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Abstract

Following Talagrand’s concentration results for permutations picked uniformly at
random from a symmetric group [27], Luczak and McDiarmid have generalized it to
more general groups of permutations which act suitably ‘locally’. Here we extend
their results by setting transport-entropy inequalities on these permutations groups.
Talagrand and Luczak-Mc-Diarmid concentration properties are consequences of
these inequalities. The results are also generalised to a larger class of measures
including Ewens distributions of arbitrary parameter θ on the symmetric group. By
projection, we derive transport-entropy inequalities for the uniform law on the slice of
the discrete hypercube and more generally for the multinomial law. These results are
new examples, in discrete setting, of weak transport-entropy inequalities introduced
in [7], that contribute to a better understanding of the concentration properties of
measures on permutations groups. One typical application is deviation bounds for the
so-called configuration functions, such as the number of cycles of given lenght in the
cycle decomposition of a random permutation.
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1 Introduction

Let Sn denote the symmetric group of permutations acting on a set Ω of cardinality n,
and µo denote the uniform law on Sn, µo(σ) := 1

n! , σ ∈ Sn. A seminal concentration result
on Sn obtained by Maurey is the following.

Theorem 1.1. [16] Let dH be the Hamming distance on the symmetric group, for all
σ, τ ∈ Sn,

dH(σ, τ) :=
∑
i∈Ω

1σ(i) 6=τ(i).
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Transport-entropy inequalities on groups of permutations

Then for any subset A ⊂ Sn such that µo(A) ≥ 1/2, and for all t ≥ 0, one has

µo(At) ≥ 1− 2e−
t2

64n ,

where At := {y ∈ Sn, dH(x,A) ≤ t}.
Milman and Schechtman [19] generalized this result to some groups whose distance

is invariant by translation. For example, in the above result we may replace (up to
constants) the Hamming distance by the transposition distance dT (σ, τ) that corresponds
to the minimal number of transpositions t1, ..., tk such that σt1 · · · tk = τ . The distances
dT and dH are comparable,

1

2
dH(σ, τ) ≤ dT (σ, τ) ≤ dH(σ, τ)− 1, ∀σ 6= τ.

(We refer to [4] for comments about these comparison inequalities). Let us also observe
that Theorem 1.1 can be also recover from the transportation cost inequality approach
of Theorem 1 of [15].

A few years later, a stronger concentration property in terms of dependence in the
parameter n, has been settled by Talagrand using the so-called “convex-hull” method
[27] (see also [12]). This property implies Maurey’s result with a slightly worse constant.
Let us recall some notations from [27]. For each A ⊂ Sn and σ ∈ Sn, let V (σ,A) ⊂ RΩ

be the set of vectors z = (zj)j∈Ω ∈ RΩ with zj := 1σ(j)6=y(j) for y ∈ A. Let conv(V (σ,A))

denote the convex hull of V (σ,A) in RΩ,

V (σ,A) :=

ß
x = (xj)j∈Ω,∃p ∈ P(A),∀j ∈ Ω, xj =

∫
1σ(j) 6=y(j)dp(y)

™
,

where P(A) denotes the set of probability measures on A. Talagrand introduced the
quantity

f(σ,A) := inf{‖x‖22;x ∈ conv(V (σ,A))}.

with ‖x‖22 :=
∑
i∈Ω x

2
i , that measures the distance from σ to the subset A.

Theorem 1.2. [27] For any subset A ⊂ Sn,∫
Sn

ef(σ,A)/16dµo(σ) ≤ 1

µo(A)
.

Maurey’s concentration result easily follows by observing that

f(σ,A) ≥ 1

n

(
inf

{∑
i∈Ω

xi;x ∈ conv(V (σ,A))

})2

=
1

n
d2
H(σ,A)

and applying Tchebychev inequality with usual optimization arguments.

Talagrand’s result has been first extended to the uniform probability measure on
product of symmetric groups by McDiarmid [18], and then further by Luczak and
McDiarmid to cover more general permutation groups which act suitably “locally” [13].

For any finite subset A, let #A denote the cardinality of A. For any σ ∈ Sn, the
support of σ, denoted by supp(σ), is the set {i ∈ Ω, σ(i) 6= i} and the degree of σ,
denoted by deg(σ), is the cardinality of supp(σ), deg(σ) := # supp(σ).

By definition, according to [13], a group of permutations G is `-local, ` ∈ {2, . . . , n},
if for any σ ∈ G and any i, j ∈ Ω with σ(i) = j, there exists τ ∈ G such that supp(τ) ⊂
supp(σ), deg(τ) ≤ ` and τ(i) = j.
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The orbit of an element j ∈ Ω, denoted by orb(j), is the set of elements in Ω connected
to j by a permutation of G,

orb(j) :=
{
σ(j), σ ∈ G

}
.

The set of orbits provides a partition of G.
As explained in [13], any 2-local group is a direct product of symmetric groups on its

orbits, the alternating group (consisting of even permutations) is 3-local, and any 3-local
group is a direct product of symmetric or alternating groups on its orbits.

In the present paper, the concentration result by Luczak-McDiarmid and Talagrand is
a consequence of a weak transport-entropy inequality satisfied by the uniform law on G,
µo. We also prove weaker types of transport entropy inequalities. Moreover we extend
the results to a larger class of probability measures on G, denoted byM.

For a better comprehension of the class of measuresM, let us first consider the case
of the symmetric group Sn on [n] := {1, . . . , n}. Let (i, j) denote the transposition in Sn
that exchanges the elements i and j in [n]. It follows by induction that the map

{1, 2} × {1, 2, 3} × · · · × {1, . . . , n} → Sn
U : i2, i3, . . . , in 7→ (i2, 2)(i3, 3) · · · (in, n),

is one to one.
The set of measures M consists of probability measures on Sn which are pushed

forward by the map U of product probability measures on {1, 2}×{1, 2, 3}×· · ·×{1, . . . , n},

M :=
{
U#ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂j ∈ P([j]), ∀j ∈ {2, . . . , n}

}
, (1.1)

where by definition U#ν̂(C) = ν̂(U−1(C)) for any subset C in Sn.
The uniform measure µo on Sn belongs to the set M since µo = U#µ̂ with µ̂ =

µ̂2 ⊗ · · · ⊗ µ̂n, where for each i, µ̂i denotes the uniform law on [i].
The Ewens distribution of parameter θ > 0, denoted by µθ, is also an example of

measure ofM. Indeed, it is well known (see [2, Chapter 5], [10]) that µθ = U#µ̂θ with
µ̂θ = µ̂θ2 ⊗ · · · ⊗ µ̂θn, where for any j ∈ {2, . . . , n}, the measure µ̂θj ∈ P([j]) is given by

µ̂θj (j) =
θ

θ + j − 1
, , µ̂θj (1) = · · · = µ̂θj (j − 1) =

1

θ + j − 1
.

This definition provides an easy algorithm for simulating a random permutation with
law µθ. This procedure is known as a Chinese restaurant process (see [2, Chapter 2],
[23]).

Let us observe that the uniform distribution µo corresponds to the Ewens distribution
with parameter 1, µ1.

The Ewens distribution is also given by the following expression (see [2, Chapter 5]),

µθ(σ) :=
θ|σ|

θ(n)
, σ ∈ Sn, (1.2)

where |σ| denotes the number of cycles in the cycle decomposition of σ and θ(n) is the
Pochhammer symbol defined by

θ(n) :=
Γ(θ + n)

Γ(θ)
, with Γ(θ) :=

∫ +∞

0

sθ−1e−sds.

Let us now construct the class of measuresM for any group G of permutations. To
clarify the notations, the elements of Ω are labelled with integers, Ω = [n]. Let Gn := G

and for any j ∈ [n− 1], let Gj denotes the subgroup of G defined by

Gj := {σ ∈ G, σ(j + 1) = j + 1, . . . , σ(n) = n} ,
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We denote by Oj the orbit of j in Gj ,

Oj := {σ(j), σ ∈ Gj} .

Let us observe that {j} ⊂ Oj ⊂ [j].

Definition 1.3. Let G be a group of permutations. A family T = (tij ,j) of permutations
of G, indexed by j ∈ {2, . . . , n} and ij ∈ Oj , is called “`-local base of G” if for every
j ∈ {2, . . . , n}, tj,j := id, for every ij 6= j, tij ,j ∈ Gj and

tij ,j(ij) = j, and deg(tijj) ≤ `.

Lemma 1.4. Let T = (tij ,j) be a `-local base of a group of permutations G. Then the
map

O2 ×O3 × · · · ×On → G

UT : i2, i3, . . . , in 7→ ti2,2ti3,3 · · · tin,n,
(1.3)

is one to one.

Lemma 1.5. Any `-local group of permutations admits a “`-local base”.

For completeness, a proof of these two lemmas is given in the Appendix.
As a consequence of these lemmas, if G is a `-local group, then there exists a `-

local base T , such that the uniform probability measure µo satisfies µo = UT#µ̂, with
µ̂ = µ̂2 ⊗ · · · ⊗ µ̂n, where for each j, µ̂j is the uniform law on Oj .

As for the symmetric group, given a `-local base T of a group G, the class of measures
M =MT on G is made up of all probability measures on G which are pushed forward of
product probability measures on O2 ×O3 × · · · ×On by the map UT defined by (1.3),

MT :=
{
UT#ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂j ∈ P(Oj), ∀j ∈ {2, . . . , n}

}
. (1.4)

As explained above, if G is a `-local group, the classMT contains the uniform law µo on
G for a well choosen `-local base T .

In this paper, the concentration results are derived from weak transport-entropy
inequalities, involving the relative entropy H(ν|µ) between two probability measures
µ, ν on G given by

H(ν|µ) :=

∫
log

Å
dν

dµ

ã
dν,

if ν is absolutely continuous with respect to µ and H(ν|µ) := +∞ otherwise.
The terminology “weak transport-entropy” introduced in [7], encompass many kinds

of transport-entropy inequalities from the well-known Talagrand’s transport inequality
satisfied by the standard Gaussian measure on Rn [28], to the usual Csizár-Kullback-
Pinsker inequality [22, 5, 11] that holds for any (reference) probability measure µ on a
Polish metric space X , namely

‖µ− ν‖2TV ≤ 2H(ν|µ), ∀ν ∈ P(X ). (1.5)

where ‖µ− ν‖TV denotes the total variation distance between µ and ν,

‖µ− ν‖TV := 2 sup
A
|µ(A)− ν(A)|.

Above, the supremum runs over all measurable subsets A of X . We refer to the survey
[25, 26] for other examples of weak transport-entropy inequalities and their connections
with the concentration of measure principle.
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The next theorem is one of the main result of this paper. It presents new weak
transport inequalities for the uniform measure on G or any measure in the classMT ,
that recover the concentration results of Theorems 1.1 and 1.2.

We also denote by dH the Hamming distance on G: for any σ, τ ∈ G,

dH(σ, τ) := deg(στ−1) =
n∑
i=1

1σ(i)6=τ(i),

and the distance dT (σ, τ) is defined as the minimal number of elements of G, t1, ..., tk,
with degree less than `, such that σt1 · · · tk = τ .

For any measures ν1, ν2 ∈ P(G), the set Π(ν1, ν2) denotes the set of all probability
measures on G × G with first marginal ν1 and second marginal ν2. The Wasserstein
distance between ν1 and ν2, according to the distance d = dH or d = dT , is given by

W1(ν1, ν2) := inf
π∈Π(ν1,ν2)

∫∫
d(σ, τ) dπ(σ, τ).

We also consider two other optimal weak transport costs, T̃2(ν2|ν1) and ÛT2(ν2|ν1) defined
by

T̃2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ Å∫
d(σ, τ) dpσ(τ)

ã2

dν1(σ), (1.6)

and ÛT2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑
i=1

Å∫
1σ(i) 6=τ(i) dpσ(τ)

ã2

dν1(σ),

where pσ represents any probability measure such that π(σ, τ) = ν1(σ)pσ(τ) for all
σ, τ ∈ G. By Jensen’s inequality, these weak transport costs are comparable, namely

W 2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ n ÛT2(ν2|ν1),

where the last inequality only holds for d = dH .
By definition, a subgroup G of Sn is normal if for any t ∈ Sn,t−1Gt = G.
In the next theorem the constant Kn is the cardinality of the set

{
j ∈ {2, . . . , n}, Oj 6=

{j}
}

. It follows that 0 ≤ Kn ≤ (n− 1) and Kn = 0 if and only if G = {id}.
Theorem 1.6. Let G be a group of permutations with `-local base T . Let µ ∈ P(G) be a
measure of the setMT defined by (1.4).

(a) For all probability measures ν1 and ν2 on G, one has

2

c(`)2
W 2

1 (ν1, ν2) ≤ Kn

(»
H(ν1|µ) +

»
H(ν2|µ)

)2

, (1.7)

and

1

2c(`)2
T̃2(ν2|ν1) ≤ Kn

(»
H(ν1|µ) +

»
H(ν2|µ)

)2

, (1.8)

where

c(`) :=

{
min(2`− 1, n) if d = dH ,

2 if d = dT .

When µ = µo is the uniform law of a `-local group G, inequalities (1.7) and (1.8)
hold with

c(`) :=

{
` if d = dH ,

1 if d = dT .
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(b) • Assume that µ = µo is the uniform law of a `-local group G. Then, for all
probability measures ν1 and ν2 on G, one has

1

2c(`)2
ÛT2(ν2|ν1) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2

, (1.9)

with c(`)2 = 2(`− 1)2 + 2.
• Assume that G is a normal subgroup of Sn, and that µ satisfies for all σ ∈
G, t ∈ Sn

µ(σ) = µ(σ−1) and µ(σ) = µ(t−1σt). (1.10)

Then, the inequality (1.9) holds with c(`)2 = 8(`− 1)2 + 2.

The proofs of these results, given in the next section, are inspired by Talagrand
seminal work on Sn [27], and Luczak-McDiarmid extension to `-local groups [13].

Comments:

• If G = Sn and the class of measureM is given by (1.1), the Ewens distribution µθ

introduced before, is an interesting example of measure inM, satisfying condition
(1.10). This simply follows from its expression given by (1.2), since for any σ, t ∈ Sn,
|σ−1| = |σ| and |t−1σt| = |σ|.

An open question is to generalize the above transport-entropy inequalities to the
generalized Ewens distribution (see its definition in [14, 9]). This measure no
longer belongs to the class of measureM. In other words, no Chinese restaurant
process are known for simulating the generalized Ewens distribution.

• From the triangular inequality satisfied by the Wasserstein distance W1, the
transport-entropy inequality (1.7) is clearly equivalent to the following transport-
entropy inequality, for all probability measure ν on G,

2

c(`)2
W 2

1 (ν, µ) ≤ KnH(ν|µ).

Here is a popular dual formulation of this transport-entropy inequality: for all
1-Lipschitz functions ϕ : G→ R (with respect to the distance d),∫

eϕdµ ≤ e
∫
ϕdµ+Knc(`)

2t2/8
, ∀t ≥ 0. (1.11)

For the uniform measure on Sn, Kn = n− 1 and this property is widely commented
in [4]; it is also a consequence of Hoeffding inequalities for bounded martingales
(see page 18 of [8]). The concentration result derived from item (a) are of the same
nature as the one obtained by the “bounded differences approach” in [16, 17, 18,
13, 3].

• Similarly, by Proposition 4.5 and Theorem 2.7 of [7] and using the identity

(√
u+
√
v
)2

= inf
α∈(0,1)

ß
u

α
+

v

1− α

™
,

we may easily show that the weak transport-entropy inequality (1.8) is equivalent
to the following dual property: for any real function ϕ on G and for any 0 < α < 1,Å∫

eαQ̃Knϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1, (1.12)
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where the infimum-convolution operator ‹Qtϕ, t ≥ 0, is defined by‹Qtϕ(σ) := inf
p∈P(G)

®∫
ϕdp+

1

2c2(`)t

Å∫
d(σ, y) dp(y)

ã2
´
, σ ∈ G.

Moreover, let us observe that following our proof of (1.12) in the next section, for
each α ∈ (0, 1) the inequality (1.12) can be improved by replacing the square cost
function by the convex cost cα(u) ≥ u2/2, u ≥ 0 given in Lemma 2.2. More precisely,
(1.12) holds replacing ‹QKnϕ by ‹QαKnϕ defined by‹Qαt ϕ(σ) := inf

p∈P(Sn)

®∫
ϕdp+ tcα

Å
1

c(`)t

∫
d(σ, y) dp(y)

ã2
´
,

for any σ ∈ G, t > 0.

• Proposition 4.5 and Theorem 9.5 of [7] also provide a dual formulation of the
weak transport-entropy inequality (1.9): for any real function ϕ on G and for any
0 < α < 1, Å∫

eαÛQϕdµã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1, (1.13)

where the infimum convolution operator ÙQϕ is defined byÙQϕ(σ) = inf
p∈P(G)

{∫
ϕdp+

1

2c(`)2

n∑
k=1

Å∫
1σ(k)6=y(k) dp(y)

ã2
}
, σ ∈ G.

As explained at the end of this section, the property (1.13) directly provides the
following version of the Talagrand’s concentration result for any measure on G of
the setMT .

Corollary 1.7. Let G be a group of permutations with `-local base T . Let µ ∈ P(G)

be a measure of the set MT defined by (1.4). Assume that µ and G satisfy the
conditions of (b) in Theorem 1.6. Then, for all A ⊂ G and all α ∈ (0, 1), one has∫

e
α

2c(`)2
f(σ,A)

dµ(σ) ≤ 1

µ(A)α/(1−α)
,

with the same definition for c(`)2 as in part (b) of Theorem 1.6. As a consequence,
by Tchebychev inequality, for any α ∈ (0, 1) and all t ≥ 0,

µ
(
{σ ∈ G, f(σ,A) ≥ t}

)
≤ e

− αt
2c(`)2

µ(A)α/(1−α)
.

For α = 1/2 and µ = µo the uniform law on a `-local group of G, this result is
exactly Theorem 2.1 by Luczak-McDiarmid [13], that generalizes Theorem 1.2 on
Sn (since Sn is a 2-local group).

By projection arguments, Theorem 1.6 applied with the uniform law µo on the
symmetric group Sn, also provides transport-entropy inequalities for the uniform law
on the slices of the discrete cube {0, 1}n. Namely, for n ≥ 1, let us denote by Xk,n−k,
k ∈ {0, . . . , n}, the slices of discrete cube defined by

Xk,n−k :=

{
x = (x1, . . . , xn) ∈ {0, 1}n,

n∑
i=1

xi = k

}
.
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The uniform law on Xk,n−k, denoted by µk,n−k, is the pushed forward of µo by the
projection map

Sn → Xk,n−k
P : σ 7→ 1σ([k]),

where σ([k]) := {σ(1), . . . , σ(k)} and for any subset A of [n], 1A is the vector with

coordinates 1A(i), i ∈ [n]. In other terms, µk,n−k = P#µo and µk,n−k(x) =
(
n
k

)−1
for all

x ∈ Xk,n−k. Let dh denotes the Hamming distance on Xk,n−k defined by

dh(x, y) :=
1

2

n∑
i=1

1xi 6=yi , x, y ∈ Xk,n−k.

Theorem 1.8. Let µk,n−k be the uniform law on Xk,n−k, a slice of the discrete cube.

(a) For all probability measures ν1 and ν2 on Xk,n−k, one has

2

Ck,n−k
W 2

1 (ν1, ν2) ≤
(»

H(ν1|µk,n−k) +
»
H(ν2|µk,n−k)

)2

,

and

1

2Ck,n−k
T̃2(ν2|ν1) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2

,

where W1 is the Wasserstein distance associated to dh, T̃2 is the weak optimal
transport cost defined by (1.6) with d = dh, and Ck,n−k = min(k, n− k).

(b) For all probability measures ν1 and ν2 on Xk,n−k, one has

1

8
T̂2(ν2|ν1) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2

, (1.14)

where

T̂2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑
i=1

Å∫
1xi 6=yidpx(y)

ã2

dν1(x),

with π(x, y) = ν1(x)px(y) for all x, y ∈ Xk,n−k.

Up to constants, the weak transport inequality (1.14) is the stronger one since for all
ν1, ν2 ∈ P(Xk,n−k),

W 2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ n

4
T̂2(ν2|ν1).

The proof of Theorem 1.8 is given in section 3. The transport-entropy inequality (1.14) is
derived by projection from the transport-entropy inequality (1.9) for the uniform measure
µo on Sn. The same projection argument could be used to reach the results of (a) from
the transport-entropy inequality of (a) in Theorem 1.6, but it provides worse constants.
The constant Ck,n−k is obtained by working directly on Xk,n−k and following similar
arguments as in the proof of Theorem 1.6.

Remark: The results of Theorem 1.8 also extend to the multinomial law. Let E =

{e1, . . . , em} be a set of cardinality m and let k1, . . . , km be a collection of non-zero
integers satisfying k1 + · · ·+ km = n. The multinomial law µk1,...,km is by definition the
uniform law on the set

Xk1,...,km :=

ß
x ∈ En, such that for all l ∈ [m],#

{
i ∈ [n], xi = el

}
= kl

™
.
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For any x ∈ Xk1,...,km , one has µk1,...,km(x) = k1!···km!
n! . As a result, the weak transport-

entropy inequality (1.14) holds on Xk1,...,km replacing the measure µk,n−k by the measure
µk1,...,km . The proof of this result is a simple generalization of the one on Xk,n−k, by using
the projection map P : Sn → Xk1,...,km defined by: P (σ) = x if and only if

xi = el, ∀l ∈ [m], ∀i ∈ Jl,

where Jl :=
{
i ∈ [n], k0 + · · ·+ kl−1 < i ≤ k0 + · · ·+ kl

}
, with k0 = 0. The details of this

proof are left to the reader.
A straightforward application of transport-entropy inequalities is deviation’s bounds

for different classes of functions. For more comprehension, we present below deviations
bounds that can be reached from Theorem 1.6 for any measure inMT . A similar corollary
can be derived from Theorem 1.8 on the slices of the discrete cube.

For any h : G→ R, the mean of h is denoted by µ(h) :=
∫
h dµ.

Corollary 1.9. Let G be a group of permutations with `-local base T , G 6= {id}. Let
µ ∈ P(G) be a measure of the setMT defined by (1.4). Let g be a real function on G.

(a) Assume that there exists a function β : G→ R+ such that for all τ, σ ∈ G,

g(τ)− g(σ) ≤ β(τ)d(τ, σ),

where d = dT or d = dH . Then for all u ≥ 0, one has

µ (g ≥ µ(g) + u) ≤ exp

Å
− 2u2

Knc(`)2 supσ∈G β(σ)2

ã
.

and

µ (g ≤ µ(g)− u) ≤ exp

Å
− 2u2

Knc(`)2 min(supσ∈G β(σ)2, 4µ(β2))

ã
,

where the constants c(`) and Kn are defined as in part (a) of Theorem 1.6.

(b) Assume that µ and G satisfy the conditions of (b) in Theorem 1.6. Let g be a so-
called configuration function. This means that there exist functions αk : G→ R+,
k ∈ {1, . . . , n} such that for all τ, σ ∈ G,

g(τ)− g(σ) ≤
n∑
k=1

αk(τ)1τ(k) 6=σ(k).

Then, for all v ≥ 0, λ ≥ 0, one has

µ

Å
g ≥ µ(g) + v +

λc(`)2|α|2
2

ã
≤ e−λv,

and for all u ≥ 0,

µ (g ≤ µ(g)− u) ≤ exp

Å
− u2

2c(`)2µ (|α|22)

ã
,

where |α(σ)|22 :=
n∑
k=1

α2
k(σ) and c(`) is defined as in part (b) of Theorem 1.6. We also

have, for all u ≥ 0

µ (g ≥ µ(g) + u) ≤ exp

Å
− u2

2c(`)2 supσ∈G |α(σ)|22

ã
,

and if there exists M ≥ 0 such that |α|22 ≤Mg, then for all u ≥ 0

µ (g ≥ µ(g) + u) ≤ exp

Å
− u2

2c(`)2M(µ(g) + u)

ã
,
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Comments and examples:

• The above deviation’s bounds of g around its mean µ(g) are directly derived from
the dual representations (1.11),(1.12),(1.13) of the transport-entropy inequalities
of Theorem 1.6, when α goes to 0 or α goes to 1. By classical arguments (see
[12]), Corollary 1.9 also implies deviation’s bounds around a median M(g) of g,
but we loose in the constants with this procedure. However, starting directly from
Corollary 1.7, we get the following bound under the assumption of (b): for all u ≥ 0,

µ(g ≥M(g) + u) ≤ 1

2
exp

Ç
−w
Ç

u√
2c(`) supσ∈G |α(σ)|2

åå
, (1.15)

where w(u) = u(u− 2
√

log 2), u ≥ 0.

The idea of the proof is to choose the set A = {σ ∈ G, g(σ) ≤ M(g)} of measure
µ(A) ≥ 1/2 and to show that the asumption of (b) implies{

σ ∈ G, f(σ,A) < t
}
⊂
ß
σ ∈ G, g(σ) < M(g) + t sup

σ∈G
|α(σ)|2

™
, t ≥ 0.

Then, the deviation bound above the median directly follows from Corollary 1.7 by
optimizing over all α ∈ (0, 1). With identical arguments, the same bound can be
reached for µ(g ≤M(g)− u).

• In (a), the bound above the mean is a simple consequence of (1.11). As settled
in (a), this bound also holds for the deviations under the mean, and it can be
slightly improved by replacing supσ∈G β(σ)2 by 4µ(β2). This small improvement is

a consequence of the weak transport inequality with stronger cost T̃2. The same
kind of improvement could be reached for the deviations above the mean under
additional Lipschitz regularity conditions on the function β.

• Let ϕ : [0, 1]n → R be a 1-Lipschitz convex function and let x = (x1, . . . , xn) be
a fixed vector of [0, 1]n. For any σ ∈ G, let xσ := (xσ(1), . . . , xσ(n)). By applying
the results of (b) (or even (1.15)) to the particular function gx(σ) = ϕ(xσ), σ ∈ G,
we recover and extend to any group G with `-local base T and to any measure in
MT satisfying (1.10), the deviation inequality by Adamczak, Chafaï and Wolff [1]
(Theorem 3.1) obtained from Theorem 1.2 by Talagrand. Namely, since for any
σ, τ ∈ G,

ϕ(xτ )− ϕ(xσ) ≤
n∑
k=1

∂kϕ(xτ )(xτ(k) − xσ(k)) ≤
n∑
k=1

|∂kϕ(xτ )|1τ(k) 6=σ(k),

with
∑n
k=1 |∂kϕ(xτ )|2 = |∇ϕ(xτ )|2 ≤ 1, Corollary 1.9 implies, for any choice of

vector x = (x1, . . . , xn) ∈ [0, 1]n,

µ(|gx − µ(gx)| ≥ u) ≤ 2 exp

Å
− u2

2c(`)2

ã
, u ≥ 0.

This concentration property on Sn (with ` = 2) plays a key role in the approach by
Adamczak and al. [1], to study the convergence of the empirical spectral measure
of random matrices with exchangeable entries, when the size of the matrices is
increasing.

• As a second example, for any t in a finite set F , let (ati,j)1≤i,j≤n be a collection of
non negative real numbers and consider the function

g(σ) = sup
t∈F

(
n∑
k=1

atk,σ(k)

)
, σ ∈ G.
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This function satisfies, for any σ, τ ∈ G,

g(τ)− g(σ) ≤
n∑
k=1

Ä
a
t(τ)
k,τ(k) − a

t(τ)
k,σ(k)

ä
1τ(k)6=σ(k) ≤

n∑
k=1

a
t(τ)
k,τ(k)1τ(k) 6=σ(k),

where t(τ) ∈ F is chosen so that

g(τ) =
n∑
k=1

a
t(τ)
k,τ(k).

Let us consider the function

h(σ) = sup
t∈F

(
n∑
k=1

(atk,σ(k))
2

)
, σ ∈ G.

The mean of h, µ(h), can be interpreted as a variance term as regards to g. Observ-
ing that g satisfies the condition of (b) with

αk(τ) := a
t(τ)
k,τ(k),

and |α|22 ≤ h, Corollary 1.9 provides the following Bernstein deviation’s bounds, for
all u ≥ 0,

µ (g ≤ µ(g)− u) ≤ exp

Å
− u2

2c(`)2µ (h)

ã
,

and for all λ, v ≥ 0,

µ

Å
g ≥ µ(g) + v +

λc(`)2h

2

ã
≤ e−λv.

If the real numbers ai,j are bounded by M , then |α|22 ≤Mg and therefore Corollary
1.9 also provides for all u ≥ 0,

µ (g ≥ µ(g) + u) ≤ exp

Å
− u2

2c(`)2M(µ(g) + u)

ã
.

If we want to bound the deviation above the mean in terms of the variance term
µ(h), it suffises to observe that the last inequality provides deviations bounds for
the function h, replacing g by h and M by M2. Then, as a consequence of all the
above deviation’s results, it follows that for all λ, v, γ ≥ 0,

µ

Å
g ≥ µ(g) + v +

λc(`)2(µ(h) + γ)

2

ã
≤ µ
Å
g ≥ µ(g) + v +

λc(`)2h

2

ã
+ µ(h ≥ µ(h) + γ)

≤ e−λv + exp

Å
− γ2

2c(`)2M2(µ(h) + γ)

ã
.

By choosing γ = Mu, λ = u
c(`)2M2(µ(h)+Mu) , and v = u/2, we get the following

Bernstein deviation inequality for the deviation of g above its mean, for all u ≥ 0

µ(g ≥ µ(g) + u) ≤ 2 exp

Å
− u2

2c(`)2(µ(h) +Mu)

ã
.

All the previous deviation’s inequalities extend to countable sets F by monotone
convergence.

When F is reduced to a singleton, these deviation’s results simply implies Bernstein
deviation’s results for g(σ) =

∑n
k=1 ak,σ(k) when −M ≤ ai,j ≤M for all 1 ≤ i, j ≤ n,

by following for example the procedure presented in [3, Section 4.2]. Thus, we
extend the deviation’s results of [3] to any probability measures inMT .
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• As a last example, let g(σ) = |σ|l denotes the number of cycles of lenght l in the
cycle decomposition of a permutation σ. Let us show that g is a configuration
function. Let Cl(τ) denotes the set of cycles of lenght l in the cycle decomposition
of a permutation τ . One has

|τ |l = #{Cl(τ) ∩ Cl(σ)}+ #{c ∈ Cl(τ), such that c /∈ Cl(σ)}
≤ |σ|l + #{c ∈ Cl(τ), such that c /∈ Cl(σ)}.

If c ∈ Cl(τ) and c /∈ Cl(σ) then there exists k in the support of c such that τ(k) 6= σ(k).
As a consequence, one has

#{c ∈ Cl(τ), such that c /∈ Cl(σ)} ≤
n∑
k=1

αk(τ)1σ(k)6=τ(k),

where αk(τ) = 1 if k is in the support of a cycle of lenght l of the cycle decomposition
of τ , and αk(τ) = 0 otherwise. Thus, we get that the function g satisfies the
condition of (b), g is a configuration function. Finally, observing that |α|22 = lg,
Corollary 1.9 provides for any measure µ ∈MT satisfying (1.10), for all u ≥ 0,

µ (g ≤ µ(g)− u) ≤ exp

Å
− u2

2c(`)2lµ (g)

ã
,

and

µ (g ≥ µ(g) + u) ≤ exp

Å
− u2

2c(`)2l(µ(g) + u)

ã
.

• The aim of this paper is to clarify the links between Talagrand’s type of concentra-
tion results on the symmetric group and functional inequalities derived from the
transport-entropy inequalities. For brevity’s sake, applications of these functional
inequalities are not fully developped in the present paper. However, let us briefly
mention some other applications using concentration results on the symmetric
group: the stochastic travelling salesman problem for sampling without replace-
ment (see Appendix [21]), graph coloring problems (see [18]). We also refer to
the surveys and books [6, 20] for other numerous examples of application of the
concentration of measure principle in randomized algorithms.

Proof of Corollary 1.9. We start with the proof of (b). From the assumption on the
function g, we get that for any p ∈ P(G)

∫
g dp ≥ g(σ)−

n∑
k=1

Å
αk(σ)

∫
1σ(k) 6=τ(k) dp(τ)

ã
≥ g(σ)− |α(σ)|2

(
n∑
k=1

Å∫
1σ(k) 6=τ(k)dp(τ)

ã2
)1/2

.

Let λ ≥ 0. Plugging this estimate into the definition of ÙQ(λg), it follows that for any
σ ∈ G ÙQ(λg)(σ) ≥ λg(σ)− sup

u≥0

ß
λ|α(σ)|2u−

u2

2c(`)2

™
= λg(σ)− λ2|α(σ)|22c(`)2

2
.

As α goes to 1, (1.13) applied to the function λg yields∫
eÛQ(λg)dµ ≤ eλµ(g),
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and therefore ∫
exp

Å
λg − λ2c(`)2|α|22

2

ã
dµ ≤ eλµ(g), (1.16)

∫
eλgdµ ≤ exp

Å
λµ(g) +

λ2c(`)2 supσ∈G |α(σ)|22
2

ã
, (1.17)

and if |α|22 ≤Mg, ∫
exp

Å
λ

Å
1− λc(`)2M

2

ã
g

ã
dµ ≤ eλµ(g). (1.18)

As α goes to 0, (1.13) yields ∫
e−λgdµ ≤ eλµ(ÛQ(λg)),

and therefore ∫
e−λgdµ ≤ exp

Å
−λµ(g) +

λ2c(`)2µ(|α|22)

2

ã
. (1.19)

The deviation bounds of (b) follows from (1.16), (1.19), (1.17), (1.18) by Tchebychev
inequality, and by optimizing over all λ ≥ 0.

The deviation bounds of (a) are similarly obtained from (1.12) by Tchebychev inequal-
ity. As above, the improvement for the deviation under the mean is a consequence of
(1.12) applied to λg, as α goes to 0, and using the estimate‹QKn(λg)(σ) ≥ λg(σ)− λ2β(σ)2c(`)2Kn

2
.

Proof of Corollary 1.7. Take a subset A ⊂ G and consider the function ϕλ which takes
the values 0 on A and λ > 0 on G \A. It holdsÙQϕλ(σ) = inf

p∈P(G)

{
λ(1− p(A)) +

1

2c(`)2

n∑
j=1

Å∫
1σ(j)6=y(j) dp(y)

ã2
}

= inf
β∈[0,1]

{λ(1− β) + ψ(β, σ)},

denoting by

ψ(β, σ) = inf

{
1

2c(`)2

n∑
j=1

Å∫
1σ(j)6=y(j) dp(y)

ã2

; p(A) = β

}
.

So it holdsÙQϕλ(σ) = min

Å
inf

β∈[0,1−ε]
{λ(1− β) + ψ(β, σ)}; inf

β∈[1−ε,1]
{λ(1− β) + ψ(β, σ)},

ã
≥ min

Å
λε; inf

β≥1−ε
ψ(β, σ)

ã
→ inf

β≥1−ε
ψ(β, σ),

as λ → ∞. It is easy to check that for any fixed σ, the function ψ( · , σ) is continuous
on [0, 1], so letting ε go to 0, we get lim infλ→∞ ÙQϕλ(σ) ≥ ψ(1, σ). On the other hand,ÙQϕλ(σ) ≤ ψ(1, σ) for all λ > 0. This proves that limλ→∞ ÙQϕλ(σ) = ψ(1, σ). Applying
(1.13) to ϕλ and letting λ go to infinity yields to∫

eαψ(1,σ) dµ · µ(A)α/(1−α) ≤ 1.

It remains to observe that ψ(1, σ) = f(σ,A)
2c(`)2 .
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2 Proof of Theorem 1.6

Let Tn = (tij ,j , j ∈ {2, . . . , n}, ij ∈ Oj) be a `-local base of G. Let µ be a probability
measure of the setMTn given by (1.4). Then, there exists a product probability measure
ν̂ = ν̂1 ⊗ · · · ⊗ ν̂n such that µ = UTn#ν̂ where the map UTn is given by (1.3).

Each transport-entropy inequality of Theorem 1.6 is obtained by induction over n and
using the partition (Hi)i∈orb(n) of the group G defined by: for any i ∈ orb(n) = On,

Hi := {σ ∈ G, σ(i) = n} . (2.1)

According to our notations, Hn = Gn−1 is a subgroup of G, and we may easily check that
Tn−1 is a `-local base of this subgroup. We also observe that if G is a normal subgroup of
Sn then Gn−1 is a normal subgroup of Sn−1.

Moreover, for any i ∈ On, Hi is the coset defined byHi = Hntin. From the definition of
µ, if σ ∈ Hi, then there exist i2, . . . , in−1 such that σ = ti2,2 · · · tin−1,n−1ti,n and therefore

µ(σ) = ν̂2(i2) · · · ν̂n−1(in−1)ν̂n(i).

As a consequence, one has µ(Hi) = ν̂n(i). Let µi denote the restriction of µ to Hi defined
by

µi(σ) =
µ(σ)

µ(Hi)
1σ∈Hi .

From the construction of µ, µn = UTn−1
#(ν̂1 ⊗ · · · ⊗ ν̂n−1). Moreover, for all σ ∈ Hn, one

has σti,n ∈ Hi and

µn(σ) =
µ(σ)

µ(Hn)
=
µ(σti,n)

µ(Hi)
= µi(σti,n). (2.2)

Moreover if µ satisfies the condition (1.10), then µn ∈ P(Gn−1) satisfies the same
condition at rank n− 1: namely, for any σ ∈ Gn−1, t ∈ Sn−1,

µn(σ) = µn(σ−1) and µn(σ) = µn(t−1σt).

These properties are needed in the induction step of the proofs.
When G is a `-local group, let us note that if i and l are elements of On = orb(n), then

from the `-local property, there exists ti,l ∈ G such that ti,l(i) = l and deg(ti,l) ≤ `. We
also have Hl = Hiti,l. If moreover µ = µo is the uniform law on G, then for any i, l ∈ On,
µi(Hi) = µl(Hl) = 1

#On
. In that case we will use in the proofs the following property: for

any σ ∈ Hn, one has σti,n ∈ Hi, σti,nt
−1
i,l ∈ Hl, and

µn(σ) =
#On
#G

= µi(σti,n) = µl(σti,nt
−1
i,l ). (2.3)

The measure µn is the uniform measure on the `-local subgroup Hn = Gn−1.

Proof of (a) in Theorem 1.6. As already mentioned, since W1 satisfies a triangular in-
equality, the transport-entropy inequality (1.7) is equivalent to the following one: for all
ν ∈ P(G),

2

c(`)2
W 2

1 (ν, µ) ≤ KnH(ν|µ).

A dual formulation of this property given by Theorem 2.7 in [7] and Proposition 3.1 in
[26] is the following: for all functions ϕ on G and all λ ≥ 0,∫

eλQϕdµ ≤ e
∫
λϕdµ+Knc(`)

2λ2/8
, (2.4)
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with

Qϕ(σ) = inf
p∈P(Sn)

ß∫
ϕdp+

∫
d(σ, τ) dp(τ)

™
We will prove the inequality (2.4) by induction on n.

Assume that n = 2. If G = {id} then Kn = 0 and the inequality (2.4) is obvious. If
G 6= {id}, then G is the two points space, G = S2, ` = 2 and one has

Qϕ(σ) = inf
p∈P(S2)

ß∫
ϕdp+ c(2)

∫
1σ 6=τ dp(τ)

™
.

In that case, (2.4) exactly corresponds to the following dual form of the Csiszar-Kullback-
Pinsker inequality (1.5) (see Proposition 3.1 in [26]): for any probability measure ν on a
Polish space X , for any measurable function f : X → R,∫

eλR
cfdν ≤ eλ

∫
f dν+λ2c2/8

, ∀λ, c ≥ 0, (2.5)

with Rcf(x) = inf
p∈P(X )

ß∫
fdp+ c

∫
1x 6=ydp(y)

™
, x ∈ X .

The induction step will be also a consequence of (2.5). Let (Hi)i∈On be the partition
of G defined by (2.1). Any p ∈ P(G) admits a unique decomposition defined by

p =
∑
i∈On

p̂(i)pi, with pi ∈ P(Hi) and p̂(i) = p(Hi). (2.6)

This decomposition defines a probability measure p̂ on On. In particular, according to
the definition of the measure µ ∈MTn and since ν̂n(i) = µ(Hi), one has

µ =
∑
i∈On

ν̂n(i)µi.

It follows that∫
eλQϕdµ =

∑
i∈On

ν̂n(i)

∫
eλQϕ(σ)dµi(σ) =

∑
i∈On

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (2.2). Now, we will bound the
right-hand side of this equality by using the induction hypotheses.

For any function g : G→ R and any t ∈ G, let gt : G→ R denote the function defined
by gt(σ) := g(σt).

For any function f : Hn → R and any σ ∈ Hn, let us note

QHnf(σ) := inf
p∈P(Hn)

ß∫
f dp+

∫
d(σ, τ) dp(τ)

™
.

The next step of the proof relies on the following Lemma.

Lemma 2.1. Let i ∈ On, for any function ϕ : Hi → R and any σ ∈ Hn, one has

1. Qϕ(σti,n) ≤ inf
p̂∈P(On)

{∑
l∈On

QHnϕtn,l(σ)p̂(l) + c(`)
∑
l∈On

1l 6=ip̂(l)

}
,

where c(`) = min(2`− 1, n) if d = dH and c(`) = 2 if d = dT .

2. Qϕ(σti,n) ≤ inf
p̂∈P(On)

{∑
l∈On

QHnϕti,nt
−1
i,l (σ)p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l)

}
,

where c(`) = ` if d = dH and c(`) = 1 if d = dT , and ti,l denotes an element of G
with deg(ti,l) ≤ ` and such that ti,l(i) = l.
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This lemma is obtained using the decomposition (2.6) of the measures p ∈ P(G) on
the Hj ’s. Let σ ∈ Hn. By the triangular inequality and using the invariance by translation
of the distance d, one has∫

d(σti,n, τ) dp(τ) =
∑
l∈On

∫
Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑
l∈On

d(σti,n, σtl,n)p̂(l) +
∑
l∈On

∫
Hl

d(σtl,n, τ)dpl(τ)p̂(l)

=
∑
l∈On

d(ti,n, tl,n)p̂(l) +
∑
l∈On

∫
Hl

d(σ, τt−1
l,n)dpl(τ)p̂(l)

and therefore, since d(ti,n, tl,n) ≤ c(`) with c(`) = min(2`− 1, n) if d = dH and c(`) = 2 if
d = dT , ∫

d(σti,n, τ) dp(τ) ≤
∑
l∈On

∫
Hl

d(σ, τt−1
l,n)dpl(τ)p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l). (2.7)

It follows that

Qϕ(σti,n) ≤ inf
p̂∈P(On)

inf
pl∈P(Hl),l∈On{∑
l∈On

ñ∫
ϕdpl +

∫
Hl

d(σ, τt−1
l,n)dpl(τ)

ô
p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l)

}
= inf
p̂∈P(On)

inf
ql∈P(Hn),l∈On{∑
l∈On

ñ∫
ϕtl,n dql +

∫
Hn

d(σ, τ)dql(τ)

ô
p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l)

}

= inf
p̂∈P(On)

{∑
l∈On

QHnϕtl,n(σ)p̂(l) + c(`)
∑
l∈On

1l 6=ip̂(l)

}
.

The proof of the second inequality of Lemma 2.1 is similar, starting from the following
triangular inequality∫

d(σti,n, τ) dp(τ) =
∑
l∈On

∫
Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑
l∈On

∫
d(σti,n, τ ti,l)dpl(τ)p̂(l) +

∑
l∈On

∫
Hl

d(τti,l, τ)dpl(τ)p̂(l)

=
∑
l∈On

∫
d(σ, τti,lt

−1
i,n)dpl(τ)p̂(l) +

∑
l∈On

d(ti,l, id)p̂(l)

≤
∑
l∈On

∫
Hl

d(σ, τti,lt
−1
i,n)dpl(τ)p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l), (2.8)

with c(`) = ` if d = dH and c(`) = 1 if d = dT . The end of the proof of the second
inequality of Lemma 2.1 is left to the reader.

The induction step of the proof of (2.4) continues by applying consecutively Lemma
2.1 (1), the Hölder inequality, and the induction hypotheses to the measure µn on the
subgroup Hn = Gn−1 with `-local base Tn−1.

If On = {n} then Kn = Kn−1 and∫
eλQϕdµ =

∫
eλQϕ(σ)dµn(σ) ≤ e

∫
λϕdµn+Kn−1c(`)

2/8
= e
∫
λϕdµ+Knc(`)

2/8
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If On 6= {n} then Kn = Kn−1 + 1 and for any i ∈ On,∫
eλQϕ(σti,n)dµn(σ) ≤ inf

p̂∈P(On)

{∏
l∈On

Å∫
eλQ

Hnϕtl,ndµn

ãp̂(l)
ec(`)λ

∑n

l=1
1l6=ip̂(l)

}

≤ exp

[
inf

p̂∈P(On)

{
λ
∑
l∈On

Å∫
ϕtl,ndµn

ã
p̂(l) +Kn−1c(`)

2λ
2

8
+ c(`)λ

∑
l∈On

1l 6=ip̂(l)

}]

= exp

[
λ inf
p̂∈P(On)

{∑
l∈On

ϕ̂(l)p̂(l) + c(`)
∑
l∈On

1l 6=ip̂(l)

}
+Kn−1c(`)

2λ
2

8

]
,

where, by using property (2.2), ϕ̂(l) :=
∫
ϕdµl =

∫
ϕtl,ndµn. Let us consider again the

above infimum-convolution Rcϕ̂ defined on the space X = On, with c = c(`), one has

Rcϕ̂(i) = inf
p̂∈P(On)

{∑
l∈On

ϕ̂(l)p̂(l) + c
∑
l∈On

1l 6=ip̂(l)

}
.

By applying (2.5) with the probability measure ν = ν̂n on On, the previous inequality
gives∫

eλQϕdµ =
∑
i∈On

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ) ≤

(∑
i∈On

eλR
c(`)ϕ̂(i)ν̂n(i)

)
eKn−1λ

2/8

≤ exp

[
n∑
i=1

ϕ̂(i)ν̂n(i) +
λ2c(`)2

8
+Kn−1c(`)

2λ
2

8

]
= exp

ï
λ

∫
ϕdµ+Knc(`)

2λ
2

8

ò
.

This ends the proof of (2.4) for any µ ∈MTn .
The scheme of the induction proof of (2.4), with a better constant c(`) when µ = µo is

the uniform measure on a `-local group G, is identical, starting from the second result of
Lemma 2.1 and using the property (2.3). This is left to the reader.

We now turn to the induction proof of the dual formulation (1.12) of the weak
transport-entropy inequality (1.8). The sketch of the proof is identical to the one of (2.4).

For the initial step n = 2, one has G = S2 and ` = 2, and one may easily check that‹Q1ϕ(σ) = inf
p∈P(S2)

®∫
ϕdp+

1

2

Å∫
1σ 6=τ dp(τ)

ã2
´
.

In that case, the result follows from the following infimum-convolution property.

Lemma 2.2. For any probability measure ν on a Polish metric space X , for all α ∈ (0, 1)

and all measurable functions f : X → R, bounded from belowÅ∫
eαR̃

αfdν

ã1/α Å∫
e−(1−α)fdν

ã1/(1−α)

≤ 1,

where for all x ∈ X ,

R̃αf(x) = inf
p∈P(X )

®∫
f(y)dp(y) + cα

Å∫
1x 6=ydp(y)

ã2
´
,

and cα is the convex function defined by

cα(u) =
α(1− u) log(1− u)− (1− αu) log(1− αu)

α(1− α)
, u ∈ [0, 1].
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Observing that cα(u) ≥ u2/2 for all u ∈ [0, 1], the above inequality also holds replacing
R̃αf by

R̃f(x) = inf
p∈P(X )

®∫
f(y)dp(y) +

1

2

Å∫
1x 6=ydp(y)

ã2
´
, x ∈ X . (2.9)

The proof of this Lemma can be found in [24] (inequality (4)). For a sake of complete-
ness, we give in the Appendix a new proof of this result on finite spaces X by using a
localization argument (Lemma 4.1).

Let us now present the key lemma for the induction step of the proof. For any function
f : Hn → R and any σ ∈ Hn, we define‹QHnt f(σ) := inf

p∈P(Hn)

®∫
f dp+

1

2c(`)2t

Å∫
d(σ, τ) dp(τ)

ã2
´
.

Here, writing QHnt f , we omit the dependence in c(`) to simplify the notations. The proof
relies on the following Lemma.

Lemma 2.3. Let i ∈ On. For any function ϕ : Hi → R and any σ ∈ Hn, one has

1. ‹QKnϕ(σti,n) ≤ inf
p̂∈P(On)

{∑
l∈On

‹QHnKn−1
ϕtl,n(σ)p̂(l) +

1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
}
,

with c(`) = min(2`− 1, n) if d = dH and c(`) = 2 if d = dT .

2. ‹QKnϕ(σti,n) ≤ inf
p̂∈P(On)

{∑
l∈On

‹QHnKn−1
ϕti,nt

−1
i,l (σ)p̂(l) +

1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
}
,

where c(`) = ` if d = dH and c(`) = 1 if d = dT , and ti,l denotes an element of G
with deg(ti,l) ≤ ` and such that ti,l(i) = l.

The proof of this lemma is similar to the one of Lemma 2.1. By (2.7) and the inequality

(u+ v)2 ≤ u2

s
+

v2

1− s
, u, v ∈ R, s ∈ (0, 1),

we get for any s ∈ (0, 1),Å∫
d(σtl,n, τ) dp(τ)

ã2

≤

(∑
l∈On

∫
Hl

d(σ, τt−1
l,n)dpl(τ)p̂(l) + c(`)

∑
l∈On

1l 6=ip̂(l)

)2

≤ 1

s

(∑
l∈On

∫
Hl

d(σ, τt−1
l,n)dpl(τ)p̂(l)

)2

+
c(`)2

1− s

Å∑
l∈On

1l 6=ip̂(l)
ã2

≤ 1

s

∑
l∈On

Ç∫
Hl

d(σ, τt−1
l,n)dpl(τ)

å2

p̂(l) +
c(`)2

1− s

Å∑
l∈On

1l 6=ip̂(l)
ã2

.

It follows that for any σ ∈ Hn,‹QKnϕ(σtl,n)

≤ inf
p̂∈P(On)

inf
pl∈P(Hl),l∈On

{∑
l∈On

[∫
ϕdpl +

1

2c(`)2sKn

Ç∫
Hl

d(σ, τt−1
l,n)dpl(τ)

å2
]
p̂(l)

+
1

2(1− s)Kn

Å∑
l∈On

1l 6=ip̂(l)
ã2
}
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= inf
p̂∈P(On)

inf
ql∈P(Hn),l∈On

{∑
l∈On

[∫
ϕtl,n dql +

1

2c(`)2sKn

Ç∫
Hn

d(σ, τ)dql(τ)

å2
]
p̂(l)

+
1

2(1− s)Kn

Å∑
l∈On

1l 6=ip̂(l)
ã2
}

= inf
p̂∈P(On)

{∑
l∈On

‹QHnKn−1
ϕtl,n(σ)p̂(l) +

1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
}
,

where the last equality follows by choosing s = Kn−1/Kn, which ends the proof of the
first inequality of Lemma 2.3. The second inequality of Lemma 2.3 is obtained identically
starting from (2.8).

We now turn to the induction step of the proof. By the decomposition of the measure
µ on the Hi’s, we want to bound∫

eαQ̃Knϕdµ =
∑
i∈On

ν̂n(i)

∫
eαQ̃Knϕ(σ)dµi(σ) =

∑
i∈On

ν̂n(i)

∫
eαQ̃Knϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (2.2).
If On = {n}, then the result simply follows from the induction hypotheses applied to

the measure µn.
If On 6= {n}, then applying successively Lemma 2.3 (1), the Hölder inequality, and

the induction hypotheses, we get∫
eαQ̃Knϕ(σti,n)dµn(σ)

≤ inf
p̂∈P(On)

{∏
l∈On

Å∫
e
αQ̃Hn

Kn−1
ϕtl,n

dµn

ãp̂(l)
exp

[
1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
]}

≤ inf
p̂∈P(On)

{∏
l∈On

Å∫
e−(1−α)ϕtl,ndµn

ã− p̂(l)α1−α

exp

[
1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
]}

= exp

[
α inf
p̂∈P(On)

{∑
l∈On

ϕ̂(l)p̂(l) +
1

2

Å∑
l∈On

1l 6=ip̂(l)
ã2
}]

,

where by property (2.2), we set

ϕ̂(l) := log

Å∫
e−(1−α)ϕdµl

ã− 1
1−α

= log

Å∫
e−(1−α)ϕtl,ndµn

ã− 1
1−α

.

According to the definition of the infimum convolution R̃ϕ̂ on the space X = On given in
Lemma 2.2, the last inequality is∫

eαQ̃Knϕ(σti,n)dµn(σ) ≤ eαR̃ϕ̂(i),

and therefore Lemma 2.2, applied with the measure ν = ν̂n, provides∫
eαQ̃Knϕdµ =

∑
i∈On

eαR̃ϕ̂(i)ν̂n(i) ≤
Å∑
i∈On

e−(1−α)ϕ̂(i)ν̂n(i)

ã− α
1−α

=

Å∑
i∈On

ν̂n(i)

∫
e−(1−α)ϕdµi

ã− α
1−α

=

Å∫
e−(1−α)ϕdµ

ã− α
1−α

.

The proof of (1.12) is completed for any measure µ ∈M. To improve the constant when
µ = µo is the uniform law on a `-local group G, the proof is similar using the second
inequality of Lemma 2.3 together with property (2.3).
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Proof of (b) in Theorem 1.6. We prove the dual equivalent property (1.13) as a conse-
quence of the stronger following result: for any real function ϕ onG, for any j ∈ {1, . . . , n}Å∫

eαQ
jϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1, (2.10)

where the infimum convolution operator Qjϕ is defined as follows, for σ ∈ G

Qjϕ(σ) = inf
p∈P(G)

®∫
ϕdp+

1

c(`)2

Å∫
1σ(j) 6=y(j)dp(y)

ã2

+
1

2c(`)2

∑
k∈[n]\{j}

Å∫
1σ(k)6=y(k)dp(y)

ã2

 . (2.11)

The proof of (2.10) relies on Lemma 2.2 and the following ones. For any σ ∈ G, we
define

QHnϕ(σ) = inf
p∈P(Hn)

{∫
ϕdp+

1

2c(`)2

n−1∑
k=1

Å∫
1σ(k) 6=y(k)dp(y)

ã2
}
,

and for j ∈ [n− 1],

QHn,jϕ(σ) = inf
p∈P(Hn)

®∫
ϕdp+

1

c(`)2

Å∫
1σ(j) 6=y(j)dp(y)

ã2

+
1

2c(`)2

∑
k∈[n−1]\{j}

Å∫
1σ(k)6=y(k)dp(y)

ã2

 .

Lemma 2.4. Let j ∈ [n]. For any σ ∈ G, one has

Qjϕ(σ) = Qσ(j)ϕ{−1}(σ−1),

where ϕ{−1}(z) = ϕ(z−1), z ∈ G.

This result follows from the change of variables σ(k) = l in the definition (2.11) of
Qjϕ(σ), one has

Qjϕ(σ) = inf
p∈P(G)

®∫
ϕdp+

1

c(`)2

Å∫
1y−1(σ(j))6=σ−1(σ(j))dp(y)

ã2

+
1

2c(`)2

∑
l,l 6=σ(j)

Å∫
1l 6=y(σ−1(l))dp(y)

ã2


= inf
q∈P(G)

®∫
ϕ(z−1) dq(z) +

1

c(`)2

Å∫
1z(σ(j)) 6=σ−1(σ(j))dq(z)

ã2

+
1

2c(`)2

∑
l,l 6=σ(j)

Å∫
1z(l)6=σ−1(l)dq(z)

ã2

 ,

where for the last equality, we use the fact that the map that associates to any measure
p ∈ P(G) the image measure q := R#p with R : σ ∈ G 7→ σ−1 ∈ G, is one to one from
P(G) to P(G).

Here is the key lemma for the induction step of the proof of (2.10).

Lemma 2.5. 1. Let j ∈ On. For any σ ∈ Hn, one has

Qjϕ(σtj,n) ≤ QHnϕtj,n(σ).
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2. For any ` ≥ 2, let c2(`) := 8(` − 1)2 + 2. Assume that On 6= {n} and let i, j ∈ On,
i 6= j. We note Di = supp(t−1

j,nti,n) \ {i} and d = |Di|. For any σ ∈ Hn, for any
θ ∈ [0, 1] one has

Qiϕ(σti,n) ≤ 1

d

∑
l∈ti,n(Di)

[
θQHn,lϕti,n(σ) + (1− θ)QHnϕtj,n(σ)

]
+

1

2
(1− θ)2.

3. For any ` ≥ 2, let c2(`) := 2(`−1)2 +2. Assume that On 6= {n} and let i, j ∈ On, i 6= j.
Let ti,j ∈ G such that ti,j(i) = j and deg(ti,j) ≤ `. We note Di = supp(ti,j) \ {i}
and d = |Di|. For any σ ∈ Hn, for any θ ∈ [0, 1] one has

Qiϕ(σti,n) ≤ 1

d

∑
l∈ti,n(Di)

[
θQHn,lϕti,n(σ) + (1− θ)QHnϕti,nt

−1
i,j (σ)

]
+

1

2
(1− θ)2.

Proof. The first part of this Lemma follows from the fact that P(Hj) ⊂ P(G) and the
fact that

∫
1σtj,n(j) 6=y(j)dp(y) = 0 for σ ∈ Hn and p ∈ P(Hj). Therefore, according to the

definition of Qjϕ, one has for σ ∈ Hj ,

Qjϕ(σtj,n) ≤ inf
p∈P(Hj)


∫
ϕdp+

1

2c(`)2

∑
k∈[n]\{j}

Å∫
1σtj,n(k)6=y(k)dp(y)

ã2


= inf
q∈P(Hn)


∫
ϕtj,ndq +

1

2c(`)2

∑
k∈[n]\{j}

Å∫
1σtj,n(k)6=ytj,n(k)dq(y)

ã2

 = QHnϕtj,n(σ).

For the proof of the second part of Lemma 2.5, we set

t̃i,j := t−1
j,nti,n.

Let us consider pli, l ∈ Di, a collection of measures in P(Hi), and pj ∈ P(Hj) (j 6= i). For
θ ∈ [0, 1],

p :=
1

d

∑
l∈Di

[θpli + (1− θ)pj ],

is a probability measure on G. Therefore, according to the definition of Qiϕ, for any
σ ∈ Hn,

Qiϕ(σti,n) ≤ 1

d

∑
l∈Di

ï
θ

∫
fdpli + (1− θ)

∫
fdpj

ò
+

1

2c(`)2
(A+B + C),

with

A =
∑

k∈[n]\ supp(t̃i,j)

Å∫
1σti,n(k) 6=y(k)dp(y)

ã2

, B =
∑
k∈Di

Å∫
1σti,n(k)6=y(k)dp(y)

ã2

,

and C = 2

Å∫
1σti,n(i)6=y(i)dp(y)

ã2

.

Since σ ∈ Hn and pli ∈ P(Hi), one has
∫

1σti,n(i)6=y(i)dp
l
i(y) = 0 and∫

1σti,n(i)6=y(i)dpj(y) = 1. It follows that

C = 2(1− θ)2.

For any k ∈ [n] and l ∈ Di, let us note

Ui(k, l) :=

∫
1σti,n(k)6=y(k)dp

l
i(y), and Uj(k) :=

∫
1σti,n(k)6=y(k)dpj(y).
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By the Cauchy-Schwarz inequality, one has

A ≤ 1

d

∑
l∈Di

θ ∑
k∈[n]\ supp(t̃i,j)

U2
i (k, l) + (1− θ)

∑
k∈[n]\ supp(t̃i,j)

U2
j (k)

 .
We also have

B =
∑
k∈Di

Ñ
θ

d
Ui(k, k) + (1− θ)Uj(k) +

θ

d

∑
l∈Di\{k}

Ui(k, l)

é2

≤
∑
k∈Di

dÅθ
d
Ui(k, k) + (1− θ)Uj(k)

ã2

+
θ2

d

∑
l∈Di\{k}

U2
i (k, l)


≤
∑
k∈Di

2θ2

d
U2
i (k, k) + 2d(1− θ)2 +

θ2

d

∑
l∈Di\{k}

U2
i (k, l)


≤ 2d2(1− θ)2 +

θ

d

∑
l∈Di

2U2
i (l, l) +

∑
k∈Di\{l}

U2
i (k, l)


All the above estimates together provide

A+B + C ≤ (2d2 + 2)(1− θ)2

+
1

d

∑
l∈Di

θ
Ñ

2U2
i (l, l) +

∑
k∈[n]\{i,l}

U2
i (k, l)

é
+ (1− θ)

∑
k∈[n]\ supp(t̃i,j)

U2
j (k)

 .
Observe that

d = deg(t̃i,j)− 1 = deg(t−1
j,nti,n)− 1 ≤ 2`− 2.

Therefore, according to the definition of c(`), one has 2d2 + 2 ≤ c(`)2. As a consequence
we get from all estimates above, by optimizing over all pli ∈ P(Hi) and all pj ∈ P(Hj),

Qiϕ(σti,n) ≤ 1

d

∑
l∈Di

[θVl + (1− θ)Wj ] +
1

2
(1− θ)2,

with

Vl := inf
pi∈P(Hi)

®∫
ϕdpi +

1

c(`)2

Å∫
1σti,n(l)6=y(l)dpi(y)

ã2

+
1

2c(`)2

∑
k∈[n]\{i,l}

Å∫
1σti,n(k)6=y(k)dpi(y)

ã2


= inf
qi∈P(Hn)

®∫
ϕti,ndqi +

1

c(`)2

Å∫
1σ(ti,n(l)) 6=y(ti,n(l))dqi(y)

ã2

+
1

2c(`)2

∑
k∈[n−1]\{ti,n(l)}

Å∫
1σ(k) 6=y(k)dqi(y)

ã2


= QHn,ti,n(l)ϕti,n(σ)
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and

Wj := inf
pj∈P(Hj)


∫
ϕdpj +

1

2c(`)2

∑
k∈[n]\ supp(t̃i,j)

Å∫
1σti,n(k) 6=y(k)dpj(y)

ã2


= inf
qj∈P(Hn)


∫
ϕtj,ndqj +

1

2c(`)2

∑
k∈[n]\ supp(t−1

j,n
ti,n)

Å∫
1σti,n(k)6=ytj,n(k)dqj(y)

ã2


≤ inf
qj∈P(Hn)


∫
ϕtj,ndqj +

1

2c(`)2

∑
k∈[n]\{i}

Å∫
1σti,n(k)6=yti,n(k)dqj(y)

ã2


= inf
qj∈P(Hn)


∫
ϕtj,ndqj +

1

2c(`)2

∑
k∈[n−1]

Å∫
1σ(k)6=y(k)dqj(y)

ã2


= QHnϕtj,n(σ)

where we used successively the following arguments: Hntj,n = Hj; if k ∈
[n]\ supp(t−1

j,nti,n) then ti,n(k) = tj,n(k); [n]\ supp(t−1
j,nti,n) ⊂ [n]\{i}. This ends the proof

of part (2) of Lemma 2.5.
The proof of part (3) Lemma 2.5 is identical replacing t̃i,j by ti,j . In that case one has

2d2 + 2 ≤ 2(`− 1)2 + 2 = c2(`).

Then, the only minor change is for the last step

Wj := inf
pj∈P(Hj)


∫
ϕdpj +

1

2c(`)2

∑
k∈[n]\ supp(ti,j)

Å∫
1σti,n(k)6=y(k)dpj(y)

ã2


= inf
qj∈P(Hn)


∫
ϕti,nt

−1
i,j dqj +

1

2c(`)2

∑
k∈[n]\ supp(ti,j)

Å∫
1σti,n(k)6=yti,nt−1

i,j
(k)dqj(y)

ã2


≤ inf
qj∈P(Hn)


∫
ϕti,nt

−1
i,j dqj +

1

2c(`)2

∑
k∈[n]\{i}

Å∫
1σti,n(k)6=yti,n(k)dqj(y)

ã2


= inf
qj∈P(Hn)


∫
ϕti,nt

−1
i,j dqj +

1

2c(`)2

∑
k∈[n−1]

Å∫
1σ(k)6=y(k)dqj(y)

ã2


= QHnϕti,nt

−1
i,j (σ)

where we used successively the following arguments: Hnti,nt
−1
i,j = Hj; if k ∈ [n] \

supp(ti,j) then ti,j(k) = k; [n] \ supp(ti,j) ⊂ [n] \ {i}. The proof of Lemma 2.5 is
completed.

We will now prove (2.10) by induction over n. For n = 2, G is the two points space S2

which is 2-local. For i ∈ {1, 2}, and for any p ∈ P(G),

1

c(2)2

Å∫
1σ(i)6=y(i)dp(y)

ã2

+
1

2c(2)2

∑
k,k 6=i

Å∫
1σ(k) 6=y(k)dp(y)

ã2

=
3

8

Å∫
1σ 6=ydp(y)

ã2

≤ 1

2

Å∫
1σ 6=ydp(y)

ã2

.
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As a consequence, we get the expected result from Lemma 2.2 applied with X = G.
We will now present the induction step. We assume that (2.10) holds at the rank n− 1

for all j ∈ {1, . . . , n− 1}.
Let us first explain that it suffices to prove (2.10) for j = n. For any t ∈ Sn, let

G(t) = t−1Gt. The isomorphism ct : G→ G(t), σ 7→ t−1σt pushes forward the measure µ
on the measure µ(t) := ct#µ ∈ P(G(t)), and conversely µ = ct−1#µ(t). Let j ∈ [n]. For
any σ ∈ G(t) and any real function ϕ on G, one has

(Qjϕ) ◦ ct−1(σ) = inf
p∈P(G)

®∫
ϕdp+

1

c(`)2

Å∫
1tσt−1(j)6=y(j) dp(y)

ã2

+
1

2c(`)2

∑
k∈[n]

Å∫
1tσt−1(k)6=y(k) dp(y)

ã2


= inf
q∈P(G(t))

®∫
ϕ ◦ ct−1 dq +

1

c(`)2

Å∫
1tσt−1(j) 6=tyt−1(j) dq(y)

ã2

+
1

2c(`)2

∑
k∈[n]

Å∫
1tσt−1(k)6=tyt−1(k) dq(y)

ã2


= inf
q∈P(G(t))

®∫
ϕ ◦ ct−1 dq +

1

c(`)2

Å∫
1σt−1(j)6=yt−1(j) dq(y)

ã2

+
1

2c(`)2

∑
k∈[n]

Å∫
1σ(k) 6=y(k) dq(y)

ã2


= Qt

−1(j)(ϕ ◦ ct−1)(σ).

From this observation, by choosing t−1 = tjn, and setting ψ = ϕ ◦ ct−1 , one hasÅ∫
G

eαQ
jϕdµ

ã1/α Å∫
G

e−(1−α)ϕdµ

ã1/(1−α)

=

Å∫
G(t)

eα(Qjϕ)◦ct−1dµ(t)

ã1/α Å∫
G(t)

e−(1−α)ϕ◦ct−1dµ(t)

ã1/(1−α)

=

Å∫
G(t)

eαQ
nψdµ(t)

ã1/α Å∫
G(t)

e−(1−α)ψdµ(t)

ã1/(1−α)

If we assume that G is a normal subgroup of Sn and that µ satisfies the second
property of (1.10), then G(t) = G and µ(t) = µ. Therefore the above expression is
bounded by 1 as soon as (2.10) holds for j = n. If we assume that G is a `-local group
and µ = µo is the uniform law on G, then G(t) is also a `-local group and µ(t) is exactly
the uniform law on G(t). Therefore the last expression is bounded by 1 as soon as (2.10)
holds with j = n for any uniform law on a `-local group. As a conclusion, it remains to
prove inequality (2.10) for j = n.

We may assume that On 6= {n}, otherwise the induction step is obvious. We first
apply Lemma 2.4, by the first property of (1.10) satisfied by µ,∫

eαQ
nϕdµ =

∫
eαQ

σ(n)ϕ{−1}(σ−1)dµ(σ) =

∫
eαQ

σ−1(n)ϕ{−1}(σ)dµ(σ).

Let g = ϕ{−1}. According to the decomposition of the measure µ on the sets Hi, i ∈ On,∫
eαQ

nϕdµ =
∑
i∈On

ν̂n(i)

∫
eαQ

igdµi. (2.12)
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For k ∈ On, let us note

ĝ(k) := log

Å∫
e−(1−α)gdµk

ã−1/(1−α)

.

We choose j ∈ On such that
min
k∈On

ĝ(k) = ĝ(j).

By property (2.2) and then applying Lemma 2.5 (1), we get∫
eαQ

jgdµj =

∫
eαQ

jg(σti,n)dµn(σ) ≤
∫
eαQ

Hngtj,ndµn.

By the induction hypotheses applied to the measure µn on the subgroup Hn = Gn−1, it
follows that ∫

eαQ
jgdµj ≤

Å∫
e−(1−α)gtjn dµn

ã−α/(1−α)

=

Å∫
e−(1−α)g dµj

ã−α/(1−α)

= eαĝ(j). (2.13)

Let us now consider i 6= j, i ∈ On. When G is a normal subgroup of Sn, property (2.2),
the second part of Lemma 2.5 and Jensen’s inequality yield: for any θ ∈ [0, 1],∫

eαQ
igdµi =

∫
eαQ

ig(σti,n)dµn(σ)

≤ exp

1

d

∑
l∈ti,n(Di)

ï
θ log

∫
eαQ

Hn,lgti,ndµn + (1− θ) log

∫
eαQ

Hngtj,ndµn

ò
+
α

2
(1− θ)2


By the induction hypotheses applied with the measure µn on the normal subgroup
Gn−1 = Hn of Sn−1, and from property (2.2), it follows that∫

eαQ
igdµi ≤ exp

{
θαĝ(i) + (1− θ)αĝ(j) +

α

2
(1− θ)2

}
. (2.14)

We get the same inequality when G is a `-local group and µ = µo is the uniform law on
G, by using property (2.3), the third part of Lemma 2.5 and the induction hypotheses
applied to the uniform measure µn on the `-local subgroup Gn−1 = Hn.

According to the definition (2.9) of the infimum-convolution operator R̃ĝ defined on
the space X = On, we may easily check that for every i ∈ On,

R̃ĝ(i) = inf
θ∈[0,1]

ß
θĝ(i) + (1− θ) min

k∈On
ĝ(k) +

1

2
(1− θ)2

™
.

Therefore optimizing over all θ ∈ [0, 1], we get from (2.13) and (2.14): for all i ∈ On,∫
eαQ

igdµi ≤ eαR̃ĝ(i).

Finally, from Lemma 2.2 applied with the measure ν = ν̂n on On, the equality (2.12)
gives∫

eαQ
nϕdµ ≤

∫
eαR̃ĝ dν̂n

≤
Å∫

e−(1−α)ĝ dν̂n

ã−α/(1−α)

=

(∑
i∈On

ν̂n(i)

∫
e−(1−α)g dµi

)−α/(1−α)

=

Å∫
e−(1−α)g dµ

ã−α/(1−α)

=

Å∫
e−(1−α)ϕ dµ

ã−α/(1−α)

.

The proof of (2.10) is completed.
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3 Transport-entropy inequalities on the slices of the cube

Proof of (a) in Theorem 1.8. We adapt to the space Xk,n−k the proof of (a) in Theorem
1.6. In order to avoid redundancy, we only present the main steps of the proof.

By duality, it suffices to prove that for all functions ϕ on Xk,n−k and all λ ≥ 0,∫
eλQϕdµk,n−k ≤ e

∫
λϕdµk,n−k+Ck,n−kλ

2/2
, (3.1)

where

Qϕ(x) = inf
p∈P(Xk,n−k)

ß∫
ϕdp+

∫
dh(x, y) dp(x)

™
, x ∈ Xk,n−k,

and for any 0 < α < 1,Å∫
eαQ̃Ck,n−kϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1, (3.2)

where for t > 0,‹Qtϕ(x) = inf
p∈P(Xk,n−k)

®∫
ϕdp+

1

2t

Å∫
dh(x, y) dp(y)

ã2
´
, x ∈ Xk,n−k.

The proof is by induction over n and 0 ≤ k ≤ n.
For any n ≥ 1, if k = n or k = 0, the set Xk,n−k is reduced to a singleton and the

inequalities (3.1) or (3.2) are obvious.
For n = 2 and k = 1, Xk,n−k is a two points set, (3.1) and (3.2) directly follows from

property (2.5) and Lemma 2.2 on X = X1,1.
For the induction step, we consider the collection of subset Ωi,j , with

i, j ∈ {1, . . . , n}, i 6= j, defined by

Ωi,j := {x ∈ Xk,n−k, xi = 0, xj = 1} .

Since for any x ∈ Xk,n−k, ∑
(i,j),i6=j

1Ωi,j (x) = k(n− k),

any probability measure p on Xk,n−k admits a unique decomposition defined by

p =
∑

(i,j),i6=j

p̂(i, j)pi,j , with pi,j =
1Ωi,jp

p(Ωi,j)
and p̂(i, j) =

p(Ωi,j)

k(n− k)
.

Thus, we define probability measures pi,j ∈ P(Ωi,j) and a probability measure p̂ on the
set I(n) = {(i, j) ∈ {1, . . . , n}2, i 6= j}. For the uniform law µ on Xk,n−k, one has

µ =
1

n(n− 1)

∑
(i,j)∈I(n)

µi,j ,

where µi,j is the uniform law on Ωi,j , µi,j(x) =
(
n−2
k−1

)
, for any x ∈ Ωi,j .

For any (i, j), (l,m) ∈ I(n), let s(i,j),(l,m) : Xk,n−k → Xk,n−k denote the map that
exchanges the coordinates xi by xl and xj by xm for any point x ∈ Xk,n−k. This map
is one to one from Ωi,j to Ωl,m. For any (i, j) ∈ I(n), the set Ωi,j can be identify to
Xk−1,n−k−1 and therefore the induction hypotheses apply for the uniform law µi,j on Ωi,j

with Hamming distance

di,jh (x, y) =
1

2

∑
k∈[n]\{i,j}

1xk 6=yk , x, y ∈ Ωi,j .
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For any function f : Ωi,j → R and any x ∈ Ωi,j , we define

QΩi,jf(x) := inf
p∈P(Ωi,j)

ß∫
f dp+

∫
di,jh (x, y) dp(y)

™
,

and ‹QΩi,j

t f(x) := inf
p∈P(Hn)

®∫
f dp+

1

2t

Å∫
di,jh (x, y) dp(x)

ã2
´
.

The key lemma of the proof that replaces Lemma 2.1 and 2.3 is the following.

Lemma 3.1. For any function ϕ : Ωi,j → R and any x ∈ Ωi,j , one has

Qϕ(x)≤ inf
p̂∈P(I(n))

 ∑
(l,m)∈I(n)

QΩi,j (ϕ ◦ s(i,j),(l,m))(x)p̂(l,m) +
∑

(l,m)∈I(n)

1(l,m)6=(i,j)p̂(l,m)

,
and‹QCk,n−kϕ(x) ≤ inf

p̂∈P(I(n))

 ∑
(l,m)∈I(n)

‹QΩi,j

Ck−1,n−k−1
(ϕ ◦ s(i,j),(l,m))(x)p̂(l,m)

+
1

2

Å ∑
(l,m)∈I(n)

1(l,m)6=(i,j)p̂(l,m)

ã2
 .

The proof of this lemma is obtained by decomposition of the measures p ∈ P(Xk,n−k)

on the sets Ωi,j , and using the following inequality

dh(x, y) ≤ di,jh (x, s(i,j),(l,m))(y)) + dh(s(i,j),(l,m))(y), y) ≤ di,jh (x, s(i,j),(l,m))(y)) + 2,

for any x ∈ Ωi,j , y ∈ Ωl,m.
Finally, the proof of the induction step based on Lemma 3.1 and the identity Ck,n−k =

Ck−1,n−k−1 + 1, is left to the reader.

Proof of (b) in Theorem 1.8. We will explain the projection argument on the dual formu-
lations of the transport-entropy inequalities. According to Proposition 4.5 and Theorem
9.5 of [7], the weak transport-entropy inequality (1.14) is equivalent to the following
property that we want to establish: for any real function f on Xk,n−k and for any
0 < α < 1, Å∫

eαQ̂fdµk,n−k

ã1/α Å∫
e−(1−α)fdµk,n−k

ã1/(1−α)

≤ 1, (3.3)

where “Qf(x) := inf
p∈P(Xk,n−k

{∫
ϕdp+

1

8

n∑
k=1

Å∫
1xk 6=yk dp(y)

ã2
}
, x ∈ Xk,n−k.

Let us apply property (1.13) to the function f ◦ P : Sn → R. Since µk,n−k = P#µ, we
get Å∫

eαÛQ(f◦P )dµ

ã1/α Å∫
e−(1−α)fdµk,n−k

ã1/(1−α)

≤ 1.

The inequality (3.3) is an easy consequence of the following result.

Lemma 3.2. For any σ ∈ Sn, ÙQ(f ◦ P )(σ) ≥ “Qf(P (σ)).
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It remains to prove this lemma. By definition, one hasÙQ(f ◦ P )(σ) = inf
p∈P(Sn)

{∫
f ◦ P dp+

n∑
j=1

Å∫
1σ(j)6=τ(j)dp(τ)

ã2
}

= inf
q∈P(Xk,n−k)

inf
p∈Sn,P#p=q

{∫
f ◦ P dp+

n∑
j=1

Å∫
1σ(j) 6=τ(j)dp(τ)

ã2
}

= inf
q∈P(Xk,n−k)

{∫
f dq + inf

p∈Sn,P#p=q

[
n∑
j=1

Å∫
1σ(j) 6=τ(j)dp(τ)

ã2
]}

.

Let p ∈ Sn such that P#p = q.∫
1σ(j)6=τ(j)dp(τ) =

∑
y∈Xk,n−k

∑
τ∈Sn

1P (τ)=y,σ(j) 6=τ(j)p(τ).

For y ∈ Xk,n−k, let us note Y = {i ∈ [n], yi = 1}. Then P (τ) = y if and only if τ([k]) = Y .
Assume that j ∈ [k], if τ([k]) = Y and σ(j) 6∈ Y then τ(j) 6= σ(j). Therefore one has{

τ, τ([k]) = Y, σ(j) 6∈ Y
}
⊂
{
τ, P (τ) = y, σ(j) 6= τ(j)

}
.

Assume now that j 6∈ [k], if τ([k]) = Y and σ(j) ∈ Y then we also have τ(j) 6= σ(j). It
follows that {

τ, τ([k]) = Y, σ(j) ∈ Y
}
⊂
{
τ, P (τ) = y, σ(j) 6= τ(j)

}
.

From these observations, we get

n∑
j=1

Å∫
1σ(j)6=τ(j)dp(τ)

ã2

≥
∑
j∈[k]

Å∫
1P (τ)=y,σ(j)6∈Y dp(τ)

ã2

+
∑

j∈[n]\[k]

Å∫
1P (τ)=y,σ(j)∈Y dp(τ)

ã2

=
∑
j∈[k]

Å∫
1σ(j)6∈Y dq(y)

ã2

+
∑

j∈[n]\[k]

Å∫
1σ(j)∈Y dq(y)

ã2

=
∑

i∈σ([k])

Å∫
1i 6∈Y dq(y)

ã2

+
∑

i 6∈σ([k])

Å∫
1i∈Y dq(y)

ã2

=
∑

i∈σ([k])

Å∫
1yi=0dq(y)

ã2

+
∑

i6∈σ([k])

Å∫
1yi=1dq(y)

ã2

Setting x = P (σ), it follows that

n∑
j=1

Å∫
1σ(j)6=τ(j)dp(τ)

ã2

≥
n∑
i=1

ñ
1xi=1

Å∫
1yi=0dq(y)

ã2

+ 1xi=0

Å∫
1yi=1dq(y)

ã2
ô

=
n∑
i=1

Å∫
1yi 6=xidq(y)

ã2

.

This inequality provides ÙQ(f ◦ P )(σ) ≥ “Qf(x) = “Qf(P (σ)).

The proof of Lemma 3.2 and (b) in Theorem 1.8 is completed.
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4 Appendix

Proof of Lemma 1.4. Let T = (tij ,j) be a `-local base of a group of permutations G = Gn.
In order to prove that the map

O2 ×O3 × · · · ×On → G

UT : i2, i3, . . . , in 7→ ti2,2ti3,3 · · · tin,n,

is one to one, it suffises to construct its inverse.
For any j ∈ {2, . . . , n}, let Uj denotes the map defined by

Uj(i2, i3, . . . , ij) = ti2,2ti3,3 · · · tij ,j .

Let σ = σ(n) ∈ G. We want to find the unique vector (i1, . . . , in) ∈ O1 × · · · ×On such that

Un(i1, . . . , in) = UT (i1, . . . , in) = σ.

Since Un(i1, . . . , in)(in) = n, necessarily the integer in is given by in = (σ(n))−1(n), in
belongs to On. Let σ(n−1) = σ(n)t−1

(σ(n))−1(n),n
. One has σ(n−1) ∈ Gn−1. Then, since

n− 1 = Un−1(i1, . . . , in−1)(in−1) = σ(n−1)(in−1),

the integer in−1 is necessarily given by in−1 = (σ(n−1))−1(n− 1) ∈ On−1. We set

σ(n−2) = σ(n−1)t−1
(σ(n−1))−1(n−1),n−1

∈ Gn−2.

Following this induction procedure, we construct a family of permutations σ(j) ∈ Gj for
j ∈ [n], such that ij = (σ(j))−1(j) ∈ Oj for all j ∈ {2, . . . , n}. Observing that G1 = {id}, it
follows that σ(1) = id and therefore

σ = σ(n) = ti2,2ti3,3 · · · tin,n.

This ends the proof of Lemma 1.4.

Proof of Lemma 1.5. Let G = Gn be a `-local group. From the definition of the `-local
property, it is clear that any of the subgroup Gj , j ∈ {2, . . . , n} is `-local. As a conse-
quence, for any ij ∈ Oj , ij 6= j, there exists tij ,j ∈ Gj such that

tij ,j(ij) = j, and deg(tijj) ≤ `.

This completes the proof of Lemma 1.5.

Proof of Lemma 2.2. Let α ∈ (0, 1) and f be a real function on the finite set X . We want
to show that for any probability measure ν on X ,Å∫

eαR̃
αfdν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

≤ 1.

We will apply the following lemma whose proof is given at the end of this section.

Lemma 4.1. Let F be a real function on X and K ∈ R. Let us consider the set

C :=

ß
ν ∈ P(X ),

∫
F dν = K

™
.

If C is not empty, then the extremal points of this convex set are Dirac measures or
convex combinations of two Dirac measures on X .
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Given a real function f on X , for any K ∈ R, let

CK =

ß
ν ∈ P(X ),

∫
e−(1−α)f dν = K

™
.

One has

sup
ν∈P(X )

Å∫
eαR̃

αfdν

ã1/α Å∫
e−(1−α)fdν

ã1/(1−α)

= sup
K,CK 6=∅

Ç
sup
ν∈CK

∫
eαR̃

αfdν

å1/α

K1/(1−α)

The supremum of the linear function ν 7→
∫
eαR̃

αfdν on the non empty convex set CK is
reached at an extremal point of CK . Therefore, by Lemma 4.1, we get

sup
ν∈P(X )

Å∫
eαR̃

αfdν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

= sup
x,y∈X

sup
λ∈[0,1]

(
(1− λ)eαR̃

αf(x) + λeαR̃
αf(y)

)1/α Ä
(1− λ)e−(1−α)f(x) + λe−(1−α)f(y)

ä1/(1−α)

Now, let x and y be some fixed points of X . It remains to show that for any real function
f on E and for any x, y ∈ X ,(

(1− λ)eαR̃
αf(x) + λeαR̃

αf(y)
)1/α Ä

(1− λ)e−(1−α)f(x) + λe−(1−α)f(y)
ä1/(1−α)

≤ 1.

The left-hand side of this inequality is invariant by translation of the function f by a
constant. Therefore, by symmetry, we may assume that 0 = f(y) ≤ f(x). It follows that
R̃αf(y) = 0. Therefore we want to check that for any non-negative function f on {x, y},
for any λ ∈ [0, 1],(

(1− λ)eαR̃
αf(x) + λ

)1/α Ä
(1− λ)e−(1−α)f(x) + λ

ä1/(1−α)
≤ 1,

or equivalently, setting ψ(λ) =
(
(1− λ)e−(1−α)f(x) + λ

)−α/(1−α) − λ,

eαR̃
αf(x) ≤ inf

λ∈[0,1)

ψ(λ)− ψ(1)

1− λ
= −ψ′(1) =

α

1− α
Ä
1− e−(1−α)f(x)

ä
+ 1,

since ψ is a convex function on [0, 1].
So, it suffices to check that R̃αf(x) ≤ φ(f(x)), where

φ(h) =
1

α
log

Å
α

1− α
Ä
1− e−(1−α)h

ä
+ 1

ã
, h ≥ 0.

The function φ is concave and φ(0) = 0. For all h ≥ 0, one has

φ′(h) =
1− α

e(1−α)h − α
.

The function φ′ is a bijection from [0,+∞) to (0, 1]. It follows that

φ(h) = inf
θ∈(0,1]

{θh+ cα(1− θ)} , h ≥ 0,

where cα is the convex function defined by

cα(1− θ) = sup
h∈[0,+∞)

{−θh+ φ(h)} , θ ∈ (0, 1].
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After computations, we get

cα(u) :=
α(1− u) log(1− u)− (1− αu) log(1− αu)

α(1− α)
,

and therefore we exactly have for any x ∈ X ,

φ(f(x)) = inf
θ∈[0,1]

{θf(x) + cα(1− θ)} = R̃αf(x).

The proof of Lemma 2.2 is completed.

Proof of Lemma 4.1. We will show that, if ν ∈ C is a convex combination of three proba-
bility measures ν1, ν2, ν3,

ν = α1ν1 + α2ν2 + α3ν3,

with α1 6= 0, α2 6= 0, α3 6= 0, and α1 + α2 + α3 = 1, and ν1(X ) > 0, ν2(X ) > 0, ν3(X ) > 0,
then there exists two measures ν̂1, ν̂2 in C and λ ∈ [0, 1] such that

ν = λν̂1 + (1− λ)ν̂2.

Setting Fi =
∫
Fdνi, for i = 1, 2, 3, we may assume, without loss of generality, that

F1 ≤ F2 ≤ F3. Then one has either F1 ≤ K ≤ F2, either F2 ≤ K ≤ F3.
We will assume that F1 ≤ K ≤ F2. The case F2 ≤ K ≤ F3 can be treated identically

and the proof in that case is let to the reader. Since F1 ≤ K ≤ F2 and F1 ≤ K ≤ F3,
there exists β, γ ∈ [0, 1] such that

K = βF1 + (1− β)F2 and K = γF1 + (1− γ)F3. (4.1)

If F1 = F3 then F1 = F2 = F3 = K and therefore ν1, ν2, ν3 ∈ C. We may choose λ = α1,
ν̂1 = ν1 and ν̂2 = α2ν2+α3ν3

α2+α3
.

If F1 = F2 then necessarily F1 = F2 = F3 = K and we are reduced to the previous
case.

So, we may now assume that F1 6= F3 and F1 6= F2 and therefore F1 < K ≤ F2 ≤ F3.
In that case, we exactly have

β =
F2 −K
F2 − F1

and γ =
F3 −K
F3 − F1

.

Let us choose

λ =
α2

1− β
= α2

F2 − F1

K − F1
, ν̂1 = βν1 + (1− β)ν2, ν̂2 = γν1 + (1− γ)ν2.

The equalities (4.1) ensure that ν̂1 ∈ C and ν̂2 ∈ C. The proof of Lemma 4.1 ends by
checking that λν̂1 + (1− λ)ν̂2 = µ̂. One has

λν̂1 + (1− λ)ν̂2 = (λβ + (1− λ)γ)ν1 + λ(1− β)ν2 + (1− λ)(1− γ)ν3. (4.2)

According to the definitions of λ, β, γ, we may easily check that λ(1− β) = α2, and

(1− λ)(1− γ) =
K − F1

F3 − F1
− α2

F2 − F1

F3 − F1
.

Since µ̂ ∈ C, one has (1− (α2 + α3))F1 + α2F2 + α3F3 and therefore

(1− λ)(1− γ) = α3.

As a consequence λβ + (1− λ)γ = 1− α2 − α3 = α1 and according to (4.2), we get

λν̂1 + (1− λ)ν̂2 = α1ν1 + α2ν2 + α3ν3 = ν.
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