄) < n there exists a corresponding sequence ρm ∈ (−1 + ε, 1)
such that Λ(ρm)−1/2ΣmΛ(ρm)−1/2 → In as m → ∞.

Let T and W (C) be defined as in Proposition 5.2 above, and suppose further

that e+ ∈ M, i.e., the regression contains an intercept, that Rβ̂(e+) = 0, i.e.,
the hypothesis does not involve the intercept, and that g∗κ,M,p(., X,R) �≡ 0.
Then one can show (using essentially the same argument as in the proof of
Proposition 5.2) that the Conclusions 1-4 of Proposition 5.2 hold in this setup.
In particular, for any given δ ∈ (0, 1) there exists a critical value C(δ) = C(δ, ε)
such that the test with rejection region W (C(δ, ε)) has size not greater than δ.
This establishes a positive result concerning a test based on the test statistic T
with Ω̂ = Ω̂κ,M,p, and based on the non-standard critical value C(δ, ε), which
in practice can be obtained as explained in the discussion following Theorem
5.4. However, the test obtained critically depends on ε, which in practice will
typically be difficult to choose. If one uses a test with critical region W (C(δ, ε∗))
where ε∗ > ε, then the size of this test might exceed δ. In light of this drawback,
it is important to stress that autocorrelation-robust-testing is possible without
imposing such an artificial condition that rules out AR(1) correlation matrices
Λ(ρ) with ρ arbitrarily close to −1: Theorems 5.4 and 5.5 in the present section
show that (at the small cost of including the artificial regressor e−) a generic
positive result can be obtained under the more natural Assumption 5. Theorem
5.4 furthermore shows that including the artificial regressor e− leads to good
power properties of the resulting test for covariance matrices close to Λ(−1).

Proposition 5.2 assumes, among others, that X satisfies e+, e− ∈ span(X),
an assumption which is satisfied only by non-generic elements of the set of all
design matrices. In the following we shall now consider the (generic) situation
where e+, e− ∈ span(X) is violated. Proposition 5.2 is then clearly not applica-
ble. However, as we shall see, a positive result similar to Proposition 5.2 can be
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established for an adjusted test statistic. To explain how the adjustment proce-
dure works, suppose that we have a triple κ, M , p satisfying Assumption 1 which
we want to use for covariance estimation. Suppose further that 1 ≤ p ≤ n

k+3
holds, which is typically satisfied. The following theorem now shows that under
certain conditions on the design matrix - which are shown to be generically satis-
fied in Proposition 5.5 below, and which in particular require e+, e− ∈ span(X)
to be violated - one can work with an adjusted test statistic that has improved
size and power properties, and which is constructed as follows: instead of basing
the construction of the test statistic on the true design matrix X and on R,
we first construct an artificial design matrix X̄ of full column rank satisfying
span(X̄) = span(X, e+, e−) by adding the vectors e+ and/or e− to X. Fur-
thermore, we construct a corresponding matrix R̄ = (R, 0) by appending zero
vectors to R such that R̄ and X̄ have the same number of columns. Then we
construct a test statistic T̄ as in Equation (5), but with X and R replaced by X̄
and R̄, respectively, and where the covariance estimator is based on κ, M and p
as above besides some minor updates in the construction of M described below.
The subsequent theorem shows that if e+, e− ∈ span(X) is violated, if every

e ∈ {e+, e−} ∩ span(X) satisfies Rβ̂(e) = 0, if rank(X̄) < n, and if an assump-
tion on X̄ and R̄ analogous to the assumption g∗κ,M,p(., X,R) �≡ 0 in Proposition
5.2 is satisfied, then for every critical value 0 < C < ∞ the test with critical
region W̄ (C) =

{
y ∈ Rn : T̄ (y) ≥ C

}
has the same Properties (1)-(4) as W (C)

in Proposition 5.2.

Theorem 5.4. Suppose that the triple κ, M , p satisfies Assumption 1, that p
additionally satisfies 1 ≤ p ≤ n

k+3 , and that C satisfies Assumption 5. Suppose
that one of the following (mutually exclusive) scenarios applies:

1. e+ ∈ M with Rβ̂X(e+) = 0, e− /∈ M and k̄ = k + 1 < n. Let X̄ = (X, e−)
and define R̄ = (R, 0) ∈ Rq×k̄.

2. e+ /∈ M, e− ∈ M with Rβ̂X(e−) = 0 and k̄ = k + 1 < n. Let X̄ = (X, e+)
and define R̄ = (R, 0) ∈ Rq×k̄.

3. e+ /∈ M, e− /∈ M with rank (X, e+, e−) = k + 2 and k̄ = k + 2 < n. Let
X̄ = (X, e+, e−) and define R̄ = (R, 0, 0) ∈ Rq×k̄.

4. e+ /∈ M, e− /∈ M with rank (X, e+, e−) = k + 1 and k̄ = k + 1 < n. Let
X̄ = (X, e+) and define R̄ = (R, 0) ∈ Rq×k̄.

Then in all cases X̄ is a matrix of full column rank. Define

T̄ (y) =

⎧⎨
⎩
(R̄β̂X̄(y)− r)′Ω̂−1

κ,M̄,p,X̄
(y)(R̄β̂X̄(y)− r) if y /∈ N∗(Ω̂κ,M̄,p,X̄),

0 else,

where Ω̂κ,M̄,p,X̄ (y) is the estimator one would obtain following Steps 1-3 in
Section 3 if X̄ was the underlying design matrix, (R̄, r) was the hypothesis to be
tested and where M̄ is defined as follows: in case M ∈ MKV we set M̄ ≡ M ;
in case M ∈ MAM we compute M̄ as outlined in Section 3.1.1 (using as input
ẐX̄(y) as opposed to ẐX(y), and replacing k by k̄), with the same constants c1
and c2 and j as used in the construction of M , but with ω replaced by ω̄ =
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(ω, 0)′ ∈ Rk̄; in case M ∈ MNW we compute M̄ as outlined in Section 3.1.2
(using as input ẐX̄(y) as opposed to ẐX(y)), with the same constants c̄i for
i = 1, 2, 3 and the same weights w as used in the construction of M , but with ω
replaced by ω̄ = (ω, 0)′ ∈ Rk̄. Let W̄ (C) =

{
y ∈ Rn : T̄ (y) ≥ C

}
be the rejection

region where C is a real number satisfying 0 < C < ∞. If g∗
κ,M̄,p

(., X̄, R̄) �≡
0 (where g∗

κ,M̄,p
is the function obtained from Lemma 3.10 applied to κ, M̄

and p and acting as if X̄ was the underlying design matrix and (R̄, r) was the
hypothesis to be tested), or equivalently if N∗(Ω̂κ,M̄,p,X̄) �= Rn, then in each of
the four scenarios above the Conclusions (1)-(4) of Proposition 5.2 hold with
W (C) replaced by W̄ (C).

The procedure outlined in the preceding theorem is based on an artificial de-
sign matrix X̄ which is obtained from X by adding either one or both elements
of the set {e+, e−} to the columns of X. If the so-obtained matrix X̄ satisfies
g∗
κ,M̄,p

(., X̄, R̄) �≡ 0, then the results from Proposition 5.2 carry over to the re-

jection regions derived from T̄ . In particular the adjusted test statistic T̄ leads
to rejection regions the size of which is bounded away from one and such that
the nuisance minimal power is bounded away from zero. Besides these improve-
ments, the adjustment procedure is extremely convenient from a computational
perspective, as the adjusted test statistic T̄ does not require any additional im-
plementations. It is based on the same algorithm as the calculation of T , only
with a different design matrix.

The theorem shows that for every level of significance 0 < δ < 1, there exists
a critical value C(δ) such that the rejection region W̄ (C(δ)) has size smaller
than δ. The critical value can be determined as follows: First of all, due to cer-
tain invariance properties of T̄ (cf. the proof of Theorem 5.4), the probabilities
Pμ0,σ2Σ(W̄ (C)) do not depend on μ0 and σ2. Hence, for any fixed 0 < C < ∞,
the maximal rejection probability under the null can be approximated numeri-
cally by simulating the rejection probabilities from a finite subset of C, and then
doing a grid search. In a second step C(δ) can be approximated by a line search
exploiting monotonicity of Pμ0,σ2Σ(W̄ (C)) in the critical value.

The adjustment procedure described in Theorem 5.4 is applicable and yields
an improved test under the assumption that e+, e− ∈ span(X) is violated (and
hence the positive result in Proposition 5.2 concerning the unadjusted test does
not apply), that every e ∈ {e+, e−} ∩ span(X) satisfies Rβ̂(e) = 0, that k̄ < n
and that g∗

κ,M̄,p
(., X̄, R̄) �≡ 0. Given a hypothesis (R, r) these are conditions on

the design matrix X. Our final result now shows (under mild constraints on n)
that these conditions are generically satisfied in the set of all design matrices
X0; and also in X̃0, the set of all design matrices the first column of which is
the intercept, under the additional condition that the first column of R is zero.
Under Assumption 5 we hence see that although rejection regions based on T
generically break down as a consequence of Proposition 4.5, this problem can
generically be resolved by using rejection regions based on the adjusted test
statistic T̄ , unless the regression includes an intercept and the first column of
R is nonzero.
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Proposition 5.5. Fix a hypothesis (R, r) with rank(R) = q, suppose that the
triple κ, M , p satisfies Assumption 1, that p additionally satisfies 1 ≤ p ≤ n

k+3
and that C satisfies Assumption 5. Then the following holds, where p∗ = p +
(p mod 2).

1. If (k + 3)(p∗ + 2) + p − 1 + 1MAM
(M) ≤ n, then for λRn×k -almost every

design matrix X ∈ X0 ⊆ Rn×k Scenario 3 in Theorem 5.4 applies, and
the Conclusions (1)-(4) of Proposition 5.2 hold for any critical value 0 <
C < ∞ with W (C) replaced by W̄ (C) =

{
y ∈ Rn : T̄ (y) ≥ C

}
, where T̄ is

constructed as outlined in Theorem 5.4.
2. Suppose that the first column of R is zero, that k ≥ 2 and assume that

(k + 2)(p∗ + 2) + p− 1 + 1MAM
(M) ≤ n holds. Then for λRn×(k−1)-almost

every X̃ ∈ X̃0 Scenario 1 of Theorem 5.4 applies to X = (e+, X̃), and
the Conclusions (1)-(4) of Proposition 5.2 hold for any critical value 0 <
C < ∞ with W (C) replaced by W̄ (C) =

{
y ∈ Rn : T̄ (y) ≥ C

}
, where T̄ is

constructed as outlined in Theorem 5.4.

6. Numerical results

In this section we discuss numerical results to further illustrate our theoretical
findings. In both of the subsequent examples sample size n equals 100 and the
level of significance is 0.05. We study properties of the following tests (based
on the respective design matrix and hypothesis (R, r)): (i) the test that rejects
if (5) with κ the Quadratic-Spectral kernel, M the corresponding bandwidth
parameter based on auxiliary AR(1) models as suggested in Andrews and Mon-
ahan (1992) (cf. the discussion in Section 3.1.1), and prewhitening order p = 1
exceeds the χ2 critical value; (ii) the test that rejects if (5) with κ the Bartlett
kernel, M the corresponding bandwidth parameter as suggested in Newey and
West (1994) (cf. the discussion in Section 3.1.2), and prewhitening order p = 1
exceeds the χ2 critical value; (iii) the test that rejects if (5) with κ the Bartlett
kernel, data-independent bandwidth parameter M = n−p (cf. the discussion in
Section 3.1.3 and Rho and Shao (2013)), and prewhitening order p = 1 exceeds
the corresponding non-standard critical value (which was obtained from Table
1 in Kiefer and Vogelsang (2002)). In Example 2 we also illustrate the effect
of applying our adjustment procedure to the tests (i) - (iii) (the adjustment is
not applicable in the testing problem considered in Example 1). For the actual
computations we used the implementations of the tests (i) - (iii) (and of their
adjustments, which are computationally of the same structure, apart from the
computation of the critical values, cf. the discussion after Theorem 5.4) provided
by the R (R Core Team (2016)) packages lmtest (Zeileis and Hothorn (2002))
and sandwich (Zeileis (2004)).

6.1. Example 1

The first example concerns testing a zero restriction on the mean in a location
model with stationary and Gaussian AR(1) errors, i.e., testing problem (4) with
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Fig 1. (a) Example 1: Null rejection probabilities for the tests (i), (ii), and (iii), corresponding
to “Andrews-Monahan”, “Newey-West”, and “Rho-Shao”, respectively. (b) Example 2: Null
rejection probabilities for the tests (i), (ii), and (iii), corresponding to “Andrews-Monahan”,
“Newey-West”, and “Rho-Shao”, respectively. In both (a) and (b) the dashed black line cor-
responds to 0.05.

X = e+, R = 1, r = 0, and covariance model C = CAR(1). We observe that the
triples κ,M, p used in the tests (i) - (iii) satisfy Assumption 1 (cf. Remark 3.7),
and that Part 2 of Lemma 3.11 can be used to verify the applicability of Part 4
of Theorem 4.2. This then shows that the size of each test under consideration
is 1. To illustrate this numerically, we obtained Monte Carlo approximations
of the rejection probabilities of the tests (i) - (iii) under Pe+β1,Λ(ρ), recall that
Λ(ρ) denotes the correlation matrix corresponding to a stationary AR(1) model
with parameter ρ, for ρ ∈ {0,±0.1,±0.2,±0.3, . . . ,±0.9,±0.95,±0.99,±0.999,
±0.9999} and β1 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2}, based on
2500 replications in each scenario. The results for β1 = 0, i.e., the null rejec-
tion probabilities illustrating the above quoted negative result, are shown in
Figure 1(a). As expected from the theoretical results (cf. also the explanations
after Theorem 4.2), the rejection probabilities are very large when the AR(1)
parameter ρ is close to 1. Furthermore, Figure 1(a) shows that for the tests
(i) and (ii) the rejection probabilities are clearly above 0.05 when ρ is close to
−1. We also observe that while the tests (i) and (ii) show an almost identical
behavior in terms of their null rejection probabilities for ρ close to 1, the null
rejection probabilities of test (iii), although they eventually get much too large,
remain stable for a wider range of values of ρ. Tables 1, 2, and 3 in Appendix
E contain all simulated rejection probabilities. These tables also contain Monte
Carlo approximations of the rejection probabilities under the alternative (i.e.,
the simulation results for β1 > 0).

6.2. Example 2

The second example concerns testing a zero restriction on the slope parame-
ter in a regression model with an intercept, one additional regressor, and with
stationary and Gaussian AR(1) errors, i.e., testing problem (4) with X =
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(e+, x) (the choice of x is outlined below), R = (0, 1), r = 0, and covari-
ance model C = CAR(1). We proceeded as follows: For each value of ρ ∈
{0,±0.1,±0.2,±0.3, . . . ,±0.9, ±0.95,±0.99,±0.999,±0.9999} a regressor x was
generated by drawing a random vector from the distribution of n consecutive
observations of a stationary Gaussian AR(1) process with parameter ρ. Then
rejection probabilities for the tests (i) - (iii) under Pxβ2,Λ(ρ) were obtained for
β2 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2}. In each scenario, i.e., for
each combination of ρ and β2, the Monte Carlo approximations were based on
2500 replications. Since the regressor x was drawn randomly for each value of
ρ, the whole procedure was repeated 28 times, and the rejection probabilities
were then averaged. The average null rejection probabilities obtained for each
ρ ∈ {0,±0.1,±0.2,±0.3, . . . ,±0.9,±0.95,±0.99,±0.999,±0.9999} are given in
Figure 1(b). This figure clearly shows that the tests (i) - (iii) under considera-
tion do not control size, not even approximately. The null rejection probabilities
become very large for |ρ| close to 1. This effect is more pronounced for ρ close
to −1, which is due to the fact that an intercept is included in the model. A
complete summary of the rejection probabilities (which also contains rejection
probabilities under the alternative) can be found in Tables 4, 6 and 8 in Ap-
pendix E. In addition to the tests (i) - (iii) we also studied the behavior of their
adjusted versions (for the same set of x vectors), the adjusted versions being
obtained following the description in Part 1 of Theorem 5.4. The critical val-
ues were obtained by applying the grid-based Monte Carlo procedure explained
after Theorem 5.4, where we have chosen an equally spaced grid from −.99 to
.99 with 20 grid points, and 1000 replications for simulating the corresponding
rejection probabilities. Of course, in a specific application, where one only needs
to obtain a critical value for a single design matrix, the grid can be chosen much
finer. The null rejection probabilities of the adjusted versions of the tests (i)
- (iii) are shown in Figure 2(a). We see that the rejection probabilities of the
adjusted versions of the tests, although they are slightly above 0.05 for large
values of |ρ| (due to the coarseness of the grid used), are mostly between 0.03
and 0.04. Comparing these results to the null rejection probabilities of the un-
adjusted versions of the tests in Figure 1(b), the adjustment procedure, albeit
leading to rejection probabilities clearly below 0.05 in most scenarios considered,
leads to a substantial improvement concerning the null rejection probabilities.
Power properties of the adjusted versions of the tests (i) - (iii) are presented
in Figures 2(b)-(d) in the form of contour plots. It can be seen that the three
adjusted tests are very similar concerning their power properties. Furthermore,
fixing ρ and treating β2 as a function argument, the power functions become
“flatter” for larger values of |ρ|. A complete summary of rejection probabilities
is provided in Tables 5, 7, and 9 in Appendix E.

7. Conclusion

We have shown that tests for (4) based on prewhitened covariance estimators
and possibly data-dependent bandwidth parameters break down in finite sam-
ples in terms of their size or power properties. This breakdown arises already for
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Fig 2. (a) Example 2: Null rejection probabilities for the adjusted versions of the tests (i),
(ii), and (iii), corresponding to “adj. Andrews-Monahan”, “adj. Newey-West”, and “adj.
Rho-Shao”, respectively. The dashed black line corresponds to 0.05. (b) Example 2: Contour
plot of rejection probabilities of the adjusted version of test (i). (c) Example 2: Contour plot
of rejection probabilities of the adjusted version of test (ii). (d) Example 2: Contour plot of
rejection probabilities of the adjusted version of test (iii).

comparably simple covariance models such as C = CAR(1). We have also shown
how a simple adjustment procedure can generically solve this problem in many
cases. The test statistic obtained by applying the adjustment procedure is of
the same structural form as the test statistic based on estimators suggested by
Andrews and Monahan (1992) and Newey and West (1994) and the test statistic
in Rho and Shao (2013), but it is based on an artificial design matrix. There-
fore, the adjustment procedure does not only lead to improved size and power
properties, but is also convenient from a computational point of view. For the
adjustment procedure to work, Assumption 5 has to be satisfied, which requires
that elements of the covariance model C that are close to being singular are
well approximated by AR(1) correlation matrices. If and how the adjustment
procedure can be extended to settings where this approximation condition is
not satisfied is currently under investigation.

Appendices

Additional notation: For the sake of clarity we shall repeatedly stress the
dependence of V̂ , V̂0, V̂p, Ẑ, Â(p), û, Ω̂κ,M,p and Bp on the design matrix X

by writing V̂X , V̂0,X , V̂p,X , ẐX , Â
(p)
X , ûX , Ω̂κ,M,p,X and Bp,X in the following
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proofs. At various places we shall use the following notation: Given a matrix
M ∈ Rm1×m2 and indices 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 we denote by [M ]ij = Mij

the ij-th coordinate of M , by [M ]·j = M·j the j − th column of M and by
[M ]i· = Mi· the i− th row of M . In case m2 = 1 we write [M ]i = Mi instead of
[M ]i1.

Appendix B: Proofs of results in Section 3.3

Proof of Lemma 3.9. Since X is a matrix of full column rank by assumption,
we clearly have det(X ′X) �= 0. From the definition of Ω̂κ,M,p,X we see that

y ∈ N(Ω̂κ,M,p,X), i.e., Ω̂κ,M,p,X(y) is not well defined, if and only if one of the
following conditions is satisfied (cf. Remark 3.1):

(I) det
(
V̂0,X(y)V̂ ′

0,X(y)
)
= 0;

(II) det
(
V̂0,X(y)V̂ ′

0,X(y)
)
�= 0 and det

(
Ik −

∑p
l=1 Â

(p)
l,X(y)

)
= 0;

(III) det
(
V̂0,X(y)V̂ ′

0,X(y)
)
�= 0 and det

(
Ik −

∑p
l=1 Â

(p)
l,X(y)

)
�= 0 and M(y) is

not well defined.

Using ûX(y) = (In − det(X ′X)−1X adj(X ′X)X ′)y we see that the coordinates
of V̄0,X(y) := det(X ′X)V̂0,X(y) and of V̄p,X(y) := det(X ′X)V̂p,X(y) are values
of certain multivariate polynomials defined on Rn×Rn×k evaluated at the point
(y,X). Since (I) is equivalent to

det(det(X ′X)2V̂0,X(y)V̂ ′
0,X(y)) = det(V̄0,X(y)V̄ ′

0,X(y)) = 0,

this shows that (I) is equivalent to g1(y,X) = 0, say, where g1 : Rn × Rn×k →
R is a multivariate polynomial which is clearly independent of (R, r). Using
this equivalence, Condition (II) is seen to be equivalent to g1(y,X) �= 0 and

det
(
Ik −

∑p
l=1 Â

(p)
l,X(y)

)
= 0. Because of g1(y,X) �= 0 we have

Ik −
p∑

l=1

Â
(p)
l,X(y)

= Ik − V̂p,X(y)V̂ ′
0,X(y)

(
V̂0,X(y)V̂ ′

0,X(y)
)−1

D(p),

= Ik − V̄p,X(y)V̄ ′
0,X(y)

(
V̄0,X(y)V̄ ′

0,X(y)
)−1

D(p),

= Ik − det
(
V̄0,X(y)V̄ ′

0,X(y)
)−1

V̄p,X(y)V̄ ′
0,X(y) adj

(
V̄0,X(y)V̄ ′

0,X(y)
)
D(p),

where D(p) = (Ik, . . . , Ik)
′ ∈ Rkp×k. Using this together with similar arguments

as above we see that pre-multiplying Ik−
∑p

l=1 Â
(p)
l,X(y) by det

(
V̄0,X(y)V̄ ′

0,X(y)
)

results in a matrix, the entries of which are values of certain multivariate poly-
nomials, defined on Rn × Rn×k, evaluated at the point (y,X). It follows that
the second equation in (II) can be replaced by

g2(y,X) :=
[
det
(
V̄0,X(y)V̄ ′

0,X(y)
)]k

det

(
Ik −

p∑
l=1

Â
(p)
l,X(y)

)
= 0,
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where g2 : Rn×Rn×k → R is a multivariate polynomial which is independent of
(R, r) either. Summarizing our observations concerning (I) and (II) we see that

N(Ω̂κ,M,p,X) = {y ∈ Rn : g1(y,X)g2(y,X) = 0}

∪ {y ∈ Rn : g1(y,X)g2(y,X) �= 0 and M(y) not w.d.} .

The set in the second line of the previous display depends on the specific
bandwidth M . Hence, we have to distinguish three cases: Suppose first that
M ≡ MKV ∈ MKV , i.e., M is a constant which is functionally independent of
y, X and thus everywhere well defined on Rn. Define gκ,MKV ,p ≡ g1g2, so that
gκ,MKV ,p : Rn × Rn×k → R is a multivariate polynomial. Noting that

N(Ω̂κ,MKV ,p,X) = {y ∈ Rn : gκ,MKV ,p(y,X) = 0}

then proves the statement in case M ∈ MKV , because gκ,MKV ,p is independent
of (R, r). Next we consider the case M = MAM,j,ω,c ∈ MAM , and we start
with j = 1 (the case j = 2 is handled almost identically: omit the square in
the definition of D1 below, the squares from the expression in Equation (9),
and adapt the discussion following Equation (9) and the exponents of the pre-
multiplying factors accordingly). We shall drop the subindices j and c from
MAM,j,ω,c for notational convenience and write MAM,ω instead. We partition

{y ∈ Rn : g1(y,X)g2(y,X) �= 0 and MAM,ω(y) not w.d.} = D1 ∪D2, (8)

where D1 and D2 are disjoint and defined as

D1 =
{
y ∈ Rn : g1(y,X)g2(y,X) �= 0, ∃i∗ : ρ̂i∗(y) not w.d. or ρ̂i∗(y)

2 = 1
}
,

D2 =
{
y ∈ Rn\D1 : g1(y,X)g2(y,X) �= 0, ∀i s.t. ωi �= 0 : σ̂2

i (y) = 0
}
.

The equality in (8) is readily seen from the definition of MAM,ω. We want to
obtain more suitable characterizations of D1 and D2 and proceed in two steps:
(i) First, we claim that y ∈ D1 if and only if

g1(y,X)g2(y,X) �= 0 and

k∏
i=1

⎛
⎜⎝
⎡
⎣n−p∑

j=2

[ẐX(y)]ij [ẐX(y)]i(j−1)

⎤
⎦
2

−

⎡
⎣n−p−1∑

j=1

[ẐX(y)]2ij

⎤
⎦
2
⎞
⎟⎠ = 0.

(9)

To see this assume that g1(y,X)g2(y,X) �= 0 holds: Suppose that ρ̂i∗(y) is not

well defined. The latter occurs if and only if
∑n−p−1

j=1 [ẐX(y)]2i∗j = 0, i.e., all sum-

mands are zero, which immediately implies
∑n−p

j=2 [ẐX(y)]i∗j [ẐX(y)]i∗(j−1) = 0.
Therefore, the factor corresponding to index i∗ vanishes and thus the prod-
uct defining the second equation in (9) vanishes. That ρ̂2i∗(y) = 1 implies
that the product vanishes is obvious. To prove the other direction assume that
g1(y,X)g2(y,X) �= 0 and that the product vanishes. This implies that at least
one factor with index i∗, say, equals zero, which implies that either ρ̂i∗(y) is
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not well defined or ρ̂2i∗(y) = 1 holds. This proves the claim. Secondly, we recall

that if g1(y,X)g2(y,X) �= 0, then ẐX(y) = V̂p,X(y)− Â
(p)
X (y)V̂0,X(y). Using an

argument as above it is then easy to see that ẐX(y) pre-multiplied by

det
(
V̄0,X(y)V̄ ′

0,X(y)
)
det(X ′X) (10)

gives a matrix, the entries of which are values of certain multivariate polynomials
defined on Rn × Rn×k evaluated at the point (y,X). Thus, if we multiply the
second equation in (9) by the (4k)-th power of the expression in the previous
display we see that Equation (9) can equivalently be written as

g1(y,X)g2(y,X) �= 0 and gAM,1(y,X) = 0,

where gAM,1 : Rn ×Rn×k → R is a multivariate polynomial that is independent
of (R, r). Summarizing, we have shown that

D1 = {y ∈ Rn : g1(y,X)g2(y,X) �= 0, gAM,1(y,X) = 0} .

(ii) First we observe that y ∈ D2 if and only if

g1(y,X)g2(y,X)gAM,1(y,X) �= 0 and

k∑
i=1

ωi

n−p∑
j=2

(
[ẐX(y)]ij − ρ̂i(y)[ẐX(y)]i(j−1)

)2
= 0,

(11)

where we recall that by assumption ω is functionally independent of y and X.
Because gAM,1(y,X) �= 0 implies that ρ̂i(y) is well defined for i = 1, . . . , k, which

is equivalent to
∑n−p−1

l=1 [ẐX(y)]2il �= 0 for i = 1, . . . , k, the second equation in
the previous display can be replaced by

k∑
i=1

ωi

n−p∑
j=2

(
n−p−1∑

l=1

[ẐX(y)]2il[ẐX(y)]ij −
n−p∑
l=2

[ẐX(y)]il[ẐX(y)]i(l−1)[ẐX(y)]i(j−1)

)2

= 0.

We now multiply the function defining this equation by the 6-th power of the
expression in Equation (10) and denote the resulting function by gAM,ω,2(y,X).
The statement in Equation (11) is then seen to be equivalent to

g1(y,X)g2(y,X)gAM,1(y,X) �= 0 and gAM,ω,2(y,X) = 0,

where gAM,ω,2 : Rn ×Rn×k → R is a multivariate polynomial. We also see that
gAM,ω,2 is independent of (R, r). We conclude that

D2 = {y ∈ Rn : g1(y,X)g2(y,X)gAM,1(y,X) �= 0, gAM,ω,2(y,X) = 0} .

Now let gκ,MAM,ω,p ≡ g1g2gAM,1gAM,ω,2. By what has been shown above
gκ,MAM,ω,p : Rn × Rn×k → R is a multivariate polynomial. Furthermore,
gκ,MAM,ω,p does not depend on (R, r). We observe that

N(Ω̂κ,MAM,ω,p,X) =
{
y ∈ Rn : gκ,MAM,ω,p(y,X) = 0

}
.
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This proves the lemma in caseM ∈ MAM . Finally, we consider M ≡ MNW,ω,w ∈
MNW , where we write MNW,ω,w instead of MNW,ω,w,c̄, because the argument
and the resulting polynomial are independent of c̄. We use a similar argument as
in the previous case. We observe that if g1(y,X)g2(y,X) �= 0, then the function
MNW,ω,w is not well defined if and only if

n−p−1∑
i=−(n−p−1)

w(i)σ̄i(y) = 0, (12)

where

σ̄i(y) = (n− p)−1

n−p∑
j=|i|+1

ω′[ẐX(y)]·j
(
[ẐX(y)]·(j−|i|)

)′
ω for |i| = 0, . . . n− p− 1.

Since ω and w are both functionally independent of X and y, we can pre-
multiply Equation (12) by the square of the expression in Equation (10) to see
that the statement g1(y,X)g2(y,X) �= 0 and MNW,ω,w not being well defined is
equivalent to

g1(y,X)g2(y,X) �= 0 and gNW,ω,w(y,X) = 0,

where gNW,ω,w : Rn × Rn×k → R is a multivariate polynomial. The function
gNW,ω,w is independent of (R, r). Using these properties, defining gκ,MNW,ω,w,p =
g1g2gNW,ω,w, a function which does not depend on (R, r), and noting that

N(Ω̂κ,MNW,ω,w,p,X) =
{
y ∈ Rn : gκ,MNW,ω,w,p(y,X) = 0

}
,

then proves the claim in case M ∈ MNW .

Proof of Lemma 3.10. To establish Parts 1-4 of the lemma we apply a similar
argument as in the proof of Lemma 3.1 in Preinerstorfer and Pötscher (2016).
We observe that if y /∈ N(Ω̂κ,M,p,X), or equivalently gκ,M,p(y,X) �= 0, we can

write Ω̂κ,M,p,X(y) as

Ω̂κ,M,p,X(y) =
n

n− p
Bp,X(y)Wn−p(y)B

′
p,X(y), (13)

where Wn−p(y) ∈ R(n−p)×(n−p) is the symmetric Toeplitz matrix with ones
on the main diagonal, and where for i �= j its ij-th coordinate is given by
κ((i − j)/M(y)) whenever M(y) �= 0, and by 0 else. Recall that M(y) ≥ 0.
If M(y) = 0 we have Wn−p(y) = In. If M(y) > 0 the matrix Wn−p(y) is
positive definite by Assumption 1. Therefore, in both cases the matrix Wn−p(y)
is positive definite. This immediately establishes Parts 1-4, where rank(R) = q
is used in proving Part 4 (we emphasize that Ω̂κ,M,p,X(y) can be nonnegative
definite, singular, zero or positive definite only if it is well defined, i.e., only if
gκ,M,p(y,X) �= 0 holds). It remains to prove Part 5. We recall that

N∗(Ω̂κ,M,p,X)

= N(Ω̂κ,M,p,X) ∪
{
y ∈ Rn\N(Ω̂κ,M,p,X) : det

[
Ω̂κ,M,p,X(y)

]
= 0
}
.

(14)
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From Part 2 of the present lemma we know that we can rewrite the second set
to the right as{

y ∈ Rn\N(Ω̂κ,M,p,X) : det
[
Bp,X(y)B′

p,X(y)
]
= 0
}
. (15)

For every y ∈ Rn\N(Ω̂κ,M,p,X) we have with D(p) = (Ik, . . . , Ik)
′ ∈ R(kp)×k

that (using the same notation as in the proof of Lemma 3.9) Bp,X(y) can be
written as

R(X ′X)−1
(
Ik − V̄p,X(y)V̄ ′

0,X(y)
[
V̄0,X(y)V̄ ′

0,X(y)
]−1

D(p)
)−1

×
(
V̂p,X(y)− V̄p,X(y)V̄ ′

0,X(y)
[
V̄0,X(y)V̄ ′

0,X(y)
]−1

V̂0,X(y)
)

=R(X ′X)−1 det(X ′X)−1

×
(
det(

[
V̄0,X(y)V̄ ′

0,X(y)
]
)Ik − V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
D(p)

)−1

×
(
det
[
V̄0,X(y)V̄ ′

0,X(y)
]
V̄p,X(y)− V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
V̄0,X(y)

)
=det(X ′X)−2

× det
(
det(

[
V̄0,X(y)V̄ ′

0,X(y)
]
)Ik − V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
D(p)

)−1

×R adj(X ′X)

× adj
(
det(

[
V̄0,X(y)V̄ ′

0,X(y)
]
)Ik − V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
D(p)

)
×
(
det
[
V̄0,X(y)V̄ ′

0,X(y)
]
V̄p,X(y)− V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
V̄0,X(y)

)
We therefore see that the coordinates of the matrix B̄p,X(y), say, which is ob-
tained by pre-multiplying Bp,X(y) by the factor Fp(y,X), defined as the product
of det(X ′X)2 and

det
(
det(

[
V̄0,X(y)V̄ ′

0,X(y)
]
)Ik − V̄p,X(y)V̄ ′

0,X(y) adj
[
V̄0,X(y)V̄ ′

0,X(y)
]
D(p)

)
,

(for later reference we note that Fp : Rn × Rn×k → R is a multivariate poly-
nomial), are values of certain multivariate polynomials defined on Rn × Rn×k

evaluated at (y,X). Furthermore, we can replace Bp,X(y) in Equation (15) by

B̄p,X(y) without changing the set. This follows because y /∈ N(Ω̂κ,M,p) implies

Fp(y,X) = det(X ′X)2 det(V̄0,X(y)V̄ ′
0,X(y))k det

(
Ik −

p∑
l=1

Â
(p)
l,X(y)

)
�= 0.

If we combine this equivalent expression for (15) with (14) and Lemma 3.9 we
obtain

N∗(Ω̂κ,M,p,X) =
{
y ∈ Rn : gκ,M,p(y,X) det

[
B̄p,X(y)B̄′

p,X(y)
]
= 0
}
.

We next define g∗κ,M,p(y,X,R) ≡ gκ,M,p(y,X) det[B̄p,X(y)B̄′
p,X(y)]. By Lemma

3.9 we see that g∗κ,M,p : Rn × Rn×k × Rq×k → R is a multivariate polynomial
that does not depend on r.
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The subsequent technical lemma plays a key role in several constructions in
the proofs of the genericity results.

Lemma B.1. Let 1 ≤ k < n, n > 2 and let (R, r) be a hypothesis. Suppose that
the triple κ, M , p satisfies Assumption 1. Assume that the tuple (y,X) ∈ Rn×X0

satisfies for some t ≥ k:

(A1) V̂X(y) has exactly t+ 1 nonzero columns with indices 1 = j1 < j2 < . . . <
jt+1 ≤ n.

(A2) ji+1 − ji ≥ p+ 1 for i = 1, . . . , t, and n− jt+1 ≥ p− 1.
(A3) If t = k, then rank(V̂X(y)) = k. Otherwise,

span(
{
[V̂X(y)]·ji : i = 1, . . . , t

}
)

= span(
{
[V̂X(y)]·ji : i = 2, . . . , t+ 1

}
) = Rk.

Then, the following holds:

1. Â
(p)
X (y) = 0 and rank(ẐX(y)) = k.

2. Under each of the following three conditions we have g∗κ,M,p(y,X,R) �= 0

(or equivalently y /∈ N∗(Ω̂κ,M,p,X)):

(CKV) M ∈ MKV ;

(CAM) M ∈ MAM , and every row vector of the matrix obtained from ẐX(y)
by deleting its last column is nonzero [this is in particular satisfied if
n− jt+1 > p− 1];

(CNW) M ∈ MNW , and either each coordinate of ω′ẐX(y) is non-negative,
or each coordinate of ω′ẐX(y) is non-positive.

3. For every Q ∈ Rk×k such that rank(Q) = k, the tuple (y,XQ) is an
element of Rn × X0 that satisfies (A1), (A2) and (A3).

4. If k ≥ 2 and either [V̂X(y)]1ji > 0 for i = 2, . . . , t+1 or [V̂X(y)]1ji < 0 for
i = 2, . . . , t + 1 holds, then there exists a regular matrix Q ∈ Rk×k such
that the first columns of X and XQ, respectively, coincide and such that
g∗κ,M,p(y,XQ,R) �= 0 (or equivalently y /∈ N∗(Ω̂κ,M,p,XQ)).

Proof. Denote the column vectors of V̂X(y) by vi for i = 1, . . . , n. If t > k, then
by (A3) the set {vj1 , . . . , vjt} and

{
vj2 , . . . , vjt+1

}
, respectively, spans Rk. Using

(A3), we now show that this is automatically satisfied in case t = k. To prove
this claim, we first recall that vj = [ûX(y)]jX

′
j·. We see that ûX(y)⊥ span(X)

implies

0 =

n∑
j=1

[ûX(y)]jX
′
j· =

n∑
j=1

vj =

k+1∑
i=1

vji ,
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where the third equality follows from (A1) (t = k). This shows that

vj1 = −
k+1∑
i=2

vji

vjk+1
= −

k∑
i=1

vji .

By (A3) rank(V̂X(y)) = k, which together with (A1) implies that span({vji : i =
1, . . . , k+1}) = Rk. Therefore, it follows from the two equations in the previous
display that {vji : i = 1, . . . , k} and {vji : i = 2, . . . , k + 1}, respectively, spans
Rk. Hence the claim follows. We next show that Â

(p)
X (y) is well defined. For this

we have to verify that rank(V̂0,X(y)) = kp (cf. Remark 3.1). The j-th column

(j = 1, . . . , n− p) of V̂0,X(y) is given by

(v′j+p−1, . . . , v
′
j+1, v

′
j)

′ ∈ Rkp, (16)

which is to be interpreted as vj if p = 1, as (v′j+1, v
′
j)

′ if p = 2 etc. For l = 1, . . . , p
we define the (kp) × k dimensional auxiliary matrix Dl = el(p) ⊗ Ik, where
el(p) denotes the l-th element of the canonical basis of Rp (and ⊗ denotes the
Kronecker product). The following claims are immediate consequences of the
structure of V̂X(y) implied by (A1) - (A2):

(I) Dpvj1 is the first column of V̂0,X(y);

(II) If t ≥ 2, then Dlvji for i = 2, . . . , t and l = 1, . . . , p are columns of V̂0,X(y);

(III) If p ≥ 2, then Dlvjt+1 for l = 1, . . . , (p− 1) are columns of V̂0,X(y).

To see Parts (I) and (II), we observe that (A1) and (A2) imply that for i =
1, . . . , t, there are at least p zero columns between the columns vji and vji+1 of

V̂X(y). Equation (16) together with j1 = 1 then immediately implies Parts (I)
and (II). Now we consider Part (III) and hence assume that p ≥ 2. We start with
the case l = (p−1). Every column of V̂X(y) with index greater than jt+1 is zero
by Assumption (A1). By Assumption (A2) we have n− jt+1 ≥ p− 1. Together,
this implies that the column vjt+1 is followed by at least p−1 zero columns. Since
jt+1− jt ≥ p+1 by Assumption (A2), the column vjt+1 is preceded by at least p
zero columns. The assumption n− jt+1 ≥ p−1 is equivalent to n−p ≥ jt+1−1.
Hence, denoting the m1 × m2-dimensional zero matrix by 0m1,m2 , we can use
Equation (16) with j = jt+1 − 1 to see that

(v′jt+1+p−2, . . . , v
′
jt+1

, v′jt+1−1)
′ =

{
(01,(p−2)k, v

′
jt+1

, 01,k)
′ if p > 2

(v′jt+1
, 01,k)

′ if p = 2,

is a column of V̂0,X(y), where in deriving the equality we made use of the already

established fact that the column vjt+1 of V̂X(y) is preceded by at least p > 1
zero columns (which implies that v′jt+1−1 is the zero vector), and followed by at
least p−1 zero columns (which is used in case p > 2). This proves the statement
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concerning Dp−1vjt+1 . In case p = 2 we are done. If p > 2, then the statements
concerning Dlvjt+1 for l = 1, . . . , p− 2 follow from Equation (16) together with
the equation in the previous display and the fact that vjt+1 is preceded by at
least p zero columns.

We now use (I)-(III) and span({vj1 , . . . , vjt}) = span(
{
vj2 , . . . , vjt+1

}
) = Rk

to show that rank(V̂0,X(y)) = kp: The matrix V̂0,X(y) is kp×(n−p) dimensional.
Therefore, we must show that it has full row rank. Assume existence of a row
vector ξ = (ξ1, . . . , ξp), where ξ′i ∈ Rk for i = 1, . . . , p, such that ξV̂0,X(y) = 0
holds. Part (I) shows that 0 = ξDpvj1 = ξpvj1 . If t ≥ 2, then Part (II) applied
with l = p shows that 0 = ξDpvji = ξpvji for i = 2, . . . , t. Summarizing the
cases t = 1 and t ≥ 2 we obtain ξpvji = 0 for i = 1, . . . , t. Because {vj1 , . . . , vjt}
spans Rk, it follows that ξp = 0. If p ≥ 2, Part (III) implies that 0 = ξDlvjt+1 =
ξlvjt+1 for l = 1, . . . , (p − 1). If t ≥ 2 Part (II) implies 0 = ξDlvji = ξlvji for
l = 1, . . . , (p− 1) and i = 2, . . . , t. Summarizing again the cases t = 1 and t ≥ 2
we obtain that for l = 1, . . . , (p− 1) we have

ξlvji = 0 for i = 2, . . . , t+ 1.

Because
{
vj2 , . . . , vjt+1

}
spans Rk, it follows from the previous display that

ξl = 0 for l = 1, . . . , p − 1. Since we already know that ξp = 0, we obtain

ξ = 0 and thus rank(V̂0,X(y)) = kp. Therefore Â
(p)
X (y) is well defined. To see

that Â
(p)
X (y) = 0 we observe that every nonzero column of V̂X(y) besides the

first one is preceded by at least p zero columns. The matrix V̂p,X(y) is obtained

from V̂X(y) by deleting the first p ≥ 1 columns. This together with Equation

(16) immediately implies V̂p,X(y)V̂ ′
0,X(y) = 0 and thus Â

(p)
X (y) = 0. Before we

show that y /∈ N∗(Ω̂κ,M,p,X) under the conditions (CKV), (CAM) and (CNW),

respectively, we note that rank(ẐX(y)) = k. This follows, because Â
(p)
X (y) = 0

implies ẐX(y) = V̂p,X(y), which together with j2 − j1 ≥ p + 1 shows that the

vectors vji for i = 2, . . . , t+ 1 (which span Rk) are column vectors of ẐX(y).
Now, as a consequence of Part 4 of Lemma 3.10 positive definiteness of

Ω̂κ,M,p,X(y) and hence y /∈ N∗(Ω̂κ,M,p,X) follows if we can show that Ω̂κ,M,p,X(y)

is well defined. Since Â
(p)
X (y) = 0 implies invertibility of Ik −

∑p
l=1 Â

(p)
i,X(y), it

remains to show that M is well defined at y (cf. Remark 3.1). This is trivially
satisfied under Condition (CKV) because M ∈ MKV is everywhere well defined.
Suppose that Condition (CAM) holds, i.e., M ∈ MAM and every row vector of
the matrix obtained from ẐX(y) by deleting the last column is nonzero. That
the latter condition is satisfied if n − jt+1 > p − 1 follows because in that case
the last column of ẐX(y) is the zero vector and rank(ẐX(y)) = k. Under the as-
sumption that every row vector of the matrix obtained from ẐX(y) by deleting
the last column is nonzero it is obvious that the denominators in the definition
of ρ̂i(y) for i = 1, . . . , k, i.e.,

n−p−1∑
j=1

[ẐX(y)]2ij for i = 1, . . . , k,
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do not vanish. Therefore, ρ̂i(y) for i = 1, . . . , k are well defined. Using Assump-
tions (A1) and (A2) together with p ≥ 1 and ẐX(y) = V̂p,X(y), it follows that

there is always at least one zero column between two nonzero columns of ẐX(y).
Therefore, it is clear that the numerators appearing in the definition of ρ̂i(y)
for i = 1, . . . , k, i.e.,

n−p∑
j=2

[ẐX(y)]ij [ẐX(y)]i(j−1) for i = 1, . . . , k,

must vanish. It follows that ρ̂i(y) = 0 for i = 1, . . . , k. We finally show that
σ̂i(y) > 0 for i = 1, . . . , k. We note that ρ̂i(y) = 0 for i = 1, . . . , k implies

σ̂i(y) = (n− p− 1)−1

n−p∑
j=2

[ẐX(y)]2ij for i = 1, . . . , k.

Because of ẐX(y) = V̂p,X(y) it follows from Assumptions (A1) and (A2) that

the first column of ẐX(y) must be zero. Furthermore, we already know that
rank(ẐX(y)) = k. This implies that the matrix Z∗, say, which is obtained from
ẐX(y) by deleting the first column, must be of full row rank k. Consequently
all rows of Z∗ must be non-zero. The previous display shows that σ̂i(y) for
i = 1, . . . , k is, up to a positive factor, the squared Euclidean norm of the i-th
row of Z∗. Therefore σ̂i(y) > 0 for i = 1, . . . , k must hold. Therefore, we have
shown that M(y) is well defined (we even see that M(y) = 0 holds). Now we
consider the case where Condition (CNW) holds, i.e., M ∈ MNW and every
coordinate of ω′ẐX(y) is non-negative (non-positive). We have to show that

n−p−1∑
i=−(n−p−1)

w(i)σ̄i(y) �= 0.

The non-negativity (non-positivity) condition immediately implies σ̄i(y) ≥ 0
for |i| = 0, 1, . . . , n − p − 1. Furthermore, since rank(ẐX(y)) = k and ω �= 0,
by the definition of the weights vector, we have ω′ẐX(y) �= 0. This implies
σ̄0(y) = (n − p)−1‖ω′ẐX(y)‖2 > 0. By assumption w(0) = 1 and w(i) ≥ 0 for
|i| = 1, . . . , n − p − 1. Therefore, the quantity in the previous display does not
vanish and thus M(y) is well defined. This proves the second part of the lemma.

We next prove Part 3. Let Q be a regular k × k dimensional matrix. First,
we obviously have XQ ∈ X0, because X ∈ X0 and Q is regular. Secondly, since
span(X) = span(XQ), using regularity of Q, we have that ûX(y) = ûXQ(y).
This immediately entails

V̂XQ(y) = (XQ)′ diag(ûXQ(y)) = (XQ)′ diag(ûX(y)) = Q′X ′ diag(ûX(y))

= Q′V̂X(y).

Therefore, the tuple (y,XQ) ∈ Rn × X0 satisfies (A1), (A2) and (A3), because
(y,X) does so and Q is regular.
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It remains to prove Part 4. We do this by constructing a Q as in Part 3 such
that the tuple (y,XQ) ∈ Rn×X0 satisfies Condition (CKV), (CAM) or (CNW),
respectively, if M ∈ MKV , M ∈ MAM or M ∈ MNW , respectively. If M ∈ MKV

we can obviously choose Q = Ik. Suppose that M /∈ MKV . Let Q ∈ Rk×k be
such that rank(Q) = k. We specify this matrix later on. From Part 2 of the
present lemma we see that the tuple (y,XQ) satisfies (A1), (A2) and (A3) and

therefore we can conclude from Part 1 of the present lemma that Â
(p)
XQ(y) = 0,

which implies ẐXQ(y) = V̂p,XQ(y). Together with the equation in the previous
display, we see that

ẐXQ(y) = V̂p,XQ(y) = Q′V̂p,X(y). (17)

We now want to choose Q ∈ Rk×k (regular) such that

(i) every row vector of the matrix obtained from ẐXQ(y) by deleting the last
column is nonzero, and

(ii) either every coordinate of ω′ẐXQ(y) is non-negative, or every coordinate

of ω′ẐXQ(y) is non-positive,

holds, and that additionally the first columns of X and XQ, respectively, co-
incide. By assumption we either have [V̂X(y)]1ji > 0 for i = 2, . . . , t + 1, or we

have [V̂X(y)]1ji < 0 for i = 2, . . . , t+ 1. Consider the former (latter) case: Let

Q(γ) =

⎛
⎜⎜⎜⎜⎜⎝

1 γ γ γ . . . γ
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ ,

which is a regular matrix for every γ ∈ R. Post-multiplying X by Q(γ) has the
same effect as adding γ-times the first column of X to all other columns, without
changing the first column. We observe that since V̂p,X(y) is obtained from V̂X(y)

by deleting the first p columns, the nonzero columns of V̂p,X(y) are precisely

the vectors [V̂X(y)]·ji for i = 2, . . . , t + 1 because (y,X) satisfies Assumptions
(A1) and (A2). Therefore, it is obvious from Equation (17), together with the
assumed [V̂X(y)]1ji > 0 for i = 2, . . . , t + 1 ([V̂X(y)]1ji < 0 for i = 2, . . . , t +
1), that by choosing γ∗ > 0 large enough, we can enforce that all nonzero
columns of ẐXQ(γ∗)(y) are coordinate-wise positive (negative). Consider (i):

Using Equation (17) we see that Q(γ∗)′[V̂X(y)]·j2 is a column of the matrix

obtained by deleting the last column of ẐXQ(γ∗)(y). This follows from j2 ≥
p + 2 (a consequence of the assumptions j2 − j1 ≥ p + 1 and j1 = 1), which
shows that Q(γ∗)′[V̂X(y)]·j2 is a column of ẐXQ(γ∗)(y), together with j2 < j3 ≤
n (a consequence of k ≥ 2), which shows that it is not the last column of
ẐXQ(γ∗)(y). Since all coordinates of Q(γ∗)′[V̂X(y)]·j2 are positive (negative) by
construction of Q(γ∗), it follows that Q(γ∗) satisfies (i) above. To show (ii)
we recall that ω is nonzero and coordinate-wise nonnegative. Since all nonzero
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columns of ẐXQ(γ∗)(y) are coordinate-wise positive (negative), it immediately

follows that every coordinate of ω′ẐXQ(γ∗)(y) is non-negative (non-positive).
By construction the first columns of X and XQ(γ∗) coincide. This proves the
claim.

Proof of Lemma 3.11. We start with the first part. Let X ∈ X0 ⊆ Rn×k and
y ∈ Rn be arbitrary but fixed. We show that y ∈ N∗(Ω̂κ,M,p,X), which is equiv-

alent to g∗κ,M,p(y,X,R) = 0 by Part 5 of Lemma 3.10. If y ∈ N(Ω̂κ,M,p,X) ⊆
N∗(Ω̂κ,M,p,X) we are done. Suppose y /∈ N(Ω̂κ,M,p,X) which is equivalent to

gκ,M,p(y,X) �= 0 by Lemma 3.9. We claim that rank(ẐX(y)) < k must hold. As-
suming this claim and using rank(R) = q = k, X ∈ X0 which implies rank(X) =

k, and y /∈ N(Ω̂κ,M,p,X) which implies rank(Ik −
∑p

l=1 Â
(p)
l (y)) = k, it then fol-

lows from the definition of Bp,X(y) in Equation (7) that rank(Bp,X(y)) < q. As

a consequence, Part 2 of Lemma 3.10 then shows that Ω̂κ,M,p,X(y) is singular,

which implies y ∈ N∗(Ω̂κ,M,p,X). To prove rank(ẐX(y)) < k we note that

ẐX(y) =V̂p,X(y)

[
In−p − V̂ ′

0,X(y)
(
V̂0,X(y)V̂ ′

0,X(y)
)−1

V̂0,X(y)

]
=V̂p,X(y)Πspan(V̂ ′

0,X(y))⊥ .

We see from the previous display that rank(ẐX(y)) = k, i.e., ẐX(y) hav-
ing full row rank, is equivalent to rank(V̂p,X(y)) = k and span(V̂ ′

0,X(y)) ∩
span(V̂ ′

p,X(y)) = {0}. Using rank(V̂0,X(y)) = kp, a consequence of y /∈
N(Ω̂κ,M,p,X) (cf. Remark 3.1), this implies

rank
(
(V̂ ′

0,X(y) : V̂ ′
p,X(y))

)
= (p+ 1)k.

But this is impossible, because the matrix (V̂ ′
0,X(y) : V̂ ′

p,X(y)) is (n− p)× ((p+

1)k) dimensional, which together with n < (p + 1)k + p implies rank(V̂ ′
0,X(y) :

V̂ ′
p,X(y)) ≤ n− p < (p+ 1)k.

Next, we prove Part 2 of the lemma. Under the present assumptions it is
shown in Part 1 of Proposition 4.5 that for λRn×k almost every X ∈ X0 we have
g∗κ,M,p(e+, X,R) �= 0 and therefore in particular g∗κ,M,p(., X,R) �≡ 0. This proves
the first statement. To show the remaining statement we construct a y such that
g∗κ,M,p(y, e+, R) �= 0. Note first that 2p + 1 + 1MAM

(M) ≤ n obviously implies
2p + 1 ≤ n. Let y ∈ Rn satisfy y1 = −1, yp+2 = 1 and yi = 0 else. [Note that
this is feasible, i.e., p+2 ≤ n holds, because of 2p+1 ≤ n and p ≥ 1.] We intend
to apply Part 2 of Lemma B.1 with t = k = 1 to the tuple (y, e+). We first have
to show that the tuple (y, e+), which is clearly an element of Rn × X0, satisfies
Assumptions (A1), (A2) and (A3). For this we observe that e+⊥y, which implies
ûe+(y) = y and therefore

V̂e+(y) = û′
e+(y) = y′.
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Hence (A1) is satisfied, because y1 = −1 �= 0 and y has only two nonzero
coordinates. The corresponding indices are j1 = 1 and jt+1 = p + 2. The first
part of Assumption (A2) is therefore obviously satisfied. The second part, i.e.,
n−jt+1 = n− (p+2) ≥ p−1, follows immediately from 2p+1 ≤ n. Assumption
(A3) follows from y �= 0 together with the previous display and t = k. Therefore,
Ẑe+(y) = V̂p,e+(y) = (0, 1, 0, . . . 0) ∈ Rn−p follows as an application of Part 1 of

Lemma B.1. Obviously (CKV) holds if M ∈ MKV . Since Ẑe+(y) = (0, 1, 0, . . . 0)
it is also obvious that (CNW) holds if M ∈ MNW . Suppose now that M ∈ MAM

holds. In this case 1MAM
(M) = 1 and therefore 2(p + 1) ≤ n holds. The latter

implies n− (p+ 2) = n− jt+1 > p− 1. Consequently the statement in brackets
in (CAM) shows that the condition is satisfied.

It remains to prove Part 3. Under the present assumptions it is shown in
Part 2 of Proposition 4.5 that for λRn×(k−1) almost every X̃ ∈ X̃0 we have
g∗κ,M,p(e−, (e+, X̃), R) �= 0 and therefore g∗κ,M,p(., (e+, X̃), R) �≡ 0.

Appendix C: Proofs of results in Section 4

For a definition of the group G (M0) appearing in the following lemma we refer
the reader to Preinerstorfer and Pötscher (2016) Section 5.1.

Lemma C.1. Assume that the triple κ, M , p satisfies Assumption 1. Assume
further that g∗κ,M,p(., X,R) �≡ 0. Then, β̂ and Ω̂κ,M,p satisfy Assumptions 5,

6, and 7 in Preinerstorfer and Pötscher (2016) with N = N(Ω̂κ,M,p). In fact,

Ω̂κ,M,p (y) is nonnegative definite for every y ∈ Rn\N(Ω̂κ,M,p), and is positive
definite λRn-almost everywhere. The test statistic T defined in Equation (5),
with Ω̂ = Ω̂κ,M,p, is invariant under the group G (M0) and the rejection prob-
abilities Pμ,σ2Σ(T ≥ C) depend on

(
μ, σ2,Σ

)
∈ M × (0,∞) × C only through

((Rβ − r) /σ,Σ) (in fact, only through (〈(Rβ − r) /σ〉 ,Σ)), where β corresponds
to μ via μ = Xβ.

Proof of Lemma C.1. The assumption g∗κ,M,p(., X,R) �≡ 0 together with Part 5

of Lemma 3.10 implies that the algebraic set N∗(Ω̂κ,M,p) is a closed λRn-null

set. Therefore, by Lemma 3.9, it follows that the algebraic set N(Ω̂κ,M,p) ⊆
N∗(Ω̂κ,M,p) is a closed λRn -null set as well. We claim that Ω̂κ,M,p is continuous

(and obviously well defined by definition) on Rn\N(Ω̂κ,M,p), because it can be
written as a composition of continuous functions on this set: We recall from
Equation (13) the representation

Ω̂κ,M,p(y) =
n

n− p
Bp(y)Wn−p(y)B

′
p(y) for every y ∈ Rn\N(Ω̂κ,M,p).

We first observe that Bp(.) (which was defined in Equation (7)) is continuous

on Rn\N(Ω̂κ,M,p), because V̂ (.) and hence Â(p)(.) and Ẑ(.) are continuous on

Rn\N(Ω̂κ,M,p). By considering each of the cases M ∈ MKV , M ∈ MNW and

M ∈ MAM separately, it is easy to see thatM(.) is continuous on Rn\N(Ω̂κ,M,p).

The main diagonal entries of Wn(.) are by definition constant on Rn\N(Ω̂κ,M,p).
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Therefore, it remains to show that all off-diagonal entries are continuous on
Rn\N(Ω̂κ,M,p). Each of them is of the form κ(i/M(y)) for some fixed |i| =
1, . . . , n−p−1 ifM(y) �= 0, and 0 ifM(y) = 0. Since κ is a continuous function by
Assumption 1, and M(.) is continuous on Rn\N(Ω̂κ,M,p) and satisfies M(y) ≥ 0,
it remains to check that κ(x) → 0 as |x| → ∞, which is a part of Assumption

1. This proves the claim. Since β̂ is well defined and continuous everywhere
on Rn, it follows that both β̂ and Ω̂κ,M,p are well-defined and continuous on

Rn\N(Ω̂κ,M,p). Clearly, Ω̂κ,M,p is symmetric on Rn\N(Ω̂κ,M,p). This proves Part
(i) of Assumption 5 in Preinerstorfer and Pötscher (2016). To prove the second
part let y ∈ Rn\N(Ω̂κ,M,p), α �= 0 and γ ∈ Rk. We have to show that αy+Xγ ∈
Rn\N(Ω̂κ,M,p). Note that V̂ (αy + Xγ) = X ′ diag(û(αy + Xγ)) = αV̂ (û(y)),

which implies Â(p)(αy +Xγ) = Â(p)(û(y)) and Ẑ(αy +Xγ) = αẐ(y). The lat-
ter immediately leads (considering each of the cases M ∈ MKV , M ∈ MNW

and M ∈ MAM separately) to M(αy + Xγ) = M(y), which in turn implies
Wn−p(αy + Xγ) = Wn−p(y). It then follows from the previous display and

the definition of Bp(y) that Ω̂κ,M,p(αy + Xγ) = α2Ω̂κ,M,p(y). Therefore, we

clearly have αy +Xγ ∈ Rn\N(Ω̂κ,M,p), which proves Part (ii) of Assumption 5
in Preinerstorfer and Pötscher (2016), and where we have also established the
equivariance property of Ω̂κ,M,p required in Part (iii) of Assumption 5 in Prein-

erstorfer and Pötscher (2016). That β̂ satisfies the equivariance property in Part
(iii) of Assumption 5 in Preinerstorfer and Pötscher (2016) is obvious. It remains
to show that Ω̂κ,M,p is λRn -almost everywhere nonsingular on Rn\N(Ω̂κ,M,p).
This is equivalent to{

y ∈ Rn\N(Ω̂κ,M,p) : det(Ω̂κ,M,p(y)) = 0
}
= N∗(Ω̂κ,M,p)\N(Ω̂κ,M,p)

being a λRn -null set. This is obvious, since we have already observed that
N∗(Ω̂κ,M,p) is a λRn-null set under the maintained assumptions. This proves

the claim concerning Assumption 5. That Ω̂κ,M,p(y) is nonnegative definite for

every y /∈ N(Ω̂κ,M,p) (which is equivalent to gκ,M,p(y,X) �= 0 by Lemma 3.9)

has been shown in Part 1 of Lemma 3.10. It follows that Ω̂κ,M,p is positive defi-

nite on the complement of N∗(Ω̂κ,M,p). Hence Ω̂κ,M,p is λRn - almost everywhere
positive definite. This immediately shows that Assumptions 6 and 7 in Preiner-
storfer and Pötscher (2016) are satisfied. The remaining two claims in the lemma
now follow immediately from what has been established together with Lemma
5.15 Part 3 and Proposition 5.4 in Preinerstorfer and Pötscher (2016).

Proof of Theorem 4.2. In each part of the theorem we have g∗κ,M,p(., X,R) �≡ 0.
In Part 4 this is an explicit assumption. In the other parts this is implied by
the assumption that g∗κ,M,p(., X,R) does not vanish at a specific point. As a
consequence Lemma C.1 is applicable in all parts of the theorem. We shall now
apply the first two parts of Corollary 5.17 in Preinerstorfer and Pötscher (2016)

to prove the first two parts of the present theorem. Lemma C.1 shows that β̂
and Ω̂κ,M,p satisfy Assumption 5 in Preinerstorfer and Pötscher (2016) with

N = N(Ω̂κ,M,p). Furthermore, note that the set N∗ figuring Corollary 5.17 of
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Preinerstorfer and Pötscher (2016) coincides with N∗(Ω̂κ,M,p). By Assumption
2 the spaces Z+ = span(e+) and Z− = span(e−) are concentration spaces of C
(cf. Lemma G.1 in Preinerstorfer and Pötscher (2016)). Hence, Parts 1 and 2
of the present theorem now follow by applying the first two parts of Corollary
5.17 in Preinerstorfer and Pötscher (2016) and Remark 5.18(i) in Preinerstorfer
and Pötscher (2016) to Z+ as well as to Z−, and by noting that Part 5 of
Lemma 3.10 shows that the statement e+ ∈ Rn\N∗(Ω̂κ,M,p) translates into
g∗κ,M,p(e+, X,R) �= 0, with a similar translation if e+ is replaced by e−. That
the test is biased in Part 2 of the theorem follows immediately from Part 5 of
Lemma 5.15 in Preinerstorfer and Pötscher (2016) (note that Assumptions 5 and
6 in Preinerstorfer and Pötscher (2016) are satisfied by Lemma C.1) showing
that W (C) contains a non-empty open set. To prove Part 4 we apply Theorem

5.19 in Preinerstorfer and Pötscher (2016). Lemma C.1 shows that β̂ and Ω̂κ,M,p

also satisfy Assumption 7 in Preinerstorfer and Pötscher (2016). We consider

the case where e+ ∈ M and Rβ̂(e+) �= 0. The other case can be handled
analogously. From Remark 5.20 in Preinerstorfer and Pötscher (2016) we see
that all conditions on the covariance model in Theorem 5.19 in Preinerstorfer
and Pötscher (2016) are satisfied with Σ̄ = e+e

′
+, span(Σ̄) = span(e+) and

Z = e+. Clearly, span(Σ̄) = span(e+) ⊆ M and Rβ̂(z) �= 0 holds λspan(Σ̄)-a.e.
This shows that Equation (33) in Preinerstorfer and Pötscher (2016) holds in the
present setup. To conclude, it remains to observe that K2 in this equation equals
one. This follows from the discussion preceding Theorem 5.19 in Preinerstorfer
and Pötscher (2016), because Ω̂κ,M,p is almost everywhere positive definite by
Lemma C.1.

Now we consider Part 3 of the theorem. We prove the case where g∗κ,M,p(e+,
X,R) �= 0, T (e+ + μ∗

0) = C and gradT (e+ + μ∗
0) exists for some μ∗

0 ∈ M0.
The other case works analogously. The statement in the theorem saying that
if gradT (e+ + μ∗

0) exists and T (e+ + μ∗
0) = C holds for some μ∗

0 ∈ M0, then
gradT (e+ + μ∗

0) exists and T (e+ + μ∗
0) = C holds for all μ∗

0 ∈ M0 follows at
once from invariance of T w.r.t. G(M0), which holds as a consequence of Lemma
C.1. In a first step we now show that the linear functional on Rn corresponding
to the row vector gradT (μ∗

0 + e+) does not vanish everywhere on span(e+)
⊥:

Arguing by contradiction, assume that gradT (μ∗
0 + e+)w = 0 for every w ∈

span(e+)
⊥, which is equivalent to gradT (μ∗

0 + e+)
′⊥ span(e+)

⊥ and therefore
gradT (μ∗

0 + e+)
′ ∈ span(e+) holds, i.e., gradT (μ

∗
0 + e+) = ce′+ for some c ∈ R.

Since T is G(M0) invariant, it holds for every γ �= 0 that

T (γe+ + μ∗
0) = T (γ(e+ + μ∗

0 − μ∗
0) + μ∗

0) = T (e+ + μ∗
0) = C.

Hence on the set R\ {−1} the mapping

α �→ T (e+ + μ∗
0 + αe+) = T ((1 + α)e+ + μ∗

0) = C

is constant, thus showing that the directional derivative of T at the point e+ +
μ∗
0 in direction e+ is zero. The latter is equivalent to gradT (μ∗

0 + e+)e+ =
c‖e+‖2 = 0, and hence c = 0 holds which implies gradT (μ∗

0 + e+) = 0. To
arrive at a contradiction it remains to show that there is a vector v such that
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the directional derivative of T at e+ + μ0 in direction v does not vanish. To
this end, recall that Assumption 5 in Preinerstorfer and Pötscher (2016) is
satisfied, hence the discussion following that Assumption in Preinerstorfer and
Pötscher (2016) shows that N∗(Ω̂κ,M,p) is invariant w.r.t. G(M). Therefore,

e+ /∈ N∗(Ω̂κ,M,p) implies e+ + μ∗
0 /∈ N∗(Ω̂κ,M,p). Since N∗(Ω̂κ,M,p) is closed by

Lemma 3.10, there exists an open ball Uε of radius ε > 0 centered at e+ + μ∗
0

such that Uε ⊆ Rn\N∗(Ω̂κ,M,p). Additionally, we note that e+ /∈ M, because

M ⊆ N∗(Ω̂κ,M,p) always holds (see the discussion in Preinerstorfer and Pötscher
(2016) after Assumption 5). Therefore, v = ΠM⊥e+/‖ΠM⊥e+‖ is well defined
and for 0 ≤ |α| < ε we have e+ + μ∗

0 + αv ∈ Uε. Assume that 0 ≤ |α| < ε. The

OLS estimator β̂ clearly satisfies

Rβ̂(e+ + μ∗
0 + αv) = Rβ̂(e+ + μ∗

0) + αRβ̂(v) = Rβ̂(e+ + μ∗
0),

where the second equality follows from v⊥M. Since Ω̂κ,M,p satisfies the equiv-
ariance condition in Assumption 5 of Preinerstorfer and Pötscher (2016) we can
furthermore write

Ω̂κ,M,p(e+ + μ∗
0 + αv) = Ω̂κ,M,p(e+ + αv)

= Ω̂κ,M,p(e+ −ΠMe+ + αv)

= Ω̂κ,M,p(ΠM⊥e+ + αΠM⊥e+/‖ΠM⊥e+‖)

= Ω̂κ,M,p

(
(1 +

α

‖ΠM⊥e+‖
)ΠM⊥e+

)

= (1 +
α

‖ΠM⊥e+‖
)2Ω̂κ,M,p (ΠM⊥e+)

= (1 +
α

‖ΠM⊥e+‖
)2Ω̂κ,M,p (e+ + μ∗

0) .

By definition of T (cf. Equation (5) and recall that e+ + μ∗
0 + αv ∈ Uε ⊆

Rn\N∗(Ω̂κ,M,p)) and the assumed equality T (e++μ∗
0) = C, the relations derived

above allow us to show that

T (e+ + μ∗
0 + αv)

=
(
Rβ̂(e+ + μ∗

0 + αv)− r
)′

Ω̂−1
κ,M,p(e+ + μ∗

0 + αv)
(
Rβ̂(e+ + μ∗

0 + αv)− r
)

=(1 +
α

‖ΠM⊥e+‖
)−2
(
Rβ̂(e+ + μ∗

0)− r
)′

Ω̂−1
κ,M,p(e+ + μ∗

0)
(
Rβ̂(e+ + μ∗

0)− r
)

=(1 +
α

‖ΠM⊥e+‖
)−2T (e+ + μ∗

0)

=(1 +
α

‖ΠM⊥e+‖
)−2C

holds for every 0 ≤ |α| < ε. This implies that the directional derivative of T in
direction v at the point e+ + μ∗

0 equals −2C/‖ΠM⊥e+‖, which is nonzero as a
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consequence of C > 0. In a second step we shall now derive an expansion of T
at points of the form y+ μ∗

0 for y satisfying e′+y �= 0: For every h ∈ Rn we have

T (e+ + μ∗
0 + h) = T (e+ + μ∗

0) + gradT (e+ + μ∗
0)h+Q(h) (18)

where Q(h)/‖h‖ → 0 as h → 0 and h �= 0. Recall that T is invariant under the
group G(M0). In particular for every y such that e′+y �= 0 we have

T (y + μ∗
0) = T (

e′+y

n
e+ + μ∗

0 +Πspan(e+)⊥y) = T (e+ + μ∗
0 +

n

e′+y
Πspan(e+)⊥y),

where the first equality holds because of y = Πspan(e+)y + Πspan(e+)⊥y and the
second follows from invariance of T w.r.t. G(M0). This means that whenever
e′+y �= 0 holds, we can combine the equation in the previous display and Equa-
tion (18) with h = n

e′+yΠspan(e+)⊥y to see that

T (y+μ∗
0) = T (e++μ∗

0)+
n

e′+y
gradT (e++μ∗

0)Πspan(e+)⊥y+Q(
n

e′+y
Πspan(e+)⊥y)

(19)
holds and that

Q(
n

e′+ym
Πspan(e+)⊥ym)/‖ n

e′+ym
Πspan(e+)⊥ym‖ → 0, (20)

for any sequence ym satisfying e′+ym �= 0, n
e′+ym

Πspan(e+)⊥ym → 0 and
n

e′+ym
Πspan(e+)⊥ym �= 0. Now, we choose a sequence ρm ∈ (−1, 1) such that

ρm → 1 and apply Assumption 2 to obtain Λ(ρm) ∈ C for every m. We intend
to show that Pμ∗

0 ,Λ(ρm)(W (C)) → 1/2 along a subsequence. The last state-
ment in Lemma C.1 then implies Pμ0,σ2Λ(ρm)(W (C)) → 1/2 for every pair
μ0 ∈ M0 and 0 < σ2 < ∞ along this subsequence. In Part 3 of Lemma
G.1 in Preinerstorfer and Pötscher (2016) it is shown that Λ(ρm) → e+e

′
+,

Dm = Πspan(e+)⊥Λ(ρm)Πspan(e+)⊥/sm → D, where sm is a sequence of numbers

such that sm > 0, sm → 0 and D is regular on span(e+)
⊥. Furthermore, it is

shown that Πspan(e+)⊥Λ(ρm)Πspan(e+)/s
1/2
m → 0. We can use these relations to

derive three useful facts: (i) Observe that the matrix s
−1/2
m Πspan(e+)⊥Λ(ρm)1/2

is an n× n-dimensional nonnegative square root of the symmetric matrix Dm.
Therefore, we can find an orthogonal matrix Um such that

s−1/2
m Πspan(e+)⊥Λ(ρm)1/2Um = D1/2

m

holds. The sequence D
1/2
m converges to D1/2 as a consequence of Dm → D to-

gether with the continuity of taking the nonnegative definite symmetric matrix
square root of a symmetric and nonnegative definite matrix. Since Um is or-
thogonal we can choose a subsequence m′ along which Um converges to U , say.
Without loss of generality we henceforth assume m′ ≡ m. Using the relation in

the previous display we find that s
−1/2
m Πspan(e+)⊥Λ(ρm)1/2 converges to

D∗ = D1/2U ′, (21)
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and we recall from above that D1/2 ∈ Rn×n is regular on span(e+)
⊥. (ii) We

note that Λ(ρm) → e+e
′
+ implies

Λ(ρm)1/2 → n−1/2e+e
′
+.

(iii) We show that D∗e+ = 0 holds: Note that Πspan(e+)⊥Λ(ρm)Πspan(e+)/s
1/2
m →

0 can be rewritten as(
s−1/2
m Πspan(e+)⊥Λ(ρm)1/2

)
Λ(ρm)1/2Πspan(e+) → 0,

that the term in brackets converges to D∗ by (i) and that the other term con-
verges to n−1/2e+e

′
+ by (ii). Therefore,

D∗n−1/2e+e
′
+ = 0,

or equivalently D∗Πspan(e+) = 0. But this implies D∗e+ = 0. Now, we are ready
to show that Pμ∗

0 ,Λ(ρm)(W (C)) → 1/2. Let G be a random n-vector defined on
some underlying probability space such that the probability measure induced by
G on (Rn,B(Rn)) equals P0,In . Consequently, the random vector Λ(ρm)1/2G+
μ∗
0 induces the distribution Pμ∗

0 ,Λ(ρm) on (Rn,B(Rn)). For notational convenience

we write Gm = Λ(ρm)1/2G. Consequently, we have

Pμ∗
0 ,Λ(ρm) (W (C)) = Pr(T (Gm + μ∗

0) ≥ C) (22)

= Pr
(
s−1/2
m [T (Gm + μ∗

0)− T (e+ + μ∗
0)] ≥ 0

)
,

where we used s
−1/2
m > 0 and T (e+ + μ∗

0) = C in deriving the second equality.
Note that e′+Gm �= 0 and ‖ n

e′+Gm
Πspan(e+)⊥Gm‖ > 0 on an event of proba-

bility one. Using the expansion developed in Equation (19) we see that with

probability one s
−1/2
m [T (Gm + μ∗

0)− T (e+ + μ∗
0)] can be written as

s−1/2
m

[
n

e′+Gm
gradT (e+ + μ∗

0)Πspan(e+)⊥Gm +Q

(
n

e′+Gm
Πspan(e+)⊥Gm

)]

=
n

e′+Gm
gradT (e+ + μ∗

0)s
−1/2
m Πspan(e+)⊥Gm + ‖ n

e′+Gm
s−1/2
m Πspan(e+)⊥Gm‖

× ‖
(

n

e′+Gm
Πspan(e+)⊥Gm

)
‖−1Q

(
n

e′+Gm
Πspan(e+)⊥Gm

)
.

To derive the almost sure limit as m → ∞ of the expression in the previous
display we first observe that Gm converges point-wise to n−1/2e+e

′
+G because

of (ii). From that it follows that e′+Gm converges point-wise to
√
ne′+G and that

Πspan(e+)⊥Gm converges point-wise to zero. An application of the continuous
mapping theorem hence shows that

n

e′+Gm
Πspan(e+)⊥Gm → 0
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almost surely as m → ∞, which immediately implies

‖
(

n

e′+Gm
Πspan(e+)⊥Gm

)
‖−1Q

(
n

e′+Gm
Πspan(e+)⊥Gm

)
→ 0

almost surely as m → ∞ as a consequence of Equation (20) together with
Q(0) = 0. We also observe that (i) above implies

Πspan(e+)⊥s
−1/2
m Gm → D∗G

point-wise and thus, using the continuous mapping theorem again, we see that

n

e′+Gm
Πspan(e+)⊥s

−1/2
m Gm →

√
n

e′+G
D∗G

almost surely as m → ∞ (where the limiting random vector is well defined
almost-surely). This finally shows that

s−1/2
m [T (Gm + μ∗

0)− T (e+ + μ∗
0)] →

√
n

e′+G
gradT (e+ + μ∗

0)D
∗G,

almost surely. We already know from Equation (21) that D∗ = D1/2U ′, where
U is an orthogonal matrix. Furthermore D1/2 maps Rn onto span(e+)

⊥, and
gradT (e+ + μ∗

0) does not vanish everywhere on span(e+)
⊥. Hence, we see that

the probability that the limiting random variable in the previous display takes
on the value 0 vanishes because gradT (e+ + μ∗

0)D
∗G is a Gaussian random

variable with mean zero and positive variance. Hence, Equation (22) together
with Portmanteau theorem shows that

Pμ∗
0 ,Λ(ρm) (W (C)) → Pr(

√
n

e′+G
gradT (e+ + μ∗

0)D
∗G ≥ 0). (23)

The covariance between the Gaussian mean-zero random variables gradT (e+ +
μ∗
0)D

∗G and e′+G is given by

gradT (e+ + μ∗
0)D

∗e+ = 0,

where the equality follows from (iii). Therefore, e′+G and gradT (e+ + μ∗
0)D

∗G
are independent. Since the probability to the right in Equation (23) equals the
probability that the random variables e′+G and gradT (e+ + μ∗

0)D
∗G have the

same sign it is now obvious that the limit equals 1/2.

Lemma C.2. Assume that the triple κ, M , p satisfies Assumption 1 and let T
be as in Equation (5) with Ω̂ = Ω̂κ,M,p. Let μ0 ∈ M0. Then the following holds.

1. If M ∈ MKV and g∗κ,M,p(y,X,R) �= 0, then gradT (μ0 + y) exists.
2. Suppose that M /∈ MKV , that κ is continuously differentiable on the non-

void complement of a closed set Δ(κ) ⊆ R, and that g∗κ,M,p(y,X,R) �= 0.
Assume further that one of the following conditions is satisfied:
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(a) M(y) �= 0 and i
M(y) /∈ Δ(κ) for |i| = 1, . . . , n− p− 1.

(b) M(y) = 0 and κ has compact support.

Then gradT (μ0 + y) exists.
3. If M /∈ MKV , then for every δ ≥ 0 we have{

y ∈ Rn : g∗κ,M,p(y,X,R) �= 0 and M(y) = δ
}

=
{
y ∈ Rn : g∗κ,M,p(y,X,R) �= 0 and g

(δ)
κ,M,p(y,X) = 0

}
,

where g
(δ)
κ,M,p : Rn × Rn×k → R is a multivariate polynomial (explicitly

constructed in the proof) that does not depend on the hypothesis (R, r).

Proof. We first verify Parts 1 and 2. Let us start by deriving a convenient ex-
pression for T (μ0 + y) under the assumption g∗κ,M,p(y,X,R) �= 0. By Lemma

3.10 the assumption g∗κ,M,p(y,X,R) �= 0 is equivalent to y /∈ N∗(Ω̂κ,M,p). An

application of Lemma C.1 shows that Ω̂κ,M,p satisfies Assumption 5 in Prein-
erstorfer and Pötscher (2016). An application of Part (ii) of this Assumption
shows that μ0+y /∈ N∗(Ω̂κ,M,p). We can therefore use Equation (5) together with

Rβ̂(y + μ0)− r = Rβ̂(y) and Ω̂κ,M,p(μ0 + y) = Ω̂κ,M,p(y) (both following from

Assumption 5 in Preinerstorfer and Pötscher (2016)) to see that y /∈ N∗(Ω̂κ,M,p)
implies

T (μ0 + y) =β̂(y)′R′Ω̂−1
κ,M,p(y)Rβ̂(y)

=β̂(y)′R′
(

n

n− p
Bp(y)Wn−p(y)B

′
p(y)

)−1

Rβ̂(y),

where in deriving the second equality we made use of the representation of
Ω̂κ,M,p(y) developed in Equation (13). The function β̂(.) is linear and hence
totally differentiable on Rn. Furthermore, in the proof of Lemma 3.10 it is
shown that the coordinates of the matrix Bp(.) are multivariate rational func-

tions (without singularities) on Rn\N∗(Ω̂κ,M,p). In particular the coordinates

of Bp(.) are continuously partially differentiable on Rn\N∗(Ω̂κ,M,p). To show

that gradT (μ0 + y) exists at a given point y ∈ Rn\N∗(Ω̂κ,M,p) it is there-
fore sufficient to show that each off-diagonal element (recall that the diago-
nal is constant) of Wn−p(.) is continuously partially differentiable on an open

neighborhood of y in Rn\N∗(Ω̂κ,M,p). Recall that the i-th off-diagonal element

(i ∈ {1, . . . , n− p− 1}) of Wn−p(.) evaluated at some y ∈ Rn\N∗(Ω̂κ,M,p) is
given by

fi(y) :=

{
κ(i/M(y)) if M(y) �= 0

0 else.

If M ∈ MKV the sufficient condition above is obviously satisfied, because in this
case M > 0 is constant and therefore fi(.) is constant on Rn\N∗(Ω̂κ,M,p). This
proves Part 1 of the lemma. Consider now Part 2. By considering separately the
cases M ∈ MAM and M ∈ MNW , we observe that M(.) is continuously partially
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differentiable in an open neighborhood of any element y of Rn\N∗(Ω̂κ,M,p) sat-

isfying M(y) �= 0. We start with Condition (a). Let y satisfy y /∈ N∗(Ω̂κ,M,p)
and M(y) �= 0. Fix an i ∈ {1, . . . , n− p− 1}. By assumption κ is continuously
differentiable on an open neighborhood of i/M(y) /∈ Δ(κ). Hence there exists an
open neighborhood U of y in Rn\N∗(Ω̂κ,M,p) on which M(.) is strictly greater
than zero and such that κ(i/M(.)) is continuously partially differentiable on U .
It hence follows that fi(.) is continuously partially differentiable on U because it
coincides with κ(i/M(.)) on this set. To establish existence of the gradient under
Condition (b) let y satisfy y /∈ N∗(Ω̂κ,M,p) and M(y) = 0. Let i be as before and
recall that the support of κ is compact by assumption. Since M is continuous
on Rn\N∗(Ω̂κ,M,p), there exists an open neighborhood of y in Rn\N∗(Ω̂κ,M,p)
such that for every point y∗ in this neighborhood we either have M(y∗) = 0
or that i/M(y∗) is not contained in the support of κ. It follows that the func-
tion fi is constant equal to 0, and thus is in particular continuously partially
differentiable, on this neighborhood.

To prove the third part of the lemma consider first the case M ≡ MAM,1,ω ∈
MAM , where we dropped the index c because the argument and the resulting
polynomial do not depend on it. Suppose y satisfies g∗κ,MAM,1,ω,p(y,X,R) �= 0.

Then MAM,1,ω(y) is well defined and by definition MAM,1,ω(y) = δ if and only
if α̂1(y) = n−1(c−1

1 δ)1/c2 =: δ∗ holds, where c1 and c2 are positive constants.
This can equivalently be written as

k∑
i=1

ωi
4ρ̂2i (y)σ̂

4
i (y)

(1− ρ̂i(y))6(1 + ρ̂i(y))2
= δ∗

k∑
i=1

ωi
σ̂4
i (y)

(1− ρ̂i(y))4
,

which, after multiplying both sides of the equation by
∏k

j=1(1 − ρ̂j(y))
6(1 +

ρ̂j(y))
2 (which is nonzero), is seen to be equivalent to

k∑
i=1

ωi

⎡
⎣4ρ̂2i (y)σ̂4

i (y)

k∏
j 	=i

(1− ρ̂j(y))
6(1 + ρ̂j(y))

2

⎤
⎦

− δ∗
k∑

i=1

ωi

⎡
⎣σ̂4

i (y)(1 + ρ̂i(y))
2(1− ρ̂i(y))

2
k∏

j 	=i

(1− ρ̂j(y))
6(1 + ρ̂j(y))

2

⎤
⎦ = 0.

By multiplying both sides of this equation by a suitably large power of the
products of the denominators of ρ̂i(y) (which are nonzero), we can write the
preceding equation equivalently as

k∑
i=1

ωip̄
(δ)
i (Ẑ(y)) = 0

where each p̄
(δ)
i : Rk×(n−p) → R for i = 1, . . . , k is a multivariate polynomial. In

a final step we multiply both sides of the equation by a suitably large power of
the non-vanishing factor in Equation (10) to obtain an equivalent equation of
the form
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g
(δ)
κ,MAM,1,ω,p(y,X) =

k∑
i=1

ωip
(δ)
i (y,X) = 0,

where each p
(δ)
i : Rn × Rn×k → R is a multivariate polynomial. Therefore, the

condition
g∗κ,MAM,1,ω,p(y,X) �= 0 and MAM,1,ω(y) = δ

can be equivalently stated as

g∗κ,MAM,1,ω,p(y,X,R) �= 0 and g
(δ)
κ,MAM,1,ω,p(y,X) = 0.

Finally, we note that the multivariate polynomial g
(δ)
κ,MAM,1,ω,p : Rn×Rn×k → R

does not depend on the hypothesis (R, r). This proves the last part of the lemma
in case M ≡ MAM,1,ω ∈ MAM . The proof of the case M ≡ MAM,2,ω ∈ MAM is
almost identical and therefore we omit it. We finally note that similar arguments
can be used to prove the statement in case M ∈ MNW , but we omit details.

Proof of Proposition 4.5. We first prove that the sets X2(e+), X2(e−), X̃2(e+)
and X̃2(e−) do not depend on the specific choice of μ∗

0,X ∈ M0,X . This follows
from an invariance argument. Consider for example the set X2(e+), which is
by definition a subset of X0\X1(e+). Every element X of this superset satisfies
gκ,M,p(., X,R) �≡ 0. Hence, for every such X the corresponding test statistic
TX is invariant w.r.t. G(M0,X) by Lemma C.1. It now immediately follows
that X1(e+) does not depend on the specific choice of μ∗

0,X ∈ M0,X . The same
argument shows that the statement in Part 2 Condition (d) is independent of
the specific choice of μ∗

0,(e+,X̃)
. We shall now prove the three main parts of the

proposition and start with the first:
1) We begin with the statement concerning X1 (e+). Under the maintained

assumptions we know from Part 5 of Lemma 3.10 that g∗κ,M,p(., ., .) : Rn ×
Rn×k × Rq×k → R is a multivariate polynomial. This immediately implies that
g∗κ,M,p(e+, ., R) : Rn×k → R is a multivariate polynomial, showing that

{
X ∈ Rn×k : g∗κ,M,p(e+, X,R) = 0

}
is an algebraic superset of X1 (e+). It hence suffices to show that the set in the
previous display is a λRn×k - null set, or equivalently that g∗κ,M,p(e+, ., R) �≡ 0. To
this end we shall use Lemma B.1 (with t = k) to construct a matrix X ∈ X0 such
that g∗κ,M,p(e+, X,R) �= 0. Let H ∈ R(k+1)×k be an auxiliary matrix the column

vectors of which span span(ē+)
⊥, where ē+ = (1, . . . , 1)′ ∈ Rk+1 is the vector

obtained from e+ by selecting the coordinates with indices ji = 1+(i−1)(p+1)
for i = 1, . . . , k + 1 (we shall need a similar construction for e− later on).
Note that this selection is feasible because jk+1 = 1 + k(p + 1) ≤ n holds as
a consequence of the assumption n − [k(p + 1) + p] − 1MAM

(M) ≥ 0 together
with p ≥ 1. We also note that H does not contain a row consisting of zeros
only. If the construction of M involves a weights vector ω (which is assumed to
be functionally independent of the design) we choose the columns of H in such
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a way that Hω = (−1, 1, 0, . . . , 0)′ which is possible because this vector is an
element of span(ē+)

⊥ and ω �= 0 holds. We now let X ∈ Rn×k be the matrix
the non-zero rows of which are precisely Xji· = Hi· for i = 1, . . . , k + 1, i.e.,

X =
(
H ′

1·, 0k,p, H
′
2·, 0k,p, H

′
3·, 0k,p, . . . , H

′
(k+1)·, 0k,n−k(p+1)−1

)′
∈ Rn×k, (24)

where 0m1,m2 denotes the m1×m2-dimensional zero matrix (here 0k,n−k(p+1)−1

vanishes if n−k(p+1)−1 = 0). Obviously rank(X) = rank(H) = k holds, which
implies X ∈ X0. Furthermore, e+⊥ span(X) holds, which follows immediately
from ē+⊥ span(H), because the non-zero columns of X have column indices ji
for i = 1, . . . , k+1 by construction. Therefore, we see that ûX(e+) = e+ showing
that

V̂X(e+) = X ′ diag(ûX(e+)) = X ′ diag(e+).

Now we apply Lemma B.1 with t = k to (e+, X) ∈ Rn × X0. That the tuple
(e+, X) satisfies (A1) of that lemma is obvious from the preceding display and
Equation (24). We also see that (A2) is satisfied because ji+1 − ji = p + 1
for i = 1, . . . k, and k(p + 1) + p + 1MAM

(M) ≤ n implies n − jk+1 = n −
k(p + 1) − 1 ≥ p − 1. That (A3) is satisfied follows from the preceding display
together with rank(X) = rank(H) = k. To infer g∗κ,M,p(e+, X,R) �= 0 from
Part 2 of Lemma B.1, we consider three cases: First, if M ∈ MKV (CKV) is
obviously satisfied and we are done. Secondly, assume that M ∈ MAM . In this
case we have by assumption k(p + 1) + p + 1 ≤ n which implies n − jk+1 =
n− k(p+ 1)− 1 > p− 1. This shows that (CAM) is satisfied. Thirdly suppose

that M ∈ MNW . Since Â
(p)
X (e+) = 0 follows from Part 1 of Lemma B.1, we see

that ẐX(e+) = V̂p,X(e+) and hence that the nonzero columns of ẐX(e+) are
preciselyH ′

i· for i = 2, . . . , k+1. By construction we haveH2·ω �= 0 andHi·ω = 0

for i = 3, . . . , k+1. This shows that exactly one coordinate of ω′ẐX(e+) is non-
zero which implies that (CNW) holds. To show that X1(e−) is a λRn×k−null
set, we can use a similar construction: we replace e+ by e− throughout. If
p is even we then have ē− = (−1, 1,−1, . . . , (−1)k+1)′. If p is odd we then
have ē− = (−1,−1, . . . ,−1)′. Furthermore, if the construction of M involves a
weights vector we choose H such that Hω = (1, 1, 0, . . . , 0)′ if p is even, and
Hω = (−1, 1, 0, . . . , 0)′ if p is odd. The remaining arguments are identical.

Now consider X2(e+). Using Part 1 of Lemma C.2 we see that in case M ∈
MKV the set X2(e+) is empty, because (gradTX(.))|e++μ∗

0,X
exists whenever

X ∈ X0\X1(e+). Next consider the cases where M /∈ MKV and where κ satisfies
Assumption 3. From Part 2a of Lemma C.2 we know that forX ∈ X0\X1(e+) the
non-existence of (gradTX(.))|e++μ∗

0,X
implies either M(e+) = 0 or i/M(e+) ∈

Δ(κ) for some |i| = 1, . . . , n − p − 1. The latter two cases can clearly be sum-
marized as M(e+) ∈ Δ̄, where Δ̄ = {δ0, δ1, . . . , δm} is a set consisting of finitely
many elements. Therefore,

X2(e+) ⊆
{
X ∈ X0\X1(e+) : (gradTX(.))|e++μ∗

0
does not exist

}
⊆
{
X ∈ X0\X1(e+) : M(e+) ∈ Δ̄

}
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=

m⋃
i=0

{X ∈ X0\X1(e+) : M(e+) = δi} .

We use Part 3 of Lemma C.2 to rewrite the latter set as

m⋃
i=0

{
X ∈ X0 : g∗κ,M,p(e+, X,R) �= 0 and g

(δi)
κ,M,p(e+, X) = 0

}

=

{
X ∈ X0 : g∗κ,M,p(e+, X,R) �= 0 and

m∏
i=0

g
(δi)
κ,M,p(e+, X) = 0

}
,

which is clearly a subset of{
X ∈ Rn×k :

m∏
i=0

g
(δi)
κ,M,p(e+, X) = 0

}
.

Part 3 of Lemma C.2 shows that
∏m

i=0 g
(δi)
κ,M,p(e+, .) : R

n×k → R is a multivariate

polynomial. We consider two cases: First assume that
∏m

i=0 g
(δi)
κ,M,p(e+, .) �≡ 0.

Consequently, the set in the previous display is a λRn×k -null set. It hence
follows that X2(e+) is a λRn×k -null set and we are done. Next, assume that∏m

i=0 g
(δi)
κ,M,p(e+, .) ≡ 0. It follows that there must exist a single index i such that

g
(δi)
κ,M,p(e+, .) ≡ 0 holds [this is easily shown by contradiction]. Part 3 of Lemma
C.2 hence shows that X ∈ X0 and g∗κ,M,p(e+, X,R) �= 0, i.e., X ∈ X0\X1(e+),
implies M(e+) = δi. Clearly,

X2(e+) ⊆ {X ∈ X0\X1(e+) : TX(e+ + μ∗
0) = C} .

If X ∈ X0\X1(e+), then (cf. the argument in the beginning of the proof of
Lemma C.2 applied to y = e+)

TX(e+ + μ∗
0,X)

= β̂X(e+)
′R′
(

n

n− p
Bp,X(e+)Wn−p(e+)B

′
p,X((e+)

)−1

Rβ̂X(e+).
(25)

Furthermore, since X ∈ X0\X1(e+) implies M(e+) = δi, the matrix Wn−p(e+)
is constant W̄n−p, say, on X0\X1(e+). Hence, for X ∈ X0\X1(e+), the statement
TX(e+ + μ∗

0,X) = C is equivalent to

F 2
p (e+, X)

[
det(X ′X)β̂X(e+)

]′
R′

× adj(B̄p,X(e+)W̄n−pB̄
′
p,X((e+)))R

[
det(X ′X)β̂X(e+)

]
=

n

n− p
det(X ′X)2 det(B̄p,X(e+)W̄n−pB̄

′
p,X((e+)))C

where B̄p,X(e+) and Fp(e+, X) have been defined in the proof of Lemma 3.10,
where it is shown that gκ,M,p(e+, X) �= 0 and X ∈ X0 (which is weaker than
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X ∈ X0\X1(e+)) implies Fp(e+, X) �= 0. Furthermore, it is shown in the proof
of Lemma 3.10 that [B̄p,.(e+)]ij : Rn×k → R (for 1 ≤ i ≤ q and 1 ≤ j ≤ n− p)
is a multivariate polynomial, and that Fp(e+, .) : Rn×k → R is a multivariate

polynomial as well. It is easily seen that the coordinates of det(X ′X)β̂X(e+)
as a function of X are multivariate polynomials. Putting this together we have
shown that

X2(e+) ⊆
{
X ∈ Rn×k : pκ,M,p(e+, X,C) = 0

}
,

where pκ,M,p(e+, ., C) : Rn×k → R is a multivariate polynomial. Therefore,
if we can show that pκ,M,p(e+, ., C) �≡ 0 we obtain that X2(e+) is a λRn×k -
null set. In the proof of the part concerning X1(e+) above we have already

constructed an X ∈ X0\X1 that satisfies e+⊥ span(X) which implies β̂X(e+) =
0. Together with Equation (25) this shows that TX(e+ + μ∗

0,X) = 0 < C holds
for this specific X. But this immediately shows that pκ,M,p(e+, X,C) �= 0 and
we are done. Clearly, we can use an almost identical argument to prove the
statement concerning X2(e−). Under Assumption 2 the set of matrices X ∈ X0

for which the first three cases of Theorem 4.2 do not apply is obviously a subset
of (X1(e+)∪X2(e+))∩(X1(e−)∪X2(e−)). Hence the first part of the proposition
follows.

2) We start with the statement concerning X̃1 (e−). Under the maintained
assumptions we know from Part 5 of Lemma 3.10 that g∗κ,M,p(., ., .) : Rn ×
Rn×k × Rq×k → R is a multivariate polynomial. This immediately implies that
g∗κ,M,p(e−, (e+, .), R) : Rn×(k−1) → R is a multivariate polynomial, which shows
that {

X̃ ∈ Rn×(k−1) : g∗κ,M,p(e−, (e+, X̃), R) = 0
}

is an algebraic superset of X̃1 (e−). It hence suffices to show that the set in the
previous display is a λRn×(k−1) - null set, or equivalently to show that g∗κ,M,p(e−,
(e+, .), R) �≡ 0. Again, we shall use Lemma B.1 with t = k to construct a
matrix X̃ ∈ X̃0 such that g∗κ,M,p(e−, (e+, X̃), R) �= 0. The situation here is more
complicated than in the first part, because the first column of the design matrix
we seek has to be the intercept. For our construction we need some additional
ingredients: By definition p∗ = p + 1 if p is odd, and p∗ = p if p is even. If
p is odd set v = ē∗− = (−1,−1, . . . ,−1, 1)′ ∈ Rk+1, where ē∗− is the vector
obtained from e− by selecting the coordinates j∗i = ji for i = 1, . . . , k and
j∗k+1 = j∗k + p∗ + 1, where ji = 1 + (i − 1)(p + 1) for i = 1, . . . , k + 1 was
defined in Part 1 above. This selection is feasible, because by assumption we
have k(p+1)+p∗ ≤ n, which, since p is odd, gives k(p+1)+p+1 ≤ n, implying
that j∗k+1 = (k − 1)(p+ 1) + p∗ + 2 = k(p+ 1) + 2 ≤ n, because of p ≥ 1. If p is

even set v = ē− = (−1, 1,−1, . . . , (−1)k+1)′ ∈ Rk+1, the vector obtained from
e− by selecting the coordinates j∗i = ji for i = 1, . . . , k + 1. Next, define

z = (−1, k−1, . . . , k−1)′ ∈ Rk+1.

We claim that v and z satisfy u := Πspan(z)v �= 0, x := Πspan(z)⊥v = v − u is

linearly independent of e := (1, . . . , 1)′ ∈ Rk+1 and z is orthogonal to e. The



Finite sample properties of prewhitened F-type tests 2153

latter property is clearly always satisfied, regardless of whether p is even or odd.
We thus only have to verify the first two conditions. We start with the case p
odd. Here we have z′v = 2k−1 �= 0 and therefore Πspan(z)v �= 0. Furthermore
Πspan(z)⊥v = v − ‖z‖−2z′vz can not equal ce for some c ∈ R, because the last
and the last but one coordinate of v are unequal. For p even z′v = (1 + k−1s),
where s equals either 0 (if k is even) or 1 (if k is odd), therefore z′v �= 0 holds
and thus Πspan(z)v �= 0. Furthermore Πspan(z)⊥v = v − ‖z‖−2z′vz can not equal
ce for some c ∈ R, because the second and third coordinate of v are unequal.
This proves the claim. Using these properties, we see that u ∈ span(z)\ {0} and

u = v − x = v −Πspan(e,x)(v −Πspan(z)v) = v −Πspan(e,x)v = Πspan(e,x)⊥v,

where we have used that z is orthogonal to both e and x to derive the third
equality. We shall now define an auxiliary matrix. Let L denote a (k + 1) × k-
dimensional matrix such that L·1 = e, L·2 = x and such that the remaining
k − 2 columns L·j for j = 3, . . . , k are linearly independent and orthogonal to
span(e, x, v). Since e and x are linearly independent, we have rank(L) = k. For
later use we observe that

Πspan(L)v = Πspan((e,x))v = v −Πspan(e,x)⊥v = v − u = x,

where the first equality follows immediately from L·j for j = 3, . . . , k being
linearly independent and orthogonal to span(e, x, v). This immediately shows

β̂L(v) = (0, 1, 0, . . . , 0)′ ∈ Rk.

Define the two k-vectors r− = (1,−1, 0, . . . , 0)′ and r+ = (1, 1, 0, . . . , 0)′. Let
X ∈ Rn×k be such that Xj∗i · = Li· for i = 1, . . . , k + 1, and if the index j /∈{
j∗1 , . . . , j

∗
k+1

}
, then letXj· = r+ if [e−]j = 1, and letXj· = r− if [e−]j = −1. By

construction the matrix X is of the form X = (e+, X̃). We claim that β̂X(e−) =

β̂L(v). To see this denote the set of indices j ∈ {1, . . . , n} \
{
j∗1 , . . . , j

∗
k+1

}
such

that [e−]j = −1 by I−, and the set of indices j ∈ {1, . . . , n} \
{
j∗1 , . . . , j

∗
k+1

}
such that [e−]j = 1 by I+. The sum of squares S(β) = ‖e− −Xβ‖2 can be
written as

S(β) =

k+1∑
i=1

([e−]j∗i −Xj∗i ·β)
2 +

∑
j∈I−

(−1− r−β)
2 +

∑
j∈I+

(1− r+β)
2

=

k+1∑
i=1

(vi − Li·β)
2 +

∑
j∈I−

(−1− r′−β)
2 +

∑
j∈I+

(1− r′+β)
2

= ‖v − Lβ‖2 +
∑
j∈I−

(−1− r′−β)
2 +

∑
j∈I+

(1− r′+β)
2

If we now plug in β = β̂L(v) and note that r′+β̂L(v) = 1 and r′−β̂L(v) = −1 we
see that

S(β̂L(v)) =
k+1∑
i=1

(vi − Li·β̂L(v))
2 = min

β∈Rk
‖v − Lβ‖2.
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This immediately proves the claim β̂X(e−) = β̂L(v). Hence, the residual vector
satisfies

[ûX(e−)]j =

{
ui if j = j∗i for some i = 1, . . . , k + 1

0 else.

This immediately entails that V̂X(e−) = X ′ diag(ûX(e−)) equals

(u1L
′
1·, 0k,p, u2L

′
2·, 0k,p, . . .

. . . , ukL
′
k, 0k,p∗ , uk+1L

′
(k+1)·, 0k,n−[k(p+1)+p∗−p+1]),

(26)

where the indices of the nonzero columns of this matrix are precisely j∗i for
i = 1, . . . , k+1, because the first column of L is e and ui �= 0 for i = 1, . . . , k+1,
the latter following since u ∈ span(z)\ {0} and zi �= 0 for i = 1, . . . , k + 1 by
definition. In deriving the dimension of 0k,n−[k(p+1)+p∗−p+1] we used

j∗k+1 = k(p+ 1) + 1 + p∗ − p =

{
k(p+ 1) + 2 if p odd

k(p+ 1) + 1 if p even.

Now we apply Lemma B.1 (with t = k). Clearly, rank(X) = rank(L) = k. From
Equation (26), and the discussion following it, we see that the tuple (e−, X) ∈
Rn×X0 satisfies Assumption (A1). Assumption (A2) is satisfied, because j∗i+1−
j∗i ≥ p + 1 for i = 1, . . . , k, and because we see from the previous display that
n − j∗k+1 = n − [k(p + 1) + 1 + p∗ − p], which together with the assumption
k(p + 1) + p∗ + 1MAM

(M) ≤ n implies n − j∗k+1 ≥ p − 1. Assumption (A3)

is satisfied because rank(V̂X(e−)) = rank(L) = k. If M ∈ MKV we are done.
Consider the case M ∈ MAM . We show that Condition (CAM) is satisfied. But
this is obvious, because the assumption k(p+1)+p∗+1 ≤ n immediately implies
n− j∗k+1 > p− 1. Suppose M ∈ MNW . We apply Part 4 of Lemma B.1. For this

we claim that either [V̂X(e−)]1j∗i > 0 for i = 2, . . . , k + 1 or [V̂X(e−)]1j∗i < 0 for
i = 2, . . . , k + 1. Assuming that this claim is true, the lemma shows that there
exists a regular matrix Q̄ ∈ Rk×k such that XQ̄ ∈ X0, the first column of XQ̄
is e+ and g∗κ,M,p(e+, XQ̄,R) �= 0, and we are done. To prove the claim recall
that by construction u ∈ span(z)\ {0} holds, which shows that either ui < 0 for
i = 2, . . . , k + 1 or ui > 0 for i = 2, . . . , k + 1. Furthermore, the first column of
L is the vector e = (1, . . . , 1). Equation (26) now shows that [V̂X(e−)]1j∗i = ui

for i = 2, . . . , k + 1. This proves the claim.

The part of the statement concerning X̃2(e−) is established by exploiting an
argument similar to the one given in Part 1 of the proof. Firstly, if M ∈ MKV ,
then we know from Part 1 of Lemma C.2 that g∗κ,M,p(e−, (e+, X̃), R) �= 0 implies

existence of grad(T(e+,X̃)(.))|e−+μ∗
0,(e+,X̃)

. Therefore, X̃2(e−) is empty in Case

(a). It remains to prove the remaining three cases, in all of which Assumption 3
holds. Clearly we can also assume that M /∈ MKV . We start with the following
observation: Combining Assumption 3 with Part 2a of Lemma C.2 as in Part
1 of the proof, we see that there exists an integer m ≥ 0 and real numbers
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δ0, . . . , δm, such that

X̃2(e−) ⊆
{
X̃ ∈ Rn×(k−1) :

m∏
i=0

g
(δi)
κ,M,p(e−, (e+, X̃)) = 0

}
. (27)

It follows with the same argument as in Part 1 that either X̃2(e−) is a λRn×(k−1) -

null set, or there exists an index i such that g
(δi)
κ,M,p(e−, (e+, .)) ≡ 0. In the former

case we are done. In the latter case one can show, with a similar argument as
in Part 1 of the proof, that

X̃2(e−) ⊆
{
X̃ ∈ Rn×(k−1) : pκ,M,p(e−, (e+, X̃), C) = 0

}
, (28)

where pκ,M,p(e−, (e+, .), C) : Rn×(k−1) → R is a multivariate polynomial. Either

we have that pκ,M,p(e−, (e+, .), C) �≡ 0 and X̃2(e−) is a λRn×(k−1) -null set, or
pκ,M,p(e−, (e+, .), C) ≡ 0 and the superset in the previous display coincides with

X̃0\X̃1(e−). Consider Condition (d). If the function X̃ �→ T(e+,X̃)(μ
∗
0,(e+,X̃)

+e−)

is not constant C on X̃0\X̃1(e−), then pκ,M,p(e−, (e+, .), C) �≡ 0, and hence the

superset in Equation (28) is a λRn×(k−1) -null set. This shows that X̃2(e−) is a
null set under Condition (d).

For Condition (b) we consider again the inclusion in Equation (27). Either
the superset is a null set and we are done, or there must exist a real number δi
such that g

(δi)
κ,M,p(e−, (e+, .)) ≡ 0. Assume the latter. We exploit a property of

the matrix X = (e+, X̃) with X̃ ∈ X̃0\X̃1(e−) constructed above. In the proof
of Part 2 (CAM) of Lemma B.1 it is shown that for this specific X we have

M(e−) = 0. Therefore, g
(0)
κ,M,p(e−, (e+, .)) ≡ 0, or equivalently M(e−) = 0 for

every design matrix X = (e+, X̃) with X̃ ∈ X̃0\X̃1(e−). But since the kernel
satisfies Assumption 4, the existence of (gradT(e+,X̃)(.))|μ∗

0,(e+,X̃)
+e− for every

X̃ ∈ X̃0\X̃1(e−) then follows from Part 2b of Lemma C.2. Hence, X̃2(e−) = ∅.
Consider Condition (c). We use a similar argument as under Condition (b):

We establish the existence of a sequence of matrices (e+, X̃m) with X̃m even-
tually in X̃0\X̃1(e−), such that M(e−) → 0 as m → ∞. From an argument as
in the proof under Condition (b) this then implies that either X̃2(e−) is a null
set, or that M(e−) ≡ 0 on X̃0\X̃1(e−). But since κ satisfies Assumption 4, it
then follows from Part 2b of Lemma C.2 that in the latter case X̃2(e−) is empty.
This then proves the claim. It remains to construct a sequence X̃m as claimed.
By assumption ωi > 0 for some i > 1. Assume without loss of generality that
i = 2 (otherwise we have to interchange the columns of the X̃m sequence to
be constructed accordingly). Let X = (e+, X̃) be as constructed above. Let
γm > 0 be a sequence diverging to ∞. Recall that by construction X̃j∗i 1

= xi for
i = 1, . . . , k + 1. Since p is odd, a simple calculation shows that x = Πspan(z)⊥v
equals

x =

(
−1 +

2

k + 1
,−1− 2k−1

k + 1
, . . . ,−1− 2k−1

k + 1
, 1− 2k−1

k + 1

)′
.
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Let c = 1 + 2k−1

k+1 and note that

x+ ce = 2(
k−1 + 1

k + 1
, 0, . . . , 0, 1)′.

Define the k × k dimensional regular matrix

Qm = QDm =

⎛
⎜⎜⎜⎜⎜⎝

1 c . . . . . . . . . 0
0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ diag(1, γm, 1, . . . , 1).

Clearly, post-multiplying a matrix with k columns by Qm has the same effect
as adding c times the first column to the second column, then multiplying the
column so obtained by γm and leaving all other columns unchanged. Since L·1 =
e and L·2 = x, the expression for x+ ce above shows that the second column of
LQ, has precisely two nonzero elements with indices 1 and k + 1, respectively.
Since X = (e+, X̃) ∈ X0 and (e−, X) satisfies (A1)-(A3) as established above,
Part 3 of Lemma B.1 shows that

Xm = (e+, X̃)Qm = (e+, X̃m) ∈ X0,

and that the tuple (e−, Xm) ∈ Rn × X0 satisfies (A1), (A2) and (A3). An
application of Lemma B.1 to that tuple then shows that rank(ẐXm)(e−)) = k,

which together with ω �= 0 immediately implies σ̄0,Xm(e−) �= 0. Since ẐX(e−)

is obtained from V̂X(e−) by deleting its first p columns, we observe, using the
remark concerning the second column of LQ above together with Equation (26),
that the second row of Q′ẐX(e−) has exactly one non-zero coordinate, namely
2uk+1. Consider

σ̄i,Xm(e−)

σ̄0,Xm(e−)
=

∑n−p
j=|i|+1 ω

′[ẐXm(y)]·j [ẐXm(y)]′·(j−|i|)ω∑n−p
j=1 ω′[ẐXm(y)]·j [ẐXm(y)]′·jω

(29)

=

∑n−p
j=|i|+1 ω̄

′
m[Q′ẐX(y)]·j [Q

′ẐX(y)]′·(j−|i|)ω̄m∑n−p
j=1 ω̄′

m[Q′ẐX(y)]·j [Q′ẐX(y)]′·j ω̄m

,

for |i| = 1, . . . , n−p−1, where ω̄m = Dmω/‖Dmω‖. Clearly ω̄m → (0, 1, 0, . . . , 0).
Since the second row ofQ′Ẑ(e+,X̃) contains by construction precisely one nonzero

entry, it follows that the limit of (29) must be 0 for i = 1, . . . , n − p − 1.
Furthermore we have σ̄0,Xm(e−) → ∞. It immediately follows from w(0) = 1
and the definition of M that M(e−) is well defined for m large and that it
converges to 0 as m → ∞. The remaining part of the proposition is obvious.

3) Let X̃ ∈ X̃0 and assume that X = (e+, X̃) satisfies g∗κ,M,p(., X,R) �≡ 0.

Obviously, e+ ∈ span(X). Note that β̂X(e+) = e1(k). The first column of R

is non-zero. Therefore Rβ̂X(e+) �= 0. Thus we can (since Assumption 2 holds)
apply Part 4 of Theorem 4.2.
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Appendix D: Proofs of results in Section 5

Proof of Theorem 5.2. We verify the assumptions of Theorem 5.21 in Preiner-
storfer and Pötscher (2016) with Ω̂κ,M,p = Ω̌ and β̂ = β̌. Because g∗κ,M,p(., X,R)
�≡ 0 by assumption, and since the triple κ, M , p satisfies Assumption 1, we
can use Lemma C.1 to conclude that β̂ and Ω̂κ,M,p satisfy Assumptions 5, 6

and 7 in Preinerstorfer and Pötscher (2016), that Ω̂κ,M,p is almost everywhere
positive definite and that T is invariant w.r.t. G(M0). Assumption 5, Remark
5.1 (Part (iii)) together with Remark 5.14 (ii) in Preinerstorfer and Pötscher
(2016) now shows that J(C) = span(e+) ∪ span(e−) and that all assumptions
on C appearing in Theorem 5.21 in Preinerstorfer and Pötscher (2016) are sat-
isfied. Because e+, e− ∈ M is assumed we have J(C) ⊆ M. The assumption

Rβ̂(e+) = Rβ̂(e−) = 0 even implies J(C) ⊆ M0 − μ0 (for some arbitrary
μ0 ∈ M0). Invariance of T w.r.t. G(M0) then shows that Equation (34) in
Theorem 5.21 of Preinerstorfer and Pötscher (2016) is satisfied. The assump-
tions on Ω̌ appearing in Parts 2 and 3 of that theorem are satisfied, because
Ω̂κ,M,p is positive definite almost everywhere. The theorem now follows from
Theorem 5.21 in Preinerstorfer and Pötscher (2016), using a standard subse-
quence argument, positive definiteness of every element of C and compactness
of C∗, to obtain the second statement in Part 3 from the corresponding Part of
Theorem 5.21 in Preinerstorfer and Pötscher (2016). The claim in parenthesis
in Part 3 follows from the corresponding claim in parenthesis in Theorem 5.21
of Preinerstorfer and Pötscher (2016), together with the observation that the
conditions on e+ and e− have only been used to verify the condition in Equa-
tion (34) of Theorem 5.21 of Preinerstorfer and Pötscher (2016) (cf. the proof
of Theorem 3.7 in Preinerstorfer and Pötscher (2016)).

Proof of Theorem 5.4. We apply Theorem 5.21 of Preinerstorfer and Pötscher
(2016) with the estimators Ω̂κ,M̄,p,X̄ = Ω̌ and (Ik, 0)β̂X̄ = β̌. Obviously, the test
statistic defined in Equation (28) of Preinerstorfer and Pötscher (2016) based on
these estimators coincides with the test statistic T̄ as defined in the statement of
the present theorem. Since the assumptions concerning C in the present theorem
are the same as in Proposition 5.2, we see from the proof of this proposition that
it suffices to verify that Ω̂κ,M̄,p,X̄ and (Ik, 0)β̂X̄ satisfy Assumption 5 in Preiner-

storfer and Pötscher (2016), that Ω̂κ,M̄,p,X̄ is almost everywhere positive definite
(implying that Assumptions 6 and 7 in Preinerstorfer and Pötscher (2016) are
satisfied), and that the invariance condition in Equation (34) of Preinerstorfer
and Pötscher (2016) is satisfied by T̄ . By definition, Ω̂κ,M̄,p,X̄ is the estimator
one would obtain following Steps 1-3 of the construction in Section 3 based on
κ, M̄ and p, if X̄ was the underlying design matrix (observe that X̄ is of full
column rank) and (R̄, r) was the hypothesis to be tested. By assumption, the
triple κ, M , p satisfies Assumption 1 w.r.t. the (dimensions k and n of the)
design matrix X and additionally 1 ≤ p ≤ n/(k+3) holds. From 1 ≤ k̄− k ≤ 2,
and the definition of M̄ it follows that the triple κ, M̄ , p satisfies Assump-
tion 1 w.r.t. (the dimensions k̄ and n of) X̄. Furthermore, it is assumed that
g∗
κ,M̄,p

(., X̄, R̄) �≡ 0. Therefore, we can apply Lemma C.1, acting as if X̄ was the
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underlying design matrix, to conclude that β̂X̄ and Ω̂κ,M̄,p,X̄ satisfy Assumption

5 in Preinerstorfer and Pötscher (2016) with N = N(Ω̂κ,M̄,p,X̄) and k replaced

by k̄, X replaced by X̄ and M replaced by M̄ = span(X̄). Furthermore, Lemma
C.1 shows that Ω̂κ,M̄,p,X̄ is almost everywhere positive definite. We now apply
Part 1 of Proposition 5.23 in Preinerstorfer and Pötscher (2016) to obtain that

Ω̂κ,M̄,p,X̄ and (Ik, 0)β̂X̄ satisfy (the original) Assumption 5 in Preinerstorfer and
Pötscher (2016), and that the invariance condition is satisfied. To this end, it
suffices to verify that in each of the four cases we have span(J(C))∩M ⊆ M0−μ0

(for some arbitrary μ0 ∈ M0). This is obvious in the first three cases. For Case
4 we can use exactly the same argument as in the proof of Part 4 in Theorem
3.8 in Preinerstorfer and Pötscher (2016).

Proof of Proposition 5.5. We begin with the proof of the first statement. We
note that for λRn×k - almost every X ∈ X0 Case 3 of Theorem 5.4 applies:
Since by assumption (k + 3)(p∗ + 2) + p − 1 ≤ n and by definition p∗ ≥ 1,
we have k + 2 < n. Therefore, the set of matrices X in Rn×k such that
det((X, e+, e−)(X, e+, e−)

′) = 0 holds is a λRn×k - null set. Hence, e+, e− /∈ MX

and rank((X, e+, e−)) = k + 2 holds for λRn×k - almost every X ∈ X0. It re-
mains to verify that g∗

κ,M̄,p
(., X̄, R̄) �≡ 0 for almost every X ∈ X0, where

X̄ = X̄(X) = (X, e+, e−), R̄ = (R, 0, 0) and M̄ is constructed as outlined in
Theorem 5.4. For that it suffices to find a matrix X ∈ Rn×k and a vector y ∈ Rn

such that g∗
κ,M̄,p

(y, X̄, R̄) �= 0. To see this note that the triple κ, M̄ , p satis-

fies Assumption 1 w.r.t. (the dimensions of) X̄ (cf. the proof of Theorem 5.4).
Therefore, Lemma 3.10 shows that (y,X) �→ g∗

κ,M̄,p
(y, X̄, R̄) is a multivariate

polynomial. If we can find a matrix X and a vector y as above, this implies that
the multivariate polynomial (y,X) �→ g∗

κ,M̄,p
(y, X̄, R̄) is not the zero polynomial,

and therefore the zero set of this multivariate polynomial is a λRn×Rn×k - null
set. It follows that for λRn×k - almost every X we must have g∗

κ,M̄,p
(., X̄, R̄) �≡ 0

[Assuming the opposite, there exists a set A ∈ B(Rn×k) of positive λRn×k -
measure such that g∗

κ,M̄,p
(., X̄, R̄) ≡ 0 for every X ∈ A, which implies that

Rn × A ⊆ Rn × Rn×k is a subset of the zero set of (y,X) �→ g∗M (y, X̄, R̄). But
clearly Rn×A has positive Lebesgue measure, a contradiction.]. In the following
we shall construct such a pair (y,X) as above:

Let δ �= 0 and define w1, w2, v(δ) ∈ Rk+4 as w1 = (1, 1, . . . , 1)′, w2 =
(−1,−1, 1, . . . , 1)′ and v(δ) = (−δ, δ,−(k+1), 1, . . . , 1, 1)′. By construction v(δ)
is orthogonal to w1 and w2. Noting that [w1]i = [w2]i for i ≥ 3 a dimension-
ality argument implies existence of k normalized vectors w3, . . . , wk+2 ∈ Rk+4,
that are functionally independent of δ, linearly independent and orthogonal to
e1(k + 4), e2(k + 4), w1, w2 and v(δ) (for every δ �= 0). Recall that e1(k + 4)
and e2(k + 4) are the first two elements of the canonical basis of Rk+4. Hence,
the first two coordinates of wi for i = 3, . . . , k+2 are zero. These orthogonality
properties readily imply

Πspan(w3,...,wk+2,w1,w2)⊥v(δ) = Πspan(w3+w1,...,wk+2+w1,w1,w2)⊥v(δ) = v(δ) (30)

and rank(W̄ ) = k + 2 for W̄ = (w3 +w1, . . . , wk+2 +w1, w1, w2). Inserting zero
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coordinates and rows, respectively, we shall now suitably embed v(δ) ∈ Rk+4

and W = (w3+w1, . . . , wk+2+w1) ∈ Rk+4×k into Rn and Rn×k. Define y(δ) as

(v1(δ), 01,p∗+1, v2(δ), 01,p∗ , v3(δ), 01,p∗+1, v4(δ), 01,p∗+1, . . .

. . . , vk+4(δ), 01,p−1, 01,n−n∗)′

and X as

(W ′
1·, 0k,p∗+1,W

′
2·, 0k,p∗ ,W ′

3·, 0k,p∗+1,W
′
4·, 0k,p∗+1, . . . ,W

′
(k+4)·, 01,p−1, 01,n−n∗)′,

where n∗ = (k+3)(p∗+2)+p−1, a number that does not exceed n by assumption.
We emphasize that by construction X does not depend on δ. Furthermore, if we
delete from e+ and e− those coordinates that correspond to the zero coordinates
that have been inserted to obtain y(δ) from v(δ), we obtain the vectors w1

and w2. Therefore, it follows from Equation (30) that y(δ) is orthogonal to
span(X̄) = span((X, e+, e−)), that rank(X, e+, e−) = rank(W̄ ) = k + 2 and
that for every δ �= 0 we have

ûX̄(y(δ)) = y(δ).

As an immediate consequence we obtain

V̂X̄(y(δ)) = X̄ ′ diag(y(δ))

= (v1(δ)W̄
′
1·, 0k+2,p∗+1, v2(δ)W̄

′
2·, 0k+2,p∗ , v3(δ)W̄

′
3·, 0k+2,p∗+1, . . .

. . . , vk+4(δ)W̄
′
k+4·, 0k+2,p−1, 0k+2,n−n∗),

(31)

where we recall that all coordinates of v(δ) are nonzero and therefore V̂X̄(y(δ))
has precisely k + 4 nonzero columns. We now intend to apply Lemma B.1 with
t = k + 3, acting as if X̄ ∈ Rn×(k+2) was the underlying design, (R̄, r) was the
hypothesis to be tested and with the triple κ, M̄ , p which obviously satisfies
Assumption 1 with respect to X̄ (a matrix with k+2 columns), since by assump-
tion we have 1 ≤ p ≤ n

k+3 (Note that due to interpreting X̄ as the underlying
design, k+2 corresponds to the ‘k’ in Lemma B.1). We note first that removing
the first or last row of W̄ does not reduce its rank, because v(δ) (a vector all
coordinates of which are nonzero) is orthogonal to every column of this matrix
(cf. the argument in the beginning of the proof of Lemma B.1). Using p∗ ≥ p
we hence see that Assumptions (A1)-(A3) in Lemma B.1 are satisfied by con-
struction. Now consider the case M ∈ MKV . By definition M̄ is an element of
MKV (acting as if X̄ was the underlying design matrix). Therefore, Condition
(CKV) is satisfied for δ �= 0 arbitrary, and g∗

κ,M̄,p
(y(δ), X̄, R̄) �= 0 follows. Con-

sider the case where M ∈ MAM . Since n− n∗ ≥ 1MAM
(M) = 1 and because of

jk+4 = n∗−p+1 it follows that n−jk+4 > p−1. Therefore, Condition (CAM) in
Lemma B.1 is satisfied and therefore g∗

κ,M̄,p
(y(δ), X̄, R̄) �= 0 for δ �= 0 arbitrary.

It remains to consider the case where M ∈ MNW . It suffices to find a δ∗ �= 0
such that M̄(y(δ∗)) is well defined (see the proof of Part 2 of Lemma B.1). The
latter statement is equivalent to the denominator in the fraction appearing in
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the definition of M̄(y(δ∗)) being nonzero, i.e.,

n−p−1∑
i=−(n−p−1)

w(i)σ̄i(y(δ
∗)) �= 0,

where for |i| = 0, . . . , n− p− 1

σ̄i(y(δ
∗)) = (n− p)−1

n−p∑
j=|i|+1

ω̄′[ẐX̄(y(δ∗))]·j [ẐX̄(y(δ∗))]′·(j−|i|)ω̄.

By definition ω̄ = (ω′, 0, 0)′ and we recall that ẐX̄ = V̂p,X̄(y(δ)) which implies

via Equation (31) that (ω′, 0, 0)ẐX̄(y(δ)) equals

(0k,p∗−p+2, v2(δ)ω
′W ′

2·, 0k,p∗ , v3(δ)ω
′W ′

3·, 0k,p∗+1, . . .

. . . , vk+4(δ)ω
′W ′

k+4·, 0k,p−1, 0k,n−n∗).

The only coordinate of this vector that depends on δ is v2(δ)ω
′W ′

2· = δ
∑k

i=1 ωi,
the latter equation following from v2(δ) = δ and W2· = (1, . . . , 1). Since∑k

j=1 ωi > 0, the denominator appearing in the definition of M(y(δ)) inter-
preted as a function of δ is now seen to be a polynomial of degree 2 in δ. Hence,
there must exist a δ∗ �= 0 such that the denominator does not vanish. It follows
that g∗

κ,M̄,p
(y(δ∗), X̄, R̄) �= 0.

Concerning the second statement we observe that (k+2)(p∗ +2)+ p− 1 ≤ n
implies k+ 1 < n, and therefore we have rank(X̃, e+, e−) = k+ 1 for λRn×(k−1) -
almost every X̃ ∈ X̃0. By assumption the first column of R is zero. Therefore, for
λRn×(k−1) -almost every X = (e+, X̃) ∈ Rn×k we have e+ ∈ MX , Rβ̂X(e+) = 0
and e− /∈ MX , i.e., for λRn×(k−1) -almost every (e+, X̃) ∈ Rn×k Scenario (1)
in Theorem 5.4 applies. As above, it suffices to construct a pair y ∈ Rn and
X̃ ∈ Rn×(k−1) (recall that k ≥ 2), such that g∗

κ,M̄,p
(y, X̄, R̄) �= 0, where X̄ =

(e+, X̃, e−) ∈ Rn×(k+1) and R̄ = (R, 0). Here, the matrix X̃ is n × (k − 1)
dimensional. By assumption k� = k − 1 obviously satisfies (k� + 3)(p∗ + 2) +
p − 1 + 1MAM

(M) ≤ n. To construct the matrix X̃ we can thus use the same
argument as was used to construct X in the proof of the first statement (k�

replacing k). The matrix X̄ so obtained has (after a permutation of its columns)
the same structure as has the matrix X̄ constructed in the proof of the first
statement. We can therefore use almost the same arguments to conclude that
g∗
κ,M̄,p

(y(δ∗), X̄, R̄) �= 0 for some δ∗ �= 0 and y(δ) as constructed in the first part

of the proof.

Appendix E: Tables

In Tables 1, 2, and 3 rows correspond to ρ and columns correspond to β1,
whereas in Tables 4, 5, 6, 7, 8, 9, rows correspond to ρ and columns correspond
to β2.
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Table 1

Rejection probabilities for test (i) in Example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.999 0.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.99 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.95 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.9 0.07 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.8 0.06 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.7 0.06 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.6 0.05 0.53 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 0.05 0.43 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.4 0.05 0.33 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.06 0.29 0.79 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.06 0.25 0.69 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.06 0.22 0.60 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.06 0.19 0.54 0.85 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.06 0.16 0.45 0.79 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.06 0.15 0.40 0.69 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.06 0.13 0.32 0.60 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.07 0.12 0.28 0.52 0.74 0.90 0.97 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.07 0.12 0.25 0.44 0.65 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00
0.6 0.07 0.11 0.21 0.37 0.54 0.72 0.86 0.93 0.98 0.99 1.00 1.00 1.00
0.7 0.09 0.10 0.18 0.30 0.41 0.59 0.72 0.85 0.91 0.96 0.98 1.00 1.00
0.8 0.09 0.13 0.18 0.23 0.34 0.46 0.58 0.68 0.78 0.85 0.91 1.00 1.00
0.9 0.15 0.16 0.18 0.23 0.29 0.37 0.43 0.53 0.59 0.67 0.72 0.92 0.98
0.95 0.23 0.22 0.25 0.29 0.32 0.37 0.40 0.45 0.49 0.54 0.61 0.81 0.93
0.99 0.48 0.47 0.48 0.50 0.49 0.52 0.55 0.58 0.59 0.60 0.65 0.77 0.84
0.999 0.75 0.76 0.76 0.78 0.76 0.78 0.78 0.78 0.80 0.81 0.83 0.87 0.92
0.9999 0.89 0.89 0.90 0.89 0.89 0.91 0.91 0.91 0.91 0.93 0.92 0.95 0.97

Table 2

Rejection probabilities for test (ii) in Example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.999 0.17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.99 0.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.95 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.9 0.09 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.8 0.07 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.7 0.08 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.6 0.07 0.55 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 0.07 0.46 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.4 0.07 0.37 0.88 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.08 0.32 0.80 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.09 0.28 0.71 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.08 0.24 0.63 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.07 0.21 0.56 0.86 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.08 0.17 0.47 0.80 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.07 0.16 0.42 0.70 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.06 0.15 0.34 0.63 0.84 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.07 0.13 0.29 0.54 0.75 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.07 0.13 0.25 0.45 0.66 0.83 0.94 0.98 0.99 1.00 1.00 1.00 1.00
0.6 0.07 0.11 0.22 0.38 0.55 0.73 0.87 0.94 0.98 0.99 1.00 1.00 1.00
0.7 0.10 0.11 0.19 0.30 0.41 0.59 0.72 0.85 0.91 0.96 0.99 1.00 1.00
0.8 0.09 0.13 0.18 0.24 0.34 0.46 0.59 0.69 0.78 0.85 0.91 1.00 1.00
0.9 0.15 0.16 0.18 0.23 0.29 0.38 0.43 0.53 0.59 0.67 0.72 0.92 0.98
0.95 0.23 0.22 0.25 0.29 0.32 0.36 0.40 0.46 0.49 0.54 0.61 0.81 0.93
0.99 0.47 0.47 0.48 0.50 0.49 0.51 0.55 0.58 0.59 0.60 0.64 0.77 0.84
0.999 0.75 0.76 0.76 0.78 0.76 0.78 0.78 0.78 0.80 0.81 0.83 0.87 0.92
0.9999 0.89 0.89 0.90 0.89 0.89 0.91 0.91 0.91 0.91 0.93 0.92 0.95 0.97
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Table 3

Rejection probabilities for test (iii) in Example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.999 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.99 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.95 0.03 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.9 0.04 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.8 0.04 0.62 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.7 0.05 0.44 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.6 0.04 0.34 0.84 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 0.04 0.29 0.75 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.4 0.04 0.23 0.67 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.05 0.20 0.57 0.85 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.05 0.17 0.48 0.79 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.04 0.15 0.42 0.73 0.90 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.04 0.13 0.36 0.65 0.85 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.1 0.05 0.11 0.30 0.56 0.78 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00
0.2 0.05 0.10 0.25 0.49 0.70 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00
0.3 0.04 0.10 0.22 0.42 0.62 0.79 0.91 0.95 0.98 0.99 1.00 1.00 1.00
0.4 0.05 0.09 0.18 0.35 0.53 0.70 0.84 0.92 0.96 0.98 0.99 1.00 1.00
0.5 0.04 0.07 0.16 0.28 0.44 0.62 0.75 0.86 0.92 0.96 0.97 1.00 1.00
0.6 0.05 0.07 0.14 0.24 0.35 0.51 0.64 0.76 0.84 0.91 0.94 1.00 1.00
0.7 0.05 0.05 0.10 0.18 0.26 0.37 0.50 0.63 0.73 0.81 0.87 0.99 1.00
0.8 0.05 0.07 0.10 0.14 0.20 0.27 0.36 0.46 0.57 0.64 0.71 0.95 0.99
0.9 0.08 0.08 0.09 0.11 0.15 0.20 0.24 0.32 0.36 0.42 0.48 0.74 0.88
0.95 0.11 0.11 0.13 0.14 0.17 0.20 0.22 0.26 0.27 0.32 0.36 0.58 0.74
0.99 0.27 0.25 0.28 0.30 0.29 0.31 0.33 0.36 0.38 0.39 0.43 0.56 0.64
0.999 0.56 0.56 0.58 0.58 0.56 0.59 0.61 0.60 0.62 0.63 0.66 0.74 0.81
0.9999 0.78 0.77 0.77 0.77 0.78 0.80 0.81 0.81 0.82 0.83 0.83 0.89 0.92

Table 4

Rejection probabilities for test (i) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.88 0.88 0.88 0.88 0.89
-0.999 0.68 0.68 0.69 0.69 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.77 0.81
-0.99 0.50 0.51 0.51 0.53 0.55 0.58 0.61 0.63 0.66 0.69 0.71 0.83 0.89
-0.95 0.24 0.25 0.29 0.34 0.41 0.47 0.54 0.61 0.68 0.73 0.78 0.93 0.98
-0.9 0.17 0.19 0.25 0.33 0.42 0.53 0.64 0.73 0.80 0.86 0.90 0.99 1.00
-0.8 0.12 0.15 0.25 0.39 0.55 0.70 0.82 0.90 0.95 0.97 0.99 1.00 1.00
-0.7 0.10 0.15 0.30 0.50 0.70 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00
-0.6 0.09 0.16 0.35 0.59 0.79 0.92 0.98 0.99 1.00 1.00 1.00 1.00 1.00
-0.5 0.08 0.16 0.39 0.67 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.4 0.07 0.17 0.44 0.75 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.07 0.18 0.46 0.77 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.07 0.19 0.50 0.80 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.07 0.20 0.54 0.85 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.07 0.19 0.53 0.84 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.07 0.20 0.52 0.83 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.07 0.19 0.51 0.82 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.07 0.18 0.46 0.76 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.08 0.18 0.45 0.74 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.08 0.16 0.39 0.67 0.87 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.6 0.09 0.16 0.35 0.60 0.80 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.7 0.10 0.15 0.29 0.50 0.70 0.84 0.93 0.97 0.99 1.00 1.00 1.00 1.00
0.8 0.12 0.15 0.25 0.40 0.56 0.71 0.83 0.91 0.95 0.98 0.99 1.00 1.00
0.9 0.16 0.19 0.24 0.33 0.43 0.54 0.64 0.73 0.80 0.86 0.91 0.98 1.00
0.95 0.22 0.24 0.26 0.32 0.38 0.45 0.53 0.60 0.67 0.73 0.78 0.93 0.98
0.99 0.28 0.28 0.31 0.34 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.84 0.91
0.999 0.35 0.35 0.37 0.39 0.42 0.46 0.50 0.54 0.58 0.62 0.65 0.79 0.87
0.9999 0.37 0.37 0.39 0.41 0.44 0.48 0.52 0.56 0.60 0.63 0.67 0.80 0.88
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Table 5

Rejection probabilities for the adjusted version of test (i) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.06 0.06 0.07 0.09 0.12 0.15 0.18 0.22 0.26 0.30 0.34 0.52 0.65
-0.999 0.06 0.06 0.08 0.09 0.12 0.16 0.19 0.23 0.27 0.31 0.35 0.53 0.66
-0.99 0.05 0.05 0.07 0.09 0.12 0.15 0.20 0.24 0.28 0.33 0.38 0.59 0.73
-0.95 0.04 0.04 0.06 0.09 0.13 0.18 0.24 0.30 0.37 0.43 0.49 0.74 0.87
-0.9 0.03 0.04 0.06 0.10 0.16 0.22 0.30 0.38 0.47 0.55 0.62 0.85 0.94
-0.8 0.03 0.05 0.10 0.18 0.30 0.43 0.57 0.69 0.78 0.85 0.90 0.99 1.00
-0.7 0.04 0.06 0.15 0.30 0.49 0.67 0.81 0.90 0.95 0.97 0.99 1.00 1.00
-0.6 0.04 0.07 0.20 0.41 0.63 0.81 0.91 0.97 0.99 1.00 1.00 1.00 1.00
-0.5 0.04 0.09 0.25 0.52 0.76 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00
-0.4 0.04 0.10 0.31 0.61 0.84 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.03 0.10 0.32 0.63 0.86 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.04 0.12 0.38 0.71 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.03 0.12 0.41 0.75 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.04 0.12 0.40 0.74 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.04 0.12 0.39 0.73 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.03 0.11 0.36 0.69 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.03 0.10 0.31 0.61 0.84 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.03 0.10 0.30 0.60 0.84 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.03 0.09 0.25 0.50 0.74 0.89 0.96 0.99 1.00 1.00 1.00 1.00 1.00
0.6 0.03 0.06 0.18 0.37 0.58 0.77 0.88 0.95 0.98 0.99 1.00 1.00 1.00
0.7 0.03 0.06 0.15 0.30 0.49 0.67 0.81 0.90 0.95 0.98 0.99 1.00 1.00
0.8 0.03 0.05 0.10 0.20 0.32 0.46 0.60 0.72 0.81 0.88 0.93 0.99 1.00
0.9 0.03 0.05 0.07 0.12 0.18 0.25 0.34 0.42 0.51 0.59 0.67 0.89 0.97
0.95 0.04 0.04 0.06 0.09 0.12 0.17 0.22 0.28 0.34 0.40 0.46 0.70 0.85
0.99 0.05 0.05 0.06 0.09 0.11 0.14 0.18 0.22 0.26 0.31 0.35 0.56 0.70
0.999 0.06 0.06 0.07 0.09 0.11 0.14 0.17 0.20 0.24 0.27 0.31 0.48 0.62
0.9999 0.06 0.06 0.07 0.09 0.11 0.14 0.17 0.21 0.24 0.28 0.32 0.49 0.62

Table 6

Rejection probabilities for test (ii) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.87 0.88 0.88 0.87 0.88 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.89
-0.999 0.68 0.68 0.68 0.68 0.69 0.70 0.70 0.71 0.72 0.73 0.73 0.77 0.80
-0.99 0.50 0.50 0.51 0.53 0.55 0.58 0.60 0.63 0.66 0.69 0.71 0.82 0.89
-0.95 0.25 0.26 0.29 0.34 0.41 0.47 0.55 0.62 0.68 0.73 0.79 0.93 0.98
-0.9 0.17 0.20 0.25 0.33 0.43 0.54 0.64 0.73 0.80 0.86 0.90 0.99 1.00
-0.8 0.13 0.16 0.26 0.40 0.56 0.71 0.82 0.90 0.95 0.98 0.99 1.00 1.00
-0.7 0.10 0.16 0.31 0.51 0.71 0.85 0.94 0.98 0.99 1.00 1.00 1.00 1.00
-0.6 0.10 0.17 0.37 0.61 0.81 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 0.09 0.18 0.41 0.69 0.88 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.4 0.09 0.19 0.46 0.76 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.08 0.20 0.49 0.78 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.08 0.21 0.52 0.82 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.08 0.22 0.56 0.86 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.08 0.21 0.55 0.85 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.08 0.21 0.54 0.85 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.08 0.21 0.53 0.83 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.08 0.19 0.48 0.78 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.09 0.20 0.47 0.76 0.93 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.09 0.18 0.42 0.69 0.88 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.6 0.10 0.17 0.37 0.62 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.7 0.11 0.16 0.31 0.52 0.71 0.85 0.94 0.98 0.99 1.00 1.00 1.00 1.00
0.8 0.12 0.16 0.26 0.41 0.57 0.72 0.84 0.91 0.95 0.98 0.99 1.00 1.00
0.9 0.16 0.19 0.24 0.33 0.43 0.54 0.65 0.73 0.81 0.86 0.91 0.98 1.00
0.95 0.22 0.24 0.26 0.32 0.38 0.45 0.53 0.60 0.67 0.73 0.78 0.93 0.97
0.99 0.27 0.28 0.30 0.34 0.38 0.43 0.48 0.53 0.58 0.63 0.67 0.84 0.91
0.999 0.35 0.35 0.37 0.39 0.42 0.46 0.50 0.54 0.58 0.62 0.65 0.79 0.87
0.9999 0.37 0.37 0.39 0.41 0.44 0.48 0.52 0.55 0.60 0.63 0.67 0.80 0.87
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Table 7

Rejection probabilities for the adjusted version of test (ii) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.06 0.06 0.08 0.09 0.12 0.15 0.18 0.22 0.26 0.29 0.34 0.52 0.64
-0.999 0.05 0.06 0.07 0.09 0.11 0.15 0.18 0.22 0.26 0.30 0.34 0.51 0.65
-0.99 0.05 0.05 0.07 0.09 0.12 0.15 0.19 0.24 0.28 0.33 0.37 0.58 0.73
-0.95 0.04 0.04 0.06 0.09 0.13 0.18 0.24 0.30 0.36 0.42 0.49 0.73 0.87
-0.9 0.03 0.04 0.06 0.10 0.16 0.22 0.30 0.38 0.46 0.54 0.61 0.85 0.94
-0.8 0.03 0.05 0.10 0.18 0.30 0.44 0.57 0.69 0.79 0.85 0.90 0.99 1.00
-0.7 0.03 0.06 0.15 0.29 0.47 0.66 0.80 0.89 0.95 0.97 0.99 1.00 1.00
-0.6 0.04 0.07 0.20 0.40 0.62 0.80 0.91 0.97 0.99 1.00 1.00 1.00 1.00
-0.5 0.03 0.08 0.24 0.49 0.74 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00
-0.4 0.04 0.10 0.30 0.59 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.04 0.10 0.32 0.62 0.85 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.04 0.11 0.35 0.67 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.03 0.11 0.37 0.71 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.04 0.11 0.38 0.72 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.04 0.12 0.37 0.70 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.03 0.10 0.33 0.66 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.03 0.09 0.28 0.57 0.81 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.04 0.10 0.30 0.59 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.03 0.08 0.24 0.49 0.73 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00
0.6 0.03 0.06 0.17 0.36 0.57 0.76 0.88 0.94 0.97 0.99 0.99 1.00 1.00
0.7 0.04 0.06 0.15 0.30 0.49 0.67 0.81 0.90 0.95 0.98 0.99 1.00 1.00
0.8 0.03 0.05 0.10 0.19 0.31 0.45 0.59 0.71 0.81 0.88 0.92 0.99 1.00
0.9 0.03 0.05 0.07 0.12 0.18 0.25 0.34 0.42 0.51 0.59 0.67 0.89 0.97
0.95 0.04 0.04 0.06 0.09 0.12 0.17 0.22 0.28 0.34 0.40 0.45 0.70 0.85
0.99 0.05 0.05 0.06 0.09 0.11 0.14 0.18 0.22 0.26 0.31 0.35 0.56 0.70
0.999 0.06 0.06 0.07 0.09 0.11 0.14 0.17 0.20 0.24 0.27 0.31 0.48 0.62
0.9999 0.06 0.06 0.07 0.09 0.11 0.13 0.16 0.20 0.24 0.27 0.31 0.48 0.61

Table 8

Rejection probabilities for test (iii) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.65 0.64 0.65 0.65 0.66 0.66 0.66 0.67 0.68 0.68 0.69 0.72 0.75
-0.999 0.47 0.47 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.55 0.56 0.62 0.67
-0.99 0.32 0.32 0.33 0.35 0.37 0.40 0.42 0.46 0.48 0.51 0.54 0.67 0.76
-0.95 0.14 0.15 0.18 0.22 0.27 0.33 0.40 0.46 0.52 0.58 0.63 0.83 0.92
-0.9 0.09 0.10 0.14 0.21 0.28 0.37 0.46 0.54 0.62 0.70 0.75 0.92 0.97
-0.8 0.07 0.09 0.17 0.27 0.40 0.53 0.65 0.75 0.83 0.89 0.93 0.99 1.00
-0.7 0.07 0.10 0.20 0.35 0.53 0.68 0.80 0.88 0.93 0.96 0.98 1.00 1.00
-0.6 0.06 0.10 0.24 0.42 0.61 0.77 0.87 0.93 0.97 0.98 0.99 1.00 1.00
-0.5 0.06 0.11 0.27 0.49 0.70 0.84 0.93 0.97 0.99 0.99 1.00 1.00 1.00
-0.4 0.06 0.12 0.31 0.55 0.76 0.89 0.95 0.98 0.99 1.00 1.00 1.00 1.00
-0.3 0.05 0.12 0.32 0.58 0.78 0.90 0.96 0.99 1.00 1.00 1.00 1.00 1.00
-0.2 0.05 0.13 0.34 0.60 0.80 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00
-0.1 0.05 0.14 0.38 0.66 0.85 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00
0 0.05 0.13 0.37 0.64 0.84 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.1 0.05 0.14 0.36 0.64 0.83 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.2 0.05 0.13 0.35 0.62 0.82 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.3 0.05 0.12 0.31 0.56 0.77 0.90 0.96 0.98 0.99 1.00 1.00 1.00 1.00
0.4 0.06 0.12 0.32 0.56 0.76 0.89 0.95 0.98 0.99 1.00 1.00 1.00 1.00
0.5 0.06 0.12 0.28 0.50 0.70 0.84 0.92 0.96 0.98 0.99 1.00 1.00 1.00
0.6 0.06 0.11 0.24 0.44 0.63 0.78 0.88 0.94 0.97 0.98 0.99 1.00 1.00
0.7 0.07 0.10 0.21 0.36 0.53 0.68 0.80 0.88 0.93 0.96 0.98 1.00 1.00
0.8 0.08 0.10 0.17 0.28 0.42 0.55 0.67 0.77 0.85 0.90 0.94 0.99 1.00
0.9 0.11 0.12 0.17 0.23 0.32 0.41 0.51 0.59 0.67 0.73 0.79 0.93 0.98
0.95 0.13 0.14 0.16 0.20 0.26 0.31 0.38 0.45 0.51 0.57 0.63 0.82 0.91
0.99 0.16 0.17 0.18 0.21 0.24 0.28 0.32 0.37 0.41 0.45 0.50 0.68 0.77
0.999 0.22 0.22 0.24 0.25 0.28 0.32 0.35 0.39 0.42 0.46 0.49 0.64 0.73
0.9999 0.23 0.23 0.25 0.27 0.30 0.33 0.36 0.40 0.44 0.46 0.50 0.64 0.74
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Table 9

Rejection probabilities for the adjusted version of test (iii) in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2
-0.9999 0.06 0.06 0.07 0.09 0.11 0.15 0.17 0.21 0.25 0.28 0.32 0.50 0.62
-0.999 0.05 0.06 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.29 0.32 0.50 0.63
-0.99 0.05 0.05 0.07 0.09 0.12 0.15 0.19 0.24 0.28 0.32 0.37 0.57 0.71
-0.95 0.04 0.04 0.06 0.09 0.13 0.18 0.24 0.30 0.36 0.43 0.49 0.73 0.87
-0.9 0.03 0.04 0.07 0.11 0.16 0.23 0.31 0.39 0.47 0.54 0.61 0.85 0.94
-0.8 0.03 0.05 0.10 0.19 0.31 0.44 0.58 0.70 0.79 0.86 0.90 0.99 1.00
-0.7 0.04 0.06 0.15 0.30 0.49 0.67 0.81 0.90 0.95 0.98 0.99 1.00 1.00
-0.6 0.04 0.07 0.20 0.39 0.61 0.80 0.91 0.97 0.99 1.00 1.00 1.00 1.00
-0.5 0.04 0.09 0.25 0.50 0.75 0.90 0.97 0.99 1.00 1.00 1.00 1.00 1.00
-0.4 0.04 0.10 0.30 0.60 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.3 0.04 0.10 0.32 0.61 0.85 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.04 0.12 0.35 0.67 0.89 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.1 0.04 0.12 0.39 0.72 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.04 0.12 0.38 0.71 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.04 0.12 0.37 0.70 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.03 0.10 0.34 0.66 0.88 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.03 0.10 0.29 0.58 0.82 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.04 0.10 0.29 0.57 0.81 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.04 0.09 0.24 0.48 0.72 0.88 0.96 0.99 1.00 1.00 1.00 1.00 1.00
0.6 0.03 0.07 0.19 0.38 0.59 0.77 0.89 0.95 0.98 0.99 0.99 1.00 1.00
0.7 0.04 0.07 0.15 0.31 0.49 0.67 0.81 0.89 0.95 0.97 0.99 1.00 1.00
0.8 0.03 0.05 0.10 0.20 0.32 0.46 0.60 0.72 0.82 0.88 0.93 0.99 1.00
0.9 0.04 0.05 0.07 0.12 0.18 0.25 0.34 0.42 0.50 0.58 0.66 0.88 0.96
0.95 0.04 0.05 0.06 0.09 0.13 0.17 0.22 0.28 0.34 0.40 0.45 0.70 0.84
0.99 0.05 0.05 0.06 0.08 0.11 0.14 0.17 0.21 0.25 0.30 0.34 0.54 0.68
0.999 0.06 0.06 0.07 0.09 0.11 0.14 0.17 0.20 0.24 0.27 0.30 0.47 0.60
0.9999 0.06 0.06 0.07 0.09 0.11 0.14 0.17 0.20 0.23 0.26 0.31 0.47 0.60
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