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Abstract: Different from the standard treatment discovery framework
which is used for finding single treatments for a homogenous group of pa-
tients, personalized medicine involves finding therapies that are tailored to
each individual in a heterogeneous group. In this paper, we propose a new
semiparametric additive single-index model for estimating individualized
treatment strategy. The model assumes a flexible and nonparametric link
function for the interaction between treatment and predictive covariates.
We estimate the rule via monotone B-splines and establish the asymptotic
properties of the estimators. Both simulations and an real data application
demonstrate that the proposed method has a competitive performance.

AMS 2000 subject classifications: Primary 62G05; secondary 62G99.

Keywords and phrases: Personalized medicine, single index model, semi-
parametric inference.

Received February 2016.

364

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1226
mailto:rsong@ncsu.edu
mailto:sluo@ncsu.edu
mailto:dzeng@bios.unc.edu
mailto:hzhang@math.arizona.edu 
mailto:wlu4@ncsu.edu
mailto:zhiguo.li@duke.edu


Single-index model for optimal individualized treatment strategy 365

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
2 Inference procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
3 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
4 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
5 Data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

1. Introduction

In modern clinical researches, the goal to achieve better outcomes as well as
lower cost and burden for individual patients has generated tremendous interest
in personalized medicine. Individualized treatment rules (ITRs) operationalize
personalized medicine as a decision function from patient’s individual biomark-
ers to a recommended treatment and the optimal ITRs should be the one which
maximizes clinical benefit if implemented. Specifically, if we use A to denote
treatment assignment taking values of -1 and 1, X to denote all biomarker and
prognostic information associated with each patient and let Y be the clinical
outcome of interest (assuming large values are desirable), then an individualized
treatment rule (ITR), denoted by d(x), takes a given value x of X and provides
a treatment choice from {−1, 1}. Furthermore, let P d denote the distribution of
(X,A, Y ) and expectation with respect to this distribution by Ed, where the in-
dividualized treatment rule d(x) is used to assign treatments. Define the value
function as V (d) = Ed(Y ). Then an optimal ITR, d0, is a rule that has the
maximal value, i.e., d0 is the maximizer of V (d) over decision rules d.

There has been growing interest in developing valid inference methods for
estimating the optimal ITRs, d0, using clinical trial data. With trial data, it
holds V (d) = E[Y I(A = d(X))/π(A|X)] [15], where π(a|X) is the known
randomization probability of A = a given X, so it is easy to see d0(x) =
sign{E[Y |A = 1, X = x] − E[Y |A = −1, X = x]}, where sign(·) function is
defined as sign(x) = 1 when x > 0, sign(x) = −1 when x < 0. Therefore, most
of the existing methods tend to model E[Y |A = a,X = x] including the interac-
tions between the treatment and the covariates either parametrically or nonpara-
metrically. Such literature include likelihood-based approach [19, 18, 20], para-
metric Q-learning in [1], and machine learning based methods [25]. Alternatively,
one can parametrically model E[Y |A = a,X = x] − E[Y |A = d0(X), X = x]
which is called A-learning as discussed in [14] and [16]. Recently, directly max-
imizing V (d) has been proposed using support vector machine in [26] or via
robust parametric models in Zhang et al. [24]. However, all parametric methods
potentially suffer from model misspecification especially when X is not low-
dimensional and the optimal ITRs depends on high-order interactions among
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X’s. On the other hand, although the nonparametric methods such as machine-
learning methods are flexible, the resulting rules are complicated so may not
be interpretable in practice. The latter often comes with no rigorous inference
procedures as in the parametric methods.

In this paper, we propose a semiparametric single-index model to estimate
the optimal ITRs. Our model retains a flexible and nonparametric formulation
of the treatment-covariate interactions but also yields a simple decision rule
which only depends on a linear combination of X. Specifically, our proposal
assumes the following model between Y and (X,A):

E[Y |X,A] = μ(X) + ψ(βTX)A, (1)

where X is a p-dimensional covariate vector and may contain 1 as the intercept,
βTX is a single index and both μ and ψ are unknown functions. Moreover, ψ
is a monotone increasing function with ψ(0) = 0. The proposed model has the
following advantages in developing individualized treatment strategy. First, it
provides a more flexible interaction between the covariates and the treatment
as compared to the traditional parametric models, in which we allow a fully
nonparametric baseline function of the covariates X, μ(X), and a close-to non-
parametric interaction between the treatment A and the covariates X. Second,
we can easily derive the best treatment strategy as d0 : X −→ sign(ψ(βTX)).
Since ψ is increasing, the resulting rule is practically interpretable. Moreover, if
ψ(0) = 0, the above treatment strategy d0 can be simplified as a simple rule:

d0 : X −→ sign(βTX).

That is, only the sign of a risk score βTX needs to be evaluated for each pa-
tient. As a separate note, single index models have been studied extensively in
literature with a number of inference methods developed, including the aver-
age derivative method [5], the sliced inverse regression [12, 3, 11], the iterative
average derivative method [6] and other related methods [23]. Estimating both
the single index and the link function at the same time has also been studied in
[9, 8, 4]. However, none of these works have considered the single index model
for estimating the optimal ITRs, especially that our model (1) assumes the main
effect of X, μ(X), to be fully nonparametric.

The rest of the paper is organized as follows. In Section 2, we provide a
full inference procedure for the proposed semiparametric single index model.
Extensive simulation studies are presented in Section 3 and a real data analysis
is presented in Section 4, followed by a discussion section.

2. Inference procedure

Note that model (1) remains the same if we replace ψ(x) by ψ(rx) for any
r > 0. Therefore, for identifiability, we further require ‖β‖ = 1 where ‖ · ‖ is the
Euclidean �2-norm inRp. Assume that data are obtained from a randomized trial
with i.i.d observations (Yi, Xi, Ai), i = 1, ..., n. The randomization probability
P (A = a|X) = π(a|X) is known by the trial design.
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To avoid estimating the nonparametric function μ(X) when making inference
for β, we first observe that,

E

[
AY

2π(A|X)
|X
]
= E

[
A

2π(A|X)
E [Y |A,X] |X

]
= E [Y |A = 1, X] /2− E [Y |A = −1, X] /2 = ψ(βTX).

Therefore, a natural estimate of β is obtained by minimizing the least square,
given as

n∑
i=1

{
AiYi

2π(Ai|Xi)
− ψ(βTXi)

}2

,

subject to ‖β‖ = 1. Since ψ is an increasing function, we approximate ψ(x)
using monotone B-spline basis [2, 10],

ψ(x) ≈
Kn+M∑
j=1

ξjNj(x), ξ1 ≤ · · · ≤ ξKn+M ,

where N1(x), ..., NKn+M (x) are B-spline basis, Kn is the number of interior
knots with equal partition in an interval containing βTX and M is B-spline
order, i.e., for cubic B-spline, M = 4. The condition ξ1 ≤ · · · ≤ ξKn+M assures
monoticity of the ψ(·) function [10]. Additionally, we impose an upper bound
Mn for the summation of absolute values of all the B-spline coefficients of ψ(·)
for theoretical consideration. Mn is a constant depending on n and the rate of
Mn is given in Section 3. Thus, the minimization becomes

min
ξ,β

n∑
i=1

⎧⎨⎩ AiYi

2π(Ai|Xi)
−

Kn+M∑
j=1

ξjNj(β
TXi)

⎫⎬⎭
2

,

subject to ‖β‖ = 1, ξ1 ≤ · · · ≤ ξKn+M ,

Kn+M∑
j=1

|ξj | ≤ Mn. (1)

Set d = Kn + M . The objective function in (1) is quadratic in ξ and quite
nonlinear in β. The constraint ‖β‖ = 1 is nonlinear in the elements of β. The
inequality constraint in (1) is linear in ξ since it can be expressed as Bξ ≤ 0,
where ξ = (ξ1, · · · , ξd)T and B is a (d−1)×dmatrix with B(i, i) = 1, B(i, i+1) =
−1 and the rest of its entries being zero. To facilitate the implementation, we
now propose an iterative estimation algorithm to solve (1). In particular, we
iteratively solve β with ξ fixed at their current values, and then solve ξ with β
fixed at their current values, and repeat them until the convergence criterion is
met. The computation procedure can be summarized as the following.

Step 1: Get an initial estimator β̂(0). For example, we can set Nj(β
TX) =

βTX as a linear function in (1) and compute the ordinary least squares
(OLS) estimator for β. Normalize β(0) such that ‖β(0)‖ = 1. Set � = 0.
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Step 2: Given the initial estimates of the index values {Zi = β̂(�)TXi, i =
1, · · · , n}, minimize over ξ by solving the followng quadratic programming
(QP) problem:

min
ξ

Q(ξ) =

n∑
i=1

⎧⎨⎩ AiYi

2π(Ai|Xi)
−

d∑
j=1

ξjNj(Zi)

⎫⎬⎭
2

,

subject to Bξ ≤ 0 and

Kn+M∑
j=1

|ξj | ≤ Mn. (2)

Denote the solution as ξ̂(�).
Step 3: Fix ξ at the current values, minimize

n∑
i=1

⎧⎨⎩ AiYi

2π(Ai|Xi)
−

d∑
j=1

ξ̂
(�)
j Nj(β

TXi)

⎫⎬⎭
2

, s.t. ‖β‖ = 1.

Denote the solution as β̂(�+1). This problem can be solved using the non-
linear least squares (NLS) algorithm.
Step 4: Set � = � + 1. Go to Step 2 and iterate until convergence, i.e.

‖β̂(�) − β̂(�−1)‖ ≤ ε
(
1 + ‖β̂(�−1)‖

)
and ‖ξ̂(�) − ξ̂(�−1)‖ ≤ ε

(
1 + ‖ξ̂(�−1)‖

)
for a small ε > 0, which takes value 1e-3 in our numerical studies.

In our numerical examples, we use the MATLAB’s optimization toolbox: the
function quadprog() for QP in Step 2 and lsqnonlin() for NLS in Step 3. In
this paper, we choose cubic B-spline for all numerical studies and real data
application. Our algorithm usually converges in less than 10 iterations.

Given Kn, we choose to place the interior knots at equally-spaced sample
quantile of the predictor variable, which is βTX in this context. For example,
if there are 4 interior knots, then they would be respectively at the 20th, 40th,
60th, 80th percentile. The boundary knots are naturally chosen as the minimum
and maximum values of the predictor variable. During the iteration, the esti-
mated single index β could change at each step, therefore the knots also change
in the iteration. The number of knots Kn can be tuned with cross-validation.
In general, 5 to 10 knots will be sufficient to have very good results.

3. Asymptotic results

We establish the asymptotic properties of the estimators (β̂n, ψ̂n), including
their consistency under certain metric, the convergence rates, and the asymp-
totic distribution of

√
n(β̂n − β0). We need the following conditions.

(C.1) β0 is assumed to be in the unit ball B of Rp and X has a compact support.
In addition, E(XXT |βT

0 X) is positive definite. and E[X|βT
0 X = x] is kth

continuously differentiable with bounded derivatives for some k > 3.
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(C.2) ψ0 has bounded kth derivative in an open interval containing the support
of βT

0 X for some k > 3; moreover, ψ′
0(0) > 0.

(C.3) E[ψ0(β
T
0 X)|βTX] is continuously differentiable in β and moreover,

E

[
∇E[ψ0(β

T
0 X)|βTX]

∣∣∣⊗2

β=β0

]
> 0.

Under these conditions, we first obtain the consistency and convergence rate
of (β̂n, ψ̂n).
Theorem 1. Under (C.1)–(C.3), we further assumeKn = C1n

γ andMn = C2n
τ

for some positive constants C1, C2 with γ > 0, τ ≥ 0, and 11γ + 9τ ≤ 1, 2τ ≤
(2k − 5)γ. Let 0 < ν < 1/2, then

‖β̂n − β0‖2 + ‖ψ̂n − ψ0‖2L2[a,b]
= op(n

−1+ν) +Op(n
−2kγ).

Furthermore,

‖ψ̂n − ψ0‖W 1,∞[a,b] = op(1),

where W s,∞ is the Sobolev space consisting of functions with bounded
lth derivatives for any l ≤ s. Furthermore, the Sobolev norm is defined as
‖ψ‖W 1,∞[a,b] = maxα≤1 ‖ψ(α)‖L∞[a,b].

The asymptotic distribution of β̂n is stated in the following theorem.
Theorem 2. In addition to (C.1)–(C.3), we assume Kn = C1n

γ and Mn =
C2n

τ for some positive constants C1, C2 with γ > 1/(4k − 4), τ ≥ 0 and

11γ + 9τ ≤ 1, 2τ ≤ (2k − 5)γ. Then
√
n(β̂n − β0) converges in distribution to

a mean-zero normal distribution with covariance Σ−1
1 Σ2Σ

−1
1 , where

Σ1 = E
[
ψ′
0(β

T
0 X)2XXT

]
and

Σ2 = E

{
Var

[
AY

2π(A|X)
| X
]
ψ′
0(β

T
0 X)2XXT

}
.

Based on Theorem 2, a consistent estimator for the asymptotic covariance is
given by Σ̂−1

1 Σ̂2Σ̂
−1
1 in which Σ̂1 and Σ̂2 are given as follows. Then an estimator

for Σ1 is given as

Σ̂1 = n−1
n∑

i=1

ψ̂′
n(β̂

T
nXi)

2XiX
T
i .

Since

Σ2 = E

{[
AY

2π(A|X)
− ψ0(β

T
0 X)

]2
ψ′
0(β

T
0 X)2XXT

}
,

an estimator for Σ2 is given by

Σ̂2 = n−1
n∑

i=1

[
AiYi

2π(Ai|Xi)
− ψ̂n(β̂

T
nXi)

]2
ψ̂′
n(β̂

T
nXi)

2XiX
T
i .
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Under Theorem 1, it is clear that both Σ̂1 and Σ̂2 are consistent estimators
for Σ1 and Σ2 respectively when the sample size converges to infinity. Finally,
we estimate the optimal decision rule as sign(β̂T

nX). Under such a rule, for any
subject, the reward gain of using the optimal rule vs the non-optimal rule is

estimated to be 2Pn

[
|ψ̂n(β̂

T
nX)|

]
.

4. Numerical studies

In this section, we conduct extensive simulations to investigate the empirical
performance of our proposed method. We first use three examples (Examples
I-III) to compare our method with the inverse probability weighted estima-
tor(IPWE), augmented inverse probability weighted estimator(AIPWE) in [24]
and ordinary least square based on minimizing

n∑
i=1

{
AiYi

2π(Ai|Xi)
− βTXi

}2

.

Finally, in Example IV, we investigate the performance of our method under
model misspecification (i.e. when ψ(·) is not monotone).

We consider the model Y = μ(X) + ψ(βTX)A + ε where X is generated
uniformly from [−1, 1]p, A is generated as −1 and 1 with equal probability 0.5
and the noise ε follows a normal distribution with mean 0 and standard deviation
σ = 0.5. The four examples are:

Example I : p = 2, μ(X) = X1X2 +X2
2 , ψ(u) = 2u3 − 1, β0 = 1√

2
(1,−1)T .

Example II : p = 3, μ(X) = X2
1 + 2X1X2, ψ(u) = exp(u)− 1, β0 = 1√

3
(1,−1, 1)T .

Example III : p = 4, μ(X) = X1X2 +X2
3 , ψ(u) = u3 − 1, β0 = 1

2
(1,−1, 1,−1)T .

Example IV : p = 3, μ(X) = X1X2 +X2
3 , ψ(u) = cos(2u) + sin(4u), β0 = 1√

3
(1,−1, 1)T .

To evaluate the estimation performance of the single index coefficient, we report
its bias and the mean squared error MSE(β) = average over replications of ‖β̂−
β0‖2/p. To evaluate the estimation performance of the link function, we report

its mean squared error MSE(ψ)=average over replications of 1
n

∑n
i=1‖ψ̂(β̂TXi)−

ψ(βT
0 Xi)‖2. To evaluate the accuracy of a treatment assignment rule sign(β̂TX),

we calculate the percentage of making correct decisions (PCD), i.e.

1− 1
2n

∑n
i=1 |sign(ψ̂(β̂TXi))−sign(ψ(βT

0 Xi))|. We also study the behavior of the
value function estimates. Based on the estimated rule, the value function can be

estimated as 1
n

∑n
i=1

Yi1(Ai=gi)
P (Ai=gi|Xi)

, where gi is the estimated rule. We compare

the proposed method with [24] in terms of parameter estimates, percentage of
making correct decisions (PCD) and value function estimates.

From Tables 1–3, we observe that our method shows better results compared
with the inverse probability weighted estimator (IPWE) and the augmented in-
verse probability weighted estimator (AIPWE) [24] in terms of smaller bias of
estimated single index coefficient, smaller mean square error of estimated link
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Fig 1. Estimation performance for link function based on mean of 10 replications of Examples
1–4 when n = 500.

function. In most cases, the bias of estimated single index coefficient of our pro-
posed approach is about ten times smaller than the other two approaches. As a
result, our method also makes more correct decisions and gives estimated value
function much closer to its theoretical value. We also note that as sample size
increases, the mean squared error of the single index coefficient and estimated
link function for three methods decreases, the PCD increases and the estimated
value function gets closer to the true value function. However, Table 2 indicates
that the ordinary least square method performs comparably with our method
but gives larger PCD than all the other methods when ψ(0) = 0. This is simply
because that, ψ′ > 0,

sign(Xβ̂ols) = sign(X(XTX)−1XT (ψ(Xβ0) + ε))

= sign(X(XTX)−1XT (ψ′(u)	 (Xβ0) + ε))

= sign(ψ′(u)	 (Xβ0) +X(XTX)−1XT ε)

= sign
(
Xβ0 + (ψ′(u))−1 	

[
X(XTX)−1XT ε

])
.
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Table 1

Estimation and classification results for Example I. PCD denotes percentage of correct
decisions, Val denotes value function estimates based on large sample. We report mean of
estimated single index coefficient biases, mean squared errors of estimated single index
coefficients, mean squared errors of estimated link functions, PCD and Val over 1000

replications with their empirical standard deviations one line below.

Method Bias of (β1, β2) MSE(β) MSE (ψ) PCD Val(1.553)
n = 500

SIM
0.000 0.001 0.001 0.007 0.994 1.552
(0.026) (0.026) (0.001) (0.003) (0.005) (0.003)

LSQ
-0.001 0.002 0.002 1.405 0.598 0.905
(0.046) (0.046) (0.003) (0.085) (0.022) (0.002)

IPWE
-0.018 -0.007 0.015 0.985 1.561
(0.089) (0.084) (0.022) (0.009) (0.070)

AIPWE
-0.011 -0.001 0.015 0.986 1.559
(0.085) (0.084) (0.021) (0.008) (0.069)

n = 1000

SIM
0.001 0.001 0.000 0.004 0.996 1.552
(0.018) (0.018) (0.000) (0.002) (0.003) (0.002)

LSQ
-0.001 0.001 0.001 1.410 0.597 0.903
(0.033) (0.033) (0.002) (0.060) (0.015) (0.005)

IPWE
-0.010 -0.003 0.009 0.989 1.558
(0.069) (0.066) (0.013) (0.006) (0.049)

AIPWE
-0.006 0.001 0.009 0.989 1.557
(0.067) (0.065) (0.013) (0.007) (0.049)

n = 1500

SIM
0.000 0.000 0.000 0.003 0.996 1.551
(0.015) (0.015) (0.000) (0.001) (0.003) (0.001)

LSQ
0.000 0.001 0.001 1.409 0.597 0.902
(0.027) (0.027) (0.001) (0.050) (0.012) (0.007)

IPWE
-0.010 -0.005 0.007 0.990 1.555
(0.059) (0.056) (0.010) (0.005) (0.041)

AIPWE
-0.005 -0.000 0.007 0.990 1.554
(0.057) (0.056) (0.009) (0.006) (0.041)

Table 4 indicates that all the methods are much worse under model misspec-
ification. However, our method is still better compared to IPWE, AIPWE and
the ordinary least square method. We also investigate our proposed inferential
procedure for the single index coefficient β. It shows in Table 5 that, as sample
size increases, the empirical standard error and the mean estimated standard
error are getting closer to each other. For almost all cases, the empirical coverage
rates are very close to the nominal level, as expected.

5. Data application

To further illustrate the performance of our method, we consider its applica-
tion to data from AIDS Clinical Trials Group Protocol 175 (ACTG175). The
complete data contain 2139 HIV-infected subjects with study subjects ran-
domized to four different treatment groups: zidovudine (ZDV) monotherapy,
ZDV + didanosine (ddI), ZDV + zalcitabine and ddI monotherapy. The CD4
count (cells/mm3) at 20 ± 5 weeks post-baseline is chosen as the continuous



Single-index model for optimal individualized treatment strategy 373

Table 2

Estimation and classification results for Example II. Other captions are the same as Table 1.

Method Bias of (β1, β2, β3) MSE(β) MSE (ψ) PCD Val(0.855)
n = 500

SIM
-0.003 0.004 -0.002 0.003 0.017 0.947 0.861
(0.062) (0.063) (0.050) (0.004) (0.008) (0.026) (0.016)

LSQ
-0.002 0.005 -0.002 0.004 0.105 0.968 0.856
(0.064) (0.064) (0.049) (0.004) (0.016) (0.019) (0.018)

IPWE
-0.007 -0.007 -0.047 0.026 0.911 0.907
(0.141) (0.130) (0.127) (0.038) (0.038) (0.067)

AIPWE
-0.004 0.016 -0.020 0.026 0.917 0.903
(0.129) (0.128) (0.115) (0.032) (0.036) (0.067)

n = 1000

SIM
-0.003 0.002 -0.003 0.002 0.010 0.956 0.857
(0.043) (0.045) (0.035) (0.002) (0.004) (0.024) (0.013)

LSQ
-0.004 -0.001 -0.002 0.002 0.103 0.977 0.853
(0.046) (0.045) (0.035) (0.002) (0.011) (0.014) (0.016)

IPWE
-0.013 -0.010 -0.026 0.017 0.928 0.887
(0.112) (0.106) (0.093) (0.025) (0.032) (0.046)

AIPWE
-0.013 -0.001 -0.014 0.017 0.933 0.885
(0.104) (0.104) (0.087) (0.023) (0.030) (0.046)

n = 1500

SIM
-0.001 0.000 -0.002 0.001 0.007 0.965 0.860
(0.035) (0.036) (0.028) (0.001) (0.003) (0.020) (0.009)

LSQ
-0.002 -0.001 -0.003 0.001 0.102 0.981 0.857
(0.037) (0.038) (0.028) (0.001) (0.009) (0.011) (0.010)

IPWE
-0.007 -0.010 -0.026 0.013 0.937 0.882
(0.101) (0.095) (0.081) (0.018) (0.027) (0.038)

AIPWE
-0.005 -0.001 -0.015 0.013 0.943 0.880
(0.090) (0.088) (0.076) (0.015) (0.024) (0.038)

response Y , where large values are desired. Among all subjects, 524 subjects
received the treatments ZDV + didanosine (ddI) and 522 subjects received the
treatment ZDV + zalcitabine. For illustration purpose, we consider these two
group of patients with the goal to find their individualized optimal treatment
rules. We use A = 1 to denote treatment ZDV + zalcitabine and A = −1 to
denote treatment ZDV + didanosine (ddI). Besides the treatment indicator, we
also include two covariates: age and homosexual activity (in short as homo),
which are selected as important covariates in [13].

We apply the proposed method to estimate the optimal treatment and per-
form statistical inference for the corresponding parameters. The estimates for
the single index coefficients are 0.902, -0.036, and 0.430 respectively and the
estimated variance of the single index coefficients are 0.2232, 0.0004 and 0.0984,
respectively. The optimal treatment rule is sign(0.902-0.036×age+0.430×homo).
That is, if 0.902-0.036×age+0.430×homo ≥ 0, the optimal treatment for this
patient is ZDV + zalcitabine, otherwise, the optimal treatment is ZDV + didano-
sine(ddI). In other words, for a patient with homo = 0, the optimal treatment
A = −1 if age > 25.2 and the optimal treatment A = 1 otherwise; while for a
patient with homo = 1, the optimal treatment A = −1 if age > 37.2 and the op-
timal treatment A = 1 otherwise. We note that the age of study subjects ranges
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Table 3

Estimation and classification results for Example III. Other captions are the same as
Table 1.

Method Bias of (β1, β2, β3, β4) MSE(β) MSE (ψ) PCD Val(1.403)
n = 500

SIM
-0.004 0.003 -0.001 0.001 0.002 0.010 0.968 1.407
(0.049) (0.047) (0.049) (0.044) (0.002) (0.005) (0.005) (0.003)

LSQ
-0.010 0.012 -0.010 0.004 0.009 1.135 0.547 0.648
(0.097) (0.092) (0.093) (0.094) (0.007) (0.043) (0.021) (0.006)

IPWE
-0.044 0.031 0.016 0.009 0.022 0.983 1.420
(0.132) (0.135) (0.126) (0.117) (0.030) (0.008) (0.057)

AIPWE
-0.025 0.019 -0.002 0.019 0.022 0.983 1.418
(0.126) (0.126) (0.129) (0.121) (0.028) (0.008) (0.056)

n = 1000

SIM
0.000 0.000 -0.002 0.002 0.001 0.005 0.995 1.402
(0.033) (0.033) (0.034) (0.029) (0.001) (0.002) (0.003) (0.001)

LSQ
-0.005 0.005 -0.003 0.005 0.005 1.136 0.544 0.635
(0.067) (0.069) (0.065) (0.067) (0.004) (0.031) (0.016) (0.004)

IPWE
-0.024 0.022 0.016 0.012 0.014 0.987 1.411
(0.107) (0.102) (0.095) (0.096) (0.020) (0.006) (0.040)

AIPWE
-0.014 0.013 0.001 0.013 0.014 0.987 1.410
(0.100) (0.099) (0.098) (0.096) (0.018) (0.006) (0.040)

n = 1500

SIM
0.000 0.001 -0.001 0.001 0.001 0.004 0.996 1.402
(0.028) (0.026) (0.029) (0.024) (0.001) (0.002) (0.002) (0.002)

LSQ
-0.002 0.005 -0.003 0.001 0.003 1.137 0.543 0.633
(0.053) (0.054) (0.055) (0.053) (0.002) (0.025) (0.013) (0.005)

IPWE
-0.018 0.012 0.009 0.010 0.010 0.989 1.410
(0.093) (0.091) (0.086) (0.078) (0.014) (0.005) (0.033)

AIPWE
-0.009 0.008 -0.003 0.009 0.010 0.989 1.409
(0.086) (0.086) (0.088) (0.080) (0.013) (0.005) (0.033)

from 12 to 70. According to the estimated optimal rule, 565 out of 1046 patients
(54.02%) in this subset should be assigned to treatment ZDV+didanosine (ddI).
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Table 4

Estimation and classification results for Example IV. Other captions are the same as
Table 1.

Method Bias of (β1, β2, β3) MSE(β) MSE (ψ) PCD Val(1.143)
n = 500

SIM
-0.051 0.048 -0.034 0.051 0.564 0.777 0.905
(0.243) (0.231) (0.188) (0.158) (0.085) (0.051) (0.143)

LSQ
-0.090 0.118 -0.085 0.113 1.192 0.616 0.606
(0.329) (0.330) (0.303) (0.128) (0.068) (0.053) (0.051)

IPWE
-1.109 1.106 -1.127 0.446 0.738 1.029
(0.208) (0.213) (0.217) (0.129) (0.023) (0.069)

AIPWE
-1.120 1.117 -1.133 0.446 0.738 1.027
(0.186) (0.187) (0.189) (0.119) (0.023) (0.069)

n = 1000

SIM
-0.005 0.003 -0.007 0.006 0.554 0.775 0.906
(0.080) (0.055) (0.089) (0.055) (0.046) (0.024) (0.050)

LSQ
-0.051 0.058 -0.046 0.006 1.200 0.635 0.649
(0.239) (0.240) (0.239) (0.066) (0.049) (0.038) (0.038)

IPWE
-1.141 1.138 -1.154 0.454 0.740 1.024
(0.107) (0.109) (0.109) (0.088) (0.016) (0.049)

AIPWE
-1.146 1.142 -1.150 0.454 0.740 1.023
(0.100) (0.101) (0.102) (0.081) (0.015) (0.049)

n = 1500

SIM
-0.002 0.000 0.000 0.001 0.546 0.802 0.908
(0.011) (0.012) (0.012) (0.000) (0.011) (0.007) (0.004)

LSQ
-0.043 0.022 -0.036 0.039 1.199 0.645 0.674
(0.193) (0.194) (0.195) (0.041) (0.042) (0.027) (0.025)

IPWE
-1.148 1.153 -1.155 0.444 0.740 1.022
(0.057) (0.059) (0.055) (0.070) (0.012) (0.042)

AIPWE
-1.149 1.150 -1.153 0.444 0.741 1.021
(0.066) (0.067) (0.067) (0.065) (0.013) (0.042)

6. Discussion

In this paper, we proposed a novel semiparametric single-index model for in-
dividualized treatment selection. Our model plays an important role as a com-
promise between parametric models and nonparametric models [24]. The de-
cision rule based on our method is a simple linear combination of covariates.
We provide statistical inference for this rule. The asymptotic properties for the
proposed method are established. The proposed method demonstrates superior
numerical behavior in terms of smaller bias and means square error. Based on
the estimated rule, our method also provides more precise decisions than existing
methods and gives more precise value function estimates.

In many clinical studies, the state space is often of very high dimension. To
develop optimal individualized treatment rules in this case, it will be important
to develop simultaneous variable selection and treatment rule estimation. Vari-
able selection techniques such as penalized regression and variable screening can
be nested into our semiparametric single index modeling framework as powerful
tools to develop optimal individualized treatment rules.

In our current procedure, we assume the propensity score π(A|X) is known.
In observational studies, the propensity scores are often unknown. For such
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Table 5

Inference for the single index parameters of Examples I–III. std1: empirical standard
deviation, std2: mean estimated standard deviation, cover: empirical coverage rate of 95%

confidence intervals.

Example I
n = 500 n = 1000 n = 1500

bias std1 std2 cover bias std1 std2 cover bias std1 std2 cover
β1 0.000 0.026 0.026 0.958 0.001 0.018 0.019 0.959 0.000 0.015 0.015 0.956
β2 0.001 0.026 0.028 0.971 0.001 0.018 0.020 0.968 0.000 0.015 0.016 0.966

Example II
n = 500 n = 1000 n = 1500

bias std1 std2 cover bias std1 std2 cover bias std1 std2 cover
β1 -0.003 0.062 0.066 0.961 -0.003 0.043 0.047 0.960 -0.001 0.035 0.039 0.968
β2 0.004 0.063 0.062 0.938 -0.002 0.045 0.045 0.957 0.000 0.036 0.037 0.958
β3 -0.002 0.050 0.049 0.928 -0.003 0.035 0.035 0.949 -0.002 0.028 0.028 0.945

Example III
n = 500 n = 1000 n = 1500

bias std1 std2 cover bias std1 std2 cover bias std1 std2 cover
β1 -0.004 0.049 0.050 0.949 0.000 0.033 0.037 0.962 0.000 0.028 0.030 0.965
β2 0.003 0.047 0.050 0.951 0.000 0.033 0.036 0.959 0.001 0.026 0.030 0.974
β3 -0.001 0.049 0.046 0.937 -0.002 0.034 0.033 0.943 -0.001 0.029 0.027 0.932
β4 0.001 0.044 0.041 0.928 0.002 0.029 0.029 0.950 0.001 0.024 0.024 0.952

observational data, we can estimate π(A|X) via logistic regression and plug-in
the estimated propensity score funtion π̂(A|X) into the optimization equation
(1). It is beyond the scope of the current work and is an interesting topic for
future study.

Appendix

Denote Z = (A,X, Y ) and θ = (β, ψ). Let Pn denote the empirical measure
based on Z1 = (A1, X1, Y1), . . . , Zn = (An, Xn, Yn) and P denote its expecta-
tion. Define

�(Z; θ) = �(A,X, Y ;β, ψ) =

{
AY

2π(A|X)
− ψ(βTX)

}2

.

Then θ̂n = (β̂n, ψ̂n) minimizes Pn�(Z; θ) over Θn = B ×Ψn where

Ψn =
{
ψ(t) =

Kn+M∑
j=1

ξjNj(t) : ξ1 ≤ ξ2 ≤ · · · ≤ ξKn+M ,

Kn+M∑
j=1

|ξj | ≤ Mn

}
.

Finally, let [a, b] be a finite interval containing all βTx for β ∈ B and x in the
support of X.

Proof of Theorem 1

Since β̂n is bounded, by choosing a subsequence, we assume β̂n converges almost
surely to a random variable β∗. Clearly ‖β∗‖ = 1. Take ψ̃n as the projection of
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ψ0 on Ψn. According to [17], it satisfies that

‖ψ̃n − ψ0‖W 1,∞[a,b] ≤ O(K−k+1
n )

and
‖ψ̃n − ψ0‖L∞[a,b] ≤ O(K−k

n ).

RecallW 1,∞ is the Sobolev norm defined in the space containing all the functions
whose derivatives are essentially bounded. Since θ̂n = (β̂n, ψ̂n) is the minimizer
of Pn�(Z; θ) over Θn = B ×Ψn, we have

Pn�(Z; β̂n, ψ̂n) ≤ Pn�(Z;β0, ψ̃n),

we further obtain

n−1/2Gn

{
�(Z; β̂n, ψ̂n)− �(Z;β0, ψ̃n)

}
≤ −P

{
�(Z; β̂n, ψ̂n)− �(Z;β0, ψ̃n)

}
(3)

where Gn denotes the empirical process
√
n(Pn − P ). We then consider the

following class of functions:

Hn =
{
ψ(βTX) : (β, ψ) ∈ Θn

}
Since β ∈ B the unit ball in Rp, we can construct a ε-net for B, β1, β2, . . . , βK

with K = O(1/εp), such that for any β ∈ B, there is an s such that |βTX −
βT
s X| ≤ ε. Furthermore, for any (β, ψ) ∈ Θn, we have |ψ′(βTX)| ≤ O(MnKn),

so the ε-bracket covering number for Hn is of order exp {O(MnKn/ε)} /εp
(Corollary 2.7.2, van der Vaart and Wellner [22]). Consequently, another class
of functions, which is defined as

Fn =
{
�(Z;β, ψ)− �(Z;β0, ψ̃n) : (β, ψ) ∈ Θn

}
has the bracket covering number of the order

N[ ](ε,Fn, L2(P )) ≤ O (exp {O(MnKn/ε)} /εp) .

Note that the L2(P )-norm of the envelope function of Fn is bounded above by
O(M2

n) since |ψ(βTX)| ≤ O(Mn). According to Lemma 19.38 of [21], we obtain
that

E∗
P ‖Gn‖Fn � M2

n

∫ 1

0

√
logN[ ](ε,Fn, L2(P ))dε ≤ O(

√
KnM5

n).

This implies that the left-hand size of (3) is bounded by O(
√

KnM5
n/n). Thus

we have

P
{
�(Z; β̂n, ψ̂n)− �(Z;β0, ψ̃n)

}
≤ Op(

√
KnM5

n/n).

We further have
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E

[{
ψ̂n(β̂

T
nX)− ψ0(β

T
0 X)
}2]

= P
{
�(Z; β̂n, ψ̂n)− �(Z;β0, ψ0)

}
≤ Op(

√
KnM5

n/n) +O(K−2k
n ). (4)

Note that

E

[{
ψ̂n(β̂

T
nX)− ψ0(β

T
0 X)
}2]

= E

[{
ψ̂n(β̂

T
nX)− E[ψ0(β

T
0 X)|β̂T

nX]
}2]

+ E

[{
E[ψ0(β

T
0 X)|β̂T

nX]− ψ0(β
T
0 X)
}2]

.

(5)

We have

E

[{
E[ψ0(β

T
0 X)|β̂T

nX]− ψ0(β
T
0 X)
}2]

≤ Op(
√

KnM5
n/n) +O(K−2k

n ). (6)

Following the continuity of E[ψ0(β
T
0 X)|βTX] and the dominate convergence

theorem, we immediately obtain

E[ψ0(β
T
0 X)|β∗TX] = ψ0(β

T
0 X).

Differentiate both sides with respect to X and evaluate at one point x0 in its
support satisfying ψ′

0(β
T
0 x0) > 0. Then we conclude that β∗ is proportional to

β0. Therefore, β
∗ = β0. We reuse inequality (6) and by the mean value and the

condition

E[∇E[ψ0(β
T
0 X)|βTX]

∣∣∣⊗2

β=β0

] > 0,

we thus have

‖β̂n − β0‖2 ≤ Op(
√
KnM5

n/n) +O(K−2k
n ). (7)

We reuse (4) and recall |ψ̂′| ≤ O(KnMn), it then gives

E

[{
ψ̂n(β

T
0 X)− ψ0(β

T
0 X)
}2]

≤ K2
nM

2
n[Op(

√
KnM5

n/n) +O(K−2k
n )].

This further gives

E

[{
ψ̂n(β

T
0 X)− ψ̃n(β

T
0 X)
}2]

≤ K2
nM

2
n[Op(

√
KnM5

n/n) +O(K−2k
n )].

Finally, by the fact that the L2-norm between two functions inΨn is bounded
from below by the Euclidean norm of the corresponding coefficient vectors sub-
ject to a constant ([2], p. 155), we have

Kn+M∑
j=1

|ξ̂j − ξ̃j |2 ≤ K2
nM

2
n[Op(

√
KnM5

n/n) +O(K−2k
n )].
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Hence, from the Cauchy-Schwartz inequality, we obtain

Kn+M∑
j=1

|ξ̂j − ξ̃j | ≤
√
K3

nM
2
n[Op(

√
KnM5

n/n) +O(K−2k
n )]. (8)

which indicates that

‖ψ̂n − ψ0‖L∞[a,b] ≤
√

K3
nM

2
n[Op(

√
KnM5

n/n) +O(K−2k
n )] +O(K−k

n ),

which is op(1) by the choice of Kn and Mn. The consistency of ψ̂n follows.
Furthermore,

‖ψ̂n−ψ̃n‖W 1,∞[a,b] ≤ Kn

Kn+M∑
j=1

|ξ̂j−ξ̃j | ≤
√
K5

nM
2
n[Op(

√
KnM5

n/n) +O(K−2k
n )],

which is bounded by the choice of Kn and Mn. It shows that ψ̂n’s derivative is
bounded.

Now we are going to improve the convergence rate of θ̂n = (β̂n, ψ̂n). Since we

have shown the consistency of θ̂n = (β̂n, ψ̂n), similar to the proof of convergence

rate in [7], we may also restrict ψ̂n to the following class of functions:

Ψc
n =

⎧⎨⎩ψ(x) =

Kn+M∑
j=1

ξjNj(x) : ξ1 ≤ ξ2 ≤ · · · ≤ ξKn+M , ‖ψ‖L∞[a,b] ≤ c

⎫⎬⎭
where c is a large positive constant.

Let’s first re-examine equation (3). For the left-hand side of (3), since{
βTX : β ∈ B

}
is a VC-class, by Lemma 2.6.19 of [22],

F ≡
{
ψ(βTX) : β ∈ B, ‖ψ‖L∞[a,b] ≤ c

}
is VC-major. By Theorem 2.6.9 of [22], this class has a uniform entropy bounded
by

log sup
Q

N(ε,F , L2(Q)) ≤ c1ε
−c2 ,

where both c1 and c2 are constants. This gives that the left-hand side of (3) is
Op(n

−1/2). The right hand side of (3) is bounded from above by

−P
[
�(Z; θ̂n)− �(Z; θ0)

]
+ P
[
�(Z; θ̃n)− �(Z; θ0)

]
= −P

[
(ψ̂n(β̂

T
nX)− ψ0(β0

TX))2
]
+O(K−2k

n ).

Therefore, it gives

P
[
(ψ̂n(β̂

T
nX)− ψ0(β0

TX))2
]
≤ Op(n

−1/2) +O(K−2k
n ). (9)
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From equation (5), we again have

E

[{
E[ψ0(β

T
0 X)|β̂T

nX]− ψ0(β
T
0 X)
}2]

≤ Op(n
−1/2) +O(K−2k

n ). (10)

By the consistency of β̂n and the condition

E[∇E[ψ0(β
T
0 X)|βTX]

∣∣∣⊗2

β=β0

] > 0,

we thus have the improved convergence rate for β̂n:

‖β̂n − β0‖2 ≤ Op(n
−1/2) +O(K−2k

n ). (11)

Combining with (9) but since now ψ̂′
n(x) is bounded, we obtain

E

[{
ψ̂n(β

T
0 X)− ψ̃n(β

T
0 X)
}2]

≤ Op(n
−1/2) +O(K−2k

n ) = Op(n
−1/2). (12)

We can further improve the rate in (12). To see this, we note that from (11)
and (12), in the left-hand side of (3), for a fixed ν ∈ (0, 1/2),

n1/2−ν
[
�(Z; β̂n, ψ̂n)− �(Z;β0, ψ̃n)

]
converges to zero in L2(P )-norm and with probability close to one, it belongs
to a class {

n1/2−ν
[
�(Z;β, ψ)− �(Z;β0, ψ̃n)

]
:

‖β − β0‖2 + ‖ψ − ψ̃n‖L2(PX) ≤ Mn−1/2
}

for a large M . This class satisfies conditions in Theorem 2.11.22 of [22]. Thus,
the left-hand side of (3) is equal to op(n

−1+ν). Consequently, we can improve
inequality (11) and (12) to

‖β̂ − β0‖2 + ‖ψ̂n − ψ0‖2L2(PX) ≤ op(n
−1+ν) +O(K−2k

n ). (13)

Correspondingly, inequality (8) can be improved to

Kn+M∑
j=1

|ξ̂j − ξ̃j | ≤
√

Kn{op(n−1+ν) +O(K−2k
n )}. (14)

This immediately gives

‖ψ̂n − ψ̃n‖W 1,∞[a,b] ≤ Kn

√
Kn{op(n−1+ν) +O(K−2k

n )}

which gives

‖ψ̂n − ψ0‖W 1,∞[a,b] ≤ op(K
3/2
n n−1/2+ν/2) +Op(K

−k+3/2
n ) (15)

Theorem 1 then holds if we set 0 < ν < min(1− 3γ, 1/2).
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Proof of Theorem 2

We set 0 < ν < min(1/2− 2γ, 1− 5γ). First, inequality (14) gives

‖ψ̂n − ψ̃n‖W 2,∞[a,b] ≤ K2
n

√
Kn{op(n−1+ν) +O(K−2k

n )}.

Thus, from condition on Kn, ψ̂
′′
n(x) is uniformly bounded.

Since (β̂n, ψ̂n) are the minimum argument of Pnl(A,X, Y ;β, ψ) in B × Ψn,
it holds

Pn

[
Xψ̂′

n(β̂
T
nX)

{
AY

2π(A|X)
− ψ̂n(β̂

T
nX)

}]
= 0.

Thus, we obtain

√
n(Pn − P )

[
Xψ̂′

n(β̂
T
nX)

{
AY

2π(A|X)
− ψ̂n(β̂

T
nX)

}]
= −

√
nP

[
Xψ̂′

n(β̂
T
nX)

{
AY

2π(A|X)
− ψ̂n(β̂

T
nX)

}]
. (16)

For the left-hand side of (16), we note that

Xψ̂′
n(β̂

T
nX)

{
AY

2π(A|X)
− ψ̂n(β̂

T
nX)

}
belongs to a P-Donsker class because

{
βTX : β ∈ B

}
is a VC class and both ψ̂n

and ψ̂′
n are Lipschitz continuous. Moreover, this function converges in L2(P )-

norm to

Xψ′
0(β

T
0 X)

{
AY

2π(A|X)
− ψ0(β

T
0 X)

}
.

Thus, the left-hand side of (16) is equivalent to

√
n(Pn − P )

[
Xψ′

0(β
T
0 X)

{
AY

2π(A|X)
− ψ0(β

T
0 X)

}]
+ op(1).

Note

−
√
nP

[
Xψ̂′

n(β̂
T
nX)

{
AY

2π(A|X)
− ψ0(β

T
0 X)

}]
= 0.

We further expand the right-hand side of (16) to obtain

√
nP
[
Xψ̂′

n(β̂
T
nX)

{
ψ̂′
n(β

T
0 X)XT (β̂n − β0) + (ψ̂n(β

T
0 X)− ψ0(β

T
0 X))

}]
+O(

√
n‖β̂n − β0‖2)

We then replace Xψ̂′
n(β̂

T
nX) by Xψ′

0(β
T
0 X). Due to the boundness of ψ̂′′

n, we
obtain that the right-hand side of (16) is equivalent to
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√
nP
[
Xψ′

0(β
T
0 X)

{
ψ̂′
n(β

T
0 X)XT (β̂n − β0) + (ψ̂n(β

T
0 X)− ψ0(β

T
0 X))

}]
+O(

√
n‖β̂n − β0‖2) +O(

√
n‖ψ̂n − ψ0‖2L2(PX)) +O(

√
n‖ψ̂′

n − ψ′
0‖2L2(PX)).

From the convergence rates of (β̂n, ψ̂n, ψ̂
′
n) in (13) and (15), we finally conclude

that the right-hand side of (16) is equal to

√
nP
[
Xψ′

0(β
T
0 X)

{
ψ̂′
n(β

T
0 X)XT (β̂n − β0) + (ψ̂n(β

T
0 X)− ψ0(β

T
0 X))

}]
+
√
nop(n

−1+ν) +
√
nO(K−2k

n ) +
√
nop(K

2
nn

−1+ν) +
√
nO(K−2k+2

n ).

Furthermore, by the choice of Kn, the above expression is equal to

√
nP
[
ψ′
0(β

T
0 X)2XXT

]
(β̂n − β0) + op(1).

Combine these results so it holds

−
√
n(Pn − P )

[
Xψ′

0(β
T
0 X)

{
AY

2π(A|X)
− ψ0(β

T
0 X)

}]
+ op(1)

=
√
nP
[
ψ′
0(β

T
0 X)2XXT

]
(β̂n − β0).

Finally, we note

P
[
ψ′
0(β

T
0 X)2XXT

]
= E

{
ψ′
0(β

T
0 X)2E(XXT |βT

0 X)
}

is non-singular. The asymptotic normality of β̂n thus follows. Moreover, the
asymptotic covariance of

√
n(β̂ − β0) is given by Σ−1

1 Σ2Σ
−1
1 .
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