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Abstract

In the R-spread out, d-dimensional voter model, each site x of Zd has state (or
‘opinion’) 0 or 1 and, with rate 1, updates its opinion by copying that of some site y
chosen uniformly at random among all sites within distance R from x. If d ≥ 3, the
set of (extremal) stationary measures of this model is given by a family µα,R, where
α ∈ [0, 1]. Configurations sampled from this measure are polynomially correlated
fields of 0’s and 1’s in which the density of 1’s is α and the correlation weakens as
R becomes larger. We study these configurations from the point of view of nearest
neighbor site percolation on Zd, focusing on asymptotics as R → ∞. In [RV15],
we have shown that, if R is large, there is a critical value αc(R) such that there is
percolation if α > αc(R) and no percolation if α < αc(R). Here we prove that, as
R→∞, αc(R) converges to the critical probability for Bernoulli site percolation on
Zd. Our proof relies on a new upper bound on the joint occurrence of events under
µα,R which is of independent interest.
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1 Introduction

The voter model on Zd with range R ∈ N is a Markov process (ξt)t≥0 on {0, 1}Zd

with infinitesimal pregenerator defined as follows, for any function f : {0, 1}Zd → R that
depends only on finitely many coordinates:

(Lf)(ξ) =
∑

x,y∈Zd:
0<|x−y|1≤R

f(ξy→x)− f(ξ)

|B1(R)| − 1
, (1.1)

where | · |1 is the `1-norm on Zd, B1(R) is the set of vertices of Zd with `1-norm smaller
than or equal to R, |B1(R)| is the cardinality of this set and

ξy→x(z) =

{
ξ(z), if z 6= x,

ξ(y), if z = x,
z ∈ Zd.
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Spread-out voter model percolation

In the usual interpretation, sites of Zd represent individuals (“voters”) and the states 0
and 1 represent two conflicting opinions. The dynamics defined by (1.1) is then explained
in words as follows. Individuals are all endowed with independent exponential clocks
(all with parameter 1); whenever the clock of individual x rings, another individual y is
chosen uniformly at random within `1-distance at most R from x, and then x copies the
opinion of y.

This process has been introduced independently in [CS73] and [HL75]. We refer the
reader to [Li85] for the general theory on the voter model, including all statements that
we mention without explicit reference in this introduction.

Let Id,R denote the set of extremal stationary distributions of the voter model on Zd

and range R. In case d = 1 or 2, for any R, this set consists only of δ0 and δ1, the two
measures that give full mass to the configurations which are identically equal to 0 or 1,
respectively. In case d ≥ 3, Id,R consists of a one-parameter family of measures

{µα,R : 0 ≤ α ≤ 1}

(we will generally omit the dimension d from our notation). For each α, µα,R is obtained
as the distributional limit as time is taken to infinity (which is shown to exist) of the
process started from the measure in which the states at all sites are independent and
distributed as Bernoulli(α). Each of the measures µα,R is invariant and ergodic with
respect to translations in Zd. Additionally,

µα,R({ξ : ξ(0) = 1}) = α,

so that α is a density parameter. Finally, µα,R exhibits polynomial decay of correlations:
for any d ≥ 3, R ∈ N and α ∈ (0, 1),

c(α,R) · |x− y|2−d1 < Covµα,R(ξ(x), ξ(y)) < C(α,R) · |x− y|2−d1 , x, y ∈ Zd, x 6= y. (1.2)

In [RV15], addressing earlier work by [LS86, BLM87, ML06, Ma07], the authors have
considered the problem of percolation phase transition of the measure µα,R, which will

now be enunciated. For given values of d, R and α, let ξ ∈ {0, 1}Zd be a configuration
sampled from µα,R. Consider the subgraph of the nearest-neighbor lattice Zd induced
by the set of vertices {x : ξ(x) = 1} (i.e., the set of open sites). Let Perc be the event
that this subgraph contains an infinite connected component (cluster). By ergodicity,
µα,R(Perc) is either 0 or 1. The statement that the measures µα,R exhibit a non-trivial
percolation phase transition with respect to the density parameter α means that, for
any d ≥ 3 and R ∈ N, there exists αc = αc(R) ∈ (0, 1) (depending on d and R) such that
µα,R(Perc) = 0 if α < αc and µα,R(Perc) = 1 is α > αc. The main result of [RV15] is that
this is indeed the case under two sets of assumptions: first, d ≥ 5, and second, d = 3 or 4

and R large enough.
In the present paper, we continue this investigation by considering the percolation

event under µα,R when R is taken to infinity. Before stating our result, we make a brief
detour which will make the statement more natural. Let us first present a well-known
alternate construction of µα,R through coalescing random walks.

Consider a collection of particles simultaneously performing random walks on Zd

and subject to the following rules. At time 0, each site of Zd contains one particle.
Each particle decides to jump to a new location after an amount of time distributed as
Exponential(1). Jumping from a site x, a particle chooses its destination y uniformly at
random among all sites of B1(x,R) \ {x}. If y is already occupied by another particle,
the two particles coalesce, becoming a single particle.

This process, when run for all times 0 ≤ t <∞, induces a partition of Zd as follows.
We say that x, y ∈ Zd are in the same partition class if the particle at x at time 0
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Spread-out voter model percolation

eventually coalesces with the particle at y at time 0 (by this we include situations in
which these particles coalesce with other particles before coalescing with each other).
Note that almost surely each partition class has infinite cardinality. See Section 2.3 for
more precise definitions. Given these partition classes, we then independently assign
0’s and 1’s to each class with probability α and 1− α, respectively. The distribution of
the resulting configuration ξ ∈ {0, 1}Zd then coincides with µα,R. This construction is a
consequence of the well-known fact that the voter model and the system of coalescing
random walks just described exhibit a temporal duality relation.

Assume d ≥ 3 and A = {x1, . . . , xn} ⊆ Zd be an arbitrary finite set. In case R is very
large (compared for example to the diameter of A), it is very likely that the particles
initially located at A will quickly disperse and never coalesce with each other. Indeed,
the probability that two range-R random walks on Zd ever meet tends to zero as R→∞,
uniformly over their initial locations, see (2.3) below. Thus, all the particles initially at A
will end up in distinct partition classes, so that, for any n and any (i1, . . . , in) ∈ {0, 1}n
and any n-tuple (x1, . . . , xn) of distinct vertices in Zd we have

lim
R→∞

µα,R
(

(ξ(x1), . . . , ξ(xn)) = (i1, . . . , in)
)

= α
∑
k ik · (1− α)n−

∑
k ik . (1.3)

Another way of stating this is that, as R → ∞, µα,R converges weakly (taking the
product topology on the space of configurations) to πα, the infinite product over Zd of
the Bernoulli(α) distribution. Let

pc = sup{ p : πp(Perc) = 0 }

be the critical parameter of independent Bernoulli site percolation in Zd; see [Gr99] for
the well-known fact that pc ∈ (0, 1) for any d ≥ 2. We are now ready to state our main
result.

Theorem 1.1. For any d ≥ 3, as R→∞, the critical density value for percolation phase
transition of the stationary measures of the voter model with range R converges to the
critical density value for independent Bernoulli percolation:

lim
R→∞

αc(R) = pc. (1.4)

This convergence result seems natural given (1.3), but the proof is not at all automatic,
as we now argue. First, µα,R cannot be stochastically dominated (or minorated) by a
Bernoulli product measure πp, p ∈ (0, 1): the R = 1 case is proved in [ST17, Section
5.3.2] (using results of [LS88]), the proof for general R is identical. Second, just because
a probability measure on {0, 1}Zd “locally” looks like Bernoulli percolation, we cannot
automatically draw any conclusions about the percolative properties of open sites: [BGP,
Theorem 19] states that for any K and any p ∈ (0, 1), there exists a probability measure

µ on {0, 1}Zd that satisfies

µ
(

(ξ(x1), . . . , ξ(xK)) = (i1, . . . , iK)
)

= α
∑
k ik · (1− α)K−

∑
k ik (1.5)

for any (i1, . . . , iK) ∈ {0, 1}K and any K-tuple (x1, . . . , xK) of distinct vertices in Zd such
that µ(Perc) = 1, moreover there exists another µ satisfying (1.5) for which µ(Perc) = 0.

Decoupling inequalities are often instrumental in dealing with polynomially correlated
percolation models. Powerful such inequalities have been proved for other models, such
as random interlacements [Sz12, PT15], the Gaussian free field [RS13, PR15] and certain
massless gradient Gibbs measures [R17], using the so-called sprinkling technique. In
contrast, our main tool is Lemma 2.5, which is not a decoupling inequality and is not
proved through sprinkling. It allows for a direct comparison between the measures µα,R
and πα – and hence a direct control on correlations present in µα,R – which relies on a
natural coupling of systems of independent random walks, coalescing random walks and
annihilating random walks.
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Spread-out voter model percolation

2 Notation and preliminary results

2.1 Notation for sets, paths and configurations

For any set S, the cardinality of S is denoted by |S| and the indicator function of S
by 1S .

For a vector x in Zd, the `∞-norm of x is denoted by |x| and the `1-norm of x by |x|1.
Two vertices x, y are neighbors if |x− y|1 = 1; we denote this by x ∼ y. Vertices x and y
are ∗-neighbors if |x− y| = 1.

The balls and spheres corresponding to these norms are then given by

B(L) = {x ∈ Zd : |x| ≤ L}, B(x, L) = {y ∈ Zd : |x− y| ≤ L},
B1(L) = {x ∈ Zd : |x|1 ≤ L}, B1(x, L) = {y ∈ Zd : |x− y|1 ≤ L},
S(L) = {x ∈ Zd : |x| = L}, S(x, L) = {y ∈ Zd : |x− y| = L}.

Given a finite set A ⊆ Zd, the diameter of A is

diam(A) = sup{|x− y| : x, y ∈ A}.

Given sets A,B ⊆ Zd, the distance between A and B is

dist(A,B) = min{|x− y| : x ∈ A, y ∈ B}.

A nearest-neighbor path in Zd is a finite or infinite sequence γ = (γ(0), γ(1), . . .) such
that γ(i) ∼ γ(i+ 1) for each i. A ∗-connected path is a sequence γ = (γ(0), γ(1), . . .) such
that γ(i) and γ(i+ 1) are ∗-neighbors for each i. We observe that any nearest-neighbor
path is also a ∗-connected path.

Given disjoint sets A,B ⊆ Zd and a configuration ξ ∈ {0, 1}Zd , we say that A and B

are connected by an open path in ξ (and write A
ξ↔ B) if there exists a nearest-neighbor

path γ = (γ(0), . . . , γ(n)) such that γ(0) is the neighbor of a point of A, γ(n) is the

neighbor of a point of B and ξ(γ(i)) = 1 for all i. Similarly, we write A
∗ξ↔ B if there exists

a ∗-connected path from a ∗-neighbor of a point of A to a ∗-neighbor of a point of B and
ξ is equal to 1 at all points in this path.

The collection of cylinder sets of {0, 1}Zd associated to A is denoted by FA. This is

the set of subsets of {0, 1}Zd of the form

{ξ ∈ {0, 1}Z
d

: ξ|A ∈ E0}, (2.1)

where E0 ⊆ {0, 1}A and ξ|A denotes the restriction of ξ to A. Sometimes, as an abuse of
notation, the set in (2.1) and the corresponding set E0 will be treated as if they were the
same. As usual, we endow {0, 1}Zd with the σ-algebra F generated by all the cylinder
sets.

For x ∈ Zd and ξ ∈ {0, 1}Zd , we let τxξ be the configuration given by

(τxξ)(y) = ξ(y − x), y ∈ Zd.

Given E ∈ F , let θxE = {τxξ : ξ ∈ E}. In particular, if E ∈ FA, then θxE ∈ FA+x.
For α ∈ [0, 1], we denote by πα the product Bernoulli(α) measure on F .
Let ≺ denote a well-ordering of Zd.

2.2 Spread-out random walk

We call an R-spread out random walk on Zd started at z ∈ Zd the continuous-time
Markov chain (Xz

t )t≥0 on Zd with Xz(0) = z, Exponential(1) holding times which jumps
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Spread-out voter model percolation

from any site x to a site uniformly chosen in BR(x). Its infinitesimal generator is thus

(Lf)(x) =
∑
y∈Zd:

0<|x−y|1≤R

f(y)− f(x)

|B1(R)| − 1
,

with f : Zd → R. Given distinct vertices x, y ∈ Zd, assume (Xx
t ) and (Xy

t ) are indepen-
dent R-spread out random walks started at x and y (and let P be a probability measure
under which these are defined). We then let

hR(x, y) = P [∃t : Xx
t = Xy

t ] (2.2)

be the probability that these walks ever meet. Claim 2.7 in [RV15] states that

∀R > 0, x, y ∈ Zd, x 6= y, hR(x, y) ≤ f(R) · |x− y|2−d, lim
R→∞

f(R) = 0. (2.3)

2.3 Coalescing and annihilating random walks

In this section we present a construction of systems of coalescing random walks on
Zd, which, as explained in the Introduction, are used to obtain the measures µα,R. A
typical graphical construction of coalescing random walks consists of Poisson processes
dictating jump times of particles; see for instance [RV15, Section 3]. Here we rely on
a different approach, using an auxiliary process which we call a process of marked
partitions. This approach is intuitively appealing and quite convenient for our proofs;
in particular, it allows for a useful coupling of systems of independent, coalescing and
annihilating random walks.

On the other hand, the marked partition approach has the drawback of only being
suitable for systems consisting of finitely many particles; that is, we start by fixing a
finite set A ⊆ Zd and define the system of coalescing walks in which, at time 0, there is
one particle in each vertex of A. This will allow us to obtain the projection of µα,R to A,
which is sufficient for our purposes.

Let A be a finite subset of Zd; this set will be fixed throughout Section 2.3. A marked
partition of A is a partition of A into blocks (i.e., subsets) together with a set of marked
vertices (i.e., distinguished vertices of A) such that each block of the partition contains
exactly one marked vertex. We represent a marked partition by Π = (M, `), where
M ⊆ A is the set of marks and ` : A→M is a function satisfying

`(x) = x for every x ∈M ; (2.4)

the blocks in the partition are then the sets of form `−1(x), for x ∈M .

Definition 2.1. Assume Π = (M, `) is a marked partition of A and x, y ∈M are distinct
marks. The partition Π′ = (M ′, `′) of A obtained by merging the blocks of x and y in Π is
defined as follows. Assume first that the cardinalities of `−1(x) and `−1(y) have different
parities, and (without loss of generality) that |`−1(x)| is odd. We then let M ′ = M\{y}
and

`′(z) =

{
x if `(z) = y

`(z) otherwise.

In words, the blocks of x and y are merged and x is set as the mark of the resulting
block. In case the cardinalities of `−1(x) and `−1(y) have the same parity, we elect one
of x and y according to some arbitrary procedure (for example, the smaller one w.r.t.
the order ≺ on Zd) and repeat the above definition, merging the blocks and making the
elected point the new mark.
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Spread-out voter model percolation

Assume given a probability measure P under which independent, R-spread-out
random walk trajectories {(Xx

t )t≥0 : x ∈ A} are defined, with Xx
0 = x for each x. A

construction of a system of coalescing random walks {(Y xt )t≥0 : x ∈ A} will now be
exhibited. The construction will rely on an auxiliary process {Πt = (Mt, `t) : t ≥ 0} of
marked partitions of A; once this auxiliary process is defined, we will simply set

Y xt = X
`t(x)
t , x ∈ A, t ≥ 0. (2.5)

The definition of {Πt : t ≥ 0} will be recursive.

Definition 2.2. Let Π0 = (M0, `0) be the trivial partition given by M0 = A and `0(x) = x

for each x ∈ A. Also define T0 = 0. Now assume that we have defined a stopping time
Tn (with respect to the filtration of the random walks) and also that we have defined
{Πt : 0 ≤ t < ∞} on {Tn = ∞} and {Πt : 0 ≤ t ≤ Tn} on {Tn < ∞}. If Tn = ∞, set
Tn+1 =∞; otherwise let

Tn+1 = inf{ t > Tn : Xx
t = Xy

t for some distinct x, y ∈MTn }.

For Tn ≤ t < Tn+1, we set Πt = ΠTn . If Tn+1 < ∞, then there exists a unique pair of
distinct x, y ∈MTn such that Xx

Tn+1
= Xy

Tn+1
. We then let ΠTn+1

be the marked partition
obtained from ΠTn by merging the blocks of x and y according to Definition 2.1.

It is now easy to see that Definition 2.2 and (2.5) produce a system of coalescing
random walks and we omit the proof of this statement. Since the set of all intersection
times of all the random walks {(Xx

t )t≥0 : x ∈ A} is finite, it almost surely holds that
Tn =∞ for some (random) large enough n. It thus makes sense to define a “terminal”
marked partition Π∞ = (M∞, `∞) given by Πt for t large enough.

We now show how the marked partition process also allows for the definition of a
system {(Ỹ xt )t≥0 : x ∈ M̃t} of annihilating random walks on the same probability space.

Definition 2.3. Let M̃0 = A and

M̃t = {x ∈Mt : |`−1
t (x)| is odd }, t ∈ [0,∞], (2.6)

then set
Ỹ xt = Xx

t , x ∈ M̃t, t ∈ [0,∞). (2.7)

It is easy to check that Definition 2.3 indeed produces a system of annihilating
random walks, that is, a system in which walkers perform independent continuous-time
simple random walks on Zd until two of them meet, and when they do, they immediately
annihilate each other.

Note that Definition 2.3 is the reason why parity played an important role in the way
we defined the marked partition process in Definitions 2.1 and 2.2.

The next lemma, which already appeared in [RV15, Section 5], will be used to show
that the number |A\M∞| of coalescences is “small” if the range R of random walk jumps
is “big”. Recall that ≺ denotes a well-ordering of Zd.

Lemma 2.4. For any β ∈ (0, 1),

E
[
β−|A\M∞|

]
≤

∏
x,y∈A, x≺y

(
1 + hR(x, y) · (β−2 − 1)

)
. (2.8)

Proof. For each distinct x, y ∈ A, let ηx,y be the indicator of the event that, at some point
in the marked partition process {Πt : t ≥ 0}, a block with mark x and odd cardinality
is merged with a block with mark y and odd cardinality, i.e., the walkers Ỹ x and Ỹ y

annihilate each other before any other walker annihilates either of them.
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Spread-out voter model percolation

Now we note that M̃∞ ⊆ M∞ and |A \ M̃∞| = 2A∞(A), where A∞(A) :=∑
x,y∈A, x≺y ηx,y, thus we only need to show that E

[
β−2A∞(A)

]
is less than or equal

to the right-hand side of (2.8) in order to conclude the proof of (2.8). Now this is exactly
[RV15, (5.14)], thus the proof of Lemma 2.4 is complete.

2.4 A bound on the probability of the joint occurrence of events

The aim of this lemma is to control positive correlations present in µα,R using Lemma
2.4. Recall the notion of hR(x, y) of from (2.2).

Lemma 2.5. Let B ⊆ Zd be finite with 0 ∈ B and x1, . . . , xn ∈ Zd be such that the sets
xi +B, 1 ≤ i ≤ n are disjoint. Then, for any E ∈ FB,

µα,R

(
n⋂
i=1

θxiE

)
≤ πα(E)n ·

∏
u,v∈∪i(xi+B)

u≺v

(
1 + hR(u, v) ·

(
πα(E)−2 − 1

))
. (2.9)

Proof. Let Bi = xi + B and A = ∪ni=1Bi. Let P be a probability measure under which
independent, R-spread-out random walks {(Xx

t )t≥0 : x ∈ A} with Xx
0 = x are defined; let

{(Y xt )t≥0 : x ∈ A}, Πt = (Mt, `t) for 0 ≤ t ≤ ∞ be as defined in Section 2.3. Also assume
that under P, and independently from the coalescing walks, independent Bernoulli(α)
random variables {ζ(x) : x ∈ A} are defined. Then set

ξ(x) = ζ(`∞(x)), x ∈ A. (2.10)

Thus defined, the distribution of {ξ(x) : x ∈ A} is equal to µα,R projected to {0, 1}A (see
[RV15, Section 3] for the details of this construction of µα,R). Now define

I = { i : Bi ⊆M∞ }. (2.11)

By (2.4) and (2.10),
i ∈ I =⇒ ξ(x) = ζ(x) for all x ∈ Bi. (2.12)

We now compute

µα,R

(
n⋂
i=1

θxiE

)
= P

[
ξ ∈

n⋂
i=1

θxiE

]
≤ P

[
ξ ∈

⋂
i∈I

θxiE

]
(2.12)

= P

[
ζ ∈

⋂
i∈I

θxiE

]

=
∑

I⊆{1,...,n}

P[ I = I ] · P

[
ζ ∈

⋂
i∈I

θxiE

∣∣∣∣∣ I = I

]
=

∑
I⊆{1,...,n}

P[ I = I ] · πα(E)|I|

= πα(E)n · E

[(
1

πα(E)

)n−|I|]
. (2.13)

Now we note that

n− |I| (2.11)
=

n∑
i=1

1{Bi\M∞ 6=∅} ≤
n∑
i=1

|Bi\M∞| = |A\M∞|

Finally, (2.9) is obtained by plugging this inequality in (2.13) and then applying Lemma
2.4.

2.5 Renormalization scheme

Together with Lemma 2.5, the main tool in our proof of Theorem 1.1 is multi-scale
renormalization. Specifically, we will use the same renormalization scheme as in [Ra15]
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and [RV15], which in turn is a variant of the one in [Sz12]. As in these references,
renormalization is the ingredient which allows us to argue that large-scale percolation
crossing events imply numerous crossings of small and sparsely-located boxes.

Fix d ≥ 3 and L ∈ N. Define

LN = 6N · L, LN = LN ·Zd, N ≥ 0.

For k ≥ 0, let T(k) = {1, 2}k (with T(0) = {∅}) and let

TN =

N⋃
k=0

T(k)

be the binary tree of height N . For 0 ≤ k < N and m = (η1, . . . , ηk) ∈ T(k), let m1 =

(η1, . . . , ηk, 1) and m2 = (η1, . . . , ηk, 2) be the two children of m.

Definition 2.6. T : TN → Zd is a proper embedding of TN if

1. T ({∅}) = 0;

2. for all 0 ≤ k ≤ N and m ∈ T(k) we have T (m) ∈ LN−k;

3. for all 0 ≤ k < N and m ∈ T(k) we have

|T (m1)− T (m)| = LN−k, |T (m2)− T (m)| = 2LN−k. (2.14)

We let ΛN denote the set of proper embeddings of TN into Zd.

We will now reproduce three results concerning proper embeddings. Their proofs
can be found in [Ra15]. The first of them bounds the number of proper embeddings.

Lemma 2.7. There exists Cd > 0 such that, for all N ∈ N,

|ΛN | ≤ (Cd)
2N . (2.15)

The second result establishes a relation between proper embeddings and crossing
events. For a helpful illustration, see Figure 2 in [RV15].

Lemma 2.8. If γ is a ∗-connected path in Zd with

{γ} ∩ S(LN − 1) 6= ∅, {γ} ∩ S(2LN ) 6= ∅,

then there exists T ∈ ΛN such that

{γ} ∩ S(T (m), L0 − 1) 6= ∅, {γ} ∩ S(T (m), 2L0) 6= ∅ ∀m ∈ T(N). (2.16)

Finally, the third result guarantees that, in a proper embedding, the ‘bottom-level’
boxes are sparsely located.

Lemma 2.9. For any T ∈ ΛN and any m0 ∈ T(N),∣∣{m ∈ T(N) : dist (B(T (m0), 2L), B(T (m), 2L)) ≤ 6k · L/2
}∣∣ ≤ 2k−1, k ≥ 1. (2.17)

3 Proof of Theorem 1.1

Recall from the Introduction that

Perc =

{
ξ ∈ {0, 1}Zd : there exists an infinite nearest-neighbor
path γ = (γ(0), γ(1), . . .) such that ξ(γ(i)) = 1 for each i

}
.
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Spread-out voter model percolation

3.1 Absence of percolation for α < pc(Z
d) and R large

The goal of this subsection is establishing that

lim inf
R→∞

αc(R) ≥ pc. (3.1)

Fix α < pc. It will be shown that there exist L and R0 in N such that, letting LN = L · 6N
and for any R ≥ R0,

µα,R

[
B(LN − 1)

ξ←→ B(LN )
]
< 2−2N , N ∈ N. (3.2)

Observing that

Perc ⊆
⋃
M≥1

⋂
N≥M

{B(LN − 1)
ξ←→ B(LN )},

one notes that if (3.2) holds, then µα,R(Perc) = 0, that is, αc(R) ≥ α, so (3.1) follows.
Since α < pc, it is possible to choose (and fix) L large enough (depending on α) such

that

πα

[
B(L)

ξ←→ B(2L)c
]
< (4Cd)

−1, (3.3)

where Cd is as in Lemma 2.7. This is a simple consequence of the exponential decay of
the cluster radius beneath pc; see for instance Section 5.2 in [Gr99].

Now, Lemma 2.8, a union bound and Lemma 2.7 give

µα,R

[
B(LN − 1)

ξ←→ B(2LN )c
]

≤ (Cd)
2N · max

T ∈ΛN
µα,R

 ⋂
m∈T(N)

{B(T (m), L)
ξ←→ B(T (m), 2L)c}

 . (3.4)

In order to bound the maximum on the right-hand side, fix T ∈ ΛN . Define the event

E =
{
B(0, L)

ξ←→ B(0, 2L)c
}
.

Also define the set

A =
⋃

m∈T(N)

B(T (m), 2L). (3.5)

Note that by (2.17), the balls in the above union are disjoint. Then, Lemma 2.5 gives

µα,R

 ⋂
m∈T(N)

{B(T (m), L)
ξ←→ B(T (m), 2L)c}


≤ (πα(E))2N ·

∏
u,v∈A, u≺v

(
1 + hR(u, v) ·

(
πα(E)−2 − 1

))
(2.3),(3.3)
≤ (4Cd)

−2N · exp

(πα(E)−2 − 1
)
f(R)

∑
u,v∈A, u≺v

|u− v|2−d
 . (3.6)

Now, putting together (3.4) and (3.6) and recalling from (2.3) that f(R)
R→∞−−−−→ 0, the

desired convergence (3.2) will follow from showing that∑
u,v∈A, u≺v

|u− v|2−d ≤ C ′2N , (3.7)
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Spread-out voter model percolation

where C ′ is a positive constant that does not depend on N ∈ N or T ∈ ΛN . To this end,
define

VT (u, k) =
{
v ∈ A : v 6= u, |u− v| ≤ 6kL/2

}
, u ∈ A, k ≥ 1. (3.8)

Now we have

|VT (u, k)|
(3.5)
≤ |B(0, 2L)| ·

∣∣{m ∈ T(N) : dist (u,B(T (m), 2L)) ≤ 6kL/2
}∣∣ (2.17)
≤

|B(0, 2L)| · 2k−1 = (4L+ 1)d · 2k−1 for any k ≥ 1. (3.9)

Hence, for all u ∈ A,

∑
v∈A, v 6=u

|u− v|2−d =
∑

v∈VT (u,1)

|u− v|2−d +

∞∑
k=1

∑
v∈VT (u,k+1)\VT (u,k)

|u− v|2−d
(3.8)
≤

C +

∞∑
k=1

∑
v∈VT (u,k+1)\VT (u,k)

(6kL/2)2−d (3.9)
≤ C +

∞∑
k=1

(4L+ 1)d · 2k · (6kL/2)2−d ≤ C ′′

(3.10)

and thus (3.7) follows:∑
u,v∈A, u≺v

|u− v|2−d
(3.10)
≤ |A| · C ′′ (3.5)

= 2N · (4L+ 1)d · C ′′ = 2NC ′.

3.2 Percolation for α > pc(Z
d) and R large

It will now be shown that
lim sup
R→∞

αc(R) ≤ pc. (3.11)

To this end, fix α > pc; it suffices to show that, if R is large enough, there exists an
infinite percolation cluster with probability 1 under µα,R.

The proof involves a two-step renormalization scheme.
The first step is a coarse graining of the lattice in which the configuration ξ sampled

from µα,R is defined. More specifically, for some large M ∈ N and each x ∈ Zd, we define
the box B(Mx,M) associated to vertex x in the renormalized lattice. A configuration

ξ̃ ∈ {0, 1}Zd is then defined in the renormalized lattice through the prescription that
ξ̃(x) = 1 when the restriction of ξ to the box B(Mx,M) contains a “special” locally
unique giant connected cluster of ξ-open sites, see (3.12). By (3.12), neighbouring
“special” clusters are connected to each other, thus an infinite ξ̃-open cluster guarantees
the existence of an infinite open cluster for ξ as well.

In the second step, the goal is to prove that ξ̃ indeed contains an infinite cluster for
some large M and any R larger than some R0. This is done through a renormalization of
the type described in Section 2.5 in the lattice in which ξ̃ is defined.

The starting point is defining the ‘locally supercritical’ property involved in the first
renormalization step. Given M ∈ N, let E(M) be the set of configurations ξ ∈ {0, 1}Zd

satisfying:

EM =

 ξ ∈ {0, 1}Zd : ξ|B(M) has a unique open cluster of
diameter greater than or equal to M , moreover

this cluster intersects all the faces of B(M)

 . (3.12)

Note that EM ∈ FB(M). If EM occurs, we call the unique cluster that appears in (3.12)

the special cluster of B(M). Then, given ξ ∈ {0, 1}Zd , define

ξ̃(x) = 1θMxEM , x ∈ Zd. (3.13)
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Spread-out voter model percolation

Note that, if x, y ∈ Zd with |x− y|1 = 1 and ξ̃(x) = ξ̃(y) = 1, then the special cluster of
ξ|B(x,M) necessarily intersects the special cluster of ξ|B(y,M). This consideration leads to

the conclusion that if there exists an infinite nearest neighbor path γ̃ of open sites in ξ̃,
then there exists an infinite nearest neighbor path γ of open sites in ξ. Hence, letting
µ̃α,R,M denote the distribution of ξ̃ when ξ is sampled from µα,R,

µα,R(Perc) ≥ µ̃α,R,M (Perc). (3.14)

We now claim that, for supercritical Bernoulli site percolation, the event EM is very
likely when M is large:

α > pc =⇒ lim
M→∞

πα(EM ) = 1. (3.15)

The analogous statement for supercritical bond percolation on Zd is Theorem (7.61) in
[Gr99]. The proof is based on a block argument originally developed in [Pi96] and [DP96]
which, as mentioned in the latter reference, works equally well for site percolation. We
thus omit the proof of (3.15). By (3.15), we can find (and fix) M such that

πα(EM ) > 1− (4Cd)
−1, (3.16)

where Cd is the constant of Lemma 2.7.
Now consider the renormalization scheme of Section 2.5 with L0 = 1 (so that, for

N ∈ N, LN = 6N ). It will be shown that there exists R0 such that if R ≥ R0 then

µ̃α,R,M

[
B(LN − 1)

∗(1−ξ̃)←→ B(LN )

]
< 2−2N , N ∈ N. (3.17)

In words, the probability that there is a ∗-connected path of closed sites in ξ̃ connecting
B(LN − 1) to the outside of B(LN ) is smaller than 2−2N . Standard considerations
involving planar duality (i.e., a Peierls argument) show that (3.17) implies

µ̃α,R,M (Perc) = 1. (3.18)

We refer readers who are unfamiliar with this type of proof to Section 4.1 of [RV15],
where the same line of reasoning is carried out in detail. Finally, together with (3.14),
(3.18) yields the desired result µα,R(Perc) = 1.

It remains to prove (3.17). Lemma 2.8, a union bound and Lemma 2.7 give, for any
N ∈ N,

µ̃α,R,M

[
B(LN − 1)

∗(1−ξ̃)←→ B(2LN )c
]
≤ (Cd)

2N · max
T ∈ΛN

µ̃α,R,M

 ⋂
m∈T(N)

{ξ̃(T (m)) = 0}

 .

(3.19)
Now, for any T ∈ ΛN ,

µ̃α,R,M

 ⋂
m∈T(N)

{ξ̃(T (m)) = 0}

 (3.13)
= µα,R

 ⋂
m∈T(N)

(θM ·T (m)EM )c

 . (3.20)

Noting that the sets B(M · T (m),M) for m ∈ T(N) are pairwise disjoint and defining A
as the union of all these sets, Lemma 2.5 can then be applied as in (3.6), yielding

µα,R

 ⋂
m∈T(N)

(θM ·T (m)EM )c


< (4Cd)

−2N exp

(πα(EM )−2 − 1
)
f(R)

∑
u,v∈A, u≺v

|u− v|2−d
 .

(3.21)
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Spread-out voter model percolation

Notice the similarity between (3.21) and (3.6). Now (3.17) follows from (3.21) using the
same calculations that we used to show that (3.2) follows from (3.6): a variant of (3.7)
together with (2.3), (3.19)–(3.21) gives (3.17), completing the proof of (3.11).
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