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1. Introduction

In many medical studies, estimating the failure time distribution function, or
quantities that depend on this distribution, as a function of patient demographic
and prognostic variables, is of central importance for risk assessment and health
planing. Frequently, such data is subject to right censoring.

The goal of this paper is to develop tools for analyzing such data using a ma-
chine learning approach. Machine learning techniques have proved themselves
useful in many real-world data-analysis problems, which are often of high di-
mension and require nonlinear methods (Breiman, 2001; Hofmann et al., 2008).
Despite the success of machine learning techniques for i.i.d. data, there has been
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little attempt to rigourously adapt these methods to right censored data. In this
paper we propose a support vector machine (SVM) learning method for right
censored data. The choice of SVM is motivated by the fact that SVM learning
methods are easy-to-compute techniques that enable estimation under weak or
no assumptions on the distribution (Steinwart and Chirstmann, 2008). More-
over, when using SVM, only the function of interest is needed to be estimated
directly and there is no need to estimate the whole (possibly high-dimensional)
distribution of the failure time given the covariates.

Support vector machine learning methods are a collection of algorithms that
attempt to minimize the risk with respect to some loss function. An SVM learn-
ing method typically minimizes a regularized version of the empirical risk over
some reproducing kernel Hilbert space (RKHS). The resulting minimizer is re-
ferred to as the SVM decision function. The SVM learning method is the map-
ping that assigns to each data set its corresponding SVM decision function.

We adapt the SVM framework to right censored data as follows. First, we
represent the distribution’s quantity of interest as a Bayes decision function,
i.e., a function that minimizes the risk with respect to a loss function. We then
construct a novel data-dependent version of this loss function using inverse-
probability-of-censoring weighting (Robins et al., 1994). We then minimize a
regularized empirical risk with respect to this data-dependent loss function to
obtain what we refer to as a censored SVM decision function. Finally, we de-
fine the censored SVM learning method as the mapping that assigns for every
censored data set its corresponding censored SVM decision function.

Note that unlike the standard SVM decision function, the proposed censored
SVM decision function is obtained as the minimizer of a data-dependent loss
function. In other words, for each data set, a different minimization loss function
is defined. Moreover, minimizing the empirical risk no longer consists of mini-
mizing a sum of i.i.d. observations. Consequently, we were required to develop
novel theoretical techniques for the study of the generalization properties of the
censored SVM learning method.

We prove a number of theoretical results for the proposed censored SVM
learning method. We first prove that the censored SVM decision function is
measurable and unique. We then show that the censored SVM learning method
is a measurable learning method. We provide a probabilistic finite-sample bound
on the difference in risk between the learned censored SVM decision function and
the Bayes risk. We further show that the SVM learning method is consistent
for every probability measure for which the censoring is independent of the
failure time given the covariates, and the probability that no censoring occurs is
positive given the covariates. We compute learning rates for the censored SVM
learning method. Finally, we provide a simulation study that demonstrates the
performance of the proposed censored SVM learning method. Our results are
obtained under some conditions on the approximation RKHS and on the loss
function, which can be easily verified. We also assume that the estimation of
censoring probability at the observed points is consistent.

We note that a number of other learning algorithms have been suggested for
survival data. Biganzoli et al. (1998) and Ripley and Ripley (2001) used neural
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networks. Segal (1988), Hothorn et al. (2004), Ishwaran et al. (2008), and Zhu
and Kosorok (2011), among others, suggested versions of splitting trees and ran-
dom forests for survival data. Johnson et al. (2004), Shivaswamy et al. (2007),
Shim and Hwang (2009), and Zhao et al. (2011), among others, suggested ver-
sions of SVM different from the proposed censored SVM. The theoretical prop-
erties of most of these algorithms have never been studied. Exceptions include
the consistency proof of Ishwaran and Kogalur (2010) for random survival trees,
which requires the assumption that the feature space is discrete and finite. Con-
sistency result in the context of support vector regression were given by Eleuteri
and Taktak (2011). In the context of multistage decision problems, Goldberg
and Kosorok (2012b) proposed a Q-learning algorithm for right censored data
for which a theoretical justification is given, under the assumption that the cen-
soring is independent of both failure time and covariates. In the context of indi-
vidualized treatment regimes, Zhao et al. (2015) presented a weighted outcome
learning algorithm that can handle right censored data. However, we believe
that the proposed censored SVM and the accompanying theoretical evaluation
given in this paper represent a significant innovation in developing methodology
for learning in survival data.

The proposed censored SVM approach uses inverse-probability-of-censoring
weighting to construct the data-dependent loss function, which in turn requires
estimation of the censoring probability at observed failure times. This potential
drawback is offset by the benefit of not having to estimate the entire failure time
distribution. We remark that in many applications it is reasonable to assume
that the censoring mechanism is simpler than the failure-time distribution. For
example, the censoring distribution may be known in advance by the researcher.
Also, in many studies the main reason for censoring is administrative and hence
it does not depend on the complicated structure of the covariates. In the latter
case, efficient estimators, such as the Kaplan-Meier estimator, are readily avail-
able for the censoring distribution. Even when the censoring distribution does
depend on the explanatory variables, it can be simpler than that of the failure
time, and hence beneficial to use the proposed method. As an example, consider
the case in which the explanatory variables include high-dimensional gene ex-
pression data. While it is reasonable to assume that the patient drop-out time
distribution is independent of the genetic data, such an assumption for the fail-
ure time distribution is unlikely. We present results for both correctly specified
and misspecified censoring models. We also discuss in detail the special cases
of the Kaplan-Meier and the Cox model estimators (Fleming and Harrington,
1991).

While the main contribution of this paper is the proposed censored SVM
learning method and the study of its properties, an additional contribution is the
development of a general machine learning framework for right censored data.
The principles and definitions that we discuss in the context of right censored
data, such as learning methods, measurability, consistency, and learning rates,
are independent of the proposed SVM learning method. This framework can
be adapted to other learning methods for right censored data, as well as for
learning methods for other missing data mechanisms.
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The paper is organized as follows. In Section 2 we review right-censored data
and SVM learning methods. In Section 3 we briefly discuss the use of SVM for
right-censored data when no censoring is present. Section 4 discusses the diffi-
culties that arise when applying SVM to right censored data and presents the
proposed censored SVM learning method. Section 5 contains the main theoreti-
cal results, including finite sample bounds and consistency. Simulations appear
in Section 6. Concluding remarks appear in Section 7. The lengthier key proofs
are provided in the Appendix. Finally, a link to the Matlab code for both the al-
gorithm and the simulations can be found in Supplementary Material (Goldberg
and Kosorok, 2017).

2. Preliminaries

In this section, we establish the notation used throughout the paper. We be-
gin by describing the data setup (Section 2.1). We then discuss loss functions
(Section 2.2). Finally we discuss SVM learning methods (Section 2.3). The no-
tation for right censored data generally follows Fleming and Harrington (1991)
(hereafter abbreviated FH91). For the loss function and the SVM definitions,
we follow Steinwart and Chirstmann (2008) (hereafter abbreviated SC08).

2.1. Data setup

We assume the data consist of n independent and identically-distributed random
triplets D = {(Z1, U1, δ1), . . . , (Zn, Un, δn)}. The random vector Z is a covariate
vector that takes its values in a set Z ⊂ R

d. The random variable U is the
observed time defined by U = T ∧ C, where T is a failure time that takes its
values in T = [0, τ ], for some positive constant τ , C is the censoring time, and
where a ∧ b = min(a, b). The indicator δ = 1{T ≤ C} is the failure indicator,
where 1{A} is 1 if A is true and 0 otherwise, i.e., δ = 1 whenever a failure time
is observed. We note that in general failure times can take values larger than τ .
In such cases we replace the failure times with their clipped-at-τ value (see, for
example, Karrison, 1997; Zucker, 1998).

Let S(t|Z) = P (T > t|Z) be the survival functions of T , and let G(t|Z) =
P (C ≥ t|Z) be the left-hand limit of the survival function of C given the co-
variate vector Z.

We assume that the censoring mechanism can be described by some simple
model. Below, we consider two examples. More details regarding these examples
are given in Appendix A.1.

Example 1. Independent censoring: Assume that C is independent of both
T and Z. Then the Kaplan-Meier estimator is a consistent and efficient esti-
mator for the survival function G (FH91).

Example 2. The proportional hazards model: Assume that the hazard of
C given Z is of the form eZ

′βdΛ for some unknown vector β ∈ R
d and some

continuous unknown nondecreasing function Λ with Λ(0) = 0 and 0 < Λ(τ) <
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∞. Then a consistent estimator for survival function G is obtained by combining
the Cox’s estimator for the vector β and Breslow’s estimator for Λ (FH91).

We need the following two assumptions:

(A1) There is a constant K > 0, such that infz∈Z G(τ |z) ≥ 2K > 0.
(A2) C is independent of T , given Z.

The first assumption assures that there is a positive probability of no censoring
over the observation time range (T = [0, τ ]). The second assumption is standard
in survival analysis and ensures that the joint nonparametric distribution of the
survival and censoring times, given the covariates, is identifiable. For a com-
prehensive discussion about these assumptions, we refer the reader to (Tsiatis,
2006, Chapters 6-7).

Remark 1. For Example 1 and for Example 2 when Z is compact, Assump-
tion (A1) holds whenever

P (C ≥ τ) > 0 .

Moreover, if τ is not chosen to be the largest failure time, then this assumption
can be validated: if there is at least one (possibly clipped-at-τ) failure time Ti = τ
then (A1) holds almost surely.

Remark 2. By Assumption (A1), infz∈Z G(τ |z) ≥ 2K > 0, and thus if the
estimator Ĝn is consistent for G, then, for all n large enough, infz∈Z Ĝn(τ |z) >
K > 0. Let PĜn,n

= P (infZ Ĝn(τ |Z) < K).

2.2. Loss functions

Let the input space (Z,A) be a measurable space. Let the response space Y be
a closed subset of R. Let P be a measure on Z × Y .

A function L : Z × Y × R 	→ [0,∞) is a loss function if it is measurable.
We say that a loss function L is convex if L(z, y, ·) is convex for every z ∈ Z
and y ∈ Y . We say that a loss function L is locally Lipschitz continuous with
Lipschitz local constant function cL(·) if for every a > 0

sup
z∈Z
y∈Y

|L(z, y, s)− L(z, y, s′)| < cL(a)|s− s′| , s, s′ ∈ [−a, a] .

We say that L is Lipschitz continuous if there is a constant cL such that the
above holds for any a with cL(a) = cL.

For any measurable function f : Z 	→ R we define the L-risk of f with respect
to the measure P as RL,P (f) = EP [L(Z, Y, f(Z))]. We define the Bayes risk
R∗

L,P with respect to loss function L and measure P as inff RL,P (f), where the
infimum is taken over all measurable functions f : Z 	→ R. A function f∗

L,P that
achieves this infimum is called a Bayes decision function.

We now present a few examples of loss functions and their respective Bayes
decision functions. In the next section we discuss the use of these loss functions
for right censored data.
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Example 3. Binary classification: Assume that Y = {−1, 1}. We would like
to find a function f : Z 	→ {−1, 1} such that for almost every z, P (f(z) = Y |Z =
z) ≥ 1/2. One can think of f as a function that predicts the label y of a pair (z, y)
when only z is observed. In this case, the desired function is the Bayes decision
function f∗

L,P with respect to the loss function LBC(z, y, s) = 1{y · sign(s) �= 1}.
In practice, since the loss function LBC is not convex, it is usually replaced by
the hinge loss function LHL(z, y, s) = max{0, 1− ys}.
Example 4. Expectation: Assume that Y = R. We would like to estimate the
expectation of the response Y given the covariates Z. The conditional expectation
is the Bayes decision function f∗

L,P with respect to the squared error loss function

LLS(z, y, s) = (y − s)2.

Example 5. Median and quantiles: Assume that Y = R. We would like
to estimate the median of Y |Z. The conditional median is the Bayes decision
function f∗

L,P for the absolute deviation loss function LAD(z, y, s) = |y − s|.
Similarly, the α-quantile of Y given Z is obtained as the Bayes decision function
for the loss function

Lα(z, y, s) =

{
−(1− α)(y − s) if s ≥ y
α(y − s) if s < y

, α ∈ (0, 1) .

Note that the functions LHL, LLS, LAD, and Lα for α ∈ (0, 1) are all convex.
Moreover, all these functions except LLS are Lipschitz continuous, and LLS is
locally Lipschitz continuous when Y is compact.

2.3. Support vector machine (SVM) learning methods

Let L be a convex locally Lipschitz continuous loss function. Let H be a sepa-
rable reproducing kernel Hilbert space (RKHS) of a bounded measurable kernel
on Z (for details regarding RKHS, the reader is referred to SC08, Chapter 4).

Let D0 = {(Z1, Y1), . . . , (Zn, Yn)} be a set of n i.i.d. observations drawn
according to the probability measure P . Fix λ and let H be as above. Define
the empirical SVM decision function

fD0,λ = argmin
f∈H

λ‖f‖2H +RL,D0(f) , (1)

where

RL,D0(f) ≡ PnL(Z, Y, f(Z)) ≡ 1

n

n∑
i=1

L(Zi, Yi, f(Zi))

is the empirical risk, and where Pn is the empirical measure, i.e., Pnf(X) =
n−1

∑n
i=1 f(Xi). Define Pf to be the expectation of f with respect to P .

For some sequence {λn}, define the SVM learning method L, as the map

(Z × Y)n ×Z 	→ R

(D0, z) 	→ fD0,λn(z)
(2)
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for all n ≥ 1. We say that L is measurable if it is measurable for all n with
respect to the minimal completion of the product σ-field on (Z ×Y)n ×Z. We
say that L is (L-risk) P -consistent if for all ε > 0

lim
n→∞

P (D0 ∈ (Z × Y)n : RL,P (fD0,λn) ≤ R∗
L,P + ε) = 1 . (3)

We say that L is universally consistent if for all distributions P on Z ×Y , L is
P -consistent.

We now briefly summarize some known results regarding SVM learning meth-
ods needed for our exposition. More advanced results can be obtained using
conditions on the functional spaces and clipping. We will discuss these ideas in
the context of censoring in Section 5.

Theorem 1. Let L : Z ×Y ×R 	→ [0,∞) be a convex Lipschitz continuous loss
function such that L(z, y, 0) is uniformly bounded. Let H be a separable RKHS
of a bounded measurable kernel on the set Z ⊂ R

d. Choose 0 < λn < 1 such
that λn → 0, and λ2

nn → ∞. Then

(a) The empirical SVM decision function fD0,λn exists and is unique.
(b) The SVM learning method L defined in (2) is measurable.

(c) The L-risk RL,P (fD0,λn)
P→ inff∈H RL,P (f).

(d) If the RKHS H is dense in the set of integrable functions on Z, then the
SVM learning method L is universally consistent.

The proof of (a) follows from SC08, Lemma 5.1 and Theorem 5.2. For the
proof of (b), see SC08, Lemma 6.23. The proof of (c) follows from SC08 The-
orem 6.24. The proof of (d) follows from SC08, Theorem 5.31, together with
Theorem 6.24.

3. SVM for survival data without censoring

In this section we present a few examples of the use of SVM for survival data but
without censoring. We show how different quantities obtained from the condi-
tional distribution of T given Z can be represented as Bayes decision functions.
We then show how SVM learning methods can be applied to these estimation
problems and briefly review theoretical properties of such SVM learning meth-
ods. In the next section we will explain why these standard SVM techniques
cannot be employed directly when censoring is present.

Let (Z, T ) be a random vector where Z is a covariate vector that takes its
values in a set Z ⊂ R

d, T is survival time that takes it values in T = [0, τ ]
for some positive constant τ , and where (Z, T ) is distributed according to a
probability measure P on Z × T .

Note that the conditional expectation P [T |Z] is the Bayes decision function
for the least squares loss function LLS. In other words P [T |Z = z] minimizes
P [LLS(Z, T, ·)|Z = z] P -almost surely, (see Example 4). Similarly, the condi-
tional median and the α-quantile of T |Z can be shown to be the Bayes decision
functions for the absolute deviation function LAD and Lα, respectively (see
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Example 5). In the same manner, one can represent other quantities of the
conditional distribution T |Z using Bayes decision functions.

Defining quantities computed from the survival function as Bayes decision
functions is not limited to regression (i.e., to a continuous response). Classifica-
tion problems can also arise in the analysis of survival data (see, for example,
Ripley and Ripley, 2001; Johnson et al., 2004). For example, let ρ, 0 < ρ < τ ,
be a cutoff constant. Assume that survival to a time greater than ρ is con-
sidered as death unrelated to the disease (i.e., remission) and a survival time
less than or equal to ρ is considered as death resulting from the disease. De-
note

Y (T ) =

{
1 T > ρ ,
−1 T ≤ ρ .

(4)

In this case, the decision function that predicts remission when the probability
of Y = 1 given the covariates is greater than 1/2 and failure otherwise is a Bayes
decision function for the binary classification loss LBC of Example 3.

Let D0 = {(Z1, T1), . . . , (Zn, Tn)} be a data set of n i.i.d. observations dis-
tributed according to P . Let Yi = Y (Ti) where Y (·) : T 	→ Y is some determin-
istic measurable function. For regression problems, Y is typically the identity
function and for classification Y can be defined, for example, as in (4). Let L be
a convex locally Lipschitz continuous loss function, L : Z×Y×R 	→ [0,∞). Note
that this includes the loss functions LLS, LAD, Lα, and LHL. Define the empiri-
cal decision function as in (1) and the SVM learning method L as in (2). Then
it follows from Theorem 1 that for an appropriate RKHS H and regularization
sequence {λn}, L is measurable and universally consistent.

4. Censored SVM

In the previous section, we presented a few examples of the use of SVM for
survival data without censoring. In this section we explain why standard SVM
techniques cannot be applied directly when censoring is present. We then explain
how to use inverse probability of censoring weighting (Robins et al., 1994) to
obtain a censored SVM learning method. Finally, we show that the obtained
censored SVM learning method is well defined.

Let D = {(Z1, U1, δ1), . . . , (Zn, Un, δn)} be a set of n i.i.d. random triplets
of right censored data (as described in Section 2.1). Let L : Z × Y × R 	→
[0,∞) be a convex locally Lipschitz loss function. Let H be a separable RKHS
of a bounded measurable kernel on Z. We would like to find an empirical
SVM decision function. In other words, we would like to find the minimizer
of

λ‖f‖2H +RL,D(f) ≡ λ‖f‖2H +
1

n

n∑
i=1

L(Zi, Y (Ti), f(Zi)) (5)

where λ > 0 is a fixed constant, and Y : T 	→ Y is a known function. The
problem is that the failure times Ti may be censored, and thus unknown. While
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a simple solution is to ignore the censored observations, it is well known that
this can lead to severe bias (Tsiatis, 2006).

In order to avoid this bias, one can reweight the uncensored observations.
Note that at time Ti, the i-th observation has probability G(Ti|Zi) ≡ P (Ci ≥
Ti|Zi) not to be censored, and thus, one can use the inverse of the censoring
probability for reweighting in (5) (Robins et al., 1994).

More specifically, define the random loss function Ln : (Z × T × {0, 1})n ×
(Z × T × {0, 1} × R) 	→ R by

Ln(D, (z, u, δ, s)) =

{
L(z,Y (u),s)

Ĝn(u|z)
, δ = 1,

0, δ = 0,

where Ĝn is the estimator of the survival function of the censoring variable
based on the set of n random triplets D (see Section 2.1). When D is given, we
denote Ln

D(·) ≡ Ln(D, ·). Note that in this case the function Ln
D is no longer

random. In order to show that Ln
D is a loss function, we need to show that Ln

D

is a measurable function.

Lemma 2. Let L be a convex locally Lipschitz loss function. Assume that the
estimation procedure D 	→ Ĝn(·|·) is measurable. Then for every D ∈ (Z × T ×
{0, 1})n the function Ln

D : (Z × T × {0, 1})× R 	→ R is measurable.

Proof. By Remark 2, the function Ĝn(u|z) 	→ 1/Ĝn(u|z) is well defined. Since
by definition, both Y and L are measurable, we obtain that (u, z, δ, s) 	→
δL(z, Y (u), s)/Ĝn(u|z) is measurable.

We define the empirical censored SVM decision function to be

f c
D,λ = argmin

f∈H
λ‖f‖2H +RLn

D,D(f)

≡ argmin
f∈H

λ‖f‖2H +
1

n

∑
Ln
D

(
Zi, Ui, δi, f(Zi)

)
.

(6)

The existence and uniqueness of the empirical censored SVM decision function
is ensured by the following lemma:

Lemma 3. Let L be a convex locally Lipschitz loss function. Let H be a sepa-
rable RKHS of a bounded measurable kernel on Z. Then there exists a unique
empirical censored SVM decision function.

Proof. Note that given D, the loss function Ln
D(z, u, δ, ·) is convex for every fixed

z, u, and δ. Hence, the result follows from Lemma 5.1 together with Theorem 5.2
of SC08.

Note that the empirical censored SVM decision function is just the empirical
SVM decision function of (1), after replacing the loss function L with the loss
function Ln

D. However, there are two important implications to this replacement.
Firstly, empirical censored SVM decision functions are obtained by minimizing
a different loss function for each given data set. Secondly, the second expression
in the minimization problem (6), namely,



SVM for right censored data 541

RLn
D,D(f) ≡ 1

n

n∑
i=1

Ln
D

(
Zi, Ui, δi, f(Zi)

)
,

is no longer constructed from a sum of i.i.d. random variables.
We would like to show that the learning method defined by the empirical

censored SVM decision functions is indeed a learning method. We first define
the term learning method for right censored data or censored learning method
for short.

Definition 1. A censored learning method Lc on Z × T maps every data set
D ∈ (Z × T × {0, 1})n, n ≥ 1, to a function fD : Z 	→ R.

Choose 0 < λn < 1 such that λn → 0. Define the censored SVM learning
method Lc, as Lc(D) = f c

D,λn
for all n ≥ 1. The measurability of the cen-

sored SVM learning method Lc is ensured by the following lemma, which is an
adaptation of Lemma 6.23 of SC08 to the censored case.

Lemma 4. Let L be a convex locally Lipschitz loss function. Let H be a sepa-
rable RKHS of a bounded measurable kernel on Z. Assume that the estimation
procedure D 	→ Ĝn(·|·) is measurable. Then the censored SVM learning method
Lc is measurable, and the map D 	→ f c

D,λn
is measurable.

Proof. First, by Lemma 2.11 of SC08, for any f ∈ H, the map (z, u, f) 	→
L(z, Y (u), f(z)) is measurable. The survival function Ĝn is measurable on (Z ×
R×{0, 1})n × (Z ×R) and by Remark 2, the function D 	→ δi/Ĝn(ui|zi) is well
defined and measurable. Hence D 	→ n−1

∑n
i=1

δiL(zi,Y (ui),f(zi))

Ĝn(ui|zi)
is measurable.

Note that the map f 	→ λn‖f‖2H where f ∈ H is also measurable. Hence we
obtain that the map φ : (Z × T × {0, 1})n ×H 	→ R, defined by

φ(D, f) = λ‖f‖2H +RLn
D,D(f) ,

is measurable. By Lemma 3, f c
D,λn

is the only element of H satisfying

φ(D, f c
D,λn

) = inf
f∈H

φ(D, f) .

By Aumann’s measurable selection principle (SC08, Lemma A.3.18), the map
D 	→ f c

D,λn
is measurable with respect to the minimal completion of the product

σ-field on (Z×T ×{0, 1})n. Since the evaluation map (f, z) 	→ f(z) is measurable
(SC08, Lemma 2.11), the map (D, z) 	→ f c

D,λn
(z) is also measurable.

5. Theoretical results

In the following, we discuss some theoretical results regarding the censored
SVM learning method proposed in Section 4. In Section 5.1 we discuss function
clipping which will serve as a tool in our analysis. In Section 5.2 we discuss
finite sample bounds. In Section 5.3 we discuss consistency. Learning rates are
discussed in Section 5.4. Finally, censoring model misspecification is discussed
in Section 5.5.
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5.1. Clipped censored SVM learning method

In the following section we bound the risk of the censored SVM decision function.
Since this function belongs to an RKHS, it need not be bounded. Nevertheless,
for some loss functions, we may be able to improve the censored SVM decision
function by clipping it to get values in a bounded set. Clipping was introduced
by Bartlett (1998) in the context of neural networks. See also Bousquet and
Elisseeff (2002), Wu et al. (2007), and Steinwart et al. (2007), among others, in
the context of SVM.

Before defining clipping formally, we consider the following example. Let
the loss L in the minimization problem (1) be the hinge-loss LHL(z, y, s) =
max{0, 1− ys}, and let the response space be Y = {−1, 1}. In this case, we can
improve the risk of any function f that gets values outside the segment [−1, 1].
Indeed, let Ω1 ≡ {z : f(z) > 1}, and Ω−1 ≡ {z : f(z) < −1}. Define the clipped
function of f by

�

f(z) ≡

⎧⎨
⎩

1 z ∈ Ω1 ,
−1 z ∈ Ω−1 ,
f(z) otherwise .

Note that

RLHL,P (
�

f) ≡ EP [LHL(Z, Y,
�

f(Z))]

=EP [max{0, 1− Y f(Z)}|(Ω1 ∪ Ω−1)
c]P ((Ω1 ∪ Ω−1)

c)

+ EP [max{0, 1− Y }|Ω1]P (Ω1) + EP [max{0, 1 + Y }|Ω−1]P (Ω−1)

≤RLHL,P (f) .

Moreover,
�

f has strictly smaller risk than f whenever there is a subset of positive
probability of Ω1∪Ω−1 in which sign{f(Z)} �= Y . We say that the loss function
LHL can be clipped at 1 since LHL(z, y, 1) ≤ LHL(z, y, s) for any s > 1 and
LHL(z, y,−1) ≤ LHL(z, y, s) for any s < −1, and for all (z, y) ∈ Z × Y . Since

LHL can be clipped, replacing any function f by its clipped version
�

f reduces
the risk.

This example demonstrates that one may control the boundlessness of the
censored SVM decision function by replacing the obtained function with its
clipped version. In the following proofs, we consider the analysis of loss functions
that can be clipped, which, in our setting, include many of the standard loss
functions. Results for loss functions that cannot be clipped are beyond the scope
of this paper, but they can be proved under more stringent assumptions. We
refer those interested to http://arxiv.org/pdf/1202.5130v1.pdf.

More formally, we say that a loss function L can be clipped at M > 0, if, for
all (z, y, s) ∈ Z × Y × R,

L(z, y,
�
s) ≤ L(z, y, s)

where

http://arxiv.org/pdf/1202.5130v1.pdf
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�
s =

⎧⎨
⎩

−M if s ≤ −M
s if −M < s < M
M if s ≥ M

(see SC08, Definition 2.22). In other words, a loss function L can be clipped if,
when clipping its last argument, the values of the loss function are lower (or
equal) to the values when the last argument is not clipped. The loss functions
LHL, LLS, LAD, and Lα can be clipped at some M when Y = T or Y = {−1, 1}.
The constant M can be computed explicitly (SC08, Chapter 2).

In our context the response variable Y usually takes it values in a bounded
set (see Section 3). When the response space is bounded, we have the following
criterion for clipping. Let L be a distance-based loss function, i.e., L(z, y, s) =
φ(s− y) for some function φ. Assume that limr→±∞ φ(r) = ∞. Then L can be
clipped at some M (SC08, Chapter 2).

For a function f , we define
�

f to be the clipped version of f , i.e.,
�

f =
max{−M,min{M, f}}. Finally, we note that the clipped censored SVM learning
method, that maps every data set D ∈ (Z×T ×{0, 1})n, n ≥ 1, to the function
�

f c
D,λ, is measurable, where

�

f c
D,λ is the clipped version of f c

D,λ defined in (6). This
follows from Lemma 4, together with the measurability of the clipping operator.

5.2. Finite sample bounds

We would like to establish a finite-sample bound for the generalization of clipped
censored SVM learning methods. We first need some notation. Define the cen-
soring estimation error

Errn(t, z) = Ĝn(t|z)−G(t|z) , (t, z) ∈ T × Z

to be the difference between the estimated and true survival functions of the
censoring variable.

Let H be an RKHS over the covariates space Z ⊂ R
d. Define the n-th dyadic

entropy number en(H, ‖ · ‖H) as the infimum over ε, such that H can be covered
with no more than 2n−1 balls of radius ε with respect to the metric induced by
the norm. For a bounded linear transformation S : H 	→ F where F is a normed
space, we define the dyadic entropy number en(S) as en(SBH , ‖ · ‖F ) where BH

is the unit ball of H. For details, the reader is referred to Appendix 5.6 of SC08.
We need the following assumptions:

(B1) The loss function L : Z ×Y ×R 	→ [0,∞) is a locally Lipschitz continuous
loss function that can be clipped at M > 0 such that the supremum bound

L(z, y, s) ≤ B (7)

holds for all z, y, s ∈ Z × Y × [−M,M ] and for some B > 0. Moreover,
there is a constant q > 0 such that

|L(z, y, s)− L(z, y, 0)| ≤ c|s|q

for all z, t, s ∈ Z × Y × R and for some c > 0.
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(B2) H is a separable RKHS of a measurable kernel over Z and P is a distribu-
tion over Z × T for which there exist constants ϑ ∈ [0, 1] and V > B2−ϑ

such that

P

[(
L ◦

�

f − L ◦ f∗
L,P

)2
]
≤ V

(
P
[
L ◦

�

f − L ◦ f∗
L,P

])ϑ

(8)

for all z, y, s ∈ Z ×Y × [−M,M ] and f ∈ H; and where L◦f is shorthand
for the function (z, y) 	→ L(z, y, f(z)).

(B3) There are constants a > 1 and 0 < p < 1, such that for all i ≥ 1 the
following entropy bound holds:

P [ei(id : H 	→ L2(Pn))] ≤ ai−
1
2p , (9)

where id : H 	→ L2(Pn) is the embedding of H into the space of square
integrable functions with respect to the empirical measure Pn.

Before we state the main result of this section, we present some examples for
which the assumptions above hold:

Remark 3. When Y is contained in a compact set, Assumption (B1) holds with
q = 1 for LHL, LAD and Lα and with q = 2 for LLS (recall the definitions of the
loss functions from Section 2.2).

Remark 4. Assumption (B2) holds trivially for ϑ = 0 with V = B2. It holds
for LLS with ϑ = 1 for compact Y (SC08, Example 7.3). Under some conditions
on the distribution, it also holds for LAD and Lα (SC08, Eq. 9.29).

Remark 5. When Z ⊂ R
d is compact, the entropy bound (9) of Assump-

tion (B3) is satisfied for smooth kernels such as the polynomial and Gaussian
kernels for all p > 0 (see SC08, Section 6.4). The assumption also holds for
Gaussian kernels over R

d for distributions PZ with positive tail exponent (see
SC08, Section 7.5).

We are now ready to establish a finite sample bound for the clipped censored
SVM learning methods:

Theorem 5. Let L be a loss function and H be an RKHS such that assumptions
(B1)–(B3) hold. Let f0 ∈ H satisfies ‖L ◦ f0‖∞ ≤ B0 for some B0 ≥ B. Let
Ĝn(t|Z) be an estimator of the survival function of the censoring variable and
assume (A1)–(A2). Then, for any fixed regularization constant λ > 0, n ≥ 1,
and η > 0, with probability not less than 1− 3e−η − PĜn,n

,

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤ 5λ‖f0‖2H + 8(RL,P (f0)−R∗
L,P ) +

3B0

K2
Pn|Errn(T, Z)|+ 2B0η

Kn

+ 4

(
72Ṽ η

n

) 1
2−ϑ

+ 3W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

.
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where W is a constant that depends only p, M , B, ϑ, V and K, where Ṽ ≡
max{V/2K, (B/(2K))2−ϑ}, and where PĜn,n

is defined in Remark 2.

The proof appears in Appendix A.3.
For the Kaplan-Meier estimator (see Example 1), bounds of the random error

‖Errn‖∞ were established (Bitouzé et al., 1999). In this case, we can replace
the bound of Theorem 5 with a more explicit one.

Specifically, let Ĝn be the Kaplan-Meier estimator. Let 0 < KS = P (T ≥ τ)
be a lower bound on the survival function at τ . Then, for every n ≥ 1 and ε > 0
the following Dvoretzky-Kiefer-Wolfowitz-type inequality holds (Bitouzé et al.,
1999, Theorem 2):

P (‖Ĝn −G‖∞ > ε) <
5

2
exp{−2nK2

Sε
2 +Do

√
nKSε} ,

where Do is some universal constant (see Wellner, 2007, for a bound on Do).
Some algebraic manipulations then yield that for every η > 0 and n ≥ 1

P

(
‖Ĝn −G‖∞ >

√
2η +Do

KS
√
n

)
<

5

2
e−η . (10)

We also have

PĜn,n
≡ P (inf

Z
Ĝn(τ |Z) < K) ≤ P

(
‖Ĝn −G‖∞ > K

)
<

5

2
exp{−2nK2

SK
2 +Do

√
nKSK} .

As a result, we obtain the following corollary:

Corollary 6. Consider the setup of Theorem 5. Assume that the censoring
variable C is independent of both T and Z. Let Ĝn be the Kaplan-Meier estima-
tor of G. Then for any fixed regularization constant λ, n ≥ 1, and η > 0, with
probability not less than 1− 11

2 e−η − 5
2 exp{−2nK2

SK
2 +Do

√
nKSK},

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤ 5λ‖f0‖2H + 8(RL,P (f0)−R∗
L,P ) +

3B0(
√
2η +Do)

K2KS
√
n

+
2B0η

Kn

+ 4

(
72Ṽ η

n

) 1
2−ϑ

+ 3W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

.

where W is a constant that depends only on p, M , B, ϑ, V and K.

5.3. P-universal consistency

In this section we discuss consistency of the clipped version of the censored SVM
learning method Lc proposed in Section 4. In general, P -consistency means
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that (3) holds for all ε > 0. Universal consistency means that the learning
method is P -consistent for every probability measure P on Z×T ×{0, 1}. In the
following we discuss a more restrictive notion than universal consistency, namely
P-universal consistency. Here, P is the set of all probability distributions for
which conditions (A1)–(A2) hold for some constant K. We say that a censored
learning method is P-universally consistent if (3) holds for all P ∈ P . We note
that when the first assumption is violated for a set of covariates Z0 with positive
probability, there is no hope of learning the optimal function for all z ∈ Z, unless
some strong assumptions on the model are enforced. The second assumption is
required for proving consistency of the learning method Lc proposed in Section 4.
However, it is possible that other censored learning techniques will be able to
achieve consistency for a larger set of probability measures.

In order to show P-universal consistency, we utilize the bound given in The-
orem 5. We need the following additional assumptions:

(B4) For all distributions P on Z, inff∈H RL,P (f) = R∗
L,P .

(B5) Ĝn is consistent for G and there is a finite constant s > 0 such that
P (‖Errn‖∞ ≥ bn−1/s) → 0 for any b > 0.

Before we state the main result of this section, we present some examples for
which the assumptions above hold:

Remark 6. Assumption (B4) holds when the loss function L is locally Lipschitz
continuous, RL,P (0) < ∞, and the RKHS H is dense in L1(μ) for all distri-
bution μ on Z, where L1(μ) is the space of equivalence classes of integrable
functions. (SC08, see Theorem 5.31).

Remark 7. Assume that Z is compact. A continuous kernel k whose corre-
sponding RKHS H is dense in the class of continuous functions over the compact
set Z is called universal. Examples of universal kernels include the Gaussian ker-
nels, and other Taylor kernels. For more details, the reader is referred to SC08,
Chapter 4.6. For universal kernels, Assumption (B4) holds for LLS, LHL, LAD,
and Lα. (SC08, Corollary 5.29).

Remark 8. Assume that Ĝn is consistent for G. When Ĝn is the Kaplan-
Meier estimator, Assumption (B5) holds for all s > 2 (Bitouzé et al., 1999,
Theorem 3). Similarly, when Ĝn is the proportional hazards estimator (see Ex-
ample 2), under some conditions, Assumption (B5) holds for all s > 2 (see
Goldberg and Kosorok, 2012a, Theorem 3.2 and its conditions).

Now we are ready for the main result.

Theorem 7. Let L be a loss function and H be an RKHS of a bounded kernel
over Z. Assume (A1)–(A2) and (B1)–(B5). Let λn → 0, where 0 < λn < 1,

and λ
max{q/2,p}
n n → ∞, where q is defined in Assumption (B1). Then the clipped

censored learning method Lc is P-universally consistent.

Proof. Define the approximation error

A2(λ) = λ‖fP,λ‖2H +RL,P (fP,λ)−R∗
L,P , , (11)
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where fP,λ ≡ argminf∈H λ‖f‖2H + RL,P (f). By Theorem 5, for f0 = fP,λ we
obtain

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤8A2(λ) +
3B0

K2
Pn|Errn(T, Z)|+ 2B0η

Kn

+ 4

(
72Ṽ η

n

) 1
2−ϑ

+ 3W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

.

(12)

for any fixed regularization constant λ > 0, n ≥ 1, and η > 0, with probability
not less than 1− 3e−η − PĜn,n

.

By the definition of B0, choosing f0 = fP,λ, it is required that ‖L ◦ fP,λ‖∞ ≤
B0. Define B0 = B+co(A2(λ)/λ)

q/2 for co = c(supz∈Z
√
k(z, z))q/2 and where c

and q are defined in Assumption (B1). We now show that indeed ‖L◦ fP,λ‖∞ ≤
B0. Since the kernel k is bounded, it follows from Lemma 4.23 of SC08 that
‖fP,λ‖∞ ≤ supz∈Z

√
k(z, z)‖fP,λ‖H . By the definition of A2(λ), ‖fP,λ‖H ≤

(A2(λ)/λ)
1/2. Note that for all (z, y) ∈ Z × Y

L(z, y, fP,λ(z)) ≤ L(x, y, 0) + |L(z, y, fP,λ(z))− L(x, y, 0)| ≤ B + c|fP,λ(z)|q .

Thus

‖L ◦ fP,λ‖∞ ≤ B + c‖fP,λ‖q∞ ≤B + c(sup
z∈Z

√
k(z, z)‖fP,λ‖H)q

≤B + co

(
A2(λ)

λ

) q
2

= B0 .

(13)

Taking λ = λn, it follows from Assumption (B4), together with Lemma 5.15 of

SC08 thatA2(λn) converges to zero as n converges to infinity. Clearly 4
(
72Ṽ η
n

) 1
2−ϑ

converges to zero. We also have that 2η
Kn

{
B+co

(
A2(λn)

λn

)q/2 }
converges to zero

since λ
q/2
n n → ∞. By Assumption (B5), both PnErrn and PĜn,n

converge to

zero. Finally, W
(

a2p

λp
nn

) 1
2−p−ϑ+ϑp

converges to zero since λp
nn → ∞. Hence, for

every fixed η, the right hand side of (12) converges to zero, which implies (3).
Since (3) holds for every P ∈ P , we obtain P-universal consistency.

5.4. Learning rates

In the previous section we discussed P-universal consistency which ensures that
for every probability P ∈ P , the clipped learning method Lc asymptotically
learns the optimal function. In this section we would like to study learning
rates.

We define learning rates for censored learning methods similarly to the defi-
nition for regular learning methods (see SC08, Definition 6.5):
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Definition 2. Let L : Z × Y × R 	→ [0,∞) be a loss function. Let P ∈ P be
a distribution. We say that a censored learning method Lc learns with a rate
{εn}n, where {εn} ⊂ (0, 1] is a sequence decreasing to 0, if for some constant
cP > 0, all n ≥ 1, and all η ∈ [0,∞), there exists a constant cη ∈ [1,∞) that
depends on η, such that

P (D ∈ (Z × T × {0, 1})n : RL,P (f
c
D,λ) ≤ R∗

L,P + cP cηεn) ≥ 1− e−η .

In order to study the learning rates, we need an additional assumption:

(B6) There exist constants c1 and β ∈ (0, 1] such that A2(λ) ≤ c1λ
β for all

λ ≥ 0, where A2 is the approximation error function defined in (11).

Let PK0 be the set of all probability distributions for which (A2) holds, and
for which condition (A1) holds for some constant K ≥ K0.

Lemma 8. Let L be a loss function and H be an RKHS of a bounded kernel
over Z. Assume (A1)–(A2) and (B1)–(B6). Then for every K > 0, the learning
rate of the clipped Lc for all P ∈ PK is given by

n−min{ β
(2−p−ϑ+ϑp)β+p ,

2βs̃
q+(2−q)β} ,

where q, ϑ, p, s, and β, are as defined in Assumptions (B1), (B2), (B3), (B5),
and (B6), respectively, and where s̃ = min{1, 1/s}.

Before we provide the proof, we derive learning rates for two specific exam-
ples.

Example 6. Fast Rate: Assume that the censoring mechanism is known, the
loss function is the square loss, the kernel is Gaussian, Z is compact, Y is
bounded. It follows that (B1) holds for q = 2, (B2) holds for ϑ = 1 (SC08, Ex-
ample 7.3), (B3) holds for all 0 < p < 1 (SC08, Theorem 6.27), and (B5) holds
for all s > 0. Thus the obtained rate is n−β+ε, where ε > 0 is an arbitrarily
small number.

Example 7. Standard Rate: Assume that the censoring mechanism follows
the proportional hazards assumption, the loss function is either LHL, LAD or
Lα, the kernel is Gaussian, Z is compact. It follows that (B1) holds for q = 1,
(B2) holds trivially for ϑ = 0, (B3) holds for all 0 < p < 1, and (B5) holds for
all s > 2. Thus the obtained rate is n−β/(1+β)+ε, where ε > 0 is an arbitrarily
small number. To see that note that

β ≤ 1 ⇒ (1− p)β ≤ 1− p ⇒ 2β − pβ + p < 1 + β ⇒ 1

2β − pβ + p
≥ 1

β + 1

⇒ β

(2− p− ϑ+ ϑp)β + p
≡ β

2β − pβ + p
≥ β

β + 1
− ε ≡

2β( 12 − ε̃)

q + (2− q)β
.

Proof of Lemma 8. Using the assumptions above, we replace the bound on
λ‖f c

D,λ‖2H+RL,P (
�

f c
D,λ)−R∗

L,P that appears in (12) with quantities that depend



SVM for right censored data 549

on n, λ, η and some constants c1, . . . , c4 that can depend on p, M , ϑ, c1, V , and
K but not on P or η and constants c̃1, c̃2, c̃3 that depend only on η and K.

Note that by Assumption (B6), A2(λ) ≤ c1λ
β for some constant c1. Using

this fact, and the definition of B0 in (13),

(
2η

Kn
+

3PnErrn(T, Z)

K2

)
B0 =

(
2η

Kn
+

3PnErrn(T, Z)

K2

)(
B+ co

(
A2(λ)

λ

)q/2
)

≤
(

2η

Kn
+

3PnErrn(T, Z)

K2

)(
B+ coc1λ

(β−1)q/2
)
.

Note that 3W
(

a2p

λpn

) 1
2−p−ϑ+ϑp

= c2n
− 1

2−p−ϑ+ϑpλ− p
2−p−ϑ+ϑp for some constant

c2.
By Assumption (B5) and the fact that ‖Errn‖∞ < 1, there exists a constant

c̃1 = c(η) that depends only on η, such that for all n ≥ 1,

P (‖Errn‖∞ > c̃1n
−1/s) < e−η . (14)

Hence, when ‖Errn‖∞ > c̃1n
−1/s we have(

2η

Kn
+

3PnErrn(T, Z)

K2

)
B0 <

c4
2
(c̃2n

−1 + c̃1n
−1/s)

(
1 + λ(β−1)q/2

)
≤ c4c̃3n

−s̃
(
1 + λ(β−1)q/2

)
.

where s̃ = min{1, 1/s}, for some constant c̃3 ≥ 1. Hence, with probability not
less than 1− 4e−η − PĜn,n

, we have

RL,P (f
c
D,λ)−R∗

L,P ≤ c5c̃3

(
λβ + n− 1

2−p−ϑ+ϑpλ− p
2−p−ϑ+ϑp + n−s̃λq(β−1)/2

)

+ c5c̃3n
−s̃ + 4

(
72Ṽ η

n

)1/(2−ϑ)

.

Write λ = n−ρ/β for some ρ > 0 and note that

λβ + n− 1
2−p−ϑ+ϑpλ− p

2−p−ϑ+ϑp + n−s̃λq(β−1)/2

= n−ρ + n− 1
2−p−ϑ+ϑp (n−ρ/β)−

p
2−p−ϑ+ϑp + n−s̃(n−ρ/β)q(β−1)/2

= n−ρ + n− β−pρ
β(2−p−ϑ+ϑp) + n− βs̃+ρq(β−1)/2

β ≤ 3n−min{ρ, β−pρ
β(2−p−ϑ+ϑp)

,
2βs̃+ρq(β−1)

2β } .

Choosing

ρ = min

{
β

(2− p− ϑ+ ϑp)β + p
,

2βs̃

q + (2− q)β

}
,

we obtain

λβ + n− 1
2−p−ϑ+ϑpλ− p

2−p−ϑ+ϑp + n−s̃λq(β−1)/2 ≤ 3n−ρ
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Using the fact that 0 < β ≤ 1 and q > 0, one can show that s̃ ≥ 2βs̃
q+(2−q)β .

Similarly, using the fact that ϑ ∈ [0, 1] and 0 < p < 1, one can show that
1

2−ϑ ≥ β
(2−p−ϑ+ϑp)β+p . Hence, n

−min{s̃, 1
2−ϑ} ≤ n−ρ. By the bound in (14), we

also have that for n > ( c̃1K )s,

PĜn,n
≡ P (inf

Z
Ĝn(τ |Z) < K) ≤ P (‖Errn‖∞ > K)

≤ P (‖Errn‖∞ > c̃1n
−1/s) < e−η .

It then follows that for all n > ( c̃1K )s,

P

(
RL,P (

�

f c
D,λ)− inf

f∈H
RL,P (f) ≤ cP cηn

−ρ

)
≥ 1− 5e−η ,

for some constants cP ≥ 1 that depends on p, M , ϑ, c, B, V , and K but is
independent of η, and cη that depends only on η and K but not on P .

Let nη be the smallest integer greater than ( c̃1K )s. Let c̃η = max{Bcηn
ρ
η, cη}.

Hence, for every n ≤ nη

cP c̃ηn
−ρ ≥ c̃ηn

−ρ ≥ Bcηn
ρ
ηn

−ρ ≥ B ,

where the first inequality follows since cP ≥ 1 and the second from the definition
of c̃η. Since RL,P (

�

f c
D,λ) ≤ B, and c̃η ≥ cη, we have that for all n ≥ 1,

P

(
RL,P (

�

f c
D,λ)− inf

f∈H
RL,P (f) ≤ cP c̃ηn

−ρ

)
≥ 1− 5e−η ,

which concludes the proof.

5.5. Misspecified censoring model

In Section 5.3 we showed that under conditions (B1)–(B5) the clipped censored
SVM learning method Lc is P-universally consistent. While one can choose
the Hilbert space H and the loss function L in advance such that conditions
(B1)–(B4) hold, condition (B5) need not hold when the censoring mechanism is
misspecified. In the following, we consider this case.

Let Ĝn(t|z) be the estimator of the survival function for the censoring vari-
able. The deviation of Ĝn(t|z) from the true survival function G(t|z) can be
divided into two terms. The first term is the deviation of the estimator Ĝn(t|z)
from its limit, while the second term is the difference between the estimator
limit and the true survival function. More formally, let GP (t|z) be the limit of
the estimator under the probability measure P , and assume it exists. Define the
errors Errn(t, z) as

Errn1(t, z) + Err2(t, z) ≡
(
Ĝn(t|z)−GP (t|z)

)
+
(
GP (t|z)−G(t|z)

)
.
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Note that Errn1 is a random function that depends on the data, the estimation
procedure, and the probability measure P , while Err2 is a fixed function that
depends only on the estimation procedure and the probability measure P . When
the model is correctly specified, and the estimator is consistent, the second term
vanishes.

Theorem 9. Let L be a loss function and H be an RKHS of a bounded kernel
over Z. Assume (A1)–(A2) and (B1)–(B4). Let λn → 0, where 0 < λn < 1 and

λ
max{q/2,p}
n n → ∞. Assume that

P (‖Ĝn −GP ‖∞ ≥ bn−1/s) → 0 (15)

Then, for every fixed ε > 0,

lim
n→∞

P

(
D : RL,P (

�

f c
D,λ) ≤ R∗

L,P +
3B

K2
|P (GP −G)|+ ε

)
= 1 ,

where D ∈ (Z × T × {0, 1})n

Proof. By (12), for every fixed η > 0 and n ≥ 1,

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤8A2(λn) +
3B0

K2
‖Ĝn −GP ‖∞ +

2B0η

Kn
+ 4

(
72Ṽ η

n

) 1
2−ϑ

+ 3W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+
3B0

K2
PnErr2 ,

(16)

for any fixed regularization constant λ > 0, n ≥ 1, and η > 0, with probability
not less than 1− 3e−η −PĜn,n

. Since P (‖Ĝn −GP ‖∞ ≥ bn−1/s) → 0, it follows
from the same arguments as in the proof of Theorem 7, that the first expression
on the RHS of (16) converges in probability to zero. By the law of large numbers,

PnErr2
a.s.→ P (GP −G). Note that by (13),

3B0

K2
PnErr2 ≡

3B + 3co

(
A2(λ)

λ

) q
2

K2
PnErr2

a.s.→ 3B

K2
P (GP −G) ,

since A2(λn) converges to zero as n converges to infinity (see the proof of The-
orem 7), and the result follows.

Theorem 9 proves that even under misspecification of the censored data
model, the clipped censored learning method Lc achieves the optimal risk up to
a constant that depends on P (GP − G), which is the expected distance of the
limit of the estimator from the true distribution. If the estimator estimates rea-
sonably well, one can hope that this term is small, even under misspecification.

We now show that the additional condition (15) of Theorem 9 holds for both
the Kaplan-Meier estimator and the Cox model estimator.
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Example 8. Kaplan-Meier estimator: Let Ĝn be the Kaplan-Meier estima-
tor of G. Let GP be the limit of Ĝn. Note that GP is the marginal distribution
of the censoring variable. It follows from (10) that condition (15) holds for all
s > 2.

Example 9. Cox model estimator: Let Ĝn be the estimator of G when the
Cox model is assumed (see Example 2). Let GP be the limit of Ĝn. It has been
shown that the limit GP exists, regardless of the correctness of the proportional
hazards model (Goldberg and Kosorok, 2012a). Moreover, for all ε > 0, and all
n large enough,

P (‖Ĝn −GP ‖∞ > ε) ≤ exp{−W 2
1 nε

2 +W1W2

√
nε} ,

where W1, W2 are universal constants that depend on the set Z, the variance of
Z, the constants K and KS, but otherwise do not depend on the distribution P
(see Goldberg and Kosorok, 2012a, Theorem 3.2, and conditions therein). Fix
η > 0 and write

ε =

√
4η +W 2

2 +W2

2W1
√
n

.

Then for all n large enough we have

ε =

√
4η +W 2

2 +W2

2W1
√
n

⇔ 2εW1

√
n−W2 =

√
4η +W 2

2

⇔4ε2W 2
1 n− 4εW1W2

√
n+W 2

2 = 4η +W 2
2

⇔4ε2W 2
1 n− 4W1W2ε

√
n = 4η ⇔ η = W 2

1 nε
2 −W1W2

√
nε .

Using the fact that
√
a+ b ≤ √

a+
√
b we have that

ε =

√
4η +W 2

2 +W2

2W1
√
n

≤
√
4η +

√
W 2

2 +W2

2W1
√
n

=

√
η +W2

W1
√
n

.

Hence

lim sup
n→∞

P

(
‖Ĝn −GP ‖∞ >

√
η +W2

W1
√
n

)
< e−η .

Consequently, condition (15) holds for all s > 2.

6. Simulation study

In this section we illustrate the use of the censored SVM learning method
proposed in Section 4 via a simulation study. We consider five different data-
generating mechanisms, including one-dimensional and multidimensional set-
tings, and different types of censoring mechanisms. We compute the censored
SVM decision function with respect to the absolute deviation loss function LAD.



SVM for right censored data 553

For this loss function, the Bayes risk is given by the conditional median (see Ex-
ample 5). We choose to compute the conditional median and not the conditional
mean, since censoring prevents reliable estimation of the unrestricted mean sur-
vival time when no further assumptions on the tail of the distribution are made
(see discussions in Karrison, 1997; Zucker, 1998; Chen and Tsiatis, 2001). We
compare the results of the SVM approach to the results obtained by the Cox
model and to the Bayes risk. We test the effects of ignoring the censored ob-
servations. Finally, for multidimensional examples, we also check the benefit of
variable selection.

The algorithm presented in Section 4 was implemented in the Matlab envi-
ronment. For the implementation we used the Spider library for Matlab1. A link
to the Matlab code for both the algorithm and the simulations can be found
in Supplementary Material. The distribution of the censoring variable was esti-
mated using the Kaplan-Meier estimator (see Example 1). We used the Gaussian
RBF kernel kσ(x1, x2) = exp(σ−2‖x1 − x2‖22), where the width of the kernel σ
was chosen using cross-validation. Instead of minimizing the regularized problem
(6), we solve the equivalent problem (see SC08, Chapter 5):

Minimize RLn
D,D(f) under the constraint ‖f‖2H < λ−1 ,

where H is the RKHS with respect to the kernel kσ, and λ is some constant
chosen using cross-validation. Note that there is no need to compute the norm of
the function f in the RKHS space H explicitly. The norm can be obtained using
the kernel matrix K with coefficients kij = k(Zi, Zj) (see SC08, Chapter 11).
The risk of the estimated functions was computed numerically, using a randomly
generated data set of size 10000.

In some simulations the failure time is distributed according to the Weibull
distribution (Lawless, 2003). The density of the Weibull distribution is given by

f(t) =
κ

ρ

(
t

ρ

)κ−1

e−(t/ρ)κ1{t ≥ 0} ,

where κ > 0 is the shape parameter and ρ > 0 is the scale parameter. Assume
that κ is fixed and that ρ = exp(β0 + β′Z), where β0 is a constant, β is the
coefficient vector, and Z is the covariate vector. In this case, the failure time
distribution follows the proportional hazards assumption, i.e., the hazard rate
is given by h(t|Z) = exp(β0 + β′Z)dΛ(t), where Λ(t) = tκ. When the propor-
tional hazards assumption holds, estimation based on Cox regression is consis-
tent and efficient (see Example 2; note that the distribution discussed there is
of the censoring variable and not of the failure time, nevertheless, the estima-
tion procedure is similar). Thus, when the failure time distribution follows the
proportional hazards assumption, we use the Cox regression as a benchmark.

In the first setting, the covariates Z are generated uniformly on the segment
[−1, 1]. The failure time follows the Weibull distribution with shape parameter

1The Spider library for Matlab can be downloaded form http://www.kyb.tuebingen.mpg.

de/bs/people/spider/.

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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Fig 1. Weibull failure time, proportional hazards (Setting 1): The true conditional median
(solid blue), the SVM decision function (dashed red), and the Cox regression median (dot-
dashed green) are plotted for samples of size n = 50, 100, 200, 400 and 800. The censoring
percentage is given for each sample size. An observed failure times is represented by an ×,
and an observed censoring time is represented by an ◦.

2 and scale parameter −0.5Z. Note that the proportional hazards assumption
holds. The censoring variable C is distributed uniformly on the segment [0, c0]
where the constant c0 is chosen such that the mean censoring percentage is 30%.
We used 5-fold-cross-validation to choose the kernel width and the regularization
constant among the set of pairs

(λ−1, σ) = (0.1 · 10i, 0.05 · 2j) , i, j ∈ {0, 1, 2, 3} .

In practice, choosing a grid of values for the cross-validation procedure can be
done by first choosing a coarse grid and then choosing a finer grid at the vicinity
of points that are of interest (see also Chapelle et al., 2002). We repeated the
simulation 100 times for each of the sample sizes 50, 100, 200, 400, and 800.

In Figure 1, the conditional median obtained by the censored SVM learning
method and by Cox regression are plotted. The true median is plotted as a
reference. In Figure 2, we compare the risk of the SVM method to the median
of the survival function obtained by Cox regression (to which we refer as the
Cox regression median). We also examined the effect of ignoring the censored
observations by computing the standard SVM decision function for the data set
in which all the censored observations were deleted. Finally, we examined the
effect of model misspecification of the censoring mechanism. For that we draw
C from a Weibull distribution with shape parameter 2 and scale parameter
−0.5Z + log(1.5) to ensure 30% censoring. Both figures show that even though
the SVM does not use the proportional hazards assumption for estimation,
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Fig 2. Weibull failure time, proportional hazards (Setting 1): Distribution of the risk for
different sizes of data set, for standard SVM that ignores the censored observations (Ignore),
for censored SVM (Censored), for misspecified censoring mechanism (Misspecified), and for
the Cox regression median (Cox). Bayes risk is denoted by a black dashed line. Each box plot
is based on 100 repetitions of the simulation for each size of data set.

the results are comparable to those of Cox regression for larger sample sizes.
Figure 2 also shows that there is a non-negligible price for ignoring the censored
observations and for misspecification.

The second setting differs from the first setting only in the failure time dis-
tribution. In the second setting the failure time distribution follows the Weibull
distribution with scale parameter −0.5Z2. Note that the proportional hazards
assumption holds for Z2, but not for the original covariate Z. In Figure 3, the
true, the SVM median, and the Cox regression median are plotted. In Figure 4,
we compare the risk of SVM to that of Cox regression. Both figures show that
in this case SVM does better than Cox regression. Figure 4 also shows the price
of ignoring censored observations and of misspecifying the censoring model.

The third and forth settings are generalizations of the first two, respec-
tively, to 10-dimensional covariates. The covariates Z are generated uniformly
on [−1, 1]10. The failure time follows the Weibull distribution with shape param-
eter 2. The scale parameter of the third and forth settings are −0.5Z1+2Z2−Z3

and −0.5(Z1)
2+2(Z2)

2−(Z3)
2, respectively. Note that these models are sparse,

namely, they depend only on the first three variables. The censoring variable C
is distributed uniformly on the segment [0, c0], where the constant c0 is chosen
such that the mean censoring percentage is 40%. We used 5-fold-cross-validation
to choose the kernel width and the regularization constant among the set of pairs

(λ−1, σ) = (0.1 · 10i, 0.2 · 2j) , i, j ∈ {0, 1, 2, 3} .

The results for the third and the forth settings appears in Figure 5 and
Figure 6, respectively. We compare the risk of standard SVM that ignores cen-
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Fig 3. Weibull failure time, non-linear proportional hazards (Setting 2): The true conditional
median (solid blue), the SVM decision function (dashed red), and the Cox regression median
(dot-dashed green) are plotted for samples of size n = 50, 100, 200, 400 and 800. The censoring
percentage is given for each sample size. An observed failure times is represented by an ×,
and an observed censoring time is represented by an ◦.

Fig 4. Weibull failure time, non-linear proportional hazards (Setting 2): Distribution of the
risk for different sizes of data set, for standard SVM that ignores the censored observations
(Ignore), for censored SVM (Censored), for misspecified censoring mechanism (Misspecified),
and for the Cox regression median (Cox). Bayes risk is denoted by a black dashed line. Each
box plot is based on 100 repetitions of the simulation for each size of data set.
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Fig 5. Multidimensional Weibull failure time (Setting 3): Distribution of the risk for different
data set sizes, for standard SVM that ignores the censored observations (Ignore), for censored
SVM (Censored), for censored SVM with variable selection (VS), and for the Cox regression
median with Lasso (Cox). Bayes risk is denoted by a black dashed line. Each box plot is based
on 100 repetitions of the simulation for each size of data set.

Fig 6. Multidimensional Weibull failure time, non-linear proportional hazards (Setting 4):
Distribution of the risk for different data set sizes, for standard SVM that ignores the cen-
sored observations (Ignore), for censored SVM (Censored), for censored SVM with variable
selection (VS), and for the Cox regression median with Lasso (Cox). Bayes risk is denoted
by a black dashed line. Each box plot is based on 100 repetitions of the simulation for each
given data set size.
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Fig 7. Step function median, Weibull censoring time (Setting 5): The true conditional median
(solid blue), the SVM decision function using the Kaplan-Meier estimator for the censoring
(dashed red), the SVM decision function using the Cox estimator for censoring (doted ma-
genta), and the Cox regression median (dot-dashed green) are plotted for samples of size
n = 50, 100, 200, 400 and 800. The censoring percentage is given for each sample size. An
observed failure times is represented by an ×, and an observed censoring time is represented
by an ◦.

sored observations, censored SVM, censored SVM with variable selection, and
Cox regression with variable selection. We performed variable selection for cen-
sored SVM based on recursive feature elimination as in Guyon et al. (2002,
Section 2.6). We performed variable selection for the Cox model using the Lasso
(Tibshirani, 1997)2. Similarly to Settings 1 and 2, we examined the effect of
model misspecification of the censoring mechanism by drawing C from a Weibull
distribution with shape parameter 2 and scale parameter −0.5Z1 + log(1.5) to
ensure 40% censoring. When the proportional hazards assumption holds (Set-
ting 3), SVM performs reasonably well, although the Cox model performs better
as expected. When the proportional hazard assumption fails to hold (Setting 4),
SVM performs better and it seems that the risk of Cox regression converges,
but not to the Bayes risk (see Example 9 for discussion). Both figures show
that variable selection achieves a slightly smaller median risk with the price of
higher variance and that ignoring the censored observations and misspecifying
the censoring model may lead to higher risk.

In the fifth setting, we consider a non-smooth conditional median. We also
investigate the influence of using a misspecified model for the censoring mech-
anism. The covariates Z are generated uniformly on the segment [−1, 1]. The

2For the implementation of Lasso for Cox we used the Glmnet library for Matlab that can
be found at http://web.stanford.edu/~hastie/glmnet_matlab/.

http://web.stanford.edu/~hastie/glmnet_matlab/
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Fig 8. Step function median, Weibull censoring time (Setting 5): Distribution of the risk for
different sizes of data set, for standard SVM that ignores the censored observations (Ignore),
for censored SVM with the Kaplan-Meier estimator for censoring (Misspecified), for censored
SVM with the Cox estimator for censoring (True), and for the Cox regression median (Cox).
The Bayes risk is denoted by a black dashed line. Each box plot is based on 100 repetitions
of the simulation for each size of data set.

failure time is normally distributed with expectation 3 + 31{Z < 0} and vari-
ance 1. Note that the proportional hazards assumption does not hold for the
failure time. The censoring variable C follows the Weibull distribution with
shape parameter 2, and scale parameter −0.5Z + log(6) which results in mean
censoring percentage of 40%. Note that for this model, the censoring is inde-
pendent of the failure time only given the covariate Z (see Assumption (A2)).
Estimation of the censoring distribution using the Kaplan-Meier corresponds to
estimation under a misspecified model. Since the censoring follows the propor-
tional hazards assumption, estimation using the Cox estimator corresponds to
estimation under the true model. We use 5-fold-cross-validation to choose the
regularization constant and the width of the kernel, as in setting 1.

In Figure 7, the conditional median obtained by the censored SVM learn-
ing method using both the misspecified and true model for the censoring, and
by Cox regression, are plotted. The true median is plotted as a reference. In
Figure 8, we compare the risk of the SVM method using both the misspecified
and true model for the censoring. We also examined the effect of ignoring the
censored observations. Both figures show that in general SVM does better than
the Cox model, regardless of the censoring estimation. The difference between
the misspecified and true model for the censoring is small and the correspond-
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ing curves in Figure 7 almost coincide. Figure 8 shows again that there is a
non-negligible price for ignoring the censored observations.

7. Concluding remarks

We studied an SVM framework for right censored data. We proposed a general
censored SVM learning method and showed that it is well defined and measur-
able. We derived finite sample bounds on the deviation from the optimal risk.
We proved risk consistency and computed learning rates. We discussed mis-
specification of the censoring model. Finally, we performed a simulation study
to demonstrate the practical performances of censored SVM method.

We believe that this work illustrates an important approach for applying
support vector machines to right censored data, and to missing data in general.
However, many open questions remain and many possible generalizations exist.
First, we assumed that censoring is independent of failure time given the covari-
ates, and the probability that no censoring occurs is positive given the covariates.
It should be interesting to study the consequences of violation of one or both
assumptions. Second, we have used the inverse-probability-of-censoring weight-
ing to correct the bias induced by censoring. This can be improved, for example,
by using augmented inverse-probability-of-censoring weighting estimators (Tsi-
atis, 2006, Chapter 9). Such estimators were developed for outcome weighted
learning of individual treatment rules using an RKHS framework (Zhao et al.,
2015). It would be worthwhile to investigate how to develop such methods for
SVMs. Third, we discussed only right-censored data and not general missing
mechanisms. We believe that further development of SVM techniques that are
able to better utilize the data and to perform under weaker assumptions and in
more general settings is of great interest.

Appendix A

A.1. Survival function estimators

Since we are interested in estimating the censoring survival function and not
the failure time survival function, some precaution is needed in order to ap-
ply the standard theory that appears in (FH91). For t ∈ [0, τ ], define N(t) =
1{U ≤ t, δ = 0} and Y(t) = 1{U > t}+ 1{U = t, δ = 0}. Note that N(t) is the
counting process for the censoring, and not for the failure events, and Y(t) is
the at-risk process for observing a censoring time. For a cadlag function A on
(0, τ ], define the product integral φ(A)(t) =

∏
0<s≤t(1 + dA(s)) (van der Vaart

and Wellner, 1996). For a real-valued function f , we define f(t−) = lims↗t f(s)
when the limit exists.

Example 10. Independent censoring: Assume that C is independent of both
T and Z. Define

Λ̂(t) =

∫ t

0

PndN(s)

PnY(s)
.
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Then Ĝn(t) = φ(−Λ̂)(t−) is the Kaplan-Meier estimator for G. It can be shown,
similarly to Kosorok (2008, Chapter 12), that Ĝn is a consistent estimator for
the survival function G.

Example 11. The proportional hazards model: Consider the case that the
hazard of C given Z is of the form eZ

′βdΛ for some unknown vector β ∈ R
d

and some continuous unknown nondecreasing function Λ with Λ(0) = 0 and

0 < Λ(τ) < ∞. Let β̂ be the zero of the estimating equation

Φn(β) = Pn

∫ τ

0

(
Z − PnZY(s)eβ

′Z

PnY(s)eβ′Z

)
dN(s) .

Define

Λ̂(t) =

∫ t

0

PndN(s)

PnY(s)eβ̂′Z
.

Then it can be shown, similarly to Kosorok (2008, Chapters 4 and 12), that

Ĝn(t|z) = φ(−eβ̂
′zΛ̂)(t−) is a consistent estimator for survival function G.

A.2. Auxiliary results

The following result is used to prove Theorem 5 and is based on results from SC08.
Since it is not stated as a result there, we state the result and sketch the proof.

Theorem 10. Let L be a loss function and H be an RKHS that satisfies as-
sumptions (B1)–(B3). Fix λ > 0 and η > 0, and let f ∈ H. Then for all
n ≥ 72η, with probability not less than 1− e−η,

(P − Pn)(L ◦
�

f − L ◦ f∗
L,P )

<
17

27

(
λ‖f‖2H + P (L ◦

�

f − L ◦ f∗
L,P ) +

(
72V η

n

) 1
2−ϑ

+ r∗

)

+W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

,

where W > 1 is a constant that depends only on p, M , ϑ, and V , but not on f ,
and where

r∗ = inf
f∈H

λ‖f‖2H +RL,P (
�

f)−R∗
L,P . (17)

Proof. The proof is based on the proofs of Theorems 17.16, 17.20, and 17.23 of
SC08. We now present a sketch of the proof for completeness.

We first note that if a2p > λpn, it follows from (7) that the bound holds for
W ≥ 4B. Thus, we consider the case in which a2p ≤ λpn.

For every function f ∈ H, define the functions hf : Z × T 	→ R as

hf (z, t) = L(z, t, f(z))− L(z, t, f∗
L,P (z)) ,
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for all z, t ∈ Z × T . Define

gf,r =
Ph�

f
− h�

f

λ‖f‖2H +RL,P (
�

f)−R∗
L,P + r

, f ∈ H, r > r∗ .

Note that for every f ∈ H, ‖gf,r‖∞ ≤ 2Br−1. It can be shown (SC08, Eq. 7.43
and the discussion there) that Pg2f,r ≤ V rϑ−2. Using Talagrand’s inequality
(SC08, Theorem 7.5) we obtain

P

(
sup
f∈H

Pngf,r ≤ (1 + γ)P [ sup
f∈H

|Pgf,r|] +
√

2ηV rϑ−2

n
+

(
2

3
+

1

γ

)
2ηB

nr

)
(18)

is greater than or equals to 1−e−η for every fixed γ > 0. Using Assumption (B3),
it can be shown that there is a constant W̃ that depends only on p, M , ϑ, and

V , such that for every r > max{W̃
(

a2p

λpn

) 1
2−p−ϑ+ϑp

, r∗}

P [ sup
f∈H

|Pgf,r|] ≤
8

30
(19)

(see proofs of Theorems 7.20 and 7.23 of SC08, for details). Substituting γ = 1/4
in (18), and using the bound (19), we obtain that with probability of not less
than 1− e−η,

sup
f∈H

Pngf,r ≤ 1

3
+

√
2ηV rϑ−2

n
+

28ηB

3nr
(20)

for all r > max{W̃
(

a2p

λpn

) 1
2−p−ϑ+ϑp

, r∗}.
Using the fact that n ≥ 72η, some algebraic manipulations (see SC08, proof

of Theorem 7.23 for details) yield that for all r ≥
(

72V η
n

)1/(2−ϑ)

√
2ηV rϑ−2

n
≤ 1

6
,

28ηB

3nr
≤ 7

54
. (21)

Fix f ∈ H. Using the definition of gf,r, together with the estimates in (21) for
the probability bound (20), we obtain that for

r = W̃

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

(
72V η

n

)1/(2−ϑ)

+ r∗ ,

the inequality

(P − Pn)(L ◦
�

f − L ◦ f∗
L,P ) <

17

27

(
λ‖f‖2H + P (L ◦

�

f − L ◦ f∗
L,P ) + r

)
holds with probability not less than 1− e−η, and the desired result follows.
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Lemma 11. Let L be a loss function and H be an RKHS that satisfies assump-
tions (B1)–(B3). Let f ∈ H be such that ‖L(z, y, f(z))‖∞ ≤ B. Fix an η > 0,
Then for all n ≥ 8η, with probability not less than 1− e−η,

(Pn − P )(L ◦ f − L ◦ f∗
L,P ) < P (L ◦ f − L ◦ f∗

L,P ) +

(
2V η

n

) 1
2−ϑ

+
4Bη

3n

For proof, see SC08, proof of Theorem 7.2.

A.3. Proof of Theorem 5

Proof. Let Ωn ≡ {infZ Ĝn(τ |Z) > K}. Note that for any event A,

P (A) = 1− P (Ac|Ωn)P (Ωn)− P (Ac|Ωc
n)P (Ωc

n) ≥ 1− P (Ac|Ωn)− P (Ωc
n) .

In this proof we show a bound for the expression λ‖f c
D,λ‖2H+RL,P (

�

f c
D,λ)−R∗

L,P

that given Ωn does not hold with probability not greater than 3e−η holds. By
definition, P (Ωc

n) ≡ PĜn,n
. Hence the bound that we find holds with probability

not less that 1− 3e−η − PĜn,n
.

Note that by the definition of f c
D,λ, for all f0 ∈ H,

λ‖f c
D,λ‖2H +RLn

D,D(
�

f c
D,λ) ≤ λ‖f0‖2H +RLn

D,D(f0),

where RLn
D,D(f) = PnδL(Z, Y (U), f(Z))/Ĝn(U |Z). Hence,

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤λ‖f0‖2H +RLn
D,D(f0)−RLn

D,D(
�

f c
D,λ) +RL,P (

�

f c
D,λ)−R∗

L,P

=
(
λ‖f0‖2H +RL,P (f0)−R∗

L,P

)
+
(
RLn

D,D(f0)−RLG,D(f0)
)

+
(
RLG,D(f0)−RL,P (f0) +RL,P (

�

f c
D,λ)−RLG,D(

�

f c
D,λ)

)
+
(
RLG,D(

�

f c
D,λ)−RLn

D,D(
�

f c
D,λ)

)
≡An +Bn + Cn +Dn ,

(22)

where

RLG,D(f) ≡ PnLG(Z,U, δ, f(Z)) ≡ PnδL(Z, Y (U), f(Z))/G(T |Z) ,

i.e., RLG,D is the empirical loss function with the true censoring distribution
function, and LG(Z,U, δ, f(Z)) ≡ δL(Z, Y (U), f(Z))/G(T |Z).

In the following we will bound the expressions An,Bn, Cn, and Dn.
Bounding An: For every function f ∈ H, define the functions hf : Z×T 	→ R

as
hf (z, t) = LG(z, t, f(z))− LG(z, t, f

∗
L,P (z)) ,

for all z, t ∈ Z × T . Using this notation, we can rewrite An ≡ λ‖f0‖2H + Phf0

since P [LG(Z,U, δ, f(Z))] = P [L(Z,U, f(Z))].
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Bounding Bn: Note that by the definition of f0, ‖L ◦ f0‖∞ ≤ B0. Hence,

|RLG,D(f0)−RLn
D,D(f0)| ≡

∣∣∣∣∣Pn
δL(Z, Y, f0(Z))

G(T |Z)
− Pn

δL(Z, Y, f0(Z))

Ĝn(T |Z)

∣∣∣∣∣
=

∣∣∣∣∣Pn
δL(Z, Y, f0(Z))

G(T |Z)Ĝn(T |Z)

(
Ĝn(T |Z)−G(T |Z)

)∣∣∣∣∣
≤ B0

2K2
Pn|(Ĝn −G)(T |Z)| ,

(23)

where the last inequality follows from condition (A1) and by assuming that Ωn

holds.
Bounding Cn: First, using conditional expectation, we obtain that for every
f ∈ H,

RL,P (f) ≡ P [L(Z, Y, f(Z))] = P

[
P

[
δ

G(T |Z)
L(Z, Y, f(Z))

∣∣∣∣Z, T
]]

= P [LG(Z,U, δ, f(Z)] = RLG,P (f) .

(24)

Therefore, we can rewrite the term Cn as

Cn ≡RLG,D(f0)−RL,P (f0) +RL,P (
�

f c
D,λ)−RLG,D(

�

f c
D,λ)

=
(
RLG,D(f0)−RLG,D(f∗

L,P )
)
−
(
RLG,P (f0)−RLG,P (f

∗
L,P )

)
+
(
RLG,P (

�

f c
D,λ)−RLG,P (f

∗
L,P )

)
−
(
RLG,D(

�

f c
D,λ)−RLG,D(f∗

L,P )
)
,

(25)

where f∗
L,P is the Bayes decision function.

Using this notation of hf defined above, we can rewrite (25) as

Cn ≡ (Pn − P )hf0 + (P − Pn)h�
fc
D,λ

=(Pn − P )(hf0 − h�
f0
) + (Pn − P )h�

f0
+ (P − Pn)h�

fc
D,λ

≡Cn,1 + Cn,2 + Cn,3 .

(26)

Bounding Cn,1: In order to bound Cn,1, we use Bernstein’s inequality (see, for
example, SC08, Theorem 6.12), and hence we first show that it is bounded and

bound its variance. Since LG(z, t, f0(z)) − LG(z, t,
�

f0(z)) ≥ 0, we obtain from
the definition of LG, (7) and the bound on f0 that hf0 − h�

f0
∈ [0, B0/2K]. It

thus follows that

Var(hf0 − h�
f0
) ≡P

[(
(hf0 − h�

f0
)− P (hf0 − h�

f0
)
)2
]

≤P (hf0 − h�
f0
)2 ≤ B0

2K
P (hf0 − h�

f0
) .

Using Bernstein’s inequality for the function hf0 −h�
f0
−P (hf0 −h�

f0
), we obtain

that with probability not less than 1− e−η,
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(Pn − P )(hf0 − h�
f0
) ≤

√
ηB0P (hf0 − h�

f0
)

Kn
+

B0η

3Kn
.

Using
√
ab ≤ a

2 + b
2 , we obtain√
ηB0P (hf0 − h�

f0
)

Kn
≤ P (hf0 − h�

f0
) +

B0η

4Kn
,

which leads to the bound

Cn,1 ≤ P (hf0 − h�
f0
) +

7B0η

12Kn
, (27)

which holds with probability not less than 1− e−η.
Bounding Cn,2: In order to bound Cn,2 we first show that Assumption (B2)
holds also for LG with the constant V̄ = V/2K. Write

P (h2
�
f0
) = P

[(
δ

G(T |Z)
(L(Z, Y,

�

f0(Z))− L(Z, Y, f∗
L,P (Z)))

)2
]

= P

(
P

[(
δ

G(T |Z)
(L(Z, Y,

�

f0(Z))− L(Z, Y, f∗
L,P (Z)))

)2

|T, Z
])

≤ 1

2K
P

[(
L(Z, Y,

�

f0(Z))− L(Z, Y, f∗
L,P (Z))

)2
]

≤ V

2K

(
P
[
L(Z, Y,

�

f(Z))− L(Z, Y, f∗
L,P (Z))

])ϑ

, (28)

where for the first inequality we use E(δ2|T, Z) = G(T |Z), and that G(T ) >

2K; and the last inequality follows from (8). Noting that ‖LG(z, y,
�

f0(z))‖∞ ≤
B/2K, we can apply Lemma 11, and obtain that with probability not less than
1− e−η, for all n ≥ 8η,

Cn,2 ≡ (Pn − P )h�
f0

< Ph�
f0

+

(
2V̄ η

n

) 1
2−ϑ

+
2Bη

3Kn
.

Bounding Cn,3: By Theorem 10, with probability not less than 1 − e−η, for
all n ≥ 72η,

(P − Pn)h�
fc
D,λ

<
17

27

(
λ‖f c

D,λ‖2H + Ph�
fc
D,λ

+

(
72V̄ η

n

) 1
2−ϑ

+ (λ‖f0‖2H + Phf0)

)

+W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

,

where W > 1 is a constant that depends only on p, M , ϑ, and V̄ , and where we
used the fact that r∗ ≤ λ‖f0‖2H + Phf0 where r∗ is defined in (17).
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Bounding Dn: Note that by assumption (B1), ‖L ◦
�

f c
D,λ‖∞ ≤ B. Hence,

similarly to (23),

|RLG,D(
�

f c
D,λ)−RLn

D,D(
�

f c
D,λ)| ≤

B

2K2
Pn|(Ĝn −G)(T |Z)| ,

where the last inequality follows from condition (A1).
Summarizing, we obtain that with probability not less than 1− 3e−η, for all

n ≥ 72η,

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

≤ (λ‖f0‖2H + Phf0) +
B0

2K2
Pn|(Ĝn −G)(T |Z)|+

(
P (hf0 − h�

f0
) +

7B0η

12Kn

)

+

(
Ph�

f0
+

(
2V̄ η

n

) 1
2−ϑ

+
2Bη

3Kn

)

+
17

27

(
λ‖f c

D,λ‖2H + Ph�
fc
D,λ

+

(
72V̄ η

n

) 1
2−ϑ

+ λ‖f0‖2H + Phf0

)

+W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+
B

2K2
Pn|(Ĝn −G)(T |Z)| .

Let Ṽ = max{V̄, (B/(2K))2−ϑ} and n ≥ 72η, then

2Bη

3Kn
=

4

3
· B

2K
· 1

72
· 72η

n
≤ 1

54
Ṽ

1
2−ϑ

(
72η

n

) 1
2−ϑ

.

Hence, using the facts that 6 ≤ 361/(2−ϑ), B0 > B, and that by conditional
expectation (24), RL,P (

�

f c
D,λ)−R∗

L,P ≡ Ph�
fc
D,λ

, we obtain

(1− 17

27
)
(
λ‖f c

D,λ‖2H +RL,P (
�

f c
D,λ)−R∗

L,P

)
≤

(
1 +

17

27

)
λ‖f0‖2H +

(
2 +

17

27

)
Phf0 +

B0

K2
Pn|(Ĝn −G)(T |Z)|

+
7B0η

12Kn
+

36
1

2−ϑ

6

(
2V̄ η

n

) 1
2−ϑ

(29)

+

(
1

54
+

17

27

)(
72V̄ η

n

) 1
2−ϑ

+W

(
a2p

λpn

) 1
2−p−ϑ+ϑp

.

Since

λ‖f c
D,λ‖2H +RL,P (

�

f c
D,λ)−R∗

L,P

< 3

(
1− 17

27

)
(λ‖f c

D,λ‖2H +RL,P (
�

f c
D,λ)−R∗

L,P ) ,

multiplying both sides of (29) and rounding up the constants on the right hand
side we obtain the result.
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Until now we assumed that n ≥ 72η. Assume now that n < 72η. Since we
used the fact that n ≥ 72η only to bound Cn,2 and Cn,3, we obtain that for
all n,

λ‖f c
D,λ‖2H+RL,P (

�

f c
D,λ)−R∗

L,P

≤ (λ‖f0‖2H + Phf0) +
B0

K2
Pn|(Ĝn −G)(T |Z)|

+

(
P (hf0 − h�

f0
) +

7B0η

12Kn

)
+ Cn,2 + Cn,3 .

Recall that Cn,2 + Cn,3 ≡ (P − Pn)(h�
f0

+ h�
fc
D,λ

). For every clipped function
�

f ,

‖LG◦
�

f−LG◦f∗
L,P ‖ ≤ B/(2K). Hence, by the definition of h�

f0
+h�

fc
D,λ

, we obtain

that (P−Pn)(h�
f0
+h�

fc
D,λ

) ≤ 4·(B/2K). Using the fact that B/(2K) ≤ Ṽ 1/(2−ϑ),

we obtain that

(P − Pn)h�
f0

+ h�
fc
D,λ

≤ 4

(
72Ṽ η

n

)1/(2−ϑ)

and thus the result follows also for the case n < 72η.

Supplementary Material

Matlab code
(doi: 10.1214/17-EJS1231SUPP; .zip). Please read the file README.pdf for
details on the files in this folder.
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D. Bitouzé, B. Laurent, and P. Massart. A Dvoretzky-Kiefer-Wolfowitz type
inequality for the Kaplan-Meier estimator. Ann. Inst. H. Poincaré Probab.
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