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Measure-valued Pólya urn processes
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Abstract

A Pólya urn process is a Markov chain that models the evolution of an urn containing
some coloured balls, the set of possible colours being {1, . . . , d} for d ∈ N. At each
time step, a random ball is chosen uniformly in the urn. It is replaced in the urn and,
if its colour is c, Rc,j balls of colour j are also added (for all 1 ≤ j ≤ d).

We introduce a model of measure-valued processes that generalises this construc-
tion. This generalisation includes the case when the space of colours is a (possibly
infinite) Polish space P. We see the urn composition at any time step n as a mea-
sureMn – possibly non atomic – on P. In this generalisation, we choose a random
colour c according to the probability distribution proportional to Mn, and add a
measure Rc in the urn, where the quantity Rc(B) of a Borel set B models the added
weight of “balls” with colour in B.

We study the asymptotic behaviour of these measure-valued Pólya urn processes,
and give some conditions on the replacements measures (Rc, c ∈ P) for the sequence
of measures (Mn, n ≥ 0) to converge in distribution, possibly after rescaling. For
certain models, related to branching random walks, (Mn, n ≥ 0) is shown to converge
almost surely under some moment hypothesis; a particular case of this last result gives
the almost sure convergence of the (renormalised) profile of the random recursive
tree to a standard Gaussian.
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1 Introduction

1.1 The d–colour Pólya urn process

A Pólya urn process is a simple time-homogeneous Markov chain (Mn, n ≥ 0) on Nd

that models the evolution of an urn containing some coloured balls, the set of possible
colours being {1, . . . , d} for d ∈ N. For all integers n and for all j ∈ {1, . . . , d}, Mnj ≥ 0 is
the number of balls of colour j in the urn at time n, and Mn = (Mn1, . . . ,Mnd) is the urn
composition at time n.
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Measure-valued Pólya urn processes

A Pólya urn is defined by two parameters: an initial compositionM0 and a replacement
matrix R = (Ri,j)1≤i,j≤d where the Ri,j are integers. The initial urn composition M0 is
a vector with non-negative entries such that the initial total number of balls in the urn
is both positive and finite – in other words, 0 < ‖M0‖1 =

∑
jM0j < +∞ almost surely

(a.s.).
The Markov chain (Mn)n≥0 evolves as follows: At time n, pick a ball uniformly at

random among the balls in the urn; conditionally on Mn, the distribution of the colour
Cn of the picked ball verifies

P(Cn = i |Mn) = Mni / ‖Mn‖1. (1.1)

Conditionally on Cn = C, the composition vector evolves as follows:

Mn+1 = Mn +RC (1.2)

where Ri = (Ri,1, . . . , Ri,d) is the ith line of the replacement matrix. In other words,
the picked ball is replaced into the urn, and RC,j new balls of colour j are added, for
every j ∈ {1, . . . , d}. Authors are often interested in the asymptotic behaviour of the urn
composition when time goes to infinity and many results have been obtained for various
cases (see e.g. Janson [24], Flajolet & al. [21] and references therein). In general it is
assumed that the urn is tenable, i.e. that

Ri,j ≥ −1i=j (∀ 1 ≤ i ≤ d), (1.3)

which allows to remove the picked ball from the urn but ensures that no impossible
configuration occurs, i.e. that the number of balls of each colour stays non-negative.

Following the standard terminology, the R is said irreducible if for any i, j ∈ {1, . . . , d},
there exists n > 1 such that Rni,j > 0.

An important result on the asymptotic behaviour of d-colour urns is the following one:

Theorem 1.1 (see e.g. Janson [24, Theorem 3.1] or Athreya and Ney [2]). If R is irre-
ducible and tenable, then the largest eigenvalue λ1 of R is positive. If we denote by v1 the
left eigenvector of R associated to λ1 such that ‖v1‖1 = 1, then for any 0 < ‖M0‖1 < +∞,

Mn

n
→ λ1v1, almost surely.

1.2 The main ideas and results in this paper

In this paper, we introduce a new point of view on Pólya urn processes: we propose
viewing the urn composition as a finite positive measure µ on a general colour set (a
Polish space P): For all Borel sets B, µ(B) stands for the mass of balls that have colour
in B. We do not restrict ourselves to atomic measures (sum of Dirac measures which
corresponds to standard Pólya urn processes), and thus it is possible that no singleton
has positive mass.

Picking a colour randomly is replaced by picking a random colour C according to the
probability distribution proportional to µ (that is µ/µ(P)). When the colour C is drawn,
then the new urn composition becomes µ+RC where RC is a finite positive measure
on P which depends on C.

This approach – which was not needed to treat d-colour Pólya urn processes – is,
in our opinion, the right generalisation of Pólya urn processes. It provides a suitable
technical framework that, on the one hand, allows infinitely many colours (countable or
not), and, on the other hand, allows one to define “non-atomic” Pólya urn process.

The importance of extending Pólya urn processes to infinite settings was highlighted
by Janson, although up till now it was “far from clear how such an extension should be
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Measure-valued Pólya urn processes

formulated” (see [24, Remark 4.1]). Janson also gives three examples of infinitely-many-
colour Pólya urns, the first two are solvable by chance (Examples 7.5 and 7.6), and the
last one (Example 7.9), which involves a branching random walk on an infinite group, is
stated as an open problem that falls in our setting.

The present paper shows how to extend Pólya urn processes to infinite settings by
considering measure-valued Pólya processes; we prove some asymptotic results in this
general framework. The construction we provide goes far beyond a simple generalisation
of Pólya urn processes to infinitely-many colours since we allow the colour set to be
uncountable and the balls to be infinitesimal. Indeed, we take the point of view of
probability theory, and describe the urn composition by a general measure (possibly
non-atomic) on the set of colours.

Our work was partially motivated by Bandyopadhyay & Thacker [4]. This paper treats
a very particular case where the set of colours is the integer line Z; in [5], the authors
give more detailed results about this model (rate of convergence and large deviations).
In their very recent article [3], they generalise this example to a wider class. Similarly
to what we do in this article, they encode the Pólya urn by a branching Markov chain
built on a random recursive tree (this is already present in a restrictive form in their first
article). However, the results they prove need more restrictive assumptions than the
ones proved here. We compare in detail Bandyopadhyay & Thacker’s results with ours
at the end of Section 1.3.

In the rest of this introduction, we define our measure-valued Pólya processes (MVPPs)
and state our main results (namely Theorems 1.4, 1.6 and 1.8 below). In Section 1.3,
we encode each MVPP by a branching Markov chain and state Theorem 1.4, which
gives the convergence in probability of the composition measure of a MVPP under
some assumptions on the replacement measures (Rx, x ∈ P). In Section 1.4, we state
Theorem 1.6, which gives almost sure convergence of the composition measure for
a certain class of measure-valued MVPPs (namely the MVPPs associated to a simple
branching random walk with strong moment conditions on the increments). Finally,
in Section 1.5, we define a slightly different model that allows us to consider drawing
without replacement and state convergence in probability for this alternative model in
Theorem 1.8.

1.3 Definition of our measure-valued Pólya urn process

Throughout the paper, P denotes the colour set; it is a general Polish space.
We introduce the measure-valued Pólya process (Mn)n≥0 (MVPP) as follows: for

all n ≥ 0, Mn is a non-negative Borel measure on P. For all Borel sets B ∈ B(P),
Mn(B) represents the mass of balls whose colours belong to B. The urn process
(Mn)n≥0 depends on two parameters: an initial compositionM0 which is a non-negative
distribution on P, and a family (Rx, x ∈ P) of non-negative Borel measures, called the
replacement measures.

The mass Mn(P) can be interpreted as the total mass of balls at time n. In the
countable case, it would be the total number of balls in the urn, but in our framework,
Mn(P) is not assumed to be an integer. Picking a ball uniformly at random at time n
in the countable case is replaced by the following procedure: Pick a random colour Cn
under the probability distribution Nor(Mn), where for all finite measure µ on P, Nor(µ)

is the probability distribution proportional to µ:

Nor(µ) :=
µ

µ(P)
. (1.4)

Conditionally on Cn = C, the composition of the urn at time n+ 1 is given by

Mn+1 =Mn +RC . (1.5)
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Measure-valued Pólya urn processes

Recall that RC is a Borel measure: for any Borel set B, RC(B) encodes the mass of balls
of colour in B added in the urn when a ball of colour C has been drawn.

The process (Mn, n ≥ 0) is still a time-homogeneous Markov chain. Given an initial
measure M0 and a replacement kernel (Rx, x ∈ P), we will say that (Mn, n ≥ 0) is a
(M0, (Rx, x ∈ P))-MVPP.

One can check that a d-colour Pólya urn process is a MVPP by letting Mn =∑
x∈ΥMnx δx where δx is the Dirac measure at x, and Rx =

∑
y∈ΥRx,yδy, where

Υ = {1, . . . , d}. Note that taking Υ being a countable set instead of {1, . . . , d} gives
a Pólya urn process with infinitely (but countably) many colours.

Throughout the paper we assume that:

(H) For all x ∈ P, Rx is a non negative measure on P with total mass Rx(P) = 1.

Actually, we only need to assume that Rx(P) does not depend on x, but assuming
that it is equal to 1 makes no loss of generality. Indeed, if we consider the two families of
replacement kernels (Rx, x ∈ P) and (R′x = cRx, x ∈ P), and the two MVPP (Mn, n ≥ 0)

and (M′n, n ≥ 0) they define, we have

(M′n, n ≥ 0)
(d)
= c (Mn, n ≥ 0), if M′0

(d)
= cM0.

Note that Assumption (H) is equivalent to the balance condition in the study of
standard Pólya urn processes. Indeed, in the d-colour case, an urn is balanced if there
exists an integer S such that, for all 1 ≤ i ≤ d,

∑d
j=1Ri,j = S, implying that the total

number of balls in the urn at time n is nS plus the number of balls already in the urn at
time 0.

We want to design some sufficient conditions on the family R to ensure the con-
vergence ofMn after normalisation (for some initial measureM0). Before stating our
results, let us give the intuitive ideas underlying our approach. Consider a MVPP as
defined above, and consider the successive drawn colours (Ci, i ≥ 1). At time n, the
identity

Mn =M0 +

n∑
i=1

RCi (1.6)

shows that the sequence of drawn colours determines the sequence (Mn, n ≥ 0). Further,
to choose a random colour C according to Nor(Mn) can be represented as follows:

(a) with probabilityM0(P)/Mn(P) sample Cn+1 according Nor(M0),

(b) with probability 1/Mn(P) sample Cn+1 according to RCi (for any 1 ≤ i ≤ n);

or replace (b) by (b′):

(b′) choose Un+1 uniform in {1, . . . , n} then sample Cn+1 according to RCUn+1
.

Replacing (b) by (b′) makes the branching structure of the MVPP visible: Mn is a
sum of n+ 1 distributions, and one can consider that the term RCn+1 added at time n+ 1

is the “child” of the term RCUn+1
, which was drawn uniformly (up to the biased weight of

theM0-term) at random among the terms ofMn. Recursively, the evolution ofMn (up
to considerations involvingM0) appears to be perfectly encoded by a random recursive
tree, and this fact is at the heart of our analysis.

We now introduce a Markov chain defined on P, which will be used to express our
convergence result.

The companion Markov chain – Given the pair (M0,R) (that defines the MVPP
(Mn)n≥0) we define the Markov chain (Wn)n≥0 on P as follows:

EJP 22 (2017), paper 26.
Page 4/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP47
http://www.imstat.org/ejp/


Measure-valued Pólya urn processes

• The initial distribution of W0 is µ0 = Nor(M0).

• The Markov kernel of this Markov chain is defined for any (x,A) ∈ P × B(P) by

K(x,A) = Rx(A). (1.7)

In other words: assume that (Wm)m≤n has been defined. Conditionally on Wn = w, Wn+1

is defined as a random variable with law Rw.
The two processes (Wn)n≥0 and (Mn)n≥0 are very different since the first one is a

P-valued Markov chain, with Markov kernel K, and the second one is a Markov chain
with values inM+(P) the set of non-negative Borel measures on P.

Definition 1.2. We say that a Markov chain (Xn)n≥0 with initial distribution µ0 is(
a(n), b(n)

)
n≥0

convergent if the sequence
(
Xn−b(n)
a(n)

)
n≥0

converges in distribution to

some distribution µ∞ (which may depends on µ0). It is said to be
(
a(n), b(n)

)
n≥0

ergodic

if it is
(
a(n), b(n)

)
n≥0

convergent for any initial distribution µ0, and if the limiting
distribution µ∞ does not depend on µ0.

Note that the (1, 0)n≥0 convergence is the simple convergence in distribution.

Remark 1.3. When working on a general Polish space P, subtracting b(n) ∈ P to Xn

and dividing by a(n) might have no meaning. If P is not equipped with a subtraction
operation (which may be different from the usual notion of difference – this is just a
binary operation on P), the only meaningful choice for b(n) is 0 and we set the convention
Xn − 0 := Xn.

When a(n) = 1, we set x/1 := x for all x ∈ P (even if the division by 1 is not well
defined on the space). If a(n) is not 1, the elements of

(
a(n), n ≥ 0

)
belong to a set K

such that the “division” of the elements of P by those of K is well defined (for example,
if P is the set of 3 × 3 matrices with complex coefficients, K can be R \ {0}). We also
need the quotient of two elements of K to be well defined.

In most of our examples, P will be a Banach space (on R or C), on which subtraction
and division by a scalar are well defined.

For any measure µ, for any scalar a and any b ∈ P, denote by Θa,b(µ) the measure
defined by ∫

P
f dΘa,b(µ) :=

∫
P
f
(
a−1 (x− b)

)
dµ(x), (1.8)

for all measurable functions f . If µ is the probability distribution of a random variable
X, then Θa,b(µ) is the distribution of a−1(X − b).

One of the main results of the paper is the following:

Theorem 1.4. Assume that Assumption (H) holds, and that there exists
(
a(n), b(n)

)
n≥0

satisfying the following constraints:

(a) the Markov chain (Wn)n≥0 is (a(n), b(n))n≥0-ergodic with limiting distribution γ,

(b) for any x ∈ R, for any sequence εn = o(
√
n),

b(bn+ x
√
n+ εnc)− b(n)

a(n)
→ f(x) (1.9)

a(bn+ x
√
n+ εnc)

a(n)
→ g(x) (1.10)

where f : R → P and g are two measurable functions (pointwise convergence
almost everywhere suffices).
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Measure-valued Pólya urn processes

Under these hypotheses, for any finite measure M0 such that 0 <M0(P) < +∞, we
have

Θa(logn), b(logn)

(
n−1Mn

) (proba.)−−−−−→
n

ν (1.11)

for the topology of weak convergence on M(P), and where ν is the distribution of
Γg(Λ) + f(Λ) where Λ is a N (0, 1) random variable, and Γ ∼ γ is independent of Λ.

Remark 1.5. In fact, in this theorem and in the rest of the article, as explained in
Section 3.3, the role played by the initial measureM0 is secondary.

Bandyopadhyay & Thacker [3] in their Theorem 3.2, state a similar result but under
more restrictive assumptions: in the Polish case for a(n) = 1 and b(n) = 0 and in Rd

for two special cases of renormalisation sequences a(n) and b(n). Bandyopadhyay &
Thacker also give numerous examples (see [3, Section 4]) to which our result also applies
directly.

1.4 Almost sure convergent MVPPs

As already stated in Theorem 1.1, almost sure convergence of the rescaled urn
composition is already known for d-colour Pólya urns; see Athreya and Ney [2] or
Janson [24].

In this section, we state almost sure convergence in another case: “the random walk
case”, which corresponds to the case where the companion Markov chain is a random
walk whose increments have exponential moments.

This random walk case is the case where Rx is the law of x+ ∆ where ∆ is a random
variable (which does not depend on x). In this case, the underlying Markov chain (Wn)n≥0

is the simple random walk of increment ∆. We are able to prove strong convergence
of the (scaled) MVPP when the increments ∆ ∈ Rd have exponential moments in the
neighbourhood of 0. Assume that there exists r1 > 0, such that

E[exp(θ∆)] < +∞ for any θ ∈ B(0, r1), (1.12)

where B(0, r1) is the closed ball centred at the origin and of radius r1. Note that, by
continuity of the Laplace transform, if we denote

Sx = sup
θ∈B(0,x)

|E[exp(θ∆)]− 1| ,

then we have

Sx −−−→
x→0

0, and Sr1 < +∞. (1.13)

Theorem 1.6. Assume that for any x ∈ Rd, Rx is the law of x+ ∆ where ∆ is a random
variable in Rd (which does not depend on x). Assume that ∆ has exponential moments in
a neighbourhood of 0, and denote by m its mean and by Σ2 its covariance matrix. Then,
for any finite measureM0 such that 0 <M0(P) < +∞,

Θ√logn,m logn

(
n−1Mn

) (as.)−−−→
n
N (0, Σ2 +mTm), (1.14)

where mT stands for the transpose of m.

The convergence in probability in this case is a direct consequence of Theorem 1.4
and has also already been proved by Bandyopadhyay & Thacker [4, Theorem 2], together
with some speed-of-convergence results. However, the almost sure convergence in
Theorem 1.6 is a new result.
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The proof of almost sure convergence in this setting is obtained by proving (by a
martingale method) that the occupation measure of a branching random walk built
on a random recursive tree converges, after normalisation, almost surely. A similar
result was obtain by Biggins [8] for branching random walks on Galton–Watson trees;
both Biggins’ result and ours need, for the same reason, the same somewhat-restrictive
moment assumption. The proof we give is very much inspired by that of Chauvin &
al. [11] (following Joffe, Le Cam & Neveu [25]’s method) where where they prove the
convergence of the profile of binary search trees.

As a corollary of Theorem 1.6 we obtain a strong convergence result for the profile of
the random recursive tree. The random recursive tree, or rather the sequence of random
recursive trees, will be defined more formally later in this paper (see Section 2.1). It
is built as follows: RRT0 has a unique node being its root; to build RRTn+1 from RRTn,
we pick a node uniformly at random in RRTn and add a children to this node. For any
node u, we denote by |u| the graph distance between u and the root. The profile of the
random recursive tree RRTn is the measure

Profn :=
1

n

∑
k

Xn,kδk,

where Xn,k is the number of nodes at distance k of the root in RRTn. The profile of a
tree gives valuable information about its shape and has been studied for various random
trees: see for example Drmota & Gittenberger [17] for the Catalan tree; Chauvin &
al. [11] for the binary search tree; Schopp [33] for m-ary search trees; Katona [27]
and Sulzbach [34] for preferential attachment trees; Drmota, Janson & Neininger [19]
for random search trees; and Drmota & Hwang [18], Fuchs, Hwang & Neininger [23]
for the random recursive tree. In the latter papers the authors prove that if k/logn

converges to α ≥ 0 then Xn,k
EXn,k

converges in distribution to some limit law X(α). They

prove that convergence holds for all moments only if α ∈ [0, 1] and also that if α = 1 and
|k − log n| → ∞ then (Xn,k − EXn,k)/(VarXn,k)1/2 converges in distribution to a random
variable. As a corollary of Theorem 1.6, we are able to give an additional result about
the profile of the random recursive tree: Taking ∆ = 1 (the random walk with increment
equal to 1 a.s.) andM0 = δ0 in Theorem 1.6, we get that

Profn = n−1Mn. (1.15)

As a consequence, we have

Corollary 1.7. The sequence of rescaled profiles converge a.s.:

Θ√logn, logn (Profn)
(as.)−−−→
n
N (0, 1). (1.16)

Equivalently, let Profn(x) be the proportion of nodes in RRTn at distance at most

log n+x
√

log n of the root. We have Profn
(as.)−−−→
n

Φ in D(R) (the space of càd-làg functions

equipped with the Skorokhod’s topology) where Φ is the distribution function of the
standard Gaussian distribution.

Note that, although this result is new for the random recursive tree, a stronger, local
result is known for the binary search tree (see [11, Theorem 1]) and for preferential
attachment trees (see [27]).

1.5 Drawing without replacement

In the d-colour case, it is natural to consider the case of “drawing without replace-
ment”. This model is equivalent to allowing the diagonal coefficients of the replacement
matrix to be equal to −1.
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To allow drawing without replacement in a MVPP, we need to consider again atomic
measures since when a measure has no atom, the contribution of the weight of the
drawing ball to the total mass is zero, and then removing it or not does not change
anything. We decline a variation of our model: the κ-discrete measure-valued Pólya
processes.

In the κ-discrete model, for all x ∈ P, the massMn({x}) of any x ∈ P is a multiple
κ for some integer κ ≥ 2. Removing a ball with colour x corresponds to subtracting
(1/κ)δx fromMn, which means that 1/κ corresponds to the weight of a ball. In order for
the composition measuresMn to stay non-negative, we need to assume that the initial
urn compositionM0 and the replacement measures (i.e. the (Rx, x ∈ P)) are sums of
weighted Dirac measures, each weight being a multiple of 1/κ. This setting corresponds
to the generalisation of Pólya urn process “without replacement” to the measure-valued
case.

Definition of κ-discrete MVPPs – A (M0, (R̃x, x ∈ P))-MVPP is said to be κ-
discrete if the finite non-negative measure M0 can be written under the form M0 =

(1/κ)
∑
y∈P wyδy where the weights wy’s are non-negative integers, all of them being 0

but a finite number, and if for any x ∈ P,

R̃x = − 1

κ
δx +Rx (1.17)

where

Rx =
1

κ

∑
y∈P

rx,y δy (1.18)

where the rx,y’s are non-negative integers all of them being 0 but a finite number. In
other words, the sequence of integers (rx,y)x,y∈P is the equivalent for κ-discrete MVPPs
of the replacement matrix. We still assume that Rx(P) = 1 for all x ∈ P, that is∑

y∈P
rx,y = κ. (1.19)

Theorem 1.8. Assume that (M0, (R̃x, x ∈ P)) is a κ-discrete MVPP, for some κ ∈
{2, 3, . . .}. Assume moreover that hypotheses (a) and (b) of Theorem 1.4 hold for the
Markov chain with kernel K(z,A) = Rz(A). Under these hypotheses, for any finite
measureM0 such that 0 <M0(P) < +∞, we have

Θa(β logn), b(β logn)

(
n−1Mn

) (proba.)−−−−−→
n

ν (1.20)

for the topology of weak convergence onM(P), where

β = 1 +
1

κ− 1
, (1.21)

and where ν is the distribution of Γg(Λ) + f(Λ) where Λ is a standard Gaussian random
variable, and Γ ∼ γ independent of Λ.

Remark 1.9. More general models of drawing without replacement can be defined
since a weaker tenable condition can be defined: what is needed is that for each colour
x, R̃x({x}) is a divisor of R̃y({x}) for all y ∈ P, when R̃x({x}) < 0, and there are no

condition when R̃x({x}) = 0 on R̃y({x}). We do not go further in this direction.
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1.6 Examples and open problems

1.6.1 Examples of convergent MVPPs

In Section 1.4, we discussed two particular examples for which one has strong con-
vergence of the renormalised composition random measure: the d-colour case and the
branching random walk case. In most other cases, we are unable to prove strong conver-
gence but can still apply Theorem 1.4 to get convergence in probability; we now give
examples of such cases.

Homogeneous heavy-tailed random walks – Let ∆ be a random variable on P
and let Mn be the MVPP defined by the replacement measures Rx being the law of
x+ ∆ for all x ∈ P. We have already treated the case when ∆ has finite mean and finite
variance (see Theorem 1.6), but other cases also fall in our framework: the asymptotic
behaviour of a random walks is a well-studied topic, in R but also on much more general
Polish spaces (Rd, groups, Cayley graphs, etc.). If such a random walk converges (after
rescaling) to a limit distribution, then it falls in our setting.

The stable case – If ∆ is a real random variable having a finite mean m and such
that, when u tends to infinity, P(∆ ≥ u) ∼ u−α`(u) with α < 2 and where ` is regularly
varying at infinity. Then, the underlying Markov chain (Wn)n≥0 is (n1/α, b(n)) ergodic
with b(n) = 0 if α < 1 and mn otherwise, and its limit law γ is α-stable. In both cases
(α < 1 and 1 ≤ α < 2), we have f(x) = 0, and g(x) = 1 and thus, in view of Theorem 1.4,

Θ
log

1/α n, 0

(
n−1Mn

)
→ γ, (1.22)

in probability when n tends to infinity.
The proof of Theorem 1.4 relies on the analysis in this case of a branching random

walk built on the random recursive trees; this result appears to be very similar to that
of Fekete [20] where the underlying tree is the binary search tree (Remark 2.11 below
explains why branching random walks indexed by binary search trees and random
recursive trees are very similar objects).

Your favourite ergodic Markov chain – The philosophy behind Theorem 1.4
is that any measure-valued Pólya process is associated to an ergodic Markov chain.
Thus, providing examples of MVPPs to which our result applies is equivalent to providing
examples of ergodic Markov chains. One may then illustrate our Theorem 1.4 by choosing
in the literature a nice Markov chain that converges in distribution, for example: the
M/M/∞ queue. One among many examples is the M/M/∞ queue defined for two
positive parameters λ and µ. The Markov chain takes values in N and the transition
probability are given by

px,x+1 =
λ

λ+ xµ
and px,x−1 =

xµ

λ+ xµ
,

for all x ≥ 1, and p0,1 = 1. It is well known that this Markov chain is ergodic and that its
stationary distribution is given by

γ(x) =
(λ
µ

)x e−λ/µ
x!

(∀x ≥ 0).

Thus, the MVPP (Mn)n≥0 on N of replacement measures

Rx =
λ

xµ+ λ
δx+1 +

xµ

xµ+ λ
δx−1 (∀x ≥ 1),

and R0 = δ1 converges in probability to γ.

We now want to discuss two extensions we can foresee to this work, but that we have
so far not thoroughly investigated.
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1.6.2 Open problem: Random replacement matrices

In this article, we consider deterministic replacement measures. In view of the finite-
case literature (see Janson [24]), it would be natural to investigate random replacement
measures Rx. This model is defined using a family (νx, x ∈ P), where νx is a probability
measure on the set of probability measures on P; when the colour x is drawn for the
kth time, we add the measure R(k)

x in the urn, where (R(j)
x , 1 ≤ j ≤ k) are i.d.d. taken

under νx. We might expect that, for some reasonable assumptions on the deviations of
Rx around its mean, some analogous of Theorem 1.4 should hold; However, we did not
investigate this further.

1.6.3 Open problem: Starting with infinitely many balls

In the case of a d-colour Pólya’s urn (under the assumptions described in the introduction),
the total number of balls in the urn is at all times finite, but goes to infinity. As a mean to
understand the “stationary” behaviour of the Pólya’s urn at infinity, it is natural to try
and define a Pólya urn process with an infinite number of balls in the urn (or an infinite
mass) at all times.

It is not possible to define a discrete-time Pólya urn process in this setting since
choosing a ball uniformly is not possible (the measure Nor(M0) would not be defined).
However, passing to the continuous-time setting and assuming that at time 0 the urn
contains an infinite number of of balls indexed by the positive integers is a way to
properly define this process.

Denote by Xi the colour of the ith ball in the urn at time 0 and assume that for all
colour c ∈ N,

ρ(c) := lim
n→∞

∑n
i=11Xi=c
n

(1.23)

exists, or, more generally (without assuming the countability of the colour space), assume
that

ρ :=

∑n
i=1 δXi
n

(1.24)

exists in the spaceM(P).
Then equip each of the balls with a clock that rings after an exponentially-distributed

random time of parameter 1. When a clock rings, the associated ball is drawn from
the urn and the replacement rule applies. We assume again that Ry(P) = 1 for any y
(balance hypothesis). The newly added balls/measures are added at the same position as
the triggering ball. Denote by ρ(t) the limit distribution of ball colours at time t, limit
taken in the sense of (1.23) or (1.24). We may expect that ρ(t) exists (since it is the
sum of the limit measures associated with each lattice point, normalised by their total
weights), is deterministic (conditionally on ρ), and that, for any t

ρ(t)
(d)−−→
n

γ,

in the set of probability measures over P, for γ defined in Theorem 1.4; however, we did
not investigate this further.

1.7 Plan of the paper

In Section 2 we introduce the notion of branching Markov chains (BMC) and show
how one can couple the measure-valued Pólya process with a branching Markov chain
on the random recursive tree; this section also contains the definition of the random
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recursive tree and the binary search trees and the statements and proofs of several
results about those trees that are then useful when proving the main result.

Section 3 contains the proof of Theorem 1.4. Section 4 contains the proof of Theo-
rem 1.6 and finally, Section 5 treats the without-replacement case and contains the proof
of Theorem 1.8.

2 Branching Markov chains

In this section, we show how to couple the measure-valued Pólya process (MVPP)
with a branching Markov chain (BMC) on the random recursive tree, or equivalently on
the binary search tree. We also state here some preliminary results about BMCs which
will be useful when proving our main results.

2.1 Random recursive tree and binary search tree

First, consider X = {∅} ∪
⋃
n≥1N

n and X2 = {∅} ∪
⋃
n≥1{0, 1}n the set of finite

words on, respectively, the alphabet N = {0, 1, 2, . . .} and {0, 1}, where ∅ is the empty
sequence. We denote by uw the concatenation of the words u and w, so that for some
letters a1, . . . , ah ∈ N, a1 · · · ah is a word with h letters.

• A planar tree T is defined as a subset of X, containing ∅ (the root), and which
satisfies the two following properties:

– if a1 · · · ak ∈ T for some k ≥ 1 then a1 · · · ak−1 ∈ T ,
– if a1 · · · ak ∈ T , for any 0 ≤ j ≤ ak, a1 · · · ak−1j ∈ T .

The elements w of T are called nodes, and the number of letters in w is denoted |w| –
it corresponds to the depth of the node w in the tree. Any word v prefix of w is called
an ancestor of w (we write v � w or v ≺ w for the strict property); by definition, if w
is a node of T , then all its ancestors are also in T . The siblings of w = a1 · · · ak are the
elements of the form a1 · · · ak−1j ∈ Nk ∩ T . The second condition ensures that the names
of the children of any node w are the words w0, w1, . . . , wc where c+ 1 is the number of
children of w. A node in T with no child is called a leaf.

Finally the lexicographical order on X induces a total order on every tree.

• A complete binary tree is a planar tree whose nodes belongs to X2 (in other
words, all nodes have 0 or 2 children). Nodes with two children are called internal
nodes, the other ones are the leaves.

• An incomplete binary tree is the set of internal nodes of a complete binary trees
(and it is then not a planar tree, in general, since a node u may have only one child
u1 without u0 being a node of the tree). In any case, w0 is called the left child of w,
and w1, the right one.

Denote by Treen, IBTn and CBT2n+1 the set of planar trees with n nodes, the set of
incomplete binary trees with n nodes, and the set of complete binary trees nodes
with 2n+ 1 nodes.

A bijection g between CBT2n+1 and IBTn can be described as follows:

• from T ∈ CBT2n+1, take simply g(T ) as the set of internal nodes of T ,

• now conversely, take t in IBTn and construct Complete(t) = g−1(t) ∈ CBT2n+1 as

Complete(t) = {u0, u ∈ t} ∪ {u1, u ∈ t}. (2.1)

In words, add two children to the leaves of t, and if a node u has only one child,
add the second one.
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A rooted recursive tree with n + 1 nodes (for some n ≥ 0) is a pair (T, `) where
T ∈ Treen+1, and ` : T → {0, . . . , n} is a bijective labelling of the nodes of T , such that `
is increasing on T for the lexicographical order on T . In other words, ` increases along
the branches starting at the root, and along the siblings of each node.

Denote by Recn+1 the set of rooted recursive trees with n+ 1 nodes.

The random recursive tree (RRTn, n ≥ 0) is a Markov chain described as follows:

• RRT0 = (T0, L0), where T0 is the tree reduced to its root ∅, with label L0(∅) = 0;

• assume that RRTn = (Tn, Ln) has been built, choose a node u uniformly at random
among the n nodes of Tn. Let Tn+1 = Tn ∪ {uc}, where c is the smallest integer
such that uc 6∈ Tn; the labelling Ln+1 of Tn+1 coincides with Ln on Tn, and we set
Ln+1(uc) = n+ 1.

The binary search tree (BST) is a data structure used in computer science to store
and retrieved data efficiently. It has been deeply studied by many authors. The BST
associated to a sequence (xi, 1 ≤ i ≤ n) of distinct elements of a totally ordered set (the
order being denoted <) is a labelled incomplete binary tree (t, `′) defined recursively as
follows. At time 1, the tree t0 is reduced to the root ∅ (i.e. t0 = {∅}), which is labelled
`′(∅) = x1.

To insert a value x in a tree t, do the following:

• if the tree t is empty, create a node, and assign to this node the label x.

• if the tree is not empty, compare x with the label `′(r) of the root r of t. If x > `′(r)

then insert x in the subtree of t rooted at r0 else in the subtree of t rooted at r1
where r0 and r1 are the left and right children of r.

Eventually, the binary search tree associated with x1, . . . , xn is the labelled incom-
plete binary tree (tn, `

′
n) with n nodes labelled by x1, . . . , xn obtained by the successive

insertions of x1, . . . , xn.

The random binary search trees under the permutation model is the pair (Tn, L
′
n)

associated to the sequence of data (U1, U2, . . .) where the Ui are i.i.d. uniformly dis-
tributed in [0, 1]. Under this distribution, for all integers k, the sequence (U1, . . . , Uk)

is exchangeable, and thus the (random) permutation σ verifying Uσ(1) < · · · < Uσ(k), is
uniformly distributed on the set of permutations of {1, . . . , k}. Using an infinite sequence
(Ui, i ≥ 1) allows one to build a sequence of binary trees ((Tn, L

′
n), n ≥ 1).

The pair (Tn, L
′
n) is denoted by BSTn and called the enriched random binary

search tree. The first marginal Tn is denoted by BSTn and called the random binary
search tree. On many occasions, working with BSTn is a convenient tool to prove results
about BSTn (as for example Lemma 2.6). We state here a well known fact:

Lemma 2.1. Under the permutation model, (BSTn, n ≥ 0) is the Markov chain defined
as follows: BST0 = {∅}; and for all n ≥ 0, to build BSTn+1 from BSTn, choose a node u
uniformly among the leaves of Complete(BSTn), and set BSTn+1 = BSTn ∪ {u}.

In our framework, we will see that the random recursive tree naturally arises in the
study of MVPPs. But thanks to the permutation model, the binary search tree is easier to
study. We will therefore prove results on the binary search tree and then deduce their
counterparts on the random recursive tree via the rotation correspondence, which is a
mapping from the set of planar trees onto the set of incomplete binary trees.

The rotation correspondence is a map Ψ from Treen+1 onto IBTn (see Figure 1).
The map Ψ is defined at the level of nodes, that is the image of a node u ∈ t (for a tree
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Figure 1: The correspondence by rotation.

t) does not depend on t, but only on u. We denote by Ψ(u) the image of node u and by
Ψ(t) = {Ψ(u), u ∈ t}.

Take a tree t ∈ Treen+1 for some n ≥ 1. The tree Ψ(t) is defined as follows (see Figure
1):

• by a matter of size, t contains the node u = 1; set Ψ(1) = ∅;

• assume now that the image Ψ(t′) of a subtree t′ of t (rooted at ∅) has been defined.
Take a node v in t \ t′ which is a child of a node u in t′:

– if v is a leftmost child of node u, then set Ψ(v) = Ψ(u)0, meaning that the
relation parent-leftmost child, is preserved,

– if v = a1 · · · ak is not the leftmost child of u, then v′ = a1 · · · ak−1(ak − 1) is
the left sibling of v. Set Ψ(v) = Ψ(v′)1, meaning that the relation sibling-next
sibling is transformed into the relation parent-right sibling.

The following result is classical:

Proposition 2.2. For any n ≥ 0, the rotation correspondence Ψ is a bijection between
Treen+1 and IBTn.

The following definitions and lemmas will be useful when translating information on
the topology of the binary search tree into information on the topology of the random
recursive tree.

Definition 2.3. For any two nodes u1 and u2 in a tree, we denote by u1∧u2 their deepest
common ancestor, being their longest common prefix. For any word u ∈ X2, we define
the left-depth |u|` of u as the numbers of 0-bits it contains.

The rotation correspondence has the following property:

Lemma 2.4. (i) For any integer n, for any tree t ∈ Treen+1 and any node u ∈ t, we have
|u| = |Ψ(u)|` + 1.
(ii) For any planar tree t, and any nodes u1, u2 ∈ t, Ψ(u1 ∧ u2) is the longest prefix ω of
Ψ(u1) ∧Ψ(u2) such that |ω|` < |Ψ(u1) ∧Ψ(u2)|`.
(iii) In particular, |u1 ∧ u2| = |Ψ(u1) ∧Ψ(u2)|`.

Notice that (iii) follows from (i) and (ii) since |Ψ(u1 ∧u2)|` = |Ψ(u1)∧Ψ(u2)|`− 1 and
|Ψ(u1 ∧ u2)|` = |u1 ∧ u2| − 1.

Lemma 2.5. (i) The rotation correspondence Ψ is a bijective map from Treen+1 onto
IBTn.
(ii) Its inverse, Ψ−1 sends BSTn onto RRTn.

Proof. The first assertion is folklore (see e.g. Marckert [31] and references therein); let
us focus on the second one. Under the permutation model, the dynamics of the sequence
(BSTn, n ≥ 1) is simple: First, BST1 is reduced to the root. Now, assume that BSTn has
been defined and is an incomplete binary tree with n nodes. Let Ln be the set of leaves of
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Complete(BSTn). It is easy to see that Ln has n+1 elements, and that BSTn+1 is obtained
from BSTn by adding a uniform element of Ln. Observing the effect of this insertion
on Ψ−1(BSTn), one sees that this corresponds to the addition of a child with label n+ 1

as last child of a node chosen uniformly at random among the nodes of Ψ−1(BSTn). In
other words, the image of the dynamics of the binary search tree through the rotation
correspondence is the dynamics of random recursive trees RRTn.

About the sizes of subtrees in BST. Again the content of this paragraph is well
known, and we give explanations principally for the sake of completeness (see e.g.
Devroye & Reed [15], Broutin & Devroye [9], Chauvin & al [12] for examples of use of
this method).

We focus here on BSTn, the enriched binary search tree associated a sequence of
uniform random variables (Ui, i ≥ 0). By construction, U1 is inserted to the root ∅, then
the Ui’s that are smaller than U1 will be inserted in the subtree rooted at 0 and the ones
larger than U1 will be inserted in the subtree rooted at 1. For i ∈ {0, 1}, we denote by

BST
(i)

n the subtree of BSTn rooted at i (being one of the two children of ∅). Further,

for any node u, we let BST
(u)

n the subtree of BSTn rooted at u. We denote by π(BSTn)

the first coordinate of the pair BSTn (it is distributed as BSTn, but we need to keep the
overline to denote the enriched model).

Lemma 2.6. (i) Conditionally on U1, |BST(0)
n | is binomial (n− 1, U1), and conditionally

on |BST(0)
n | = k, π(BST

(0)

n ) and π(BST
(1)

n ) are independent and distributed as BSTk and
BSTn−1−k.
(ii) We have

n−1
(
|BST(0)

n |, |BST
(1)

n |
)

(as.)−−−→
n

(U1, 1− U1), (2.2)

(iii) Set a labelling of the complete binary tree X2 = {∅} ∪
⋃
n≥1{0, 1}n, by choosing a

uniform random variable per node (Vu, u ∈ X2) and by labelling u0 by Wu0 = Vu and
Wu1 = 1− Vu (the root ∅ is labelled by W∅ = 1). We have, for all finite subset F of X2,

n−1
(
|BST(u)

n |, u ∈ F
)

(as.)−−−→
n

∏
z�u

Wz, u ∈ F

 . (2.3)

Proof. (i) Conditionally on U1, the random variables U2, . . . , Un are i.i.d. and each of
them is smaller than U1 with probability U1. Also, conditionally on Ui ≤ U1, the random
variable Ui is uniformly distributed on [0, U1] (for all 2 ≤ i ≤ n). Therefore, conditionally

on |BST(0)

n | = k, π(BST
(0)

n ) is distributed as BSTk.
(ii) is proved by the exact same argument using additionally the strong law of large

number.
(iii) First note that, since F is a finite subset of X2, for any node u ∈ F , |BST(u)

n | → ∞,
when n tends to infinity. Let u ∈ F and denote by v its parent. From (i), we know that,
conditionally on its size, the subtree rooted at v is a random binary search tree under
the permutation model. Since the size of the subtree rooted at v goes to infinity with
n, we can apply (ii) and get that the size of the tree rooted at u divided by the size of
the tree rooted at the parent of u is asymptotically distributed as Wu (by definition of
the Wz’s). The same argument can be done recursively for the parent of u, and all its
ancestors till the root, which gives the stated result.

We end this section by a lemma whose proof is straightforward. Let t be a binary tree
and u a node of t. Denote by TRu(t) the tree obtained by exchanging the two subtrees of
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t rooted at u0 and u1. Formally TRu(t) is obtained by replacing all words (nodes) u0w in
t (resp. u1w) by u1w (resp. u0w). If u 6∈ t, let TRu(t) = t.

Lemma 2.7. Let BSTn be the random binary search tree under the permutation model,
for some n ≥ 0.

(i) For any node u, TRu(BSTn)
(d)
= BSTn;

(ii) let w = w1 · · ·w|w| be a node chosen uniformly in BSTn, then the letters wi’s are
i.i.d. random variables, uniformly distributed on {0, 1}.

Proof. (i) follows by symmetry of the construction of the random binary search tree. (ii)

is a straightforward consequence of (i).

2.2 Branching Markov chain

Branching random walks are classical objects in probability theory. They are random
walks indexed by a rooted tree: with each node u of a tree t is associated a random
variable ∆u, the family (∆u, u ∈ t) being i.i.d., and, by convention, we set ∆∅ = 0

where ∅ is the root. Now, the branching random walk is the pair (t, (Xu, u ∈ t)) where
Xu =

∑
v�u ∆v, so that along a branchXv evolves as a random walk. The name branching

random walk comes from the dependence structure: for any two nodes (u, v) ∈ t,

(Xu, Xv)
(d)
= (Z|u∧v|, Z|u∧v|) + (Z ′|u|−|u∧v|, Z

′′
|v|−|u∧v|) (2.4)

where in the right hand side Z,Z ′, Z ′′ denote independent random walks starting at 0.
At the core of our work lies the notion of branching Markov chains, which have been
considered in Bandyopadhyay and Thacker [4], also in the context of Pólya urn processes.
Here we extend a bit their definition, and go further in the analysis to prove Theorem 1.4.

Definition 2.8. A branching Markov chain (BMC) with initial position X∅ and family of
kernels (K

c
, c ≥ 1) is a stochastic process X(t) = (Xu, u ∈ t) indexed by a tree t with

the following properties:

• the variables attached to the children of the root (Xj , 0 ≤ j ≤ c∅ − 1), are
independent and distributed as K

c∅
(X∅, · ); in other words for any Borel sets

(B0, . . . , Bc∅−1),

P((X0, . . . , Xc∅−1) ∈ B0 × · · · ×Bc∅−1|X∅) = K
c∅

(X∅, B0 × · · · ×Bc∅−1). (2.5)

• conditionally on (Xj , 0 ≤ j ≤ c∅ − 1), the families X(tj), 0 ≤ j ≤ c∅ − 1 attached
to subtrees tj rooted at the children of the root, are independent BMCs with
respective initial positions Xj .

We will call K-simple branching Markov chain (SBMC) with kernel K, a BMC such
that, for all c ∈ {1, 2, . . .} and x ∈ P, for all Borel sets B0, . . . , Bc−1,

K
c
(x,B0 × · · · ×Bc1) = K(x,B0)× · · · ×K(x,Bc−1). (2.6)

In a K-SBMC the values associated to siblings are independent conditionally on the
value of their parent and Xv evolves on each branch Bu as a Markov chain with initial
position X∅ and kernel K. For any two nodes (u, v) ∈ t2, we have

(Xu, Xv)
(d)
= (M|u∧v|,M|u∧v|) + (M ′|u|−|u∧v| −M|u∧v|,M

′′
|v|−|u∧v| −M|u∧v|) (2.7)

where, in the right hand side, M is a Markov chain starting at X∅, and, conditionally
on M|u∧v|, (M ′,M ′′) are two independent Markov chains starting at position M|u∧v| (all
these Markov chains having the same kernel K).
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2.3 Coupling of the MVPP with a BMC

We couple (or encode) the sequence (Mn, n ≥ 0) with a sequence of branching
Markov chains (X(RRTn), n ≥ 0) on the random recursive tree.

In Section 2.2, we defined BMCs on a fixed underlying tree t. We now need to
consider a sequence of BMCs having as sequence of underlying trees the sequence of
(RRTn, n ≥ 0). The sequence (RRTn, n ≥ 0) being a nested sequence of trees, we can
define a nested sequence of BMCs using these trees, as follows. First assume that a
kernel K and an initial distribution M0 verifying M0(P) = 1 are given. Let un+1 be
the only node in RRTn+1 \ RRTn, and let v be its parent in RRTn+1. Conditionally on
the labels (Xu, u ∈ RRTn), take Xun+1

under the distribution K(Xv, · ). This defines a
sequence of compatible K-SBMC that we denote by (X(RRTn), n ≥ 0).

Lemma 2.9. Let (X(RRTn), n ≥ 0) be the sequence of compatible K-SBMC defined
above, with initial distributionM0 such thatM0(P) = 1 and kernel K defined for any
x ∈ P,

K(x, · ) = Rx( · ). (2.8)

Then the process defined for all integers n by

M?
n =M0 +

∑
u∈RRTn\{∅}

RXu (2.9)

satisfies (M?
n)n≥0 = (Mn)n≥0 where (Mn)n≥0 is the MVPP of initial composition M0

and replacement measures (Rx)x∈P .

Proof. It suffices to prove that the sequence of measures (M?
n, n ≥ 0) is a Markov chain,

and that it has the same kernel as (Mn, n ≥ 0) (as well as the same initial distribution
but this is straightforward).

For the first property, recall that, to build RRTn+1 from RRTn, one chooses uniformly
at random a node v ∈ RRTn and adds a new child un+1 to v. Therefore, in the branching
random walk, the distribution of the new label Xun+1 does not depend on the geometry
of tree, but only on the already existing labels (Xu, u ∈ RRTn). This ensures the fact that
M?

n is a Markov chain.
For the second property, it suffices to notice that that the only difference between

the MVPP and the BMC representationM0 +
∑
u∈RRTn\{∅}RXu is that, in this latter, the

data (the current values X.) are differently organised. But the measures M?
n do not

depend on this organisation.

Corollary 2.10. Let (Mn, n ≥ 0) be the MVPP of replacement measures (Rx)x∈P with
initial measureM0 such thatM0(P) = 1. Let X(RRTn) be the K-SBMC on the random
recursive tree of initial distributionM0 and kernel K(x, · ) = Rx( · ) (for all x ∈ P).

Let (An, Bn) be a pair of independent random variables taken under the random
probability distribution n−1Mn. Then the random variable (An, Bn) has distribution
(RXUn ,RXVn ), where Un and Vn are two uniform and independent nodes in RRTn.

Remark 2.11. It is interesting to note that MVPPs can also be encoded by non-simple
BMCs indexed by the BST. To see this, consider CBSTn the complete binary search trees
(this is the binary tree whose set of internal node is BSTn). Define a branching random
chain having CBSTn as underlying tree, with initial distributionM0 and kernel K defined
as followed: for all measurable sets A and B,

K(x,A× B) =
1

2
(1x∈ARx(B) + 1x∈BRx(A)) . (2.10)

In other words: to generate the value (Xu0, Xu1) of the children of Xu, flip a fair coin:
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• if it is tails, set Xu0 = Xu and draw Xu1 according to the kernel RXu( · );
• if it is heads, then take Xu1 = Xu and draw Xu0 according to the kernel RXu( · ).

Then, the process defined for all integers n by M•n = M0 +
∑
ν∈Leaves(CBSTn)RYν is

equal in distribution to the MVPP of initial compositionM0 and replacement measures
(Rx)x∈P . Since (CBSTn, n ≥ 0) is also a sequence of nested trees, one may define a
compatible sequence of BMCs and check that (M•n)n≥0 = (Mn)n≥0 in distribution.

To see this one encodes the evolution of the MVPP by a binary search tree, storing
the information at the level of leaves (while in the RRT-case, we work at the level of all
nodes). When “one draws a node u” with value Xu, we let it there, and add a child to u
with value distributed according to R(Xu, · ). The same encoding can be realised by,
instead, drawing only leaves, and when one draws a leaf u with value Xu, they add to this
leaf two children u0 and u1, copy the value of u in u0 or u1 at random with probability
1/2 and draw the value of the other child at random according to R(Xu, · ).

2.4 Auxiliary results on RRT’s and BST’s

An important ingredient of our proof of Theorem 1.4 is that we know the depth of a
node/two nodes in the random recursive tree and in the random binary search tree:

Proposition 2.12. Let Un and Vn be two random uniform and independent nodes taken
in BSTn.

(i) Asymptotically when n goes to infinity, we have(
|Un| − 2 log n√

2 log n
,
|Vn| − 2 log n√

2 log n
, |Un ∧ Vn|

)
(d)−−→
n

(
Λ1,Λ2,K1/3

)
, (2.11)

where the three r.v. are independent, K1/3 ∼ Geometric(1/3), Λ1 and Λ2 are N (0, 1)-
distributed.

(ii) Asymptotically when n goes to infinity, we have(
|Un|` − log n√

log n
,
|Vn|` − log n√

log n
, |Un ∧ Vn|`

)
(d)−−→
n

(Λ1,Λ2,K) , (2.12)

where the three r.v. are independent, K ∼ Geometric(1/2), Λ1 and Λ2 are N (0, 1)-
distributed.

As a corollary of this theorem, using the rotation map, we immediately get

Proposition 2.13. Let Un and Vn be two random uniform and independent nodes taken
in RRTn. We have(

|Un| − log n√
log n

,
|Vn| − log n√

log n
, |Un ∧ Vn|

)
(d)−−→
n

(Λ1,Λ2,K) , (2.13)

where the three r.v. are independent, K ∼ Geometric(1/2), Λ1 and Λ2 are N (0, 1)-
distributed.

Remark 2.14. The results presented in Propositions 2.12 and 2.13 are partially known.
The convergence of |Un ∧ Vn| in the RRT case and binary cases are proved in Kuba &
Wagner [29]. The asymptotic normal distribution for the depth of a uniform node, are
due to Dobrow [16] for the RRT, and to Mahmoud & Pittel [30] for the BST.

In the propositions stated above, we prove joint convergence in distribution, which is
stronger that the marginal convergence already proved in the literature.

Note that stronger results are known about the profile of these trees (which encodes
the number of nodes at each level): see Chauvin & al. [11, 12] for the BST and Fuchs &
al. [23] for partial results about the profile of the RRT. But these results do not imply the
above propositions.
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Proof of Proposition 2.12. (i) is a consequence of the third marginal convergence - a
result due to Kuba & Wagner [29, Theorem 7] - and of the fact that

|Un| − 2 log n√
2 log n

(d)−−→
n
N (0, 1), (2.14)

a result due to Mahmoud & Pittel [30] (see also Devroye [14]). To see this, proceed as
follows. We work with the enriched random binary search tree, which has, in terms
of depth of random nodes, the same properties as the random binary search tree. By
Lemma 2.6, the vector of the sizes of the subtrees rooted at a depth smaller than k

(sorted according to their root’s lexicographical order) converges almost surely on the
enriched space to a limit which has no entries equal to 0:

(
n−1|BST(u)

n |, (u, |u| ≤ k)
)

(as.)−−−→
n

∏
z�u

Wz, (u, |u| ≤ k)

 .

On this enriched space, the probability that Un ∧ Vn = u, where u is any given word of
length k converges to

pu := 2

∏
z�u0

Wz

∏
z�u1

Wz


since these terms are the asymptotic proportions of nodes in the subtrees rooted at u0

and u1. We thus get that(
n−1|BST(Un∧Vn)0

n |, n−1|BST(Un∧Vn)1

n |, Un ∧ Vn
)

(d)−−→
n

(α, β,W ) (2.15)

for some random variables α, β and W . Moreover α and β are almost surely positive.
It remains to describe (Un, Vn) conditionally to the event

E := {(|BSTn
(Un∧Vn)0|, |BSTn

(Un∧Vn)1|, Un ∧ Vn) = (s1, s2,W )}.

Conditionally on E:

• B1 = π(BST(Un∧Vn)0

n ) and B2 = π(BST(Un∧Vn)1

n ) are independent and are distributed
respectively as BSTs1 and BSTs2 ;

• Un (resp. Vn) is a node taken uniformly at random in B1 (resp. B2).

Hence, conditionally on E ,

(|Un|, |Vn|, Un ∧ Vn)
(d)
= (|W |+ |Us1 |, |W |+ |Us2 |,W ) (2.16)

where |Us1 | is independent of |Us2 |, and Us is a uniform node in BSTs. Now, we can
conclude the proof of (i): by Skorokhod representation theorem, the weak convergence
stated in (2.15) holds a.s. on a certain probability space. By the representation given in
(2.16) and by (2.14), it follows that on this space(

(|Un| − |Un ∧ Vn|)− 2 log(αn)√
log(αn)

,
(|Vn| − |Un ∧ Vn|)− 2 log(βn)√

log(βn)
, |Un ∧ Vn|

)
(2.17)

→ (Λ1,Λ2, |W |)

where the three random variables are independent, |W | (d)
= K1/3, Λ1 and Λ2 are N (0, 1)-

distributed. From here, one sees that since α and β are almost surely positive, Equa-
tion (2.17) implies Equation (2.11).
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(ii) This assertion is in fact a consequence of the first one and of Lemma 2.7(ii).
Conditionally on |Un ∧ Vn| = k, since Un ∧Wn is by symmetry uniform among the words
with k letters on the alphabet {0, 1}, |Un ∧ Vn|` is binomial(k, 1/2). It is easy from there
to recover that, since |Un ∧ Vn| is geometric of parameter 1/3, |Un ∧ Vn|` is geometric of
parameter 1/2. It now remains to adapt the rest of the previous proof. Following the steps
of the proof of (i), one sees that |Us1 |` and |Us2 |` are independent, and by Lemma 2.7(ii),
|Us|` is, conditionally to |Us|, binomial (|Us|, 1/2). The fact that (i) implies (ii) is a
consequence of the following general statement (easy to prove, e.g. using the central
limit theorem and the Skorokhod representation theorem for Xn):

Assume that (Xn, Yn) is a sequence of random variables, such that:

(a) the random variables (Xn, n ≥ 0) are almost surely non-negative,

(b) the distribution of Yn conditionally to Xn is a binomial of parameter (Xn, 1/2),

(c) (Xn − an)/
√
an

(d)−−→
n
N (0, 1) (for some diverging sequence (an, n ≥ 0)).

Then (Yn − an/2)/
√
an/2

(d)−−→
n
N (0, 1), when n goes to infinity.

3 Proofs of Theorem 1.4

3.1 Preliminary lemma

Lemma 3.1. Let (νn, n ≥ 0) be a sequence of random probability measures with total
mass 1. For any integer n, take (An, Bn) two independent random variables with common
distribution νn. If

(An, Bn)
(d)−−→
n

(A,B) (3.1)

where (A,B) are two independent random variables with a deterministic distribution ν

then νn
(d)−−→
n

ν for the topology of weak convergence inM(P)1.

Proof. For the sake of completeness we give a proof of this lemma although it is folklore.
The weak convergence in distribution of a sequence of random measures (νn)n≥0 on P
to ν is equivalent to the convergence∫

Φ dνn
(d)−−→
n

∫
Φ dν (3.2)

for any bounded continuous function Φ : P → R. Since its right term is deterministic,
Equation (3.2) follows from

E

(∫
Φ dνn

)
→
∫

Φ dν and Var

(∫
Φ dνn

)
→ 0. (3.3)

The first convergence can be restated under the form E(Φ(An))→ E(Φ(A)) which is a
consequence of the convergence of the first marginal in (3.1). Now,

Var

(∫
Φ dνn

)
= E

[(∫
Φ dνn

)2
]
− E

[ ∫
Φ dνn

]2

= Cov(Φ(An),Φ(Bn)), (3.4)

and since Φ is bounded and continuous, (3.1) implies that Cov(Φ(An),Φ(Bn))
(d)−−→
n

0,

which concludes the proof.

1Given a sequence of random variables (Xn)n≥0 and a random variable X, we say that Xn
(d)−−→
n

X if the

distribution of Xn converges weakly to the distribution of X.
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We prove Theorem 1.4 in two steps, separated in two subsections: we first assume
that the initial composition measure M0 has total mass one; and then show how the
result can be generalised to any initial composition measure.

3.2 Proof of Theorem 1.4 whenM0(P) = 1

For any n ≥ 1, set µn := n−1Θa(log(n)), b(log(n)) (Mn). The sequence (µn, n ≥ 0) is a
sequence of random probability measures, since each µn has total mass 1 as we have
assumedM0(P) = 1.

In order to apply Lemma 3.1, we take Un and Vn two nodes taken independently and
uniformly at random in the random recursive tree RRTn and denote by An and Bn two
independent random variables of respective distributions RXUn and RXVn . In view of
Lemma 3.1 and Theorem 2.10(ii), to prove Theorem 1.4, it suffices to prove that

(An, Bn) :=

(
An − b(log n)

a(log n)
,
Bn − b(log n)

a(log n)

)
converges in distribution towards a pair of independent random variables with com-
mon distribution that of Γg(Λ) + f(Λ) where Γ and Λ are independent, Λ is a stan-
dard Gaussian random variable, and Γ is γ-distributed. This would indeed imply that
Θa(logn), b(logn)(n

−1Mn) converges in distribution to the deterministic measure ν, which,
in turn, implies convergence in probability of Θa(logn), b(logn)(n

−1Mn) to ν.

Conditionally on Kn = Un ∧ Vn, the BMC structure implies that

(An, Bn)
(d)
= (W|Kn|,W|Kn|) + (W

(1)
1+|Un|−|Kn| −W|Kn|,W

(2)
1+|Vn|−|Kn| −W|Kn|)

where W is a Markov chain of kernel K of initial distributionM0, and W (1) and W (2)

are two independent Markov chains of Kernel K and of initial distribution δW|Kn| . By the
Skorokhod representation theorem, one can work on a probability space on which the
convergence stated in Proposition 2.13 is almost sure. On this space

|Un|+ 1 = log n+ Λ1

√
log n+ ε1(n)

|Vn|+ 1 = log n+ Λ2

√
log n+ ε2(n)

|Kn|
(as.)−−−→
n

G

where ε1(n) and ε2(n) are two random error terms, almost surely negligible with respect
to
√

log n, Λ1 and Λ2 are two independent standard Gaussian random variables, and G is
a finite (geometric) random variable. Notice that this last convergence implies that |Kn|
is eventually constant equal to G for every n greater than some (random) integer n0. For
all n ≥ n0, we have

(An, Bn)
(d)
= (W

(1)
1+|Un|−G,W

(2)
1+|Vn|−G)

where W (1) and W (2) are two independent Markov chains starting at a position WG.
Since G is fixed, the starting position of W (1) and W (2) is now fixed, and the ergodicity
hypothesis applies. In fact, since W (1) and W (2) are independent, it suffices to find the
limit of (W

(1)
1+|Un|−G − b(log n))/a(log n) and to observe that this limit is independent from

G. To see this, one may, for example, condition on the value of WG, and assume in the
sequel that it is fixed. Write

W
(1)
|Un|+1−G − b(log n)

a(log n)
=
W

(1)
|Un|+1−G − b|Un|+1−G

a|Un|+1−G

a|Un|+1−G

a(log n)
+
b|Un|+1−G − b(log n)

a(log n)
. (3.5)
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Since G = o(
√

log n), by assumption (b) of the theorem, we have

b|Un|+1−G − b(log n)

a(log n)
→ f(Λ1) and

a|Un|+1−G

a(log n)
→ g(Λ1),

where Λ1 is independent of G. By assumption (a),

W
(1)
|Un|+1−G − b|Un|+1−G

a|Un|+1−G

(d)−−→
n

Γ1,

where Γ1 is independent of G and γ-distributed. In conclusion,

W
(1)
|Un|+1 − b(log n)

a(log n)

(d)−−→
n

Γ1g(Λ1) + f(Λ1),

and this variable is independent of G. This concludes the proof of Theorem 1.4 under
the assumption thatM0(P) = 1.

3.3 Proof of Theorem 1.4 for generalM0(P)

To conclude the proof of Theorem 1.4, we need to discuss the case whenM0(P) 6= 1.
Assume first thatM0(P) = m is an integer. In this case, the idea consists in splitting

the initial measure into m parts (M(i)
0 , 1 ≤ i ≤ m) (that is such that M0 =

∑m
i=1M

(i)
0

andM(i)
0 (P) = 1), each of them having total mass 1. Sampling according toM0 is thus

equivalent to first choosing a uniform value i in {1, . . . ,m} and then sampling according

toM(i)
0 .

Consider the forest built as follows: at time zero, the forest is composed of m trees
reduced to their roots. At every discrete time step, one draws a node uniformly at
random in the forest, and add a child to this node. Note that, conditioned on their sizes
(s

(n)
1 , . . . , s

(n)
m ), each of the m trees of the forest are independent random recursive trees,

and then, to get Theorem 1.4 in this setting it suffices to show that the asymptotic sizes
of these trees are linear (since this holds for any starting distributionsM(i)

0 ). Note that

the vector (s
(n)
1 , . . . , s

(n)
m ) is the composition vector of a m-colour urn process of initial

composition vector (1, . . . , 1) and replacement matrix Idm. It is known that

Lemma 3.2 (see for example [26]).(
s

(n)
j /n, 1 ≤ j ≤ m

)
(as.)−−−→
n

(sj , 1 ≤ j ≤ m) (3.6)

and the limit follows the Dirichlet(1, . . . , 1) distribution, implying in particular that sj > 0

almost surely for all 1 ≤ j ≤ m.

If m is not an integer we can again couple the MVPP with a BMC on a random forest
composed of bmc + 1 trees. The random forest is built as follows: at time zero, it is
composed of the roots of bmc + 1 trees, the first bmc have weight 1 and the last has
weight {m} := m − bmc. At each discrete time step, one picks a node at random in
the forest with probability proportional to its weight, and adds a child of weight 1 to
this randomly chosen node. Note that the bmc first trees, conditioned on their size, are
random recursive trees, and the last one has a slightly different distribution: we weight
its root by {m} := m− bmc and each other of its nodes by 1.

Again, we can conclude if we can prove that under these dynamics the tree sizes are
asymptotically linear (see also Remark 3.3 below).

Note that the sizes of the first bmc trees of the forest have asymptotically a linear
size in n. This can be seen by comparison with the case when the initial mass is bmc+ 1.
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In fact, the last tree also has asymptotic linear size: let us denote by T the first time (in
the construction of the random forest) that a child is added to the root of the last tree.
Note that T is almost surely finite (since at time n, the probability is {m}/(n+ {m}). At
time T , the first bmc trees of the forest contain bmc+ T nodes (all of weight one), and
the last tree contains one node of weight one, which we denote by ν (plus the root of
weight {m}). Thus, the size of the last subtree is larger than the size of the subtree
rooted at ν, which we denote by sν(n). Again, by Lemma 3.2, conditionally on T , n−1sν(n)

converges almost surely to a Beta-distributed random variable b of parameter (1, T ),

which implies that s(n)
m+1, the size of the last subtree, satisfies a.s.

b ≤ lim inf
n

s
(n)
m+1/n ≤ lim inf

n
s

(n)
m+1/n ≤ 1.

Remark 3.3. Given its size, the last subtree is not distributed as a random recursive
tree because of the weight of the root. Luckily, the subtrees of the root, given their sizes
are distributed as random recursive trees. Moreover, if we compare with the case when
the initial mass is 1, the subtrees of the root are less numerous and larger than in the
random recursive tree case.

4 Proof of Theorem 1.6

We first prove the result in dimension d = 1.

4.1 One-dimensional case

Denote by (X1, . . . , Xk) the first k values of the branching Markov chain at the 1st,
2nd, 3rd... nodes, in their order of appearance in the tree. Consider the map Zn : C→ C

defined by

Zn(x) =

n∏
j=1

(
j − 1

j
+
x

j

)
. (4.1)

Notice that Zn(1) = 1. For all θ ∈ C, set

Fn(θ) = Zn(e−imθ)

n+1∑
k=1

eiθXk

n+ 1
(4.2)

a rescaled version of the empirical Fourier transform of the random probability measure

ρn+1 :=

n+1∑
k=1

δXk
n+ 1

. (4.3)

Notice that

1

n+ 1
Mn+1 =

∫
Rx( · )dρn+1(x). (4.4)

Hence Mn+1 is the distribution of XUn + ∆ where Un is uniform in {1, . . . , n + 1}.
Now, for any sequences (a(n), n ≥ 0) and (b(n), n ≥ 0) such that a(n) → +∞, and any
distribution ρ, we have that

Θa(n),b(n)(ρn)
(as.)−−−→
n

ρ implies Θa(n),b(n)

(
n−1Mn

) (as.)−−−→
n

ρ. (4.5)

It is thus enough to prove that Θa(n),b(n)(ρn)
(as.)−−−→
n

ρ. Let

Tn(θ) =
Fn(θ)

E(Fn(θ))
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its renormalised version (note that F0(θ) = T0(θ) = 1). The case m = 0 corresponds
to the case Zn(1) = 1. In view of the dynamics of the MVPP, we have the following
recursion: for all n ≥ 1,

E(Fn(θ) | Fn−1) =
Zn(e−imθ)

Zn−1(e−imθ)

nFn−1(θ)
(

1 + Φ(θ)
n

)
n+ 1

, (4.6)

where Φ(θ) = E(eiθ∆) is the Fourier transform of ∆. We have assumed that ∆ has
exponential moments, and more precisely that there exists r1 > 0 such that Sr1 =

supθ∈[−r1,r1] |E(exp(θ∆))− 1| < +∞. Let

Dr1 := {w ∈ C, |=(w)| ≤ r1} (4.7)

be the horizontal band centred around the x-axis, of width 2r1. We have

sup
z∈Dr1

|E(exp(iz∆))| ≤ sup
z∈Dr1

|E(exp(i<(z)∆−=(z)∆))| (4.8)

≤ sup
z∈Dr1

E(exp(−=(z)∆)) ≤ 1 + Sr1 . (4.9)

From here, we infer that Φ is holomorphic on Dr1/2.
From Equation (4.6) we get that, for all n ≥ 1,

E (Fn(θ)) =
Zn(e−imθ)

n+ 1

n∏
j=1

(
1 +

Φ(θ)

j

)
=

1

n+ 1
Zn(e−imθ)Zn(Φ(θ) + 1), (4.10)

implying that θ 7→ E(Fn(θ)) is holomorphic on Dr1/2. By the first statement of (1.13), we
deduce

Lemma 4.1. There exists r2 ∈ (0, r1/2), such that for any z ∈ Dr2 , for any n ≥ 1, E(Fn(z))

is non-null. Hence, for any z ∈ Dr2 , (Tn(z))n≥0 is a martingale.

The BST height profile martingale – In [11], the authors study a martingale(
Wn(z)/EWn(z)

)
n≥0

defined as follows: for all z ∈ C, Wn(z) :=
∑
k≥0 Un(k)zk where

Un(k) is the number of leaves at height k in the n + 1-leaf random binary search tree.
This martingale is different from ours, but we have (by [11, Lemma 2])

E(Wn(z)) = Zn(2z). (4.11)

To prove Theorem 1.6, we use Joffe, Le Cam & Neveu [25]’s method, many specific details
being similar to those developed by Chauvin & al. [11]. First of all, by [11, Lemma 3],∣∣∣∣E (Wn (z))− n2z−1

Γ(2z)

∣∣∣∣ = O(n2<(z)−2) uniformly on all compact sets of C, when n → +∞,

so that uniformly on all compact sets of C,∣∣∣∣Zn (x)− nx−1

Γ(x)

∣∣∣∣ = O(n<(x)−2). (4.12)

Thus, in view of Equation (4.10), we have

Lemma 4.2. Asymptotically when n goes to infinity, uniformly for z ∈ Dr2 ,

E[Fn(z)] =
ne
−imz+Φ(z)−2

Γ(e−imz)Γ(Φ(z) + 1)
(1 + o(1)). (4.13)

Proof. Since ∆ has exponential moments, by (4.8), for {w = (1 + Φ(z))/2, z ∈ Dr2} is
bounded, and using that e−imzHn+1 ∼ n−imz.
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We state the strong convergence of the renormalised random Fourier transform Tn:

Proposition 4.3. For any θ ∈ R,

Tn

(
θ√

log n

)
(as.)−−−→
n

1.

The proof of this proposition is postponed: we first show how to prove Theorem 1.6
from there.

Proof of Theorem 1.6. Note that, for all z ∈ C, letting m1 = m and m2 = σ2 +m2 the two
first moments of ∆,

Φ(z)− 2 + e−imz = 1 + im1z −
m2z

2

2
− 2 + 1− im1z −m2

1

z2

2
+ o(|z|2) (4.14)

= −(σ2 + 2m2)
z2

2
+ o(|z|2), (4.15)

when |z| tends to zero. Thus, in view of Lemma 4.2, for all θ ∈ R, we have

E

[
Fn

( θ√
log n

)]
=
n−

θ2(σ2+2m2)
2 logn

Γ(2)
(1 + o(1))→ exp

(
−θ

2

2
(σ2 + 2m2)

)
. (4.16)

Thanks to Proposition 4.3, for all θ ∈ R, almost surely when n tends to infinity, we have

Tn

( θ√
log n

)
= (1 + o(1)) e

θ2(σ2+2m2)
2 Fn

( θ√
log n

)
→ 1,

which implies that

Fn

( θ√
log n

)
(as.)−−−→
n

exp

(
−θ

2

2
(σ2 + 2m2)

)
. (4.17)

Note that the deterministic map θ 7→ Zn(e−imθ) is the Fourier transform of the random
variable

Kn := −m
n∑
j=1

Bj

where the Bj ’s are independent Bernoulli random variables of respective parameters
1/j. Since Kn has mean −mH(1)

n ∼ −m log n (where H(p)
n =

∑n
k=1 k

−p) and variance
Var(Kn) =

∑n
j=1 1/j(1− 1/j) = H(1)

n −H(2)
n ∼ log n, by Linderberg’s theorem,

Kn +m log n√
log n

(d)−−→
n
N (0,m2), (4.18)

which, by Lévy’s continuity theorem is equivalent to

eimθ
√

lognZn

(
e−imθ/

√
logn

)
→ exp

(
−m2θ2/2

)
. (4.19)

Hence, since

Fn

( θ√
log n

)
=
[
eimθ

√
lognZn

(
e−imθ/

√
logn

)]e−imθ√logn
n+1∑
k=1

exp
(
iXk

θ√
logn

)
n+ 1

 , (4.20)

using Equations (4.17), (4.19) and (4.20), we see that the Fourier transform of
Θ√logn,m logn

(
(n+ 1)−1Mn+1

)
given by the second bracket in the right-hand side of

Equation (4.20) converges pointwise a.s. to the Fourier transform of N (0, σ2 +m2). By
Berti & al. [7, Theorem 2.6], this implies that

Θ√logn,m logn

(
n−1Mn

) (as.)−−−→
n
N (0, σ2 +m2),

which concludes the proof.
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The end of the section is now devoted to proving Proposition 4.3. To do so, we follow
the strategy used in [11] and start by proving an equivalent of their Lemma 4. For all
z, z1, z2 ∈ C, set

fn(z) := (n+ 1)Fn(z) (4.21)

and

F ?n(z) :=
Fn(z)

Zn(e−imz)
, (4.22)

f?n(z) := (n+ 1)F ?n(z), (4.23)

P ?n(z1, z2) := E[f?n(z1)f?n(z2)]. (4.24)

Lemma 4.4. For all z1, z2 ∈ C,

P ?n+1(z1, z2) =

n∑
j=0

β?j (z1, z2)

n∏
k=j+1

α?k(z1, z2)

+

n∏
j=0

α?j (z1, z2),

where

α?j (z1, z2) = 1 +
Φ(z2) + Φ(z1)

j + 1
,

and, for all j ≥ 0,

β?j (z1, z2) =
E[f?j (z1 + z2)]

j + 1
Φ(z1 + z2) = E[F ?j (z1 + z2)]Φ(z1 + z2).

Proof. To get the (n + 2)-node RRT from the (n + 1)-node RRT, one chooses uniformly
at random a node U(n) in the (n + 1)-node RRT and attaches a new child to this node.
Moreover, the branching random walk at this new node is the value of the walk at U(n)

plus an increment ∆. Thus, for all n ≥ 0,

f?n+1(z) = f?n(z) + eiz(XU(n)+∆n+1), (4.25)

where (∆i)i≥1 is a sequence of i.i.d. copies of ∆. We thus have

P ?n+1(z1, z2) = E

[
E
[(
f?n(z1) + eiz1(XU(n)+∆n+1)

)(
f?n(z2) + eiz2(XU(n)+∆n+1)

) ∣∣∣ Fn]]
Recall thatMn+1/(n+ 1) = (

∑n+1
k=1 δXk)/(n+ 1) is the empirical distribution of the labels

of the tree and thus,
∫
eizx dMn+1(x)

n+1 = f?n(z)/(n+ 1). We have

P ?n+1(z1, z2) = E

[ ∫ (
f?n(z1) + eiz1(x+∆)

)(
f?n(z2) + eiz2(x+∆)

)dMn+1(x)

n+ 1

]
= E

[
f?n(z1)f?n(z2) + f?n(z1)f?n(z2)

Φ(z2) + Φ(z1)

n+ 1
+ f?n(z1 + z2)

Φ(z1 + z2)

n+ 1

]
,

which implies

P ?n+1(z1, z2) = P ?n(z1, z2)

(
1 +

Φ(z2) + Φ(z1)

n+ 1

)
+ E[F ?n(z1 + z2)]Φ(z1 + z2),(4.26)

so that

P ?n+1(z1, z2) = P ?n(z1, z2)α?n(z1, z2) + β?n(z1, z2). (4.27)

A simple recursion concludes the proof.
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Up till now, we have restricted our study to z ∈ Dr2 (the band centred around the
vertical axis, and of width 2r2) on which Tn is well defined for each n ≥ 1. By (1.13),
there exists r3 ∈ (0,+∞) such that Sr3 < 1/2. Let

r4 = min{r2, r3}.

Proposition 4.5. There exists a closed ball B centred at 0 in C, such that for any z in B,
the martingale (Tn(z), n ≥ 0) converges in L2. The convergence of (Tn, n ≥ 0) holds
almost surely in C(B,C) (the set of continuous functions on B taking their values in C,
equipped with the topology of uniform convergence).

In fact we prove that the random function Tn converges uniformly to a random
holomorphic function T on B.

Proof. For all z1, z2 ∈ Dr4 , we have, when j and n both go to infinity, that

n∏
k=j+1

α?k(z1, z2) =

n∏
k=j+1

(
1 +

Φ(z1) + Φ(z2)

k + 1

)

= exp

(
[Φ(z1) + Φ(z2)]

( n∑
k=j+1

1

k + 1
+O(1/j)

))

= exp

(
[Φ(z1) + Φ(z2)]

(
log n/j +O(1/j)

))
,

by Euler’s formula for Harmonic sums. Using the fact that z1, z2 ∈ Dr4 , we thus get

n∏
k=j+1

α?k(z1, z2) =
(n
j

)Φ(z1)+Φ(z2)(
1 +O(1/j)

)
.

Moreover, using Lemma 4.2, we have

β?n(z1, z2) =
Φ(z1 + z2)

Γ(1 + Φ(z1 + z2))
nΦ(z1+z2)−1 +O

(
n<(Φ(z1+z2)−2

)
. (4.28)

We have

|P ?n(z1, z2)| =

∣∣∣∣∣∣
n−1∑
j=0

(
β?j (z1, z2)

n−1∏
k=j+1

α?k(z1, z2)

)
+

n−1∏
j=0

α?j (z1, z2)

∣∣∣∣∣∣
≤
∣∣∣∣ Φ(z1 + z2)

Γ(1 + Φ(z1 + z2))

∣∣∣∣ n−1∑
j=0

j<(Φ(z1+z2))−1
(n
j

)<(Φ(z1)+Φ(z2))(
1 +O(1/j)

)2
+ n<(Φ(z1)+Φ(z2))

(
1 +O(1/n)

)
=

∣∣∣∣ Φ(z1 + z2)

Γ(1 + Φ(z1 + z2))

∣∣∣∣ n<(Φ(z1)+Φ(z2))

(
1 +

n−1∑
j=0

j<(Φ(z1+z2)−1−Φ(z1)−Φ(z2))

)
(1 + o(1)),

when n tends to infinity. Thus in view of Lemma 4.2 and Equations (4.21), (4.22), (4.23)
and (4.24) we have that∣∣∣∣∣ E

[
Fn(z1)Fn(z2)

]
E[Fn(z1)]E[Fn(z2)]

∣∣∣∣∣ =
P ?n(z1, z2)

E[F ?n(z1)]E[F ?n(z2)]

=

∣∣∣∣Γ(1 + Φ(z1))Γ(1 + Φ(z2))Φ(z1 + z2)

Γ(1 + Φ(z1 + z2))

∣∣∣∣(1 +

n−1∑
j=0

j<(Φ(z1+z2)−1−Φ(z1)−Φ(z2))

)
(1 + o(1)),

(4.29)
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Note that the first term in the above product is uniformly bounded for z1 and z2 in Dr4 .
Since, for any z,

E
(
|Tn(z)|2

)
=

∣∣∣∣∣ E
[
Fn(z)Fn(z)

]
E[Fn(z)]E[Fn(z)]

∣∣∣∣∣ .
For all a, b ∈ R, Fn(a+ ib) = Fn(−a+ib), implying that, by Equation (4.29), the martingale
Tn(a+ ib) is uniformly bounded in L2 if

<(Φ(2ib)− Φ(a+ ib)− Φ(a− ib)) < 0. (4.30)

Note that this last condition holds for all z = a+ ib in a rectangle R containing 0 in its
interior (and included in Dr4), since Φ(0) = 1 and since Φ is continuous at 0. Hence,
for all z ∈ R, the martingale Tn(z) converges a.s.; this is a consequence of the L2-
boundness, which implies L2 convergence (see e.g. [10, Theorem 4]). Finally, recall that
in any Banach space, a martingale which converges in L2 also converges a.s. (see e.g.
Pisier [32, Theorem 1.14]); therefore, for all z ∈ R, Tn(z) converges a.s. and we denote
by T (z) its limit.

Let us now discuss the convergence of the process Tn
(as.)−−−→
n

T on R, in a convenient

functional space. The above discussion concerning the convergence at any fixed z ∈ R
implies straightforwardly the a.s. joint convergence of (Tn(zj), 1 ≤ j ≤ k) to (T (zj), 1 ≤
j ≤ k), for all integers k ≥ 1 and (z1, . . . , zk) ∈ Rk.

The a.s. convergence of (Xn, Yn) to (X,Y ) implies the convergence of XnYn to XY ,
and here, since Tn(z1) and Tn(z2) converge in L2, we get that Tn(z1)Tn(z2)→ T (z1)T (z2)

a.s. and in L1, so that

Γn(z1, z2) := E[Tn(z1)Tn(z2)]→ Γ(z1, z2) := E[T (z1)T (z2)]. (4.31)

From (4.29), we see that Γn converges normally for (z1, z2) ∈ R2, and since (z1, z2) 7→
Γn(z1, z2) is holomorphic, we deduce that its limit Γ is holomorphic too.

We face then a situation where the sequence of continuous processes (Tn)n≥0 con-
verges uniformly to T on R. Now, since Γ is holomorphic, we have

E
[
|T (x)− T (y)|2

]
≤ |Γ(x,−x) + Γ(y,−y)−< (Γ(x,−y) + Γ(−x, y)) | ≤ c|x− y|2 (4.32)

for some c > 0, uniformly on R. By Kolmogorov criterion, the function T admits a
continuous modification on R. Finally, since Tn is continuous for all n, we get that
Tn → T in C(R,C).

Proof of Proposition 4.3. From Proposition 4.5, we infer that Tn
(d)−−→
n

T in C(R ∩ R,C),

that is (Tn(θ), θ ∈ R ∩R)
(d)−−→
n

(T (θ), θ ∈ R ∩R) for the topology of uniform convergence.

Moreover, since Tn(0) = 1 for all integers n, we have T (0) = 1. Finally, since T is
continuous on R ∩R, we get that, for all θ ∈ R,

Tn

( θ√
log n

)
(as.)−−−→
n

T (0) = 1.

4.2 Higher dimension

To prove Theorem 1.6 in dimension d ≥ 2, one can

• either adapt the one-dimensional proof to dimension d. This is done by considering
d-dimensional Fourier transforms instead: take

Fn(θ) = Zn(e−im·θ)

n+1∑
k=1

ei θ·Xk

n+ 1
,
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for all θ ∈ Rd, where m · θ stands for the scalar product of m and θ. The definition
of Zn(·) remains unchanged. The main change to make in the above proof is in the
proof of Theorem 1.6 itself where one needs to note that Zn(eim·θ) is the Fourier
transform of

Kn = (Kn1, . . . ,Knd), where Kni = −mi

n∑
k=1

Bk,

and Bk is a Bernoulli-distributed random variable of parameter 1/k (and the Bk
are independent). Note that Kn has mean −H(1)

n m where H(p)
n =

∑n
k=1 k

−p and

variance Var(Kn) = (H
(1)
n −H(2)

n )mTm. Then, by Linderberg theorem, using that

H
(1)
n ∼ log n when n tends to infinity, we have

Kn +m log n√
log n

(d)−−→
n
N (0,mTm). (4.33)

Which, by Lévy’s continuity theorem is equivalent to

ei
√

logn(m·θ)Zn

(
e−im·θ/

√
logn

)
→ exp

(
−θ

T (mTm)θ

2

)
. (4.34)

This replaces Equation (4.19). The rest of the proof can be adapted straightfor-
wardly.

• or make the following remark: note that the Fourier transform of n−1Mn at θ ∈ Rd
verifies

Fn(θ) =
1

n

n∑
k=1

ei‖θ‖
θ
‖θ‖ ·Xk ,

which is the Fourier transform of n−1
∑n
k=1 δu·Xk , where u := θ/‖θ‖, taken at ‖θ‖.

We can thus apply the one-dimensional result to the MVPP associated to the random
walk of increment u ·∆. Note that

E[u ·∆] = m · u, and Var(u ·∆) = uTΣ2u− (u ·m)2.

Thus

Fn

( θ√
log n

)
→ e−

(
uTΣ2u+(m·u)2

)
‖θ‖2/2 = e−

(
θTΣ2θ+(m·θ)2

)
/2,

when n tends to infinity, which proves the d-dimensional statement.

5 Proof of Theorem 1.8 (without-replacement case)

In the without-replacement case, when a ball of colour x is drawn, it is removed from
the urn, and replaced by κ balls, whose colours are represented by “the κ atoms” of the
measure Rx. Following what is done in the previous sections, we encode the urn process
by a sequence of BMCs associated to a sequence of growing trees. A similar idea has
already been used in the literature to encode d-colour Pólya urns as a tool to obtain fixed
point equations (see Knape & Neininger [28] and Chauvin & al. [13]).

The idea is the following: At time 0, the tree is reduced to the root ∅ labelled L∅ = c,
the colour of the unique ball in the urn at time 0. At time n, i.e. after n drawings, there
are 1+n(κ−1) balls in the urn. The urn at time n is represented by a tree with n internal
nodes, where each internal node has κ children. The labels of the leaves correspond
to the colour of the balls in the urn at time n, and the labels of the internal nodes,
corresponds to the colour of balls that have been in the urn in the past, and which
have been drawn and removed from the urn before time n. Choosing a ball b uniformly
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corresponds to choosing a leaf u uniformly at random in the tree. The withdrawal of the
chosen ball b and the addition of κ new balls b1, . . . , bκ is encoded by adding κ nodes to
the tree, being the children (u0, . . . , u(κ− 1)) of u. As done in the with-replacement case,
we now formalise this idea by coupling the MVPP with a BMC.

The random recursive κ-ary tree – This random tree is defined as a Markov chain
Tκn on the set of rooted trees whose nodes all have either 0 or κ children (also called κ-ary
trees). The tree Tκ0 is by definition equal to {∅}. Given Tκn, we build Tκn+1 as follows: take a
node un at random among the set of leaves of Tκn, and let Tκn+1 = Tκn∪{un0, . . . , un(κ−1)}.

Note that (taking κ = 2) CBSTn = T2
n in distribution.

The enriched model – As for the binary search tree, it is useful to build the
enriched random recursive κ-ary tree as follows. Recall that the Dirichlet distribution of
parameters κ and α has density

dµκ,α(x1, . . . , xκ) =
Γ(κα)

Γ(α)κ

κ∏
i=1

xα−1
i

on the simplex ∆κ−1 = {(x1, . . . , xκ) : xi ≥ 0,
∑
xi = 1}. In the following, we will take

α = β − 1 = 1/(κ− 1).
With each node u of the complete κ-ary tree, associate a random variable Xu =

(X(1)
u , . . . , X(κ)

u ) ∼ µκ,α. Using these variables, we associate to each node an interval: the
interval associated to the root is I∅ = [0, 1]. To its children 1 ≤ j ≤ κ, it is

Ij =
[
X(1)

∅ + · · ·+X(j−1)

∅ , X1
∅ + · · ·+X(j)

∅
]
,

with X(κ)

∅ = 1, so that, (I1, . . . , Iκ) forms a partition of [0, 1], and |Ij | = X(j)

∅ . We proceed
similarly, recursively: the intervals (Iu1, . . . , Iuκ) associated to the children of u are
obtained by forming a partition of Iu in κ parts, the variables X(j)

u giving the proportion
of the jth part: formally, if Iu = [a, b], then

Iuj = [a+ (b− a)(X(1)

u + · · ·+X(j−1)

u ), a+ (b− a)(X(1)

u + · · ·+X(j)

u )] ,

with X(κ)
u = 1. Hence, following the sequence of intervals along a branch starting at the

root, one sees a sequence of nested intervals.
We build the tree Gn as follows: Let (Ui)i≥1 be a sequence of i.i.d. random variable,

uniform on [0, 1]. Let G0 = {∅}. Given Gn, we define Gn+1 as follows: let

∂Gn := {uj : u ∈ Gn and 0 ≤ j ≤ κ− 1 and uj /∈ Gn}.

Let un be the node of Gn such that Un ∈ Iun . We set Gn+1 = Gn ∪ {un}.
Lemma 5.1. We have in distribution (Gn)n≥0 = (Tκn)n≥0.

Proof. The proof that this representation is exact can be found in [1, Prop 20] for
example. We detail it here for completeness’ sake. It is enough to prove that, for all
n ≥ 1, the sizes of the κ subtrees of the root of Gn have the same distribution as the sizes
of the subtrees of the κ subtrees of the root of Tκn.

Note that the size of the jth subtree of the root of Gn is given by

N (n)

j = {2 ≤ m ≤ n : Um ∈ Ij}.

We let(N
(n)

j , 1 ≤ j ≤ κ) be the size of the jth subtree of the root in Tκn. Our aim is to
prove that, for all integers n ≥ 1,(

N (n)

1 , . . . , N (n)

κ

) (d)
=
(
N

(n)

1 , . . . , N
(n)

κ

)
.
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For all integers n1, . . . , nκ such that
∑
nj = n− 1, we have

P
((
N (n)

1 , . . . , N (n)

κ

)
= (n1, . . . , nκ)

)
=

∫
∆d−1

(
n− 1

n1, . . . , nκ

)( κ∏
i=1

xnii

)
dµκ,β−1(x1, . . . , xκ)

=

(
n− 1

n1, . . . , nκ

) ∏κ
i=1 Γ(ni + β − 1)

Γ(n− 1 + κ(β − 1))

Γ(κ(β − 1))

Γ(β − 1)κ

(5.1)

Note that for any set of (t1, . . . , tn) of κ-ary trees verifying |ti| = i and t1 ⊂ t2 ⊂ · · · ⊂ tn,
we have

P(Tκ1 = t1, . . . , T
κ
n = tn) =

n−1∏
i=1

1

1 + i(κ− 1)
=

1

Γ(2 + (n− 1)(κ− 1))
.

The number of sets (t1, . . . , tn) of κ-ary trees verifying |ti| = i and t1 ⊂ t2 ⊂ · · · ⊂ tn and
such that the κ subtrees of the root of tn have respective sizes n1, . . . , nκ is given by(

n− 1

n1, . . . , nκ

) κ∏
i=1

K(ni),

where K(m) is the number of different κ-ary trees of size m, for all integer m (we may
also describe directly the subtrees size distribution). Given that (see for example [22,
page 68])

K(m) =
1

(κ− 1)m+ 1

(
κm

m

)
=

Γ(κm+ 1)

Γ(m+ 1)Γ((κ− 1)m+ 1)
, (5.2)

we get

P
((
N

(n)

1 , . . . , N
(n)

κ

)
= (n1, . . . , nκ)

)
=

(
n− 1

n1, . . . , nκ

)
1

Γ(1 + n(κ1))

κ∏
i=1

Γ(κni + 1)

Γ(ni + 1)Γ((κ− 1)ni + 2)
(5.3)

Expanding the terms Γ(ni + β − 1) in (5.1), using that for all integers m, we get

Γ(m+ β − 1) = Γ

(
m+

1

κ− 1

)
= Γ

(
1

κ− 1

)m−1∏
j=0

(κ− 1)j + 1

κ− 1
, (5.4)

implying that P
((
N (n)

1 , . . . , N (n)
κ

)
= (n1, . . . , nκ)

)
and P

((
N

(n)

1 , . . . , N
(n)

κ

)
= (n1, . . . , nκ)

)
are proportional, and thus equal.

The associated BMC – The BMC associated with our κ-discrete MVPP relies on the
fact that we have assumed that κRx is the sum of κ Dirac masses (see Equation (1.19)).
In other words, for all x ∈ P, the replacement measure Rx can be re-written as

Rx =
1

κ

κ∑
j=1

δyj(x),

where y1(x), . . . , yκ(x) are κ (not necessarily distinct) elements of P. The idea behind the
form of the BMC would that if a node is labelled by x, its children should be labelled by
y1(x), . . . , yκ(x). But in order for the label along a branch to be a Markov chain which
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does not depend on the rank of the ancestors in their siblings but only on their depth,
one should randomly shuffle the labels of siblings: for all y = (y1, . . . , yκ) ∈ Pκ, we let

Sym(y) =
1

κ!

∑
σ∈S(κ)

δ(yσ(1),...,yσ(κ)) (5.5)

the probability measure which is the uniform distribution on all orderings of the multiset y
(S(κ) denotes the symmetric group on {1, . . . , κ}). For all x ∈ P, we denote by

RMx := Sym(y1(x), . . . , yκ(x)). (5.6)

Lemma 5.2. Let X(Tκn) be the BMC on the random κ-ary recursive tree of initial distri-
butionM0 and kernel

K(x, · ) = RMx (∀x ∈ P).

Then the process defined for all integers n by

M?
n =

1

1 + n(κ− 1)

∑
u∈L(Tκn)

δX(u)

satisfies (M?
n)n≥0 = (Mn)n≥0.

Remark 5.3. It is worth stressing on an important difference between the drawing
without replacement case and the general case. In this latter case, the measure Mn

is encoded by the node-values of the BMCMn =M0 +
∑
u∈RRTn δRXu . In the without-

replacement case models (see again Remark 1.9), the measureMn is encoded by the
leaves-values of the κ-ary tree.

Following the same strategy as in the with-replacement case, we now state and prove
the equivalent of Proposition 2.13 for the random recursive κ-ary tree. Note that the
random recursive κ-ary search tree has been studied in the literature for two particular
values of κ: as already mentioned, κ = 2 corresponds to the random binary search tree,
and the ternary case has been studied for example by Bergeron & al. [6] and Albenque
& Marckert [1, Section 5.1]. Following Example 1 (page 7) and Theorem 8 in Bergeron
& al. [6], the height Hn of a random node in Tκn, follows a central limit theorem: for
β = 1 + 1/(κ− 1), we have

Hn − β log(n)√
β log(n)

(d)−−→
n
N (0, 1). (5.7)

Proposition 5.4. Let Un and Vn be two uniform random nodes taken in Tκn, we have(
|Un| − β log(n)√

β log(n)
,
|Vn| − β log(n)√

β log(n)
, |Un ∧ Vn|

)
(d)−−→
n

(Λ1,Λ2,K) (5.8)

where the three random variables are independent, Λ1 and Λ2 are two standard Gaussian
random variables and K is almost surely finite.

Proof. Using Lemma 5.1, one can adapt the arguments given in the proof of Proposi-
tion 2.12 (using again the enriched version by the Dirichlet random variables). We do
not give the details.

The rest of the proof is very similar to that of Theorem 1.4; in particular, we couple
the MVPP with a BMC on the κ-ary search tree using the following kernel:

K(x,A1 × · · · ×Aκ) = RMx(A1 × · · · ×Aκ). (5.9)

Note that, under this kernel, the sequence of the labels given by the BMC to the nodes
along a branch of the κ-ary tree (starting from the root) have the same distribution as a
Markov chain of kernel R. We do not give more details.

EJP 22 (2017), paper 26.
Page 31/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP47
http://www.imstat.org/ejp/


Measure-valued Pólya urn processes

References

[1] M. Albenque and J.-F. Marckert. Some families of increasing planar maps. Electronic Journal
of Probability, 13:1624–1671, 2008. MR-2438817

[2] K. B. Athreya and P. E. Ney. Branching Processes. Springer-Verlag/Berlin, 1972. MR-0373040

[3] A. Bandyopadhyay and D. Thacker. A new approach to Pólya urn schemes and its infinite
color generalization. (arXiv:1606.05317)

[4] A. Bandyopadhyay and D. Thacker. On Pólya urn schemes with infinitely many colors.
Bernoulli journal. To appear (arXiv:1303.7374).

[5] A. Bandyopadhyay and D. Thacker. Rate of convergence and large deviation for the infinite
color Pólya urn schemes. Statistics & Probability Letters, 92:232–240, 2014. MR-3230498

[6] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees, 1992. Available at
https://hal.inria.fr/inria-00074977/document. MR-1251994

[7] P. Berti, L. Pratelli, and P. Rigo. Almost sure weak convergence of random probability
measures. Stochastics, 78:91–97, 2006. MR-2236634

[8] J. D. Biggins. Uniform convergence of martingales in the branching random walk. Annals of
Probability, 20(1):137–151, 1992. MR-1143415

[9] N. Broutin and L. Devroye. Large deviations for the weighted height of an extended class of
trees. Algorithmica, 46:271–297, 2006. MR-2291957

[10] S. D. Chatterji. Martingales of Banach-valued random variables. Bulletin of the American
Mathematical Society, 66(5):395–398, 09 1960. MR-0119242

[11] B. Chauvin, M. Drmota, and J. Jabbour-Hattab. The profile of binary search trees. The Annals
of Applied Probability, 11(4):1042–1062, 11 2001. MR-1878289

[12] B. Chauvin, T. Klein, J.-F. Marckert, and A. Rouault. Martingales and profile of binary search
trees. Electronic Journal of Probability, 10:420–435, 2005. MR-2147314

[13] B. Chauvin, C. Mailler, and N. Pouyanne. Smoothing equations for large Pólya urns. Journal
of Theoretical Probability, 28:923–957, 2015. MR-3413961

[14] L. Devroye. Applications of the theory of records in the study of random trees. Acta
Informatica, 26(1):123–130, 1988. MR-0969872

[15] L. Devroye and B. Reed. On the variance of the height of random binary search trees. SIAM
Journal on Computing, pages 1157–1162, 1995. MR-1361150

[16] R. P. Dobrow. On the distribution of distances in recursive trees. Journal of Applied Probability,
33:749–757, 1996. MR-1401472

[17] M. Drmota and B. Gittenberger. On the profile of random trees. Random Structures and
Algorithms, 10:421–451, 1997. MR-1608230

[18] M. Drmota and H. Hsien-Kuei. Profiles of random trees: correlation and width of random
recursive trees and binary search trees. Advances in Applied Probability, 37:321–341, 2005.
MR-2144556

[19] M. Drmota, S. Janson, and R. Neininger. A functional limit theorem for the profile of search
trees. Annals of Applied Probability, 18:288,333, 2008. MR-2380900

[20] E. Fekete. Branching random walks on binary search trees: convergence of the occupation
measure. ESAIM: Probability and Statistics, 14:286–298, Oct. 2010. MR-2779485

[21] P. Flajolet, J. Gabarró, and H. Pekari. Analytic Urns. Annals of Probability, 2005. MR-2135318

[22] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge university press, 2009.
MR-2483235

[23] M. Fuchs, H.-K. Hwang, and R. Neininger. Profiles of random trees: Limit theorems for
random recursive trees and binary search trees. Algorithmica, 46(3):367–407, 2006. MR-
2291961

[24] S. Janson. Functional limit theorems for multitype branching processes and generalized
Pólya urns. Stochastic Processes and Applications, 110(2):177–245, 2004. MR-2040966

[25] A. Joffe, L. Le Cam, and J. Neveu. Sur la loi des grands nombres pour des variables aléatoires
de Bernoulli attachées à un arbre dyadique. Comptes Rendus de l’Académie des Sciences de
Paris, Série A277, pages 963–964, 1973. MR-0341570

EJP 22 (2017), paper 26.
Page 32/33

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2438817
http://www.ams.org/mathscinet-getitem?mr=0373040
http://arXiv.org/abs/1606.05317
http://arXiv.org/abs/1303.7374
http://www.ams.org/mathscinet-getitem?mr=3230498
https://hal.inria.fr/inria-00074977/document
http://www.ams.org/mathscinet-getitem?mr=1251994
http://www.ams.org/mathscinet-getitem?mr=2236634
http://www.ams.org/mathscinet-getitem?mr=1143415
http://www.ams.org/mathscinet-getitem?mr=2291957
http://www.ams.org/mathscinet-getitem?mr=0119242
http://www.ams.org/mathscinet-getitem?mr=1878289
http://www.ams.org/mathscinet-getitem?mr=2147314
http://www.ams.org/mathscinet-getitem?mr=3413961
http://www.ams.org/mathscinet-getitem?mr=0969872
http://www.ams.org/mathscinet-getitem?mr=1361150
http://www.ams.org/mathscinet-getitem?mr=1401472
http://www.ams.org/mathscinet-getitem?mr=1608230
http://www.ams.org/mathscinet-getitem?mr=2144556
http://www.ams.org/mathscinet-getitem?mr=2380900
http://www.ams.org/mathscinet-getitem?mr=2779485
http://www.ams.org/mathscinet-getitem?mr=2135318
http://www.ams.org/mathscinet-getitem?mr=2483235
http://www.ams.org/mathscinet-getitem?mr=2291961
http://www.ams.org/mathscinet-getitem?mr=2291961
http://www.ams.org/mathscinet-getitem?mr=2040966
http://www.ams.org/mathscinet-getitem?mr=0341570
http://dx.doi.org/10.1214/17-EJP47
http://www.imstat.org/ejp/


Measure-valued Pólya urn processes

[26] N. L. Johnson and S. Kotz. Urn models and their applications. Wiley and sons, 1997. MR-
0488211

[27] Z. Katona. Width of a scale-free tree. Journal of Applied Probability, 42:839–850, 2005.
MR-2157524

[28] M. Knape and R. Neininger. Pólya urns via the contraction method. Combinatorics Probability
and Computing, 23(6):1148–1186, 2014. MR-3265841

[29] M. Kuba and S. G. Wagner. On the distribution of depths in increasing trees. Electronic
Journal of Combinatorics, 17(1), 2010. MR-2729386

[30] H. Mahmoud and B. Pittel. On the most probable shape of a search tree grown from a random
permutation. SIAM Journal on Algebraic Discrete Methods, 5(1):69–81, 1984. MR-0731858

[31] J.-F. Marckert. The rotation correspondence is asymptotically a dilatation. Random Structures
and Algorithms, 24(2):118–132, 2004. MR-2035871

[32] G. Pisier. Martingales in Banach spaces. Cambridge University Press, 2016. The authors refer
to the mini-course version available at https://webusers.imj-prg.fr/~gilles.pisier/
ihp-pisier.pdf.

[33] E.-M. Schopp. A functional limit theorem for the profile of b-ary trees. The Annals of Applied
Probability, 20(3):907–950, 2010. MR-2680553

[34] H. Sulzbach. A functional limit law for the profile of plane-oriented recursive trees. DMTCS
Proceedings, 0(1), 2008. MR-2508798

Acknowledgments. The first author is grateful to EPSRC for support through the grant
EP/K016075/1. The second author has been partially supported by ANR-14-CE25-0014
(ANR GRAAL).

EJP 22 (2017), paper 26.
Page 33/33

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0488211
http://www.ams.org/mathscinet-getitem?mr=0488211
http://www.ams.org/mathscinet-getitem?mr=2157524
http://www.ams.org/mathscinet-getitem?mr=3265841
http://www.ams.org/mathscinet-getitem?mr=2729386
http://www.ams.org/mathscinet-getitem?mr=0731858
http://www.ams.org/mathscinet-getitem?mr=2035871
https://webusers.imj-prg.fr/~gilles.pisier/ihp-pisier.pdf
https://webusers.imj-prg.fr/~gilles.pisier/ihp-pisier.pdf
http://www.ams.org/mathscinet-getitem?mr=2680553
http://www.ams.org/mathscinet-getitem?mr=2508798
http://dx.doi.org/10.1214/17-EJP47
http://www.imstat.org/ejp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	The d–colour Pólya urn process
	The main ideas and results in this paper
	Definition of our measure-valued Pólya urn process
	Almost sure convergent MVPPs
	Drawing without replacement
	Examples and open problems
	Examples of convergent MVPPs
	Open problem: Random replacement matrices
	Open problem: Starting with infinitely many balls

	Plan of the paper

	Branching Markov chains
	Random recursive tree and binary search tree
	Branching Markov chain
	Coupling of the MVPP with a BMC
	Auxiliary results on RRT's and BST's

	Proofs of Theorem 1.4
	Preliminary lemma
	Proof of Theorem 1.4 when M0(P)=1
	Proof of Theorem 1.4 for general M0(P)

	Proof of Theorem 1.6
	One-dimensional case
	Higher dimension

	Proof of Theorem 1.8 (without-replacement case)
	References

