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1. Introduction

Estimating and testing the effect of a covariate of interest while accommodating
many other covariates is an important problem in statistical practice. The t-test
and the analysis of variance are widely used to evaluate the covariate effect when
the covariate of interest is binary or categorical and no confounders are present.
When the covariate of interest is not necessarily binary or categorical, evaluating
the covariate effect has been studied extensively in the context of linear model,
partially linear model (Heckman, 1986; Härdle et al., 2000; Ma et al., 2006) and
partially linear single-index model (Carroll et al., 1997; Yu and Ruppert, 2002;
Li et al., 2011; Ma and Zhu, 2013), as long as both the covariate of interest and
the confounders are measured precisely. In this work, we intend to generalize
the partially linear single-index model to a larger class where the link function
is not restricted to be linear, and we further consider measurement error issues.

When the covariate of interest is measured with error, to evaluate its effect
precisely we must reduce the bias caused by measurement error and adjust for
the confounding effects simultaneously. This is an interesting yet very challeng-
ing problem. To partially address this problem, Carroll et al. (2006) assumed the
confounding effects are linear, and Liang et al. (1999) and Ma and Carroll (2006)
assumed the confounders are in fact univariate. These assumptions restrict the
usefulness of their methods. To the best of our knowledge, how to assess the
covariate effect subject to measurement error while taking into account possibly
nonlinear confounding effects still remains an open and difficult problem in the
literature.

Estimating and testing the effect of a covariate of interest in the presence
of possibly nonlinear confounding effects has many applications in a variety
of scientific fields such as econometrics, biology, policy making, etc. Consider
the Framingham Heart Study (http://www.framinghamheartstudy.org/) as
a typical example. It is common knowledge that high systolic blood pressure
(SBP) is directly linked to the occurrence of coronary heart disease (Y ). To
quantify the effect is however not necessarily straightforward. One difficulty is
that SBP can vary significantly from time to time, hence a clinically meaningful
covariate is the long term average of SBP (X̃), which is unfortunately impossi-
ble to measure precisely. A widely used practice is to use the average of several
measured SBP values (W̃ ) during a reasonably long time course as a substitute.
Thus, long term average SBP is a variable measured with error. Another diffi-
culty comes from the presence of possibly nonlinear confounding effects (Z) for
heart disease, such as smoking status, family history, ethnicity, BMI, lung capac-
ity, age and other laboratory variables. Because these effects are not of medical
interest while their connection to the heart disease occurrence might be com-
plex, a suitable modeling strategy is to use an unspecified function to summarize

http://www.framinghamheartstudy.org/


482 J. Liu, et al.

their possibly nonlinear effect. Difficulty with such modeling strategy naturally
arises when the dimension of Z is more than one, since it is well known that
nonparametrically estimating a function of multivariate confounding variables
suffers from the curse of dimensionality. To tackle this issue, we follow the single
index modeling strategy and assume that the combined effect of the covariates
in Z is manifested through a linear combination γ̃TZ, where γ̃ is a length p
vector. For identifiability, we assume that Z contains at least one continuous
variable, the first component of γ̃ is one, and we use γ to denote the vector of
the last p − 1 components. Let H be the logistic distribution function. In this
Framingham data example, we assume that, given X̃ and Z, the probability of
the occurrence of the coronary heart disease (Y ) admits a model of the form

pr(Y = 1 | X̃,Z) = H{X̃β + θ(γ̃TZ)},
log(W̃ − 50) = log(X̃ − 50) + U.

Here we adopt the general assumption that after the transformation from the
raw systolic blood pressure, the relation between W ≡ log(W̃ − 50) and X ≡
log(X̃ − 50) is additive with a normal measurement error, i.e. U ∼ N(0, σ2

u),
and we assume the error is nondifferential. This relation is verified by Carroll
et al. (2006, chapter 6).

The above model can be viewed as a special case of the following general
semiparametric measurement error model. To be specific, we write the general
probability density/mass function of the response variable Y , for example dis-
ease status, conditional on the covariate set (X,ST,ZT)T as

g{y, x, s, θ(γ̃Tz),β}, (1.1)

where X is an error-prone covariate whose effect on Y is of central research
interest, Z, S contain additional covariates that may be related to Y and may be
confounded withX. We model part of these confounders (S) parametrically, such
as the categorical variables, and part of these confounders (Z) nonparametrically
through an unspecified smooth function θ. Both S and Z are measured precisely.
In model (1.1), g is a known conditional probability density/mass function, θ is
an unspecified smooth function, γ̃ = (1,γT)T, where γ is an unknown length
p − 1 vector, and β is an unknown parameter. In this notation, the example
above can be written as g{y, x, s, θ(γ̃Tz),β} = exp[y{x̃β+θ(γ̃z)}]/[1+exp{x̃β+
θ(γ̃z)}]. In our context, we assume the covariate X is of our primary interest but
is unobservable. Instead, we observe its erroneous version W , where the relation
between W and X is specified, i.e. fW |X(w | x) is a known model. In practice,
the specification of fW |X(w | x) is usually obtained through validation data,
instruments or repeated measurements. We treat θ(·) as an infinite dimensional
nuisance parameter. We further make the surrogacy assumption that W and Y
are independent given X,S,Z. The primary interest is in β, which describes the
effect of X on Y . In many applications, β enters the model as multiplication
coefficient of a linear function of the covariates, such as through β1X + β2S.

Model (1.1) is an extension of the generalized single index model proposed by
Cui et al. (2011) in which neither X nor S is present. In addition, Tsiatis and
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Ma (2004) studied a simpler version of model (1.1) where Z does not appear,
and Ma and Carroll (2006) considered a simpler version of model (1.1) where Z
is univariate. The generalization to multivariate Z in model (1.1) is important
in practice since it accomodates more realistic applications; see, for example,
the Framingham Heart Study in Section 5. In particular, model (1.1) allows
us to handle the possible nonlinearity of the confounding variables through
the unspecified function θ, while the single index structure γ̃Tz facilitates non-
parametric modeling. Nevertherless, the extension also poses several challenging
technical and computational problems. Indeed, when the index vector appears
inside an unknown function, its estimation is more complex and interaction
between the estimation of the indices and the function has to be taken into ac-
count. The variability in estimating these quantities further affects the estima-
tion quality of the parameter of interest. Overall, the three sets of parameters,
namely the parameter of interest, the index vector and the unknown smooth
function link together intrinsically, which complicates the estimation procedure,
the computational treatment and the theoretical development. Compared with
the case when the index vector does not appear, such additional complexity can
be viewed as a price paid to overcome the curse of dimensionality.

We design a general methodology for the semiparametric measurement error
model (1.1), and introduce a bias-correction approach to construct a class of
locally efficient estimators. This bias-correction approach is motivated by the
projected score idea in semiparametrics (Tsiatis and Ma, 2004) and does not
have to resort to a deconvolution method or to correctly specify a distributional
model for the error-prone covariate of interest. We further generalize the bias-
correction approach to estimating γ̃ in model (1.1), which is a component that
does not appear in the models considered in Tsiatis and Ma (2004) or Ma and
Carroll (2006). In their studies, Z is either absent or univariate, hence the issue
of estimating γ̃ does not occur. In the presence of multivariate Z, the conditional
density of X given S and Z, denoted fX|S,Z(x, s, z), is required in implement-
ing the bias-correction approach. However, with a multivariate Z, regardless
whether S is discrete or continuous, estimating fX|S,Z(x, s, z) is a thorny is-
sue even if X were observed due to the curse of dimensionality. To alleviate
the difficulty in estimating fX|S,Z(x, s, z), a working model is adopted. If this
working model happens to be the underlying true one, the resultant estimator
is semiparametrically efficient, whereas if this working model is unfortunately
misspecified, then the resultant estimator is still root-n consistent and asymp-
totically normal. In other words, the resultant estimator is locally efficient. To
put the bias-correction approach into practice, we suggest a profiling algorithm
for estimating β.

The article is organized as the following. In Section 2 we introduce the bias-
correction approach for estimating β in the semiparametric measurement error
model (1.1). The asymptotic properties of the resultant estimators are given
in Section 3. We report several simulation studies in Section 4 and revisit the
Framingham data in Section 5. This paper is concluded with a brief discussion
in Section 6. All technical details are given in an Appendix.
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2. Estimation

In this section we discuss estimation of the covariate effect at the sample level.
Write the observation as (yi, wi, si, zi), i = 1, . . . , n. We propose to estimate the
effect of the covariate of interest as well as other nuisance parameters through
solving the estimating equations derived from the semiparametric log-likelihood.

The surrogacy assumption and the model specification in Section 1 directly
lead to the semiparametric log-likelihood, subject to an additive term that does
not involve the parameters β,γ, θ,

l(β,γ, θ, fX|S,Z)

=
n∑

i=1

log

∫
g{yi, x, si, θ(γ̃Tzi),β}fW |X(wi | x)fX|S,Z(x | si, zi)dx.

Recall that γ is defined in Section 1 as a vector of the free parameters in γ̃. Here
fX|S,Z and fW |X represent the probability density function of X conditional on
(S,Z) and the probability density function of W conditional on X respectively.
If both θ and fX|S,Z had been known, the simple maximum likelihood estimator
(MLE) would have provided a most natural estimator for β and γ. Let

Sβ(w, s, z, y;β,γ, θ, fX|S,Z)

=
∂log

∫
g{y, x, s, θ(γ̃Tz),β}fW |X(w | x)fX|S,Z(x | s, z)dx

∂β
,

Sγ(w, s, z, y;β,γ, θ, fX|S,Z)

=
∂log

∫
g{y, x, s, θ(γ̃Tz),β}fW |X(w | x)fX|S,Z(x | s, z)dx

∂γ

be the score functions with respect to β and γ, then we could modify the MLE
through localization to handle the issue caused by the unknown functional form
of θ. Specifically, let us adopt a local parametric model θ(γ̃Tz) = ν(γ̃Tz;α).
For example, the most widely used local polynomial model in Fan and Gijbels
(1996) can be used as ν(γ̃Tz;α). Here α depends on γ̃Tz, but we suppress

the dependence of α on γ̃Tz for notational clarity. Then we could estimate θ
together with β, γ, through iteratively solving

0 =

n∑
i=1

Sβ{wi, si, zi, yi;β,γ, θ̂(γ̃
Tzi), fX|S,Z(xi | si, zi)}

0 =
n∑

i=1

Sγ{wi, si, zi, yi;β,γ, θ̂(γ̃
Tzi), fX|S,Z(xi | si, zi)}

to obtain β̂, γ̂, and

0 =
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Sα(wi, si, zi, yi; β̂, γ̂,α, fX|S,Z)
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at z0 to obtain α̂ and θ̂(γ̃Tz0) = ν(γ̃Tz0; α̂) for z0 = z1, . . . , zn. Here,Kh(γ̃
Tz−

γ̃Tz0) = h−1K{(zTγ − zT0 γ)/h}, K is a kernel function and h is a bandwidth.

In the above display, Sα is defined analogously as Sβ except that θ(γ̃Tz) is

replaced by ν(γ̃Tz;α) and the derivative is with respect to α, i.e.

Sα(w, s, z, y;β,γ,α, fX|S,Z)

=
∂log

∫
g{y, x, s, ν(γ̃Tz;α),β}fW |X(w | x)fX|S,Z(x | s, z)dx

∂α
.

The above idea would have worked if we knew how to actually calculate
the score functions. However, without an explicit form of fX|S,Z, the calcu-
lation of the score vectors is not an easy task. A natural approach is to es-
timate fX|S,Z and then use the estimated version to obtain the correspond-
ing estimated score functions. This is not entirely out of the question, es-
pecially when fW |X(w, x) happens to describe an additive independent error
model, i.e. when fW |X(w, x) = fU (w − x). In this case, from the relation
fW |S,Z(w, s, z) =

∫
fU (w − x)fX|S,Z(x, s, z)dx, we use the Fourier transform to

obtain Fw(t, s, z) = Fu(t)Fx(t, s, z), Fw(t, s, z) =
∫
fW |S,Z(w, s, z)e

−2πitwdw,
Fu(t) =

∫
fU (u)e

−2πitudu and Fx(t, s, z) =
∫
fX|S,Z(x, s, z)e

−2πitxdx. Thus, if
we estimate fW |S,Z(w, s, z) nonparametrically, then we can obtain an estimated
version of Fw(t, s, z) and an estimated version of Fx(t, s, z) = Fw(t, s, z)/Fu(t).
Performing an inverse Fourier transform on Fx(t, s, z) would then yield an esti-
mate of fX|S,Z(x, s, z).

The above analysis reveals some hidden obstacles in estimating fX|S,Z(x, s, z).
First of all, the deconvolution procedure is only applicable when the measure-
ment error is additive and independent of X. When the measurement error
model fW |X(w, x) goes beyond this structure, it is unclear how to recover
fX|S,Z(x, s, z). Second, the procedure requires estimating fW |S,Z(w, s, z) non-
parametrically. However, when the dimension of (s, z) is moderate or high, in
other words, the confounding variables are multivariate, this is again a problem
suffering from the curse of dimensionality and is not practically feasible in fi-
nite samples. Finally, even when the dimension of (s, z) is sufficiently low and
the deconvolution procedure can be carried out in practice, the resulting esti-
mate of fX|S,Z(x, s, z) has very slow convergence rate (Carroll and Hall, 1988;

Fan, 1991), hence using the estimated f̂X|S,Z(x, s, z) may yield very different
results from using the true fX|S,Z(x, s, z), which is required in the original score
function calculation.

Due to these inherent difficulties involved with estimating fX|S,Z(x, s, z), we
decide not to pursue this route. Instead, we take a somewhat counter-intuitive
approach. Instead of striving to obtain an approximation of fX|S,Z(x, s, z), we
propose to simply guess a model f∗

X|S,Z(x, s, z), which may or may not reflect the
true conditional density function, and calculate the score functions Sβ ,Sγ ,Sα

under this guessed model. Of course, this simple replacement of the true score
functions with the guessed version is not guaranteed to yield consistent estima-
tion of β,γ and θ. To correct the possible bias, we form
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Lβ(w, s, z, y;β,γ, θ, f
∗
X|S,Z)

= Sβ(w, s, z, y;β,γ, θ, f
∗
X|S,Z)− E∗{aβ(X, s, z;β,γ, θ) | w, s, z, y},

Lγ(w, s, z, y;β,γ, θ, f
∗
X|S,Z)

= Sγ(w, s, z, y;β,γ, θ, f
∗
X|S,Z)− E∗{aγ(X, s, z;β,γ, θ) | w, s, z, y},(2.1)

Lα(w, s, z, y;β,γ,α, f∗
X|S,Z)

= Sα(w, s, z, y;β,γ,α, f∗
X|S,Z)− E∗{aα(X, s, z;β,γ,α) | w, s, z, y},

where aβ ,aγ ,aα are functions of (X,ST,ZT)T that satisfy

E{Sβ(W, s, z, Y ;β,γ, θ, f∗
X|S,Z) | x, s, z}

= E[E∗{aβ(X, s, z;β,γ, θ)|W, s, z, Y } | x, s, z], (2.2)

E{Sγ(W, s, z, Y ;β,γ, θ, f∗
X|S,Z) | x, s, z}

= E[E∗{aγ(X, s, z;β,γ, θ)|W, s, z, Y } | x, s, z],
E{Sα(W, s, z, Y ;β,γ,α, f∗

X|S,Z) | x, s, z}
= E[E∗{aα(X, s, z;β,γ,α)|W, s, z, Y } | x, s, z],

and E∗ represents expectation calculated using f∗
X|S,Z(x, s, z). E(aβ | w, s, z, y),

E(aγ | w, s, z, y) and E(aα | w, s, z, y) are respectively the projections of the
score vectors Sβ , Sγ and Sα onto the tangent space Λ described in Appendix
A.1, and has an no explicit form except in some special cases. We give one such
special example at the end of this section. It is easy to see that the definition of
aβ ,aγ ,aα in (2.2) guarantees the consistency of Lβ ,Lγ , and Lα automatically,
whether or not f∗

X|S,Z reflects the truth. We then use Lβ , Lγ and Lα to replace
Sβ ,Sγ ,Sα in the iterative procedure described above to estimate β,γ and θ.
That is, we solve

0 =

n∑
i=1

Lβ(wi, si, zi, yi;β,γ, θ, f
∗
X|S,Z),

0 =
n∑

i=1

Lγ(wi, si, zi, yi;β,γ, θ, f
∗
X|S,Z) (2.3)

to estimate β,γ and solve

0 =

n∑
i=1

Kh(γ̃
Tzi − γ̃Tz0)Lα(wi, si, zi, yi;β,γ,α, f∗

X|S,Z) (2.4)

at z0 = z1, . . . , zn to obtain θ̂(γ̃Tz0) = ν(γ̃Tz0; α̂). Because different z0 yields
different α, hence we could have used a more precise notation α(z0) in (2.4).
We suppressed the dependence of α on z0 for notational brevity. The estimation
procedure can be either iteratively solving (2.3) and (2.4) (backfitting), or using

(2.4) to obtain θ̂ as a function of β,γ, and then using (2.3) to solve for β̂, γ̂
(profiling). In the following, we carry out all the procedures using the profiling
approach.



Single index semiparametric measurement error modeling 487

The bias correction through forming Lβ etc. is rooted in the projected score
idea in semiparametrics (Bickel et al., 1993; Tsiatis and Ma, 2004; Tsiatis, 2006).
Given any function, say Sβ , we can calculate its residual after projecting it
onto the nuisance tangent space associated with the model. The projection of
(ST

β ,S
T
γ ,S

T
α)

T indeed would have been (LT
β ,L

T
γ ,L

T
α)

T, if we had used fX|S,Z
throughout all the calculations. We defer the detail of this calculation in Ap-
pendix A.1. However, due to the lack of knowledge on fX|S,Z, we are forced to
perform all the calculations using a proposed f∗

X|S,Z. The fortunate fact is that

even using the possibly misspecified conditional density, (LT
β ,L

T
γ ,L

T
α)

T still has
mean zero because this property is enforced by its very construction reflected
on the definitions of aβ ,aγ ,aα in (2.2). It is worth mentioning that if fX|S,Z
happens to be the truth, then Sβ ,Sγ ,Sα are indeed the score functions. Thus, as
the orthogonal projection of the score functions, Lβ ,Lγ and Lα are the efficient
score functions. Hence the resulting estimator is not only consistent, but also
efficient.

To further illustrate the estimator, we now investigate the partially linear
single index model with normal measurement error. We will show that in this
special case, many quantities simplify and a set of explicit estimating equations
can be obtained.

Consider an alternative form of Model (1.1) in this case, where Y = XTβ +

θ(γ̃TZ) + ε, ε follows a normal distribution with mean zero, known constant
variance σ2 and is independent of X. We adopt an additive normal measurement
error W = X+U, where U follows a normal distribution with mean zero and
known constant covariance matrix Σ and is independent of X. For estimating
θ(·), we adopt the familiar local linear form θ(γ̃Tz) = α0 + α1γ̃

Tz.
Define Δ = W+YΣβ/σ2. Following Stefanski and Carroll (1987), the forms

of Lβ is

Lβ(w, z, y;β,γ, θ, f∗
X|Z) =

{
y − δTβ + θ(γ̃Tz)

1 + βTΣβ/σ2

}
E∗(X|δ),

where E∗ is computed under the model f∗
X|Z(x, z). Using similar derivation, we

can further obtain

Lγ(w, z, y;β,γ, θ, f∗
X|Z) =

{
y − δTβ + θ(γ̃Tz)

1 + βTΣβ/σ2

}
α1z−1,

Lα(w, z, y;β,γ, θ, f∗
X|Z) =

{
y − δTβ + θ(γ̃Tz)

1 + βTΣβ/σ2

}
(1, γ̃Tz)T.

Then the estimation can be carried out through jointly solving

0 =

n∑
i=1

{
yi −

δTi β + θ(γ̃Tzi)

1 + βTΣβ/σ2

}
E∗(Xi|δi),

0 =
n∑

i=1

{
yi −

δTi β + θ(γ̃Tzi)

1 + βTΣβ/σ2

}
θ′(γ̃Tzi)z−1,i
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to estimate β,γ and

0 =
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)

(
yi −

δTi β + α0 + α1γ̃
Tzi

1 + βTΣβ/σ2

)
(1, γ̃Tzi)

T

at z0 = z1, . . . , zn to estimate θ̂(γ̃Tz0) = α̂0 + α̂1γ̃
Tz0.

Similar calculations can also be made regarding the Poisson model Y ∼
Poisson[exp{XTβ + θ(γ̃TZ)}]. In this case, Lβ takes the form

Lβ(w, z, y;β,γ, θ, f∗
X|Z) = a(w, z, y;β,γ, θ)E∗(X|δ),

where

a(w, z, y;β,γ, θ) = y −
∑∞

y=0 y exp[{δ
Tβ + θ(γ̃Tz)}y − y2βTΣβ/2− log(y!)]∑∞

y=0 exp[{δ
Tβ + θ(γ̃Tz)}y − y2βTΣβ/2− log(y!)]

,

E∗ is computed under the model f∗
X|Z(x, z). Using similar derivation, we can

further obtain

Lγ(w, z, y;β,γ, θ, f∗
X|Z) = a(w, z, y;β,γ, θ)α1z−1,

Lα(w, z, y;β,γ, θ, f∗
X|Z) = a(w, z, y;β,γ, θ)(1, γ̃Tz)T.

Then the estimation can be carried out through jointly solving

0 =

n∑
i=1

a(wi, zi, yi;β,γ, θ)E
∗(Xi|δi), (2.5)

0 =

n∑
i=1

a(wi, zi, yi;β,γ, θ)θ
′(γ̃Tzi)z−1,i

to estimate β,γ and

0 =
n∑

i=1

a(wi, zi, yi;β,γ, θ)(1, γ̃
Tzi)

T

at z0 = z1, . . . , zn to estimate θ̂(γ̃Tz0) = α̂0 + α̂1γ̃
Tz0.

3. Asymptotic properties and inference

In this section we show that the estimated covariate effect is asymptotically
normal in Theorem 3.1 and locally efficient in Theorem 3.2. A by-product of
the asymptotic normality property is that it facilitates testing if the estimated
covariate effect is statistically significant.

Viewing θ(·) as a one dimensional parameter, we have Lα = Lθθα, where Lθ

is obtained the same way as Lα by replacing α with θ, and θα is the partial
derivative of θ(·,α) with respect to α. Let θαα = ∂θα/∂α

T. Let Lββ , Lβγ ,
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Lβα and Lβθ be the partial derivative of Lβ with respect to β, γ, α and θ
respectively. Similarly define Lγβ , Lγγ , Lγα, Lγθ, Lαβ , Lαγ , Lαα and Lαθ. Let

Ω(γ̃TZ) = E(Lθθ | γ̃TZ), U(γ̃TZ) = E{(LT
βθ LT

γθ)
T | γ̃TZ}Ω(γ̃TZ)−1, and

θβ(γ̃
TZ) = −Ω(γ̃TZ)−1E(Lθβ | γ̃TZ), θγ(γ̃

TZ) = −Ω(γ̃TZ)−1E(Lθγ | γ̃TZ).
Define

A = E

([
Lββ{Y,W,S,Z;β,γ, θ(·)} Lβγ{Y,W,S,Z;β,γ, θ(·)}
Lγβ{Y,W,S,Z;β,γ, θ(·)} Lγγ{Y,W,S,Z;β,γ, θ(·)}

])
+E

([
Lβθ{Y,W,S,Z;β,γ, θ(·)}
Lγθ{Y,W,S,Z;β,γ, θ(·)}

]
{θβ(γ̃

TZ) θγ(γ̃
TZ)}

)
.(3.1)

Theorem 3.1. Under the regularity conditions listed in the Appendix, we have
the expansion

−An1/2

(
β̂ − β
γ̂ − γ

)
= n−1/2

n∑
i=1

([
Lβ{Yi,Wi,Si,Zi;β,γ, θ(·)}
Lγ{Yi,Wi,Si,Zi;β,γ, θ(·)}

]
−U(γ̃TZi)Lθ{Yi,Wi,Si,Zi;β,γ, θ(·)}

)
+ op(1).

Consequently, when n → ∞,

n1/2(β̂ − β) → N{0, (Iβ 0)A−1B(AT)−1(Iβ 0)T}

in distribution. Here, Iβ is the identity matrix with dimension being the length
of β, and B is equal to([

Lβ{Y,W,S,Z;β,γ, θ(·)}
Lγ{Y,W,S,Z;β,γ, θ(·)}

]
−U(γ̃TZ)Lθ{Y,W,S,Z;β,γ, θ(·)}

)
. (3.2)

Theorem 3.2. If the conjectured model f∗
X|S,Z(x | s, z) is correct, the subsequent

estimator β̂ has the additional property that it is semiparametric efficient.

The proofs of Theorems 3.1 and 3.2 are given in the Appendix.
In practice, the matrices A and B can be estimated through their sample

versions, while Ω,U,θβ and θγ need to be estimated via their corresponding
nonparametric regression.

Knowing the asymptotic properties of β̂ allows us to perform various tests.
Specifically, we can test the covariate effect described as H0 : Mβ = c, where M
and c are the corresponding matrices or vectors used to describe the particular
test of interest. As an example, we have the following Chi-square test result.

Theorem 3.3. Under H0, the test statistic

T = n(Mβ̂ − c)T{M(Iβ 0)Â−1B̂(Â−1)T(Iβ 0)TMT}−1(Mβ̂ − c)

follows a chi-square distribution with degrees of freedom dM , where dM is the
number of rows in M.

We provide the proof of Theorem 3.3 in Appendix A.5.
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4. Simulation

We perform four simulation studies to examine the finite sample performance
of the proposed method.

In the first set of simulation studies, the response variable Y is binary with
Y = 0 or 1, with the true g function of the form

g{y, x, θ(γ̃Tz),β} =
exp[y{β1x+ β2x

2 + θ(γ̃Tz)}]
1 + exp{β1x+ β2x2 + θ(γ̃Tz)}

.

Thus, the parameter of interest β = (β1, β2)
T consists of two components. The

function θ(γ̃Tz) = cos(γ̃Tz)/2− 1.
Our first simulation is a relatively simple one, where the covariate vector Z

has dimension p = 2. This yields a total of three parameters in addition to
the univariate nonparametric function θ and the unknown distribution of X.
In simulations 2 and 3, we increase the dimension of the covariate vector Z to
three and four respectively, which yield four and five parameters in addition
to the two unknown functions. In all the simulations, the covariate X and the
measurement errors are generated from normal distributions, and the covariate
vector Z is generated from uniform distributions.

To compare the performance of various estimators, we implemented a naive
estimator, two versions of the regression calibration estimators and two ver-
sions of the semiparametric estimators. In the naive estimator, the presence of
measurement error is simply ignored and a profile likelihood estimation proce-
dure is implemented to estimate the parameter β. In the regression calibration
procedures, we first calculate X∗ = E(X | W ) and X∗2 = E(X2 | W ) then
treat X∗ and X∗2 as X and X2, and perform the profile likelihood estima-
tion under the error-free model. In calculating E(X | W ) and E(X2 | W ), we
experimented with two situations, where we used two different working distribu-
tions of X, respectively normal and uniform. This corresponds to the true and
misspecified distributional assumption on X. Finally, we also implemented the
proposed semiparametric estimator, with the same working distributions of X.
The estimation and inference results of all five estimators are given in Tables 1-3
respectively, corresponding to the three simulation studies. All the results are
based on 1,000 simulated data sets with sample size 500. To see how the estima-
tion procedure behaves with increasing dimension of Z, we also experimented
with p > 4. In our observation, with all other aspects of the simulation fixed, the
procedure performs well until p = 10, when we started to see significant biases.
Throughout the numerical analysis, we used the bandwidth h = 3sd(w)n−1/3,
where sd(w) is the sample standard deviation of w. We also experimented with
the bandwidth h = 1.5sd(w)n−1/3 and h = 4.5sd(w)n−1/3, the results appear
insensitive to the bandwidth changes so are omitted.

The common observation across all simulations is that the naive estimator
and the two regression calibration estimators tend to produce larger biases while
the semiparametric estimators, whether performed under the true or misspec-
ified working model of the distribution of X, have much smaller biases. The
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Table 1

Results of Simulation 1 with p = 2. The true parameter values, the estimates (μ̂), the

sample standard errors (“sd”), the mean of the estimated standard errors (ŝd) and the 95%
confidence interval (“%”) of five different estimators are reported. The five estimators are

the naive estimator (“Naive”), the regression calibration estimators with two working
distributions of X (“RC-nor” and “RC-Uni”) and the semiparametric estimators with two

working distributions of X (“Semi-nor” and “Semi-Uni”).

Naive RC-nor RC-Uni Semi-nor Semi-Uni
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

true 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700
mean 0.518 0.567 0.675 0.673 1.064 0.845 0.706 0.712 0.720 0.719
sd 0.180 0.092 0.212 0.110 0.270 0.134 0.255 0.138 0.243 0.133

ŝd 0.175 0.089 0.205 0.105 0.262 0.129 0.251 0.135 0.238 0.130
CI 79.5 62.2 93.4 93.3 71.2 79.8 94.7 94.4 94.5 95.3

Table 2

Results of Simulation 2 with p = 3. The true parameter values, the estimates (μ̂), the

sample standard errors (“sd”), the mean of the estimated standard errors (ŝd) and the 95%
confidence interval (“%”) of five different estimators are reported.

Naive RC-nor RC-Uni Semi-nor Semi-Uni
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

true 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700
mean 0.508 0.564 0.662 0.669 1.049 0.841 0.692 0.708 0.705 0.715
sd 0.177 0.090 0.207 0.107 0.269 0.132 0.243 0.132 0.233 0.128

ŝd 0.174 0.088 0.204 0.105 0.261 0.129 0.254 0.137 0.2414 0.1344
CI 78.7 62.8 94.3 93.4 72.4 81.1 95.8 95.6 96.0 96.0

Table 3

Results of Simulation 3 with p = 4. The true parameter values, the estimates (μ̂), the

sample standard errors (“sd”), the mean of the estimated standard errors (ŝd) and the 95%
confidence interval (“%”) of five different estimators are reported.

Naive RC-nor RC-Uni Semi-nor Semi-Uni
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

true 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700
mean 0.503 0.561 0.656 0.666 1.044 0.838 0.686 0.704 0.700 0.711
sd 0.183 0.094 0.215 0.112 0.275 0.136 0.257 0.142 0.248 0.138

ŝd 0.174 0.089 0.203 0.105 0.262 0.128 0.262 0.139 0.246 0.135
CI 77.4 60.9 92.4 91.5 73.6 80.6 94.6 94.0 94.9 94.7

relatively large biases of the naive and regression calibration estimators directly
lead to invalid inference results, reflected in the terrible empirical coverage of
the 95% confidence intervals. On the contrary, the semiparametric estimators
not only yield very small biases, it also provides a close match between the
sample standard deviations and their corresponding asymptotic versions. This
leads to reasonable approximation of the empirical coverage of the 95% confi-
dence intervals to the nominal level. It is worth pointing out that although we
implemented an efficient estimator through adopting the working model for X
as normal, and a non-efficient estimator through using uniform as the working
model for X, the estimation variability of the two estimators are very close.
In other words, the method appears to have certain robustness to the working
model, in that in addition to retaining consistency as our theory has promised, it
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also seems to remain efficient regardless of the working model. The latter prop-
erty is not within our expectation and whether this is a universal phenomenon
with theoretical explanation deserves further investigation.

To further illustrate the generality of the results derived in this paper, we per-
form a fourth set of simulation studies concerning a Poisson model. We generate
the counting response variable Y with mean exp{βx+ θ(γ̃Tz)} and generate X
from N(0, 1.12). We set β = 1.1, θ(γ̃Tz) = −0.4 cos(2.75γ̃Tz − 1.0) and allow
substantial meansurement error σu = 0.8. Following (2.5), we directly posit
E∗(X | δ) = δ2 and E∗(X | δ) = δ sin(δ) for E(X | δ). We experimented with
various dimension of z from 2 to 11 where z contain both continuous and dis-
crete. Simulations results are summarized in Table 4. The consistency of our
estimator, regardless if the posited models are correct or not, as well as the su-
perioty of our method in contrast with the comparison methods are clear from
these results.

5. Framingham heart study

We use our new methodology to analyse data from the Framingham Heart Study
described in Section 1. The data set contains 1,126 male subjects. We use the
occurrence of coronary heart disease as the response variable (Y ), and systolic
blood pressure, after subtracting 50 and taking logarithm transformation, as
the covariate measured with error (W ), see Carroll et al. (2006) who used this
transformation, so that W = X + U , where X is the transformed true systolic
blood pressure. We included age, the logarithm of 1 + the number of cigarettes
smoked per day as reported by the subject and metropolitan relative weight as
confounders Z, with age chosen to be the leading component in Z. Metropolitan
relative weight is defined as the percentage of desirable weight (the ratio of actual
weight to desirable weight times 100). Desirable weight was derived from the
1959 Metropolitan Life Insurance Company tables (Metropolitan Life Insurance
Company, 1959) by taking the midpoint of the weight range for the medium
build at a specified height, see also Hubert et al. (1983).

We fit the model with systolic blood pressure in its original scale. With H(·)
being the logistic distribution function, the final model is

pr(Y = 1 | X,Z) = H
[
{exp(X) + 50}β + θ(γ̃TZ)

]
,

W = X + U.

Using the available repeated measurements of W , we obtained the measurement
error standard deviation to be 0.0745, and the Kolmogorov-Smirnov test for the
normality of U yields a p-value of 0.701. We also include the qq-plot of the
errors in Figure 1, which exhibits a linear pattern. Thus, we assume U has the
centered normal distribution with standard deviation 0.0745.

The semiparametric analysis of the Framingham data, as well as the results
from naive estimator and regression calibration estimators are given in Table
5. Not unexpectedly given the context, all results confirm the significance of
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Table 4

Results of simulation 4 with p = 2 to 11. The true parameter is β = 1.1. The the
estimates(“est”), the sample standard errors (“sd”), the mean of the estimated standard

errors (ŝd) and the 95% confidence interval (“%”) of six different estimators are reported.
The six estimators are the naive estimator (“Naive”), the regression calibration estimators

with two working distributions of X (“RC-Nor” and “RC-Uni”), the oracle estimator
(“Oracle”), and the local estimators with two posited forms of E(X | δ) (“Local 1” and

“Local 2”).

Naive RC-Nor RC-Uni Oracle Local 1 Local 2

p = 2 est 0.773 1.115 1.198 1.113 1.092 1.107
sd 0.163 0.190 0.226 0.116 0.110 0.106

ŝd 0.078 0.120 0.149 0.166 0.174 0.182
CI 22.0 76.2 71.6 95.6 94.0 93.8

p = 3 est 0.809 1.162 1.248 1.104 1.109 1.102
sd 0.120 0.111 0.151 0.160 0.138 0.093

ŝd 0.085 0.123 0.158 0.170 0.168 0.132
CI 30.8 92.8 81.6 95.2 95.6 95.8

p = 4 est 0.819 1.185 1.273 1.105 1.106 1.091
sd 0.110 0.115 0.142 0.128 0.088 0.114

ŝd 0.079 0.112 0.134 0.155 0.140 0.130
CI 26.2 89.2 74.0 97.4 97.4 94.0

p = 5 est 0.729 1.149 1.221 1.103 1.102 1.104
sd 0.141 0.170 0.202 0.159 0.076 0.098

ŝd 0.082 0.142 0.160 0.190 0.143 0.159
CI 17.6 84.6 77.8 95.8 96.0 96.4

p = 6 est 0.827 1.170 1.261 1.122 1.080 1.102
sd 0.125 0.125 0.158 0.186 0.142 0.098

ŝd 0.081 0.127 0.153 0.168 0.168 0.199
CI 31.4 87.6 76.8 96.2 91.2 96.4

p = 7 est 0.808 1.159 1.243 1.128 1.098 1.100
sd 0.1332 0.150 0.182 0.218 0.126 0.089

ŝd 0.083 0.126 0.148 0.195 0.196 0.228
CI 29.0 83.4 76.6 95.4 93.6 97.8

p = 8 est 0.810 1.166 1.253 1.126 1.098 1.099
sd 0.122 0.136 0.174 0.206 0.139 0.089

ŝd 0.089 0.129 0.145 0.178 0.193 0.191
CI 29.2 84.0 74.4 95.6 94.2 97.8

p = 9 est 0.808 1.153 1.231 1.133 1.094 1.102
sd 0.139 0.149 0.180 0.231 0.151 0.073

ŝd 0.085 0.125 0.146 0.196 0.191 0.224
CI 31.2 82.6 77.4 95.8 92.2 98.0

p = 10 est 0.801 1.157 1.243 1.122 1.104 1.099
sd 0.129 0.151 0.178 0.188 0.154 0.081

ŝd 0.085 0.126 0.148 0.198 0.207 0.218
CI 28.6 85.6 78.0 96.2 94.2 98.2

p = 11 est 0.796 1.146 1.231 1.121 1.092 1.102
sd 0.136 0.150 0.178 0.211 0.136 0.092

ŝd 0.086 0.131 0.146 0.210 0.198 0.248
CI 29.0 86.8 77.4 95.8 91.6 98.2
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Fig 1. QQ-plot of the measurement errors in Framingham data analysis.

Table 5

Results of Framingham data analysis. The estimates (μ̂) and the associated standard errors

of five different estimators are reported. All values are multiplied by 100. In the table, β̂1 is
the regression coefficient for systolic blood pressure, γ̂1 is the coefficient for transformed
number of cigarettes smoked per day and γ̂2 is the coefficient for metropolitan weight.

β̂1 sd(β̂1) γ̂1 sd(γ̂1) γ̂2 sd(γ̂2)
Naive 3.58 0.49 0.09 6.00 0.31 4.79
RC-Nor 4.22 0.60 0.11 5.99 0.25 4.77
RC-Uni 3.73 0.58 0.29 5.81 0.73 4.85
Semi-Nor 4.39 0.77 0.10 3.90 0.24 2.17
Semi-Uni 4.61 0.80 0.10 4.62 0.25 2.12

the systolic blood pressure as a risk factor for heart disease. In addition, the
two estimates from the two semiparametric methods, conducted under a normal
and a uniform working model for the distribution of X respectively, are very
close. The naive estimator is attenuated towards zero by approximately 25%.
Neither the effects from number of cigarettes smoked nor metropolitan weight
is statistically significant. We also plot the estimated θ(γ̂Tz) as a function of

γ̂Tz, as well as the 95% pointwise confidence bands in Figure 2 from both
semiparametric methods, and we can see a general trend of increasing risk with
increasing age.

6. Discussion

We have developed both estimation and inference tools to analyse covariate ef-
fect when the covariate under study is measured with error and also subject
to confounding effects. The method is completely general, reflected in the gen-
erality of the main regression model. Specifically, we allow arbitrary regression
relation between the response variable and the covariate under study, and we
do not require a specific parametric model strategy for the confounding effects.
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Fig 2. The estimated θ(γ̂Tz) as a function of (γ̂Tz) in Framingham data analysis. Vertical

axis stands for θ(γ̂Tz) and horizontal axis stands for (γ̂Tz). In the left panels, γ̂ is obtained
with a normal working model on X and in the right panels γ̂ is obtained with uniform working
model on X. The plots in the lower panels contain the 95% confidence bands.

Our procedure does not require any model assumption on the unobservable co-
variate of interest, and the framework can allow arbitrary measurement error
structure. Under the special situation, when the regression model has a general-
ized partially linear form, and the measurement error is normal additive, great
simplification occurs (Ma and Tsiatis, 2006) and the estimation procedure de-
generates to a backfitted or profiled version of the estimator given in Stefanski
and Carroll (1987).

We would like to point out that to solve the estimating equations, one could
choose to use backfitting or profiling procedures. In our construction of the
estimator, these are only two ways of solving the estimating equations jointly.
Upon convergence, the solutions from backfitting and profiling are identical.
They are both roots of the estimating equations. This is very different from
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using backfitting versus profiling before estimating equations are derived, where
using profiling or backfitting could result in different sets of estimating equations
and hence both the theoretical and empirical performance can be different. The
latter issue is well studied in Van Keilegom and Carroll (2007). LIkewise, the
nonparametric estimation of θ(·) can also be carried out via splines, wavelets,
etc., and research along these lines are certainly needed.

Appendix A: Appendix

A.1. Calculation of the projection of (ST
β , S

T
γ , S

T
α)

T

Replacing θ(γ̃Tz) with ν(γ̃Tz;α), the conditional model of Y on (X,S,Z) in
(1.1) is a fully parametric model. Following Tsiatis and Ma (2004), we know that
the nuisance tangent space Λ and its orthogonal complement Λ⊥ are respectively

Λ = [E{f(X, s, z) | w, s, z, y} : E{f(X, s, z) | s, z} = 0],

Λ⊥ = [f(w, s, z, y) : E{f(W, s, z, Y ) | x, s, z} = 0].

We can then easily verify from the definition of Lβ ,Lγ ,Lα that
{LT

β (w, s, z, y;β,γ,α, fX|S,Z),L
T
γ (w, s, z, y;β,γ,α, fX|S,Z),

LT
α(w, s, z, y;β,γ,α, fX|S,Z)}T is an element of Λ⊥ and [E{aTβ (X, s, z;β,γ,α) |

w, s, z, y}, E{aTγ (X, s, z;β,γ,α) | w, s, z, y}, E{aTα(X, s, z;β,γ,α) | w, s, z, y}]T
is an element of Λ. Equivalently, the projection of (ST

β ,S
T
γ ,S

T
α)

T is indeed

(LT
β ,L

T
γ ,L

T
α)

T.

A.2. List of regularity conditions

1. The function θ(·) is twice differentiable and its second derivative is
Lipschitz-continuous.

2. The density function of Z has a compact support and is positive on the
support.

3. The matrix A and B defined in (3.1) and (3.2) are non-singular and their
elements are bounded away from infinity.

4. The kernel function K(·) has compact support, is bounded on its support,
and satisfies

∫
K(x)dx = 1,

∫
xK(x)dx = 0 and

∫
x2K(x)dx > 0.

5. The bandwidth h = O(n−r) for 1/8 < r < 1/2.

Condition 1 is a standard smoothness requirement on θ(·) required for gen-
eral nonparametric smoothing methods. Condition 2 requires the distribution
of Z to have some properties to avoid technical issues such as dividing by zero.
This requirement can be slightly relaxed at the price of more tedious technical
treatment. Condition 3 ensures that the estimators of the parameters do not
degenerate. Condition 4 rquires the kernel function to be the usual compactly
supported second order kenel. Condition 5 states the bandwidth reuirement and
illustrates that the method does not require under smoothing.
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A.3. Proof of Theorem 3.1

For notational simplicity, we define ζ = (βT,γT)T, Lζ = (LT
β ,L

T
γ )

T, Lζζ =

∂Lζ/∂ζ
T, Lζα = ∂Lζ/∂α

T. Let θζ(γ̃
TZ) = {θβ(γ̃

TZ) θγ(γ̃
TZ)}. When solv-

ing for α in (2.4), we have

0 = n−1/2
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lα{yi, wi, si, zi; ζ, α̂(ζ)}

at any ζ, therefore

0 = n−1
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lαζ{yi, wi, si, zi; ζ, α̂(ζ)}

+n−1
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lαα{yi, wi, si, zi; ζ, α̂(ζ)}∂α̂(ζ)/∂ζT

+n−1
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lα{yi, wi, si, zi; ζ, α̂(ζ)}[

0T
β

K ′{eT1 γ̃
T(zi − z0)/h}(zi − z0)

T

K{eT1 γ̃
T(zi − z0)/h}h

. . .
K ′{eTd γ̃

T(zi − z0)/h}(zi − z0)
T

K{eTd γ̃
T(zi − z0)/h}h

]
,

where 0β is a zero vector with the same length as β. Note also that

Lαα{yi, wi, si, zi; ζ, α̂(ζ)}
= Lθθ{yi, wi, si, zi; ζ, α̂(ζ)}θα{γ̃Tzi; α̂(ζ)}θT

α{γ̃
Tzi; α̂(ζ)}

+Lθ{yi, wi, si, zi; ζ, α̂(ζ)}θαα{γ̃Tzi; α̂(ζ)}.

Taking into account that E{Lθ(Y,W,S,Z; ζ,α) | z} = 0, this yields

θα{γ̃Tz0, α̂(ζ)}T ∂α̂(ζ)

∂ζT

= −{θT
α(γ̃

Tz0,α)θα(γ̃
Tz0,α)}−1

[
E{Lθθ(Yi,Wi,Si,Zi) | γ̃TZi = γ̃Tz0}

]−1

θT
α(γ̃

Tz0,α)E{Lαζ(Yi,Wi,Si,Zi) | γ̃TZi = γ̃Tz0}+ op(1)

= −{θT
α(γ̃

Tz0,α)θα(γ̃
Tz0,α)}−1Ω(γ̃Tz0)

−1

θT
α(γ̃

Tz0,α)θα(γ̃
Tz0,α)E{Lθζ(Yi,Wi,Si,Zi) | γ̃Tz0}+ op(1)

= θζ(γ̃
Tz0) + op(1).

Now we expand (2.3) and obtain

0 = n−1/2
n∑

i=1

Lζ{yi, wi, si, zi; ζ, α̂(ζ)}+ n−1
n∑

i=1

[Lζζ{yi, wi, si, zi; ζ, α̂(ζ)}
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+Lζθ{yi, wi, si, zi; ζ, α̂(ζ)}θT
α{γ̃

Tzi; α̂(ζ)}∂α̂(ζ)

∂ζT

]
n1/2(ζ̂ − ζ) + op(1)

= n−1/2
n∑

i=1

Lζ{yi, wi, si, zi; ζ, α̂(ζ)}+An1/2(ζ̂ − ζ) + op(1)

= An1/2(ζ̂ − ζ) + n−1/2
n∑

i=1

Lζ{yi, wi, si, zi; ζ, θ(·)}

+n−1/2
n∑

i=1

[Lζ{yi, wi, si, zi; ζ, α̂(ζ)} − Lζ{yi, wi, si, zi; ζ, θ(·)}] + op(1).

(A.1)

From (2.4), we also have

0 = n−1/2
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lα{yi, wi, si, zi; ζ,α(ζ)}

+n−1/2
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0)Lαθ[yi, wi, si, zi; ζ, θ{γ̃Tzi;α(ζ)}]

θT
α{γ̃

Tzi;α(ζ)}{α̂(ζ)−α(ζ)}+ op(1)

= n−1/2
n∑

i=1

Kh(γ̃
Tzi − γ̃Tz0) < Lα{yi, wi, si, zi; ζ,α(ζ)}

+n1/2E
(
Lθθ[Y,W,S,Z; ζ, θ{γ̃TZ;α(ζ)}] | γ̃Tz0

)
×θα{γ̃Tz0;α(ζ)}θT

α{γ̃
Tz0;α(ζ)}fγ̃TZ(γ̃

Tz0){α̂(ζ)−α(ζ)}+ op(1),

hence

θT
α{γ̃

Tzi;α(ζ)}n1/2{α̂(ζ)−α(ζ)}

= −
(
E
[
Lθθ{Y,W,S,Z; ζ, θ{γ̃TZ)} | γ̃Tzi

])−1

[θT
α{γ̃

Tzi;α(ζ)}θα{γ̃Tzi;α(ζ)}]−1

n−1/2
n∑

j=1

fγ̃TZ(γ̃
Tzi)

−1θT
α{γ̃

Tzi;α(ζ)}Kh(γ̃
Tzj − γ̃Tzi)

Lα{yj , wj , sj , zj ; ζ,α(ζ)}+ op(1)

= −Ω−1(γ̃Tzi)f
−1
γ̃TZ

(γ̃Tzi)[θ
T
α{γ̃

Tzi;α(ζ)}θα{γ̃Tzi;α(ζ)}]−1θT
α{γ̃

Tzi;α(ζ)}

n−1/2
n∑

j=1

Kh(γ̃
Tzj − γ̃Tzi)Lα{yj , wj , sj , zj ; ζ,α(ζ)}+ op(1).

Incorporating the above, we have

n−1/2
n∑

i=1

(
Lζ [yi, wi, si, zi; ζ, θ{γ̃Tzi; α̂(ζ)}]− Lζ{yi, wi, si, zi; ζ, θ(γ̃

Tzi)}
)
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= n−1/2
n∑

i=1

Lζθ{yi, wi, si, zi; ζ, θ(γ̃
Tzi)}θT

α{γ̃
Tzi;α(ζ)}{α̂(ζ)−α(ζ)}+ op(1)

= −n−1/2
n∑

i=1

Lζθ{yi, wi, si, zi; ζ, θ(γ̃
Tzi)}Ω(γ̃Tzi)

−1

[θT
α{γ̃

Tzi;α(ζ)}θα{γ̃Tzi;α(ζ)}]−1fγ̃TZ(γ̃
Tzi)

−1θT
α{γ̃

Tzi;α(ζ)}⎡⎣n−1
n∑

j=1

Kh(γ̃
Tzj − γ̃Tzi)Lα{yj , wj , sj , zj ; ζ,α(ζ)}

⎤⎦+ op(1)

= −n−3/2
n∑

j=1

n∑
i=1

Kh(γ̃
Tzj − γ̃Tzi)Lζθ{yi, wi, si, zi; ζ, θ(γ̃

Tzi)}Ω(γ̃Tzi)
−1

fγ̃TZ(γ̃
Tzi)

−1[θT
α{γ̃

Tzi;α(ζ)}θα{γ̃Tzi;α(ζ)}]−1θT
α{γ̃

Tzi;α(ζ)}
Lα{yj , wj , sj , zj ; ζ,α(ζ)}+ op(1)

= −n−1/2
n∑

j=1

E(Lζθ | γ̃Tzj)Ω(γ̃
Tzj)

−1{θT
α(γ̃

Tzj)θα(γ̃
Tzj)}−1θT

α(γ̃
Tzj ;α)

Lα{yj , wj , sj , zj ; ζ,α(ζ)}+ op(1)

= −n−1/2
n∑

i=1

U(γ̃Tzi)Lθ{yi, wi, si, zi; ζ, θ(·)}+ op(1).

Plugging the above into (A.1), we obtain the expansion in Theorem 3.1. The
subsequent results in Theorem 3.1 are easy to obtain. Therefore, their proofs
are omitted.

A.4. Proof of Theorem 3.2

The asymptotic expansion in Theorem 3.1 indicates that A−1Seff{Y,W,S,Z; ζ,
θ(·)} is an influence function (Newey, 1990), where

Seff{Y,W,S,Z; ζ, θ(·)}
≡ Lζ{Y,W,S,Z; ζ, θ(·)} −U(γ̃TZ)Lθ{Y,W,S,Z; ζ, θ(·)}.

To show the efficiency, we need to show that when f∗
X|S,Z(x, s, z) =

fX|S,Z(x, s, z), Seff is the residual of the orthogonal projection of Sζ onto the
nuisance tangent space, denoted Λ. Following Tsiatis and Ma (2004), the nui-
sance tangent space with respect to fX|S,Z(x, s, z) is

Λf = [E{a(X,S,Z) | Y,W,S,Z} : E(a) = 0],

and Lζ is the orthogonal projection of Sζ onto Λ
⊥
f , the orthogonal complement of

Λf . Taking derivative of l∗(β,γ,α, y, w, s, z) with respect to α and considering
all possible α, we obtain the nuisance tangent space with respect to θ(·) as

Λθ = {Sθ(Y,W,S,Z)a(γ̃TZ)}.
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Thus, the nuisance tangent space is Λ = Λf + Λθ. Defining

Λ̃θ = {Lθ(Y,W,S,Z)a(γ̃TZ)}
=

(
[Sθ(Y,W,S,Z)− E{aθ(X,S,Z) | Y,W,S,Z}]a(γ̃TZ)

)
,

where aθ satisfies

E{Sθ(Y,W,S,Z) | X,S,Z} = E[E{aθ(X,S,Z) | Y,W,S,Z} | X,S,Z],

and

Lθ(Y,W,S,Z) = Sθ(Y,W,S,Z)− E{aθ(X,S,Z) | Y,W,S,Z},

then Λ = Λf ⊕ Λ̃θ. Subsequently, the orthogonal complement of Λ is

Λ⊥ = {b(Y,W,S,Z) : E(b | X,S,Z) = E(bSθ | γ̃TZ) = 0}.

It is easy to see that U(γ̃TZ)Lθ{Y,W,S,Z; ζ, θ(·)} ∈ Λ̃θ ∩ Λ⊥
f . On the other

hand, we already have Seff ∈ Λ⊥ = Λ̃⊥
θ ∩ Λ⊥

f . Thus, Seff is the orthogonal

projection of Lζ on Λ⊥, hence equivalently, the orthogonal projection of Sζ on
Λ⊥. This proves the efficiency result.

A.5. Proof of Theorem 3.3

Following the results in Theorem 3.1, under H0, n1/2(Mβ̂ − c) follows
a normal distribution with mean zero and covariance matrix
M(Iβ ,0)A

−1BA−1T(Iβ ,0)
TMT asymptotically. Consequently, T given in The-

orem 3.3 has an asymptotic Chi-square distribution with dM degrees of free-
dom.
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Cui, X., Härdle, W. and Zhu, L. X. (2011). The EFM approach for single-
index models’. Annals of Statistics, 39, 1658–1688. MR2850216

http://www.ams.org/mathscinet-getitem?mr=1245941
http://www.ams.org/mathscinet-getitem?mr=1467842
http://www.ams.org/mathscinet-getitem?mr=0997599
http://www.ams.org/mathscinet-getitem?mr=2243417
http://www.ams.org/mathscinet-getitem?mr=2850216


Single index semiparametric measurement error modeling 501

Fan, J. (1991). On the optimal rates of convergence for nonparametric decon-
volution problems. Annals of Statistics, 19, 1257–1272. MR1126324

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applica-
tions. Chapman and Hall, London.
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