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Abstract

For large random matrices X with independent, centered entries but not necessarily
identical variances, the eigenvalue density of XX∗ is well-approximated by a deter-
ministic measure on R. We show that the density of this measure has only square and
cubic-root singularities away from zero. We also extend the bulk local law in [5] to the
vicinity of these singularities.
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1 Introduction

The empirical eigenvalue density or density of states of many large random matrices
is well-approximated by a deterministic probability measure, the self-consistent density
of states. If X is a p× n random matrix with independent, centered entries of identical
variances then the limit of the eigenvalue density of the sample covariance matrix XX∗

for large p and n with p/n converging to a constant has been identified by Marchenko
and Pastur in [9]. However, some applications in wireless communication require
understanding the spectrum of XX∗ without the assumption of identical variances of the
entries of X = (xkq)k,q [6, 8, 10]. In this case, the matrix XX∗ is a random Gram matrix.

For constant variances, the self-consistent density of states is obtained by solving
a scalar equation for its Stieltjes transform, the scalar Dyson equation. In case the
variances skq ..= E|xkq|2 depend nontrivially on k and q, the self-consistent density of
states is obtained from the solution m(ζ) = (m1(ζ), . . . ,mp(ζ)) ∈ Hp of the vector Dyson
equation [7]

− 1

mk(ζ)
= ζ −

n∑
q=1

skq

(
1 +

p∑
l=1

slqml(ζ)
)−1

for all k ∈ [p], (1.1)

for all ζ ∈ H. Here, we introduced H ..= {ζ ∈ C : Im ζ > 0} and [p] ..= {1, . . . , p}. Indeed,
the average 〈m(ζ)〉1 ..= p−1

∑p
k=1mk(ζ) is the Stieltjes transform of the self-consistent
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density of states denoted by 〈ν〉1. If the limit of 〈ν〉1 as p, n → ∞ exists then it can be
studied via an infinite-dimensional version of (1.1) (see (2.3) below).

For Wigner-type matrices, i.e., Hermitian random matrices with independent (up to
the Hermiticity constraint), centered entries, the analogue of (1.1) is a quadratic vector
equation (QVE) in the language of [1, 3]. In these papers, finite and infinite-dimensional
versions of the QVE have been extensively studied to analyze the self-consistent density
of states whose Stieltjes transform is the average of the solution to the QVE. The
authors show that the self-consistent density of states has a 1/3-Hölder continuous
density. Except for finitely many square-root and cubic-root singularities this density is
real-analytic. The square-root behaviour emerges solely at the edges of the connected
components of the support of the self-consistent density of states, whereas the cubic-root
singularities lie inside these components. The detailed stability analyis in [1] is then used
in [2] to obtain the local law for Wigner-type matrices. A local law typically refers to a
statement about the convergence of the eigenvalue density to a deterministic measure
on a scale slightly above the typical local eigenvalue spacing.

For the Dyson equation for random Gram matrices, we obtain away from ζ = 0 the
same results as mentioned above in the QVE setup. Furthermore, we extend our local law
for random Gram matrices in [5] to the vicinity of the singularities of the self-consistent
density of states. This can be seen as another instance of the universality phenomenon in
random matrix theory. Despite the different structure of Gram and Wigner-type matrices,
the densities of states of these Hermitian random matrices have the same types of
singularities. We refer to [5] and the references therein for related results about random
Gram matrices.

There is a close connection between Gram and Wigner-type matrices. The Dyson
equation, (1.1), can be transformed into a QVE in the sense of [1] and the spectrum of
XX∗ is closely related to that of a Wigner-type matrix in the sense of [2]. This is easiest
explained on the random matrix level through a special case of the linearization tricks:
If X has independent and centered entries then the random matrix

H =

(
0 X

X∗ 0

)
(1.2)

is a Wigner-type matrix and the spectra ofH2 and XX∗ agree away from zero. Therefore,
instead of trying to analyze (1.1) and XX∗ directly, it is more efficient to study the
corresponding QVE and Wigner-type matrix as in [5]. However, owing to the large
zero blocks in H, its variance matrix is not uniformly primitive (see A3 in [1]), a key
assumption for the analysis in [1]. Indeed, the stability operator of the QVE possesses
an additional unstable direction f−, which has to be treated separately. In [5], this study
has been conducted in the bulk spectrum and away from the support of 〈ν〉1, where f−
did not play an important role at least away from zero.

In this note, we present a new argument needed in the analysis of the cubic equation
(see (3.19) below) describing the stability of the QVE close to its singularities in order to
incorporate the additional unstable direction. In fact, the analysis of the cubic equation
in [1] heavily relies on the uniform primitivity of the variance matrix. Adapting this
argument to the current setup cannot exclude that the coefficients of the cubic and the
quadratic term in the cubic equation vanish at the same time due to the presence of f−.
A nonvanishing cubic or quadratic coefficient is however absolutely crucial for the cubic
stability analysis in [1]. Otherwise not only square-root or cubic-root but also higher
order singularities would emerge. Our main novel ingredient, a very detailed analysis
of these coefficients, actually excludes this scenario. With this essential new input, the
regularity and the singularity structure of (1.1) as well as the local law for XX∗ follow
by correctly combining the arguments in [1, 2, 5].
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2 Main results

2.1 Structure of the solution to the Dyson equation

Let (X1,S1, π1) and (X2,S2, π2) be two finite measure spaces such that π1(X1) and
π2(X2) are strictly positive. Moreover, we denote the spaces of bounded and measurable
functions on X1 and X2 by

Bi
..=

{
u : Xi → C : ‖u‖∞ ..= sup

x∈Xi
|u(x)| <∞

}
for i = 1, 2. We consider B1 and B2 equipped with the supremum norm ‖ · ‖∞. We
denote the induced operator norms by ‖ · ‖B1→B2

and ‖ · ‖B2→B1
. For u ∈ B1, we write

uk = u(k) for k ∈ X1. We use the same notation for v ∈ B2.
Let s : X1 × X2 → R+

0 , s(k, q) = skq be a measurable nonnegative function such that

sup
k∈X1

∫
X2

skqπ2(dq) <∞, sup
q∈X2

∫
X1

skqπ1(dk) <∞. (2.1)

We define the bounded linear operators S : B2 → B1 and St : B1 → B2 through

(Sv)k =

∫
X2

skrvrπ2(dr), k ∈ X1, v ∈ B2, (Stu)q =

∫
X1

slqulπ1(dl), q ∈ X2, u ∈ B1.

(2.2)
We are interested in the solution m : H→ B1 of the Dyson equation

− 1

m(ζ)
= ζ − S 1

1 + Stm(ζ)
, (2.3)

for ζ ∈ H, which satisfies Imm(ζ) > 0 for all ζ ∈ H.

Proposition 2.1 (Existence and Uniqueness). If (2.1) holds true then there is a unique
function m : H→ B1 satisfying (2.3) and Imm(ζ) > 0 for all ζ ∈ H. Moreover, m : H→
B1 is analytic. For each k ∈ X1, there is a unique probability measure νk on R such that
mk is the Stieltjes transform of νk, i.e.,

mk(ζ) =

∫ ∞
0

1

E − ζ νk(dE) (2.4)

for all ζ ∈ H. The support of νk is contained in [0,Σ] for each k ∈ X1, where

Σ ..= 4 max
{
‖S‖B2→B1

, ‖St‖B1→B2

}
. (2.5)

Further assumptions on π1, π2 and S will yield a more detailed understanding of the
measures νk. To formulate these assumptions, we introduce the averages of u ∈ B1 and
v ∈ B2 through

〈u〉1 =
1

π1(X1)

∫
X1

ukπ1(dk), 〈v〉2 =
1

π2(X2)

∫
X2

vqπ2(dq).

Additionally, we set ‖u‖t ..= 〈|u|t〉1/t1 and ‖v‖t ..= 〈|v|t〉1/t2 for u ∈ B1, v ∈ B2 and t ≥ 1.
Moreover, for k ∈ X1 and q ∈ X2, we define the functions Sk : X2 → R+

0 , Sk(r) = skr
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and (St)q : X1 → R+
0 , (St)q(l) = slq. We call Sk and (St)q the rows and columns of S,

respectively.

Assumptions 2.2.(A1) The total measures π1(X1) and π2(X2) are comparable, i.e.,
there are constants 0 < π∗ < π∗ such that

π∗ ≤
π1(X1)

π2(X2)
≤ π∗.

(A2) The operators S and St are irreducible in the sense that there are L1, L2 ∈ N and
κ1, κ2 > 0 such that(

(SSt)L1u
)
k
≥ κ1〈u〉1,

(
(StS)L2v

)
q
≥ κ2〈v〉2,

for all u ∈ B1, v ∈ B2 satisfying u ≥ 0 and v ≥ 0 and for all k ∈ X1, q ∈ X2.

(A3) The rows and columns of S are sufficiently close to each other in the sense that
there is a continuous strictly monotonically decreasing function γ : (0, 1] → R+

0

such that limε↓0 γ(ε) =∞ and for all ε ∈ (0, 1], we have

γ(ε) ≤ min

{
inf
k∈X1

1

π1(X1)

∫
X1

π1(dl)

ε+ ‖Sk − Sl‖22
, inf
q∈X2

1

π2(X2)

∫
X2

π2(dr)

ε+ ‖(St)q − (St)r‖22

}
.

(A4) The operators S and St map square-integrable functions continuously to bounded
functions, i.e., there are constants Ψ1,Ψ2 > 0 such that

‖S‖L2(π2/π2(X2))→B1
≤ Ψ1, ‖St‖L2(π1/π1(X1))→B2

≤ Ψ2.

Our estimates will be uniform in all models that satisfy Assumptions 2.2 with the
same constants. Therefore, the constants π∗, π∗ from (A1), L1, L2, κ1, κ2 from (A2), the
function γ from (A3) and Ψ1, Ψ2 from (A4) are called model parameters. We refer to
Remark 2.4 below for an easily checkable sufficient condition for (A3). We now state
our main result about the regularity and the possible singularities of νk defined in (2.4).

Theorem 2.3. If we assume (A1) – (A4) then the following statements hold true:

(i) (Regularity of ν) There are ν0 ∈ B1 and νd : X1 × (0,∞) → [0,∞), (k,E) 7→ νdk(E)

such that
νk(dE) = ν0

kδ0(dE) + νdk(E)dE (2.6)

for all k ∈ X1. For all δ > 0, the function νd is uniformly 1/3-Hölder continuous on
[δ,∞), i.e.,

sup
k∈X1

sup
E1 6=E2, E1,E2≥δ

|νdk(E1)− νdk(E2)|
|E1 − E2|1/3

<∞.

For all k ∈ X1, we have

{E ∈ (0,∞) : 〈νd(E)〉 > 0} = {E ∈ (0,∞) : νdk(E) > 0}.

We set P ..= {E ∈ (0,∞) : 〈νd(E)〉 > 0}. For each δ > 0, the set P ∩ (δ,∞) is a
finite union of open intervals. The map νd : (0,∞) \ ∂P→ B1 is real-analytic. There
is ρ∗ > 0 depending only on the model parameters and δ such that the Lebesgue
measure of each connected component of P ∩ (δ,∞) is at least 2ρ∗.

(ii) (Singularities of νd) Fix δ > 0. For any E0 ∈ (∂P) ∩ (δ,∞), there are two cases
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CUSP: The point E0 is the intersection of the closures of two connected components
of P ∩ (δ,∞) and νd has a cubic root singularity at E0, i.e., there is c ∈ B1

satisfying infk∈X1
ck > 0 such that

νdk(E0 + λ) = ck|λ|1/3 +O(|λ|2/3), λ→ 0.

EDGE: The point E0 is the left or right endpoint of a connected component of P∩(δ,∞)

and νd has a square root singularity at E0, i.e., there is c ∈ B1 satisfying
infk∈X1

ck > 0 such that

νdk(E0 + θλ) = ckλ
1/2 +O(λ), λ ↓ 0,

where θ = +1 if E0 is a left endpoint of P and θ = −1 if E0 is a right endpoint.
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(a) Self-consistent density of states 〈νd〉1.
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(b) Variance profile.

Figure 1: Example of a self-consistent density of states with variance profile S. It has
square-root edges at the left and right endpoint of its support and a cubic cusp at E ≈ 8.

Remark 2.4 (Piecewise Hölder-continuous rows and columns of S imply (A3)). Let X1

and X2 be two nontrivial compact intervals in R and π1 and π2 the Lebesgue measures.
In this case, (A3) holds true if the maps k 7→ Sk and r 7→ (St)r are piecewise 1/2-Hölder
continuous in the sense that there are two finite partitions (Iα)α∈A and (Jβ)β∈B of X1

and X2, respectively, such that, for all α ∈ A and β ∈ B, we have

‖Sk − Sl‖2 ≤ Cα|k − l|1/2 for k, l ∈ Iα, ‖(St)q − (St)r‖2 ≤ Dβ |q − r|1/2 for q, r ∈ Jβ .

There is a similar condition for (A3) if X1 = [p] and X2 = [n] for some p, n ∈ N and the
measures π1 and π2 are the (unnormalized) counting measures on [p] and [n], respectively.

2.2 Local law for random Gram matrices

In this subsection, we state our results on random Gram matrices. We now set
X1 = [p], X2 = [n] as well as π1 and π2 the (unnormalized) counting measures on [p] and
[n], respectively. In particular, π1(X1) = p and π2(X2) = n.

Assumptions 2.5. Let X = (xkq)k,q be a p×n random matrix with independent, centered
entries and variance matrix S = (skq)k,q, i.e., Exkq = 0 and skq ..= E|xkq|2 for k ∈ [p],
q ∈ [n]. Moreover, we assume that (A1), (A2) and (A3) in Assumptions 2.2 and the
following conditions are satisfied.
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(B1) The variances are bounded in the sense that there exists s∗ > 0 such that

skq ≤
s∗

p+ n
for k ∈ [p], q ∈ [n].

(B2) All entries of X have bounded moments in the sense that there are µm > 0 for
m ≥ 3 such that

E|xkq|m ≤ µmsm/2kq for all k ∈ [p], q ∈ [n].

The sequence (µm)m≥3 in (B2) is also considered a model parameter.
Since (B1) implies (A4), we can apply Theorem 2.3. By its first part, for every δ > 0,

there are α1, . . . , αK , β1, . . . , βK ∈ [δ,∞) for some K ∈ N such that

supp
〈
νd|[δ,∞)

〉
1

=

K⋃
i=1

[αi, βi], αj < βj < αj+1

and ρ∗ > 0 depending only on the model parameters and δ such that βi − αi ≥ 2ρ∗ for all
i ∈ [K]. For ρ ∈ [0, ρ∗), we introduce the local gap size ∆ρ via

∆ρ(E) ..=


αi+1 − βi, if βi − ρ ≤ E ≤ αi+1 + ρ for some i ∈ [K],

1, if E ≤ α1 + ρ or E ≥ βK − ρ,
0, otherwise.

(2.7)

For δ, γ > 0, we define the spectral domain Dδ,γ ..= {ζ ∈ H : |ζ| ≥ δ, Im ζ ≥ p−1+γ}. We
introduce the resolvent R(ζ) ..= (XX∗ − ζ)−1 of XX∗ at ζ ∈ H and denote its entries by
Rkl(ζ) for k, l ∈ [p].

Theorem 2.6 (Local law for Gram matrices). Let Assumptions 2.5 hold true. Fix δ > 0

and γ ∈ (0, 1). Then there is ρ ∈ (0, ρ∗) depending only on the model parameters and δ
such that if we define κ = κ(p) : H→ (0,∞] through

κ(ζ) = (∆ρ(Re ζ)1/3 + 〈Imm(ζ)〉)−1

then, for each ε > 0 and D > 0, there is a constant Cε,D > 0 such that

P

 sup
ζ∈Dδ,γ
k,l∈[p]

p−ε
∣∣∣Rkl(ζ)−mk(ζ)δkl

∣∣∣ ≤
√
〈Imm(ζ)〉
pIm ζ

+ min

{
1√
pIm ζ

,
κ(ζ)

pIm ζ

} ≥ 1− Cε,D
pD

.

(2.8a)
Furthermore, for any ε > 0 and D > 0, there is a constant Cε,D > 0 such that, for any
deterministic vector w ∈ Cp satisfying maxk∈[p]|wk| ≤ 1, we have

P

(
sup
ζ∈Dδ,γ

∣∣∣∣1p
p∑
k=1

wk

(
Rkk(ζ)−mk(ζ)

)∣∣∣∣ ≤ pε min

{
1√
pIm ζ

,
κ(ζ)

pIm ζ

})
≥ 1− Cε,D

pD
. (2.8b)

The constant Cε,D in (2.8) depends only on the model parameters as well as δ and γ in
addition to ε and D.

Remark 2.7. (i) (Corollaries of the local law) In the same way as in [2] and in [5],
the standard corollaries of a local law – convergence of cumulative distribution
function, rigidity of eigenvalues, anisotropic law and delocalization of eigenvectors
– may be proven.
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(ii) (Local law in the bulk and away from supp ν) In the bulk, Theorem 2.6 has already
been proven in [5]. Away from supp ν, the convergence rate in (2.8a) and (2.8b) can
be improved and thus the condition Im ζ ≥ p−1+γ can be removed. See [5] for Gram
matrices and [4] for Kronecker matrices.

(iii) (Local law close to zero) Strengthening the assumption (A2), we have proven the
local law close to zero in the cases, n = p and |p− n| ≥ cn, in [5].

3 Quadratic vector equation

In this section, we translate (2.3) into a quadratic vector equation of [1] (see (3.2)
below) and show that Proposition 2.1 trivially follows from [1]. However, the singularity
analysis in [1] has to be changed essentially due to the violation of the uniform primitivity
condition, A3 in [1], on S (cf. (3.1) below) in our setup.

Let X ..= X1 t X2 be the disjoint union of X1 and X2 and π the probability measure
defined through

π(A tB) = (π1(X1) + π2(X2))
−1

(π1(A) + π2(B)), for A ⊂ X1, B ⊂ X2.

Moreover, we denote the set of bounded measurable functions X→ C by B ..= {w : X→
C : ‖w‖∞ ..= supx∈X|w(x)| <∞}with the supremum norm ‖ · ‖∞. Finally, on B = B1⊕B2,
we define the linear operator S : B → B through

S ..=

(
0 S

St 0

)
, i.e., Sw = S(w|X2

) + St(w|X1
) for w ∈ B. (3.1)

Here, we consider S(w|X2
) and St(w|X1

) as functions X→ C, extended by zero outside of
X1 and X2, respectively. Instead of (2.3), we study the quadratic vector equation (QVE)

− 1

m
= z + Sm (3.2)

for z ∈ H. Here, we used the change of variables z2 = ζ. We now explain how m

and m are related. If m is a solution of (3.2) then m1
..= m|X1

and m2
..= m|X2

satisfy
−m−1

1 = z + Sm2 and −m−1
2 = z + Stm1. Solving the second equation for m2, plugging

the result into the first relation and choosing z =
√
ζ ∈ H, we see that m defined through

m(ζ) =
m1(
√
ζ)√

ζ
(3.3)

for ζ ∈ H is a solution of (2.3). If m has positive imaginary part then m as well.

For u ∈ B, we write ux ..= u(x) with x ∈ X. For u,w ∈ B, we denote the scalar
product of u and w and the average of u by

〈u ,w〉 ..=

∫
X

ux wxπ(dx), 〈u〉 ..= 〈1 ,u〉 =

∫
X

uxπ(dx). (3.4)

We also introduce the Hilbert space L2(π) ..= {u : X→ C : 〈u ,u〉 <∞}. The operator S is
symmetric on B with respect to 〈 · , · 〉 and positivity preserving, as skr ≥ 0 for all k ∈ X1

and r ∈ X2. Therefore, by Theorem 2.1 in [1], there exists m : H → B which satisfies
(3.2) for all z ∈ H. This function is unique if we require that the solution of (3.2) satisfies
Imm(z) > 0 for z ∈ H. Moreover, m : H→ B is analytic and, for all z ∈ H, we have

‖m(z)‖2 ≤ 2|z|−1. (3.5)
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Furthermore, for all x ∈ X, there are symmetric probability measures ρx on R such that

mx(z) =

∫
R

1

τ − zρx(dτ) (3.6)

for all z ∈ H [1]. That means that mx is the Stieltjes transform of ρx. By (2.7) in [1], the
definition of Σ in (2.5) and ‖S‖ = ‖S‖B→B = max{‖S‖B2→B1

, ‖St‖B1→B2
}, the support

of ρx is contained in [−Σ1/2,Σ1/2].

Proof of Proposition 2.1. The existence of m directly follows from the transform in (3.3)
and the existence of m. The uniqueness of m and the existence of νk, k ∈ X1, are
obtained as in the proof of Theorem 2.1 in [5].

The special structure of S (cf. (3.1)) implies an important symmetry of the solution m.
We multiply (3.2) by m and take the scalar product of the result with e− ∈ B defined
through e−(k) = 1 if k ∈ X1 and e−(q) = −1 if q ∈ X2. As 〈e− ,m(Sm)〉 = 0, we have

z〈e− ,m〉 = −〈e−〉 = −π1(X1)− π2(X2)

π1(X1) + π2(X2)
, for all z ∈ H. (3.7)

Assumptions 3.1. In the remainder of this section, we assume that (A1), (A2), (A4)
and the following condition hold true:

(C1) There are δ̃ > 0 and Φ > 0 such that for all z ∈ H satisfying |z| ≥ δ̃, we have

‖m(z)‖∞ ≤ Φ.

Remark 3.2 (Relation between (A3) and (C1)). By slightly adapting the proofs of
Theorem 6.1 (ii) and Proposition 6.6 in [1], we see that, by (A3), for each δ̃ > 0, there is
Φδ̃ > 0 such that (C1) is satisfied with a constant Φ ≡ Φδ̃.

Since our estimates in this section will be uniform in all models that satisfy (A1),
(A2), (A4) and (C1) with the same constants, we introduce the following notion.

Convention 3.3 (Comparison relation). For nonnegative scalars or vectors f and g, we
will use the notation f . g if there is a constant c > 0, depending only on π∗, π

∗ in
(A1), L1, L2, κ1, κ2 in (A2), Ψ1,Ψ2 in (A4) as well as δ̃ and Φ in (C1), such that f ≤ cg.
Moreover, we write f ∼ g if both, f . g and f & g, hold true.

3.1 Hölder continuity and analyticity

We recall Σ from (2.5) and introduce the set HΣ
δ̃

..= {z ∈ H : 2δ̃ ≤ |z| ≤ 10Σ1/2} and its

closure HΣ
δ̃

.

Proposition 3.4 (Regularity of m). Assume (A1), (A2), (A4) and (C1).

(i) The restriction m : HΣ
δ̃
→ B is uniformly 1/3-Hölder continuous, i.e.,

‖m(z)−m(z′)‖∞ . |z − z′|1/3 (3.8)

for all z, z′ ∈ HΣ
δ̃

. In particular, m can be uniquely extended to a uniformly 1/3-

Hölder continuous function HΣ
δ̃
→ B, which we also denote by m.

(ii) The measure ρ from (3.6) is absolutely continuous, i.e., there is a function ρd : X×
R \ (−2δ̃, 2δ̃)→ [0,∞), (x, τ) 7→ ρdx(τ) such that(

ρx|R\(−2δ̃,2δ̃)

)
(dτ) = ρdx(τ)dτ, for all x ∈ X. (3.9)
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The components ρdx are comparable with each other, i.e., ρdx(τ) ∼ ρdy(τ) for all

x, y ∈ X and τ ∈ R \ [−2δ̃, 2δ̃]. Moreover, the function ρd : R \ [−2δ̃, 2δ̃] → B is
uniformly 1/3-Hölder continuous, symmetric in τ , ρd(τ) = ρd(−τ), and real-analytic
around any τ ∈ R \ [−2δ̃, 2δ̃] apart from points τ ∈ supp〈ρd〉, where ρd(τ) = 0.

A similar result has been obtained in Theorem 2.4 in [1] essentially relying on the
uniform primitivity assumption A3 in [1]. For discrete X1 and X2 without assuming (C1),
Lemma 3.8 in [5] shows Hölder continuity of 〈m〉 instead of m with a smaller exponent
than 1/3. Both conditions, A3 in [1] and the discreteness of X1 and X2, are violated in
our setup. However, based on the proof of Theorem 2.4 in [1], we now explain how to
extend the arguments of [1] and [5] to show Proposition 3.4.

Lemma 3.5. Uniformly for all z ∈ HΣ
δ̃

, we have

|m(z)| ∼ 1, (3.10)

Imm(z) ∼ 〈Imm(z)〉. (3.11)

Using the arguments in the proof of Lemma 5.4 in [1], Lemma 3.5 follows immediately
from (A2), (C1) and (3.2). Here, as in the proof of Lemma 3.1 in [5], the uniform
primitivity assumption A3 of [1] has to be replaced by (B’) in [5], which is a direct
consequence of (A2).

The Hölder continuity and the analyticity of m and hence ρd will be consequences of
analyzing the perturbed QVE

− 1

g
= z + Sg + d (3.12)

for z ∈ H and d = z − z′ as well as the stability operator B defined through

B(z)u =
|m(z)|2
m(z)2

u− F (z)u, (3.13)

where F (z) : B → B is defined through F (z)u = |m(z)|S (|m(z)|u) for any u ∈ B (cf.
[1, 5]). Correspondingly, we introduce F (z) : B2 → B1 via F (z)w = |m1(z)|S(|m2(z)|w)

for w ∈ B2 and F t(z) : B1 → B2 via F t(z)u = |m2(z)|St(|m1(z)|u) for u ∈ B1.

To formulate the key properties of F and B, we now introduce some notation. The
operator norms for operators on B and L2(π) are denoted by ‖ · ‖∞ and ‖ · ‖2, respectively.
If T : L2 → L2 is a compact self-adjoint operator then the spectral gap Gap(T ) is the
difference between the two largest eigenvalues of |T |. We remark that S and hence FF t

are compact operators due to (A4).

Lemma 3.6 (Properties of F ). The eigenspace of F associated to ‖F ‖2 is one-dimensional
and spanned by a unique L2(π)-normalized positive f+ ∈ B. The eigenspace associated
to −‖F ‖2 is one-dimensional and spanned by f−

..= f+e− ∈ B. We have

f+ ∼ 1 (3.14)

uniformly for z ∈ HΣ
δ̃

. There is ε ∼ 1 such that

‖Fu‖2 ≤ (‖F ‖2 − ε)‖u‖2 (3.15)

uniformly for z ∈ HΣ
δ̃

and for all u ∈ B satisfying 〈f+ ,u〉 = 0 and 〈f− ,u〉 = 0. Further-

more, we have ‖F ‖2 ≤ 1, Gap(F (z)F t(z)) ∼ 1 uniformly for z ∈ HΣ
δ̃

.

Lemma 3.6 is a consequence of the proof of Lemma 3.3 in [5] with r = |m| and (3.10).
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Lemma 3.7. Uniformly for z ∈ HΣ
δ̃

, we have

‖B−1(z)‖∞ .
1

〈Imm(z)〉2 . (3.16)

Proof. We describe the modifications in the proof of Lemma 3.5 in [5] necessary to
obtain (3.16). We remark that (3.10) in [5] holds true due to (A4).

Let z ∈ HΣ
δ̃

. Taking the real part in (3.2), using (3.10) and Lemma 3.6, we obtain the

bound
∥∥Rem|m|−1

∥∥
2
≥ |Re z|‖m‖2/2 & |Re z|. Therefore, using 〈(Imm)2〉 ≥ 〈Imm〉2 by

Jensen’s inequality, we obtain (3.27) in [5] with κ = 2. Employing Gap (F (z)F t(z)) ∼
1, we get ‖B−1(z)‖∞ . (Re z)−2〈Imm(z)〉−2. As ‖B−1(z)‖2 ≤ (1 − ‖F (z)‖2)−1 .
(Im z)−1 by (3.21) in [5] we conclude from Imm . min{1, (Im z)−1} that ‖B−1(z)‖∞ .
|z|−2〈Imm(z)〉−2. This concludes the proof of (3.16) since |z| ≥ 2δ̃.

Note that if ρ has a density ρd around a point τ0 then, uniformly for τ in a neighbour-
hood of τ0, we have

ρd(τ) = π−1 lim
η↓0

Imm(τ + iη). (3.17)

Proof of Proposition 3.4. Following the proof of Proposition 7.1 in [1] yields the uniform
1/3-Hölder continuity of m and ρd. In this proof, the estimate (5.40b) has to be replaced
by (3.16). Furthermore, (3.11) substitutes Proposition 5.3 (ii) in [1], in particular,
ρdx(τ) ∼ ρdy(τ). We remark that now the same proofs extend Lemma 3.5, Lemma 3.6 and
Lemma 3.7 to all z ∈ HΣ

δ̃
. Hence, the proof of Corollary 7.6 in [1] yields the analyticity

using (3.17) for τ ∈ R ∩HΣ
δ̃

.

3.2 Singularities of ρd and the cubic equation

We now study the behaviour of ρd near points τ ∈ R, where ρd is not analytic.
Theorem 2.6 in [1] describes the density near the edges and the cusps as well as the
transition between the bulk and the singularity regimes in a quantitative manner. The
same results hold for ρd as well:

Proposition 3.8. We assume (A1), (A2), (A4) and (C1). Then all statements of Theo-
rem 2.6 in [1] hold true on R \ [−2δ̃, 2δ̃].

For the proof of Proposition 3.8 we follow Chapter 8 and 9 in [1] which contain the
proof of the analogue of Proposition 3.8, Theorem 2.6 in [1], and describe the necessary
changes as well as the main philosophy.

The shape of the singularities of m as well as the stability of the QVE (cf. Chapter 10
in [1]) will be a consequence of the stability of a cubic equation. We note that similar as
in Lemma 8.1 of [1], the following properties of the stability operator B = B(z) defined
in (3.13) can be proven. There is ε∗ ∼ 1 such that for z ∈ HΣ

δ̃
satisfying 〈Imm(z)〉 ≤ ε∗,

B has a unique eigenvalue β = β(z) of smallest modulus and |β′| − |β| & 1 for all
β′ ∈ Spec(B) \ {β}. The eigenspace associated to β is one-dimensional and there is a
unique vector b = b(z) ∈ B in this eigenspace such that 〈b(z) ,f+〉 = 1.

Let z ∈ HΣ
δ̃

such that 〈Imm(z)〉 ≤ ε∗ and g ∈ B satisfy the perturbed QVE, (3.12),
at z. We define

Θ(z) ..=

〈
b̄(z)

〈b(z)2〉 ,
g −m(z)

|m(z)|

〉
. (3.18)

By possibly shrinking ε∗ ∼ 1, we obtain that if ‖g −m(z)‖∞ ≤ ε∗ then it can be shown as
in Proposition 8.2 in [1] that Θ satisfies

µ3Θ3 + µ2Θ2 + µ1Θ + 〈|m|b̄ ,d〉 = κ ((g −m)/|m|,d) , (3.19)
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where µ1, µ2 and µ3, which depend only on S and z, as well as κ are given in [1].
The main ingredient that needs to be changed in our setup is the estimate in (8.13)

of [1]. It gives a lower bound on the nonnegative quadratic form

D(w) ..=
〈
Q+w , (‖F ‖2 + F ) (1− F )

−1
Q+w

〉
(3.20)

for w ∈ B, where the projection Q+ is defined through Q+w
..= w − 〈f+ ,w〉f+. For

some c(z) > 0 and all w ∈ B, this lower bounds reads as follows

D(w) ≥ c(z)‖Q+w‖22. (3.21)

However, in our setup, owing to the second unstable direction f− ⊥ f+, Ff− =

−‖F ‖2f−, we have D(f−) = 0 which contradicts (3.21). In [1], the estimate (3.21) is
only used to obtain

|µ3(z)|+ |µ2(z)| & 1 (3.22)

(cf. (8.34) in [1]) for all z ∈ HΣ
δ̃

satisfying 〈Imm(z)〉 ≤ ε∗ and ‖g −m(z)‖∞ ≤ ε∗ for
ε∗ ∼ 1 small enough. In fact, it is shown above (8.50) in [1] that

|µ3| & ψ +O(α) |µ2| & |σ|+O(α). (3.23)

Here, we introduced the notations ψ ..= D(pf2
+) with p ..= sign(Rem) as well as α ..=

〈f+Imm/|m|〉 and σ ..= 〈f+ ,pf
2
+〉. The proof used in [1] to show (3.23) works in our

setup as well. Since α = 〈f+Imm/|m|〉 ∼ 〈Imm〉 ≤ ε∗ by (3.10) and (3.14), we conclude
that |µ3|+ |µ2| & ψ + |σ| for ε∗ ∼ 1 small enough. Hence, (3.22) is a consequence of

Lemma 3.9 (Stability of the cubic equation). There exists ε∗ ∼ 1 such that

ψ(z) + σ2(z) ∼ 1 (3.24)

uniformly for all z ∈ HΣ
δ̃

satisfying 〈Imm(z)〉 ≤ ε∗.
Proof. We first remark that due to (3.10), (3.11) and possibly shrinking ε∗ ∼ 1 we can
assume

|Rem(z)| ∼ 1 (3.25)

for z ∈ HΣ
δ̃

satisfying 〈Imm(z)〉 ≤ ε∗. Second, owing to (3.15), for all w ∈ B, we have
the following analogue of (3.21)

D(w) & ‖Q±w‖22, (3.26)

where Q± is the projection onto the orthogonal complement of f+ and f−, i.e, Q±w =

w − 〈f+ ,w〉f+ − 〈f− ,w〉f−. Note that (3.15) also yields the upper bound D(w) .
‖Q+w‖22 and hence the upper bound in (3.24) by (3.14). Therefore, it suffices to prove
the lower bound in (3.24). A straightforward computation starting from (3.26) and using
f− = e−f+ yields

ψ + σ2 = D(pf2
+) + 〈pf3

+〉2 & ‖pf2
+ − 〈f− ,pf2

+〉f−‖22 =
〈
f2

+

(
pf+ − 〈pe−f3

+〉e−
)2〉

.

(3.27)
Using (3.14), (3.25) and |Rem| = pRem, we conclude

ψ + σ2 &
〈

(Rem)
2 (
pf+ − 〈pe−f3

+〉e−
)2〉

≥ 〈f+|Rem|〉
(
〈f+|Rem|〉+ 2〈pe−f3

+〉〈e−〉Re
1

z

)
(3.28)
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Here, we employed Jensen’s inequality and (3.7) in the second step. Since z ∈ HΣ
δ̃

and 〈e−〉 = 0 for π1(X1) = π2(X2), there exists ι∗ ∼ 1 such that the last factor on the
right-hand side of (3.28) is bounded from below by 〈f+|Rem|〉/2 for all z ∈ HΣ

δ̃
and

|π1(X1)− π2(X2)| ≤ ι∗(π1(X1) + π2(X2)). Since 〈f+|Rem|〉2 & 1 by (3.14) and (3.25), this
finishes the proof of (3.24) for |π1(X1)− π2(X2)| ≤ ι∗(π1(X1) + π2(X2)). For the proof of
(3.24) in the remaining regime, |π1(X1) − π2(X2)| > ι∗(π1(X1) + π2(X2)), we introduce

y ..= e−pf+ and use y2 = f2
+ ∼ 1 and

(
y + 〈y3〉

)2
. 1 by (3.14) to obtain from (3.27) the

bound

ψ+σ2 &
〈(
y − 〈y3〉

)2 (
y + 〈y3〉

)2〉
=
〈(

(y2 − 1) + (1− 〈y3〉2)
)2〉 ≥ 〈(y2 − 1

)2〉
. (3.29)

Here, we used 〈y2〉 = 〈f2
+〉 = 1 and

(
1− 〈y3〉2

)2 ≥ 0. Since 0 = 〈f− ,f+〉 = 〈e−y2〉, using
(3.29), we conclude

〈e−〉2 = 〈e−(1− y2)〉2 ≤ 〈(1− y2)2〉 . ψ + σ2. (3.30)

This implies (3.24) for |π1(X1) − π2(X2)| > ι∗(π1(X1) + π2(X2)) as 〈e−〉2 ≥ ι2∗ ∼ 1. This
completes the proof of Lemma 3.9.

Following the remaining arguments of chapter 8 and 9 in [1] yields Proposition 3.8.

4 Proofs of Theorem 2.3 and Theorem 2.6

Proof of Theorem 2.3. By Remark 3.2, we can apply Proposition 3.4 for each δ̃ > 0.
Hence, there are ρ0 ∈ B and ρd : X×R \ {0} → [0,∞) such that

ρx(dτ) = ρ0
xδ0(dτ) + ρdx(τ)dτ

for all x ∈ X. For k ∈ X1, we set ν0
k

..= ρ0
k and

νdk(E) ..= E−1/2ρdk(E1/2)χ(E > 0) (4.1)

with E ∈ R. Therefore, using (3.3), we obtain (2.6) (cf. the proof of Theorem 2.1
in [5]). The 1/3-Hölder continuity of ρd implies the 1/3-Hölder continuity of νd. Similarly,
the analyticity of νd is obtained from the analyticity of ρd. From Proposition 3.8 with
δ̃ =
√
δ/2, we conclude that P∩(δ,∞) is a finite union of open intervals and its connected

components have a Lebesgue measure of at least 2ρ∗ for some ρ∗ depending only on the
model parameters and δ. This completes the proof (i).

For the proof of (ii), we follow the proof of Theorem 2.6 in [3]. We replace the
estimates (4.1), (4.2), (5.3) and (6.7) as well as their proofs in [3] by (3.10), (3.11),
(3.16) and (3.24) as well as their proofs in this note, respectively. This proves a result
corresponding to Theorem 2.6 in [3] for ρd and τ0 ∈ (∂P) ∩ (0,∞) in our setup. Using
the transform (4.1) completes the proof of Theorem 2.3.

Proof of Theorem 2.6. Note that (B1) implies (A4). By Remark 3.2, (A3) implies (C1).
Using (3.22) to replace (8.34) in [1], we obtain an analogue of Proposition 10.1 in [1]
in our setup on HΣ

δ̃
. Therefore, we have proven in our setup analogues of all the

ingredients provided in [1] and used in [2] to prove a local law for Wigner-type random
matrices with a uniform primitive variance matrix. Thus, following the arguments in [2],
we obtain a local law for the resolvent of H defined in (1.2) and spectral parameters
z ∈ HΣ

δ̃
∩ {w ∈ H : Imw ≥ (p+ n)−1+γ}, where δ̃ =

√
δ/2 and γ ∈ (0, 1). Proceeding as in

the proof of Theorem 2.2 in [5] yields Theorem 2.6.
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