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Abstract

In this paper, we use partial differential equation (PDE) techniques and probabilistic
approaches to study the lower capacity of the ball for the Itô process driven by G-
Brownian motion (G-Itô process). In particular, the lower bound on the lower capacity
of certain balls is obtained. As an application, we prove a strict comparison theorem
in G-expectation framework.
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1 Introduction

The G-Brownian motion is a continuous process with independent and stationary
increments in a nonlinear expectation space called G-expectation space. These notions
and related Itô’s calculus have been systemically established by Peng [15, 16, 17]. In
particular, Gao [5] and Peng [17] have obtained the existence and uniqueness theorem
for stochastic differential equations driven by G-Brownian motion. For more research on
this field, we refer the reader to [1, 6, 7, 13] and the references therein.

The G-expectation can be also viewed as a upper expectation. Indeed, Denis et
al. [2] have proved that G-expectation is the supremum of linear expectations over
a weakly compact subset of the probability measures of the stochastic integrals with
respect to a standard Brownian motion (see Remark 2.2). This representation theorem
allows us to introduce upper and lower capacities related to G-expectation. Moreover,
it provides an alternative approach for the study of the probability measures of the
classical Itô processes. Note that these measures may be mutually singular and do not
have probability density functions (see Fabes and Kenig [4]).

In the classical probability space, Martini [14] has applied a tricky probabilistic
approach to get that the marginal law of the stochastic integral with uniformly elliptic
and bounded integrand does not weight points. In his paper, the main idea is to study
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the aforementioned upper capacity instead of the probability measure of the stochastic
integral (see the operator Ĉ in [14]). Indeed, he has obtained that the upper capacity of
G-Brownian motion does not weight points. In sprit of G-stochastic analysis methods and
PDE techniques, Hu et al. [9] have studied the upper capacity of general G-Itô process.
In their paper, the authors have got some upper bound on the upper capacity of the ball
for the G-Itô process, which implies that the upper capacity of the G-Itô process also
does not weight points (see Remark 3.9). Moreover, it provides a tool for the research of
the path properties of the classical Itô integral (see Examples 3.9 and 3.13 in [9]).

The present paper is devoted to investigating the lower capacity for the G-Itô pro-
cesses. The key ingredient of our approach is based on certain estimates of viscosity
solutions of PDE introduced in [9], from which we show that the ball for G-Itô process
has a positive lower capacity. Moreover, we obtain a lower bound on the lower capacity
of some balls for G-Brownian motion. In particular, it also provides a lower bound on the
marginal law of the balls for the Itô integral (see Remark 3.8). In contrast to the one
in [9], the G-Itô process considered in this paper are more general. Indeed, we do not
assume the boundedness of the integrands for dt and d〈B〉 parts. Moreover, the diffusion
term can be unbounded from above.

A direct application of this paper is to discuss the strict comparison theorem in G-
expectation framework, which is non-trivial due to the nonlinearity. A strict comparison
theorem for G-Brownian motion has been proved by Li [12] based on the Krylov and
Safonov estimates [11]. In this paper, we establish a strict comparison theorem for the
G-Itô process through the above estimate of lower capacity, which extends the one in
[12] to general case. In particular, the necessary and sufficient conditions for the strict
comparison theorem are also stated.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries for G-expectation, which are needed in the sequel. In Section 3, we
state our main results: The ball for G-Itô process has a positive lower capacity. Some
estimates on the lower capacity of the ball for G-Brownian motion are also obtained.
As an application, Section 4 is devoted to tackling the strict comparison theorem in
G-expectation framework.

2 Preliminaries

In this section, we shall recall some basic notions and results about G-expectation
and related capacities. The readers may refer to [17] for more details.

For convenience, every element x ∈ Rn is identified to a column vector with i-th
component xi and the corresponding Euclidian norm is denoted by |x|. Let Ω be the
space of all Rd-valued continuous paths (ωt)t≥0 starting from origin, equipped with the
distance

ρ(ω1, ω2) :=

∞∑
N=1

2−N (( max
t∈[0,N ]

|ω1(t)− ω2(t)|) ∧ 1).

Denote by B(Ω) the Borel σ-algebra of Ω. Let Bt(ω) := ωt be the canonical process and
set

Lip(Ω) := {ϕ(Bt1 , · · · , Btk) : k ≥ 1, 0 ≤ t1 < · · · < tk <∞, ϕ ∈ Cb,Lip(Rk×d)},

where Cb,Lip(Rk×d) is the collection of all bounded and Lipschitz functions defined on
Rk×d. Let Ωt = {ω·∧t : ω ∈ Ω}, we can define Lip(Ωt) analogously.

For each given monotonic and sublinear function G : Sd → R, we could construct a
sublinear expectation space (Ω, Lip(Ω), Ê, (Êt)t≥0) called G-expectation space, where Sd
is the space of all d× d symmetric matrices. Indeed, for each ξ ∈ Lip(Ω) with the form of

ξ = ϕ(Bt1 , Bt2 , · · · , Btk), 0 = t0 < t1 < · · · < tk <∞,
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we define the conditional G-expectation by

Êt[ξ] := ui(t, Bt;Bt1 , · · · , Bti−1)

for each t ∈ [ti−1, ti), i = 1, . . . , k. Here, the function ui(t, x;x1, · · · , xi−1) parameterized
by (x1, · · · , xi−1) ∈ R(i−1)×d is the viscosity solution of the following G-heat equation:

∂tui(t, x;x1, · · · , xi−1) +G(D2
xxui(t, x;x1, · · · , xi−1)) = 0, (t, x) ∈ [ti−1, ti)×Rd

with terminal conditions

ui(ti, x;x1, · · · , xi−1) = ui+1(ti, x;x1, · · · , xi−1, x), for i < k

and uk(tk, x;x1, · · · , xk−1) = ϕ(x1, · · · , xk−1, x). The G-expectation of ξ is defined by
Ê[ξ] = Ê0[ξ]. In this space the corresponding canonical process Bt is called G-Brownian
motion.

For each p ≥ 1, the completion of Lip(Ω) (resp. Lip(Ωt)) under the norm ||X||p :=

(Ê[|X|p])1/p is denoted by LpG(Ω) (resp. LpG(Ωt)). In this paper, we always assume that G
is non-degenerate, i.e., there exist two constants 0 < σ ≤ σ̄ <∞ such that

1

2
σ2tr[A−B] ≤ G(A)−G(B) ≤ 1

2
σ̄2tr[A−B], ∀A ≥ B.

Then there exists a bounded and closed subset Γ ⊂ S+
d such that

G(A) =
1

2
sup
Q∈Γ

tr[AQ],

where S+
d denotes the space of all d× d symmetric positive definite matrices. Moreover,

we have |G(A)| ≤ 1
2 σ̄

2
√
d
√

tr[AA>] for each A ∈ Sd.
The following representation theorem has been proved firstly in Denis et al. [2] (see

also [8]).

Theorem 2.1. There exists a weakly compact set of probability measures P on (Ω,B(Ω))

such that

Ê[ξ] = sup
P∈P

EP [ξ], ∀ξ ∈ L1
G(Ω).

Remark 2.2. Denis et al. [2] have constructed a concrete set PM that represents Ê.
For simplicity’s sake, we consider the 1-dimensional case, thus G(a) = 1

2 (σ̄2a+ − σ2a−)

for each a ∈ R. Suppose W is a standard Brownian motion defined on Wiener space
(Ω, (Ft)t≥0, P0), then

PM := {Pθ : Pθ = P0 ◦X−1, Xt =

∫ t

0

θsdWs, θ ∈ A[σ,σ̄]},

where A[σ,σ̄] is the collection of all adapted processes taking values in [σ, σ̄].

Now it is natural to define the upper and lower capacities corresponding to G-
expectation (see also [3]),

V (A) := sup
P∈P

P (A) and v(A) = inf
P∈P

P (A), ∀A ∈ B(Ω).

A set A ⊂ B(Ω) is polar if V (A) = 0. A property holds “quasi-surely” (q.s.) if it holds
outside a polar set. In the following, we do not distinguish between two random variables
X and Y if X = Y q.s.
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Definition 2.3 ([17]). Let M0
G(0, T ) be the collection of processes of the following form:

for a given partition {t0, · · ·, tN} of [0, T ],

ηt(ω) =

N−1∑
i=0

ξi(ω)1[ti,ti+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For each p ≥ 1, denote by Mp
G(0, T ) the

completion of M0
G(0, T ) under the norm ||η||Mp

G
:= (Ê[

∫ T
0
|ηt|pdt])1/p.

For each 1 ≤ i, j ≤ d, we denote by 〈Bi, Bj〉 the cross-variation process. Then for two
processes η ∈M2

G(0, T ) and ξ ∈M1
G(0, T ), the G-Itô integrals

∫
ηsdB

i
s and

∫
ξsd〈Bi, Bj〉s

are well defined, see [17].

3 Main results

Now we consider the following Rn-valued G-Itô diffusion process which starts from
ξ ∈ L2

G(Ωt) at time t ≥ 0 (for convenience, we always use Einstein’s summation conven-
tion):

Xt,ξ
s = ξ +

∫ s

t

b(r,Xt,ξ
r )dr +

∫ s

t

hjk(r,Xt,ξ
r )d〈Bj , Bk〉r +

∫ s

t

σ(r,Xt,ξ
r )dBr, ∀s ≥ t, (3.1)

where b(t, x), hjk = hkj(t, x) : [0,∞) × Rn → Rn and σ(t, x) : [0,∞) × Rn → Rn×d

are continuous deterministic functions. These coefficients are supposed to satisfy the
following assumptions:

(H1) There exist two positive constants L and L̃ such that for each (t, x), (t, y) ∈ [0,∞)×
Rn,

|b(t, x)− b(t, y)|+ |hjk(t, x)− hjk(t, y)| ≤ L|x− y| and |σ(t, x)− σ(t, y)| ≤ L̃|x− y|.

(H2) There exists some constant λ > 0 such that for each (t, x) ∈ [0,∞)×Rn,

λIn×n ≤ σ(t, x)(σ(t, x))>, if n ≤ d and λId×d ≤ (σ(t, x))>σ(t, x), if n > d.

Then the G-SDE (3.1) admits a unique solution (Xt,ξ
s )t≤s≤T ∈ M2

G(t, T ) for each T > t

(see [17]).
Next, we shall use PDE approach to estimate the lower capacity of certain balls for

the G-Itô process Xt,ξ
s . For a fixed real number T > 0, we consider the following PDE:{

∂tu+G(σ>D2
xxuσ + 2〈hjk, Dxu〉) + 〈b,Dxu〉 = 0, (t, x) ∈ [0, T )×Rn,

u(T, x) = Φ(x).
(3.2)

where the function Φ ∈ Cl,Lip(R
n). Here, Cl,Lip(Rn) is the space of all real valued

functions ϕ on Rn such that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|K + |y|K)|x− y|

for some positive constants C and K depending on ϕ. Then it holds that

Theorem 3.1 ([7, 17]). For each fixed T > 0, the PDE (3.2) has a unique viscosity
solution u ∈ C([0, T ]×Rn) with polynomial growth. Moreover, u(t, x) = Ê[Φ(Xt,x

T )] for
each x ∈ Rn. Suppose moreover that Φ ∈ Cb,Lip(Rn). Then for each ξ ∈ L2

G(Ωt), we have

u(t, ξ) = Êt[Φ(Xt,ξ
T )].
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The following lemma is the key point to prove our main results, whose proof is based
on [9] with some modifications.

Lemma 3.2. Given a fixed a ∈ Rn. Suppose that ρ = 3
4 σ̄

2C̃2
a,1((n ∧ d)σ2λ)−1, θ =

(2/3(n ∧ d)σ2λ)−1, ε = (8κ)−1 ∧ T , m ≥ 8κ and let um be the solution of PDE (3.2) with

the terminal condition um(T, x) = − exp(−mθ|x−a|
2

2 ), where n ∧ d = min{n, d},

κ = σ̄2|L̃|2 + (σ̄2d
√
d+ 1)L+ C2

a,1(σ̄2d
√
d+ 1)2(4(n ∧ d)σ̄2λ)−1,

Ca,1 = max
0≤t≤1

{|hjk(t, a)|, |b(t, a)| : j, k = 1, . . . , d}, C̃a,1 = 2 max
0≤t≤1

|σ(t, a)|.

Then for any T ∈ (0, 1] and (t, x) ∈ [T − ε, T )×Rn, we have the following estimate

um(t, x) ≤ −(1 +m(T − t))−ρ exp(− mθ|x− a|2

2(1 +m(T − t))
). (3.3)

Proof. We denote by ũm the function in the right side of inequality (3.3). Thus it suffices
to show that ũm is a viscosity supersolution of PDE (3.2) in the interval [T − ε, T ]. It is
easy to verify that

∂tũm =
ρm

1 +m(T − t)
ũm −

m2θ|x− a|2

2(1 +m(T − t))2
ũm, ∂

2
xixj ũm

=
m2θ2(xi − ai)(xj − aj)

(1 +m(T − t))2
ũm, i 6= j,

∂xi ũm = − mθ(xi − ai)
1 +m(T − t)

ũm, ∂2
xixi ũm = − mθ

1 +m(T − t)
ũm +

m2θ2|xi − ai|2

(1 +m(T − t))2
ũm.

Note that ũm ≤ 0. Then for each (t, x) ∈ [T − ε, T )×Rn, we derive that

∂tũm +G(σ>D2
xxũmσ + (2〈hjk(t, x), Dxũm〉)dj,k=1) + 〈b(t, x), Dxũm〉

≤ m(−ũm)

1 +m(T − t)
[θG(σ>σ)− ρ] +

m2θ(−ũm)

(1 +m(T − t))2
[θG(−σ>(x− a)(x− a)>σ) +

1

2
|x− a|2]

+
2mθ(−ũm)

1 +m(T − t)
G((〈hjk(t, x), x− a〉)dj,k=1) +

mθ(−ũm)

1 +m(T − t)
〈b(t, x), x− a〉.

On the other hand, applying the assumptions (H1)-(H2) yields that

G(σ>σ) ≤ σ̄2

2
tr[σ>σ] =

1

2
σ̄2|σ(t, x)− σ(t, a) + σ(t, a)|2 ≤ σ̄2|L̃|2|x− a|2 +

1

4
σ̄2C̃2

a,1,

G(−σ>(x− a)(x− a)Tσ) ≤− σ2

2
|x− a|2tr[σ>σ] ≤ −1

2
(n ∧ d)λσ2|x− a|2,

G((〈hjk(t, x), x− a〉)dj,k=1) ≤G((〈hjk(t, x)− hjk(t, a), x− a〉)dj,k=1)

+G((hjk(t, a), x− a〉)dj,k=1)

≤1

2
σ̄2d
√
d(L|x− a|2 + Ca,1|x− a|)

〈b(t, x), x− a〉 =〈b(t, x)− b(t, a), x− a〉+ 〈b(t, a), x− a〉
≤L|x− a|2 + Ca,1|x− a|.

By assumption (H2), we have C̃2
a,1 ≥ 4(n ∧ d)λ, which indicates that

Ca,1(σ̄2d
√
d+ 1)|x− a| ≤ 1

4
C2
a,1(σ̄2d

√
d+ 1)2|x− a|2((n ∧ d)σ̄2λ)−1 +

1

4
σ̄2C̃2

a,1.
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Consequently, we deduce that

∂tũm +G(σ>D2
xxũmσ + (2〈hjk(t, x), Dxũm〉)dj,k=1) + 〈b(t, x), Dxũm〉

≤ m(−ũm)

1 +m(T − t)
[
1

2
θσ̄2C̃2

a,1 − ρ] +
m2θ(ũm)

4(1 +m(T − t))2
|x− a|2

− mθũm
1 +m(T − t)

(σ̄2|L̃|2 + (σ̄2d
√
d+ 1)L+

1

4
C2
a,1(σ̄2d

√
d+ 1)2((n ∧ d)σ̄2λ)−1)|x− a|2

≤ mθũm
1 +m(T − t)

|x− a|2(
m

4(1 +m(T − t))
− κ)

≤ mθũm
1 +m(T − t)

|x− a|2(
m

4(1 +mε)
− κ) ≤ 0.

The proof is complete.

Remark 3.3. If b = hjk = 0 and |σ| is bounded by some constant α. From the above
proof, we can take ρ = α2σ̄2(2(n∧ d)λσ2)−1, θ = ((n∧ d)λσ2)−1, ε = T (κ = 0), m ≥ 0 and
the results remain true.

Now we are ready to state our main results.

Theorem 3.4. For each δ > 0 and a ∈ Rn, we have

v(|Xt,ξ
T − a| ≤ δ) > 0, ∀T > t ≥ 0.

Proof. Without loss of generality, assume that T ≤ 1. In the sequel we shall use the same
notations as in Lemma 3.2. Note that v(A) = −Ê[−1A] for each A ∈ B(Ω). Then for each
m ≥ 0, it holds that

v(|Xt,ξ
T − a| ≤ δ) = −Ê[−1|Xt,ξT −a|≤δ]

≥ −Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}1|Xt,ξT −a|≤δ]

= −Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}+ exp{−

mθ|Xt,ξ
T − a|2

2
}1|Xt,ξT −a|>δ]

≥ −Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}]− exp{−mθδ

2

2
}.

Thus we need to estimate the −Ê[− exp{−mθ|X
t,ξ
T −a|

2

2 }] term. The remainder of proof will
be divided into two steps.

1. T − t ≤ ε. Recalling Theorem 3.1 and Lemma 3.2, we deduce that for each m ≥ 8κ,

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] =Ê[Êt[− exp{−

mθ|Xt,ξ
T − a|2

2
}]]

≤(1 +m(T − t))−ρÊ[− exp{− mθ|ξ − a|2

2(1 +m(T − t)
}]

≤(1 +m(T − t))−ρÊ[− exp{−θ|ξ − a|
2

2(T − t)
}].

In sprit of Jensen’s inequality and note that Ê[−·] ≥ −Ê[·], we obtain that

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] ≤ −(1 +m(T − t))−ρ exp{− θ

2(T − t)
Ê[|ξ − a|2]}.

Combining the above inequalities indicates that for each m ≥ 8κ,

−Ê[−1|Xt,ξT −a|≤δ] ≥ exp{− θ

2(T − t)
Ê[|ξ − a|2]}(1 +m(T − t))−ρ − exp{−mθδ

2

2
}.
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Note that Ê[|ξ − a|2] <∞. Consequently, for large enough m we have

exp{− θ

2(T − t)
Ê[|ξ − a|2]}(1 +m(T − t))−ρ > exp{−mθδ

2

2
},

which implies that

v(|Xt,ξ
T − a| ≤ δ) > 0.

2. T − t > ε. We denote

µ :=

{
T−t
ε − 1, if T−t

ε is an integer,

[T−tε ], other case.

Note that

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] =Ê[ÊT−ε[− exp{−

mθ|Xt,ξ
T − a|2

2
}]]

=Ê[ÊT−ε[− exp{−
mθ|XT−ε,Xt,ξT−ε

T − a|2

2
}]].

Then it follows from Theorem 3.1 and Lemma 3.2 that for each m ≥ 8κ,

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] ≤(1 +mε)−ρÊ[− exp{−

mθ|Xt,ξ
T−ε − a|2

2(1 +mε)
}]

≤(1 +mε)−ρÊ[− exp{−
m
2 θ|X

t,ξ
T−ε − a|2

2
}],

where we have used the fact that mε ≥ 1 in the last inequality, since ε = (8κ)−1. If
T − t > 2ε, using Theorem 3.1 and Lemma 3.2 again yields that for each m ≥ 16κ,

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] ≤ (1 +mε)−ρ(1 +

m

2
ε)−ρÊ[− exp{−

m
4 θ|X

t,ξ
T−2ε − a|2

2
}].

Iterating the above procedure for µ times implies that for each m ≥ 2µ+2κ

Ê[− exp{−
mθ|Xt,ξ

T − a|2

2
}] ≤ Πµ−1

i=0 (1 +
m

2i
ε)−ρÊ[− exp{−

m
2µ θ|X

t,ξ
T−µε − a|2

2
}].

Consequently, applying Lemma 3.2 again, we derive that for each m ≥ 2µ+3κ

Ê[− exp{−
mθ(Xt,ξ

T − a)2

2
}] ≤ Πµ

i=0(1 +
m

2i
ε)−ρÊ[− exp{−

m
2µ θ|ξ − a|

2

2(1 + m
2µ (T − t− µε))

}].

Thus by a similar analysis as in Step 1, we get that for each m ≥ 2µ+3κ

v(|Xt,ξ
T − a| ≤ δ) ≥ exp{− θ

2(T − t− µε)
Ê[|ξ − a|2]}Πµ

i=0(1 +
m

2i
ε)−ρ − exp{−mθδ

2

2
}.

Since Πµ
i=0(1 + m

2i ε)
ρ is a function of polynomial growth in m, we conclude that for m

large enough

exp{− θ

2(T − t− µε)
Ê[|ξ − a|2]}Πµ

i=0(1 +
m

2i
ε)−ρ > exp{−mθδ

2

2
},

which ends the proof.
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Remark 3.5. The assumption (H2) is necessary for our method. For example, if b = x

and hjk = σ = 0, then it is easy to check that v(|X0,y
t − (y + 1)et| ≤ 1

2 ) = 0 for each
(t, y) ∈ (0,∞)×Rn.

Remark 3.6. Note that when the diffusion term is uniformly elliptic and bounded,
Theorem 3.4 can be also derived from Krylov and Safanov estimates ([11]) or Harnack’s
inequality (see Imbert and Silvestre [10]). Indeed, [12] has used this approach to get
that the ball for G-Brownian motion has a positive lower capacity. By the method of this
paper, we can also study the case that the diffusion term may be unbounded from above
and degenerate elliptic (n > d). Moreover, we could estimate the lower bound on the
lower capacity of the balls for G-Brownian motion.

Theorem 3.7. For each a ∈ Rd and δ > 0, we have

v(|Bt − a| ≤ δ) ≥ Ca,δ,t, ∀t > 0,

where Ca,δ,t = sup
m≥0

(exp{− θ
2t |a|

2}(1 + mt)−ρ − exp{−mθδ
2

2 }) > 0, ρ = σ̄2(2σ2)−1 and

θ = (dσ2)−1.

Proof. Note that in this case σ = Id×d. Then by Remark 3.3, we could take ρ = σ̄2(2σ2)−1,
θ = (dσ2)−1, ε = T (κ = 0) and m ≥ 0. Then it follows from the proof of Theorem 3.4 that

v(|Bt − a| ≤ δ) ≥ sup
m≥0

(exp{− θ

2t
|a|2}(1 +mt)−ρ − exp{−mθδ

2

2
}) > 0,

which is the desired result.

Remark 3.8. By Remark 2.2, for each a ∈ R and δ > 0 we have,

P0(|
∫ t

0

θsdWs − a| ≤ δ) ≥ Ca,δ,t, ∀θ ∈ A[σ,σ̄], t > 0,

where Ca,δ,t is given in Theorem 3.7.

Remark 3.9. The upper bound on the upper capacity of the ball for G-Brownian motion
has been given in [9], which is

V (|Bt − a| ≤ δ) ≤ exp(
θ′

2
)
δ2ρ′

tρ′
,

where ρ′ = σ2(2σ̄2)−1 and θ′ = (dσ̄2)−1. Unfortunately, we cannot obtain such concise
estimate for the lower capacity.

4 Applications

As an application, we shall study strict comparison theorem in G-expectation frame-
work. Suppose that ϕ,ψ ∈ Cl,Lip(Rn). If ϕ ≤ ψ, then it is easy to check that Ê[ϕ(Xt,x

T )] ≤
Ê[ψ(Xt,x

T )] for each (t, x) ∈ [0, T ]×Rn. Now we are interested in finding some conditions
on ϕ and ψ under which the strict comparison theorem holds. We first consider the
following simple case.

Lemma 4.1. Let ϕ ∈ Cl,Lip(Rn) such that ϕ ≤ 0 and given (t̄, x̄) ∈ [0, T ) × Rn. Then

Ê[ϕ(X t̄,x̄
T )] < 0 if and only if there exists some point x0 ∈ Rn such that ϕ(x0) < 0.

Proof. Since ϕ ≤ 0 and Ê[ϕ(X t̄,x̄
T )] < 0, we can find some x0 ∈ Rn such that ϕ(x0) < 0.

Otherwise, ϕ(x) = 0 for all x ∈ Rn, then Ê[ϕ(X t̄,x̄
T )] = 0, which is a contradiction.
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Conversely, if ϕ(x0) < 0 for some x0 ∈ Rn, there exists ε > 0 and δ > 0 such that
ϕ(x) ≤ −ε whenever |x− x0| < δ. Then by Theorem 3.4, we have

Ê[ϕ(X t̄,x̄
T )] ≤ εÊ[−1|X t̄,x̄T −x0|<δ] = −εv(|X t̄,x̄

T − x0| < δ) < 0,

which is the desired result.

Due to the subadditivity of G-expectation, we immediately have the following strict
comparison theorem.

Theorem 4.2. Let ϕ,ψ ∈ Cl,Lip(R
n) such that ϕ ≤ ψ and given (t̄, x̄) ∈ [0, T ) × Rn.

Then Ê[ϕ(X t̄,x̄
T )] < Ê[ψ(X t̄,x̄

T )] if and only if there exists some point x0 ∈ Rn such that
ϕ(x0) < ψ(x0).

The following result is a direct consequence of Theorems 3.1 and 4.2, which can be
seen as a strict comparison theorem of PDE (3.2).

Corollary 4.3. Let ϕ,ψ ∈ Cl,Lip(Rn) such that ϕ ≤ ψ. If ϕ(x0) < ψ(x0) for some x0 ∈ Rn,
then

uϕ(t, x) < uψ(t, x), ∀(t, x) ∈ [0, T )×Rn,

where uf is the viscosity solution to PDE (3.2) with terminal condition uf (T, x) = f(x),
f = ϕ,ψ.

In particular, taking b = hjk = 0 and σ = Id×d, we have the following strict comparison
theorem for G-Brownian motion.

Corollary 4.4. Let ϕ,ψ ∈ Cl,Lip(Rd) such that ϕ ≤ ψ and given t > 0. Then Ê[ϕ(Bt)] <

Ê[ψ(Bt)] if and only if there exists some point x0 ∈ Rd such that ϕ(x0) < ψ(x0).

Remark 4.5. The one-dimensional strict comparison theorem for G-Brownian motion
has been obtained firstly in Li [12]. Our method presented in this paper can be also used
to study strict comparison theorem for more general G-Itô diffusion process (3.1).
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