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Abstract

For any Borel probability measure on Rn, we may define a family of eccentricity
tensors. This new notion, together with a tensorization trick, allows us to prove an
energy minimization property for rotationally invariant probability measures. We use
this theory to give a new proof of the Welch bounds, and to improve upon them for
collections of real vectors. In addition, we are able to give elementary proofs for two
theorems characterizing probability measures optimizing one-parameter families of
energy integrals on the sphere. We are also able to explain why a phase transition
occurs for optimizers of these two families.
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1 Introduction

Amongst all Borel probability measures µ on Rn having the same radial distribution,
we seek a minimizer for the energy integral

Ik(µ) :=

∫
Rn

∫
Rn

〈x, y〉kdµ(x)dµ(y). (1.1)

In this paper, we will introduce a tensorization trick, thereby proving that the integral is
minimized by the rotationally invariant measure, µrot. More precisely, for any integer
k, we define the k-th eccentricity tensor of a measure µ. The gap between Ik(µ) and
Ik(µrot) is then given by the squared Euclidean norm of this tensor. Specializing to
Borel probability measures on the sphere, we see that (1.1) is minimized by the uniform
measure. Moreover, we may also adapt the proof to obtain an analogous result for the
uniform measure on the sphere in Cn.

These facts have several interesting applications, the first of which concerns the
well-known Welch bounds in the signal processing literature. Using the complex case of
our result, we recover the original Welch bounds, while using the real case, we are able
to improve upon them for collections of real vectors. In our opinion, this proof is more
illuminating than the existing ones. It shows one view the Welch bounds as saying that
the average cross-correlation of signal sets cannot beat that of the uniform distribution.
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Energy optimization for distributions on the sphere

Next, we are able to obtain new proofs of Björck’s theorem [5] from the 1950s and
the recent theorem by Bilyk-Dai-Matzke [4]. These theorems characterize optimizers of
two one-parameter families of energy integrals, and were proved using methods from
potential theory and spherical harmonics. Our methods have the benefit of being more
elementary. Furthermore, our proof scheme for both theorems is very similar, and sheds
light on the phase transition phenomenon discussed in [4]. Indeed, we are able to show
why the phase transition occurs, and why it happens for different parameter values for
the two families.

The plan of the rest of this paper is as follows. In Section 2, we define the eccentricity
tensors and use the tensorization trick to prove the energy minimization property of
rotationally invariant measures. In Section 3, we discuss the Welch bounds, show
how they may be improved, and present some consequences of this improvement. In
Section 4, we show how our results imply the two theorems on energy optimization on
the sphere, and discuss their relevance to the phase transition phenomenon.

2 Eccentricity tensors and the tensorization trick

In this section, we shall introduce the tensorization trick, define eccentricity tensors,
and prove that rotationally invariant measures minimize (1.1). For notational as well as
intuition purposes, however, it is more convenient to work with random vectors than
with measures. We hence do so for the rest of this paper, being careful to assert the
independence of collections of random vectors where necessary.

The tensorization trick is to write the integral (1.1) as the squared Euclidean norm of
the k-th moment tensor of µ.

Notation 2.1. Let X be a random vector in Rn. For any positive integer k, let

Mk
X := EX⊗k

denote its k-th moment tensor if all entries are finite.

Recall the following fact from linear algebra. For any positive integer k, we may
identify the k-th tensor product T k(Rn) = Rn ⊗ · · · ⊗Rn with Rn

k

by picking as a basis
the vectors {ei1 ⊗ ei2 ⊗ · · ·⊗ eik}1≤i1,...ik≤n. With this choice, the Euclidean inner product
between any two pure tensors u1 ⊗ · · · ⊗ uk and v1 ⊗ · · · ⊗ vk can be written as

〈u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk〉 =

k∏
i=1

〈ui, vi〉.

In particular, for power tensors u⊗k and v⊗k, we have the formula

〈u⊗k, v⊗k〉 = 〈u, v〉k. (2.1)

Now if X and Y are two independent random vectors, we may rewrite the k-th
moment of their inner product as an inner product between their k-th moment tensors.
Namely, we have

E(〈X,Y 〉k) = E〈X⊗k, Y ⊗k〉 =
〈
EX⊗k,EY ⊗k

〉
=
〈
Mk
X ,M

k
Y

〉
, (2.2)

where the first equality follows from equation (2.1). For independent copies X and X ′ of
the same random vector having distribution µ, Mk

X = Mk
X′ , so

Ik(µ) = E(〈X,X ′〉k) = ‖Mk
X‖

2
. (2.3)

Here and in the rest of this paper, we will use ‖·‖ to denote the vector Euclidean norm.
No other norms are used, so there should be no risk of confusion.

We next introduce the notion of the rotation symmetrization of a random vector.
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Energy optimization for distributions on the sphere

Definition 2.2. For any random vector X in Rn, let Xrot denote a random vector that
is independent of X, has the same radial distribution as X, and whose distribution is

rotationally invariant (i.e. QXrot
d
= Xrot for all Q ∈ O(n)). We call Xrot the rotational

symmetrization of X.

Comparing the moment tensors of a random vector and those of its rotational sym-
metrization give rise to what we shall call eccentricity tensors.

Definition 2.3. Let X be a random vector in Rn with finite moments of all orders. For
any positive integer k, define its k-th eccentricity tensor to be

EkX := Mk
X −Mk

Xrot
. (2.4)

Since X
d
= Xrot if and only if X is rotationally invariant, we see that the eccentric-

ity tensors of X are quantitative measures of how far its distribution is from being
rotationally invariant. This interpretation is further supported by the following obser-
vation.

Lemma 2.4 (Orthogonality). Let X be a random vector in Rn with finite moments of all
orders. Its eccentricity tensors are orthogonal to the moment tensors of its rotational
symmetrization. In other words, for any positive integer k,

〈EkX ,Mk
Xrot
〉 = 0 (2.5)

and ∥∥Mk
X

∥∥2 =
∥∥Mk

Xrot

∥∥2 +
∥∥EkX∥∥2 . (2.6)

Proof. Let Q be a random orthogonal matrix chosen according to the Haar measure on
O(n). For any fixed vector v ∈ Rn, Qv is uniformly distributed on the sphere of radius
‖v‖, so if Y is any random vector independent of Q, applying Q to Y preserves its radial
distribution but makes QY rotationally invariant.

Now choose Q to be independent of X and Xrot. Our previous discussion implies that

QTX
d
= Xrot

d
= QXrot.

We use this to compute

E(〈X,Xrot〉k) = E(〈X,QXrot〉k) = E(〈QTX,Xrot〉k) = E(〈X ′rot, Xrot〉k), (2.7)

where X ′rot is an independent copy of Xrot. We may then apply identities (2.2) and (2.3)
to rewrite the above equation as〈

Mk
X ,M

k
Xrot

〉
=
〈
Mk
Xrot

,Mk
Xrot

〉
. (2.8)

Subtracting the right hand side from the left hand side gives (2.5), from which (2.6) is
an immediate corollary.

The fact that the integral (1.1) is minimized by rotationally invariant measures is
then an easy consequence of the previous lemma. To show that these are the unique
minimizers, we need further assumptions on our random vectors to ensure that they are
determined by their moment tensors. A sufficient condition is that of being subexponen-
tial.1

1This is a relatively mild condition satisfied by most distributions dealt with in practice. For an in-depth
discussion on the properties of subexponential distributions, we refer the reader to [11].
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Energy optimization for distributions on the sphere

Definition 2.5. We say that a real random variable X is subexponential if it has expo-
nential tail decay, i.e. if there is some K such that for all t ≥ 0,

P(|X| > t) ≤ exp(1− t/K).

We say that a random vector X in Rn is subexponential if all its one-dimensional
marginals are subexponential. Equivalently, it is subexponential if its radial distribution
is subexponential.

Lemma 2.6. Let X be a subexponential random vector in Rn. Then the distribution of
X is determined by its moment tensors.

Proof. By the definition of being subexponential, we have the following moment growth
condition [11]:

sup
v∈Sn−1

lim sup
r→∞

(E|〈X, v〉|r)1/r

r
<∞. (2.9)

Let φX(v) = Eei〈X,v〉 denote the characteristic function of X. The above condition
implies that for each v ∈ Sn−1, the function t 7→ Eeit〈X,v〉 can be written as a power
series with coefficients E〈X,v〉r

r! [2], so φX(v) is determined by the moments E〈X, v〉r.
By (2.2), E〈X, v〉r = 〈Mr

X , v
⊗r〉, so these are functions of the moment tensors. Finally,

it is a fact from elementary probability that a random vector in Rn determined by its
characteristic function (see exercise 2.36 in [6]).

We can thus summarize our results so far in the following theorem.

Theorem 2.7. Let X be a random vector in Rn. Then

a) (Minimization) If X ′ is an independent copy of X, and Xrot, X
′
rot are independent

copies of its rotational symmetrization, we have

E(〈X,X ′〉k) ≥ E(〈Xrot, X
′
rot〉

k
) (2.10)

for any positive integer k so long as X has finite k-th moment.

b) (Uniqueness) Furthermore, if equality holds in (2.10) for all k and we assume that
X has a subexponential distribution, then X is rotationally invariant.

Proof. Using identity (2.3), we rewrite the first claim as∥∥Mk
X

∥∥2 ≥ ∥∥Mk
Xrot

∥∥2 ,
and this follows immediately from equation (2.6).

If equality holds for all positive integers k, then by (2.6), EkX = 0 for all k, implying
that X and Xrot have the same moment tensors of all orders. If we assume that X is
subexponential, Lemma 2.6 implies that X and Xrot have the same distribution.

For the remainder of this paper, we specialize to the case of distributions on the
sphere.

Corollary 2.8. Let θ have the uniform distribution on the sphere Sn−1, and let X be any
random vector taking values on the sphere. Let θ′ and X ′ be independent copies of θ
and X respectively. Then

E(〈X,X ′〉2k) ≥ E(〈θ, θ′〉2k) =
1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)
(2.11)

for any positive integer k. Furthermore, if equality holds for all k, X has the uniform
distribution.
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Energy optimization for distributions on the sphere

Proof. Clearly θ
d
= Xrot, and is subexponential. The inequality and the characteriza-

tion statement then follows immediately from Theorem 2.7. By uniformity, we have
E(〈θ, θ′〉2k) = E(〈θ, v〉2k) for any unit vector v ∈ Sn−1, and the explicit computation for
E(〈θ, v〉2k) is the content of the next lemma.

Lemma 2.9 (Moments of spherical marginals). Let θ be uniformly distributed on the
sphere Sn−1. Then for any unit vector v ∈ Sn−1 and any positive integer k, we have

E(〈θ, v〉2k) =
1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)
(2.12)

Proof. This is a standard calculation that we include for completeness. We shall prove
this by computing gaussian integrals. Let γ and g denote standard gaussians in 1
dimension and n dimensions respectively. Using the rotational invariance of g, we have

Eγ2k = E(〈g, v〉2k) = E(〈‖g‖θ, v〉2k) = E‖g‖2kE(〈θ, v〉2k).

Rearranging gives

E〈θ, v〉2k =
Eγ2k

E‖g‖2k
.

We then compute

E‖g‖2k =
ωn

(2πn)n/2

∫ ∞
0

r2krn−1e−r
2/2dr, (2.13)

where ωn is the volume of the sphere Sn−1. It is well known that

ωn =
2πn/2

Γ(n/2)
,

while we also have ∫ ∞
0

r2krn−1e−r
2/2dr = 2n/2+k−1Γ(n/2 + k).

Substituting these back into (2.13) gives

E‖g‖2k = 2k
Γ(n/2 + k)

Γ(n/2)
= n · (n+ 2) · · · (n+ 2k − 2).

This yields the denominator in (2.12). A similar calculation for Eγ2k yields the numerator.

3 Applications to dictionary incoherence and the Welch bounds

Given a collection of m unit vectors Z = {z1, z2, . . . , zm} in Cn, we are often interested
in the quantity

cmax = max
i 6=j
|〈zi, zj〉| .

If we think of the vectors as dictionary elements, then cmax measures the coherence or
maximum cross-correlation of the dictionary. It is well known in the sparse approximation
literature that the larger the value of cmax, the worse the collection Z performs when
we try to recover a sparse representation of a vector as a linear combination of the zj ’s
[8]. As such, it is an important question in the design of communication systems to
know how well we can do theoretically, and how we may find collections that achieve the
theoretical minimum value of cmax.

In 1974, Welch gave a family of lower bounds on cmax in terms of m and n.
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Energy optimization for distributions on the sphere

Theorem 3.1 (Welch, 1974 [12]). Let Z and cmax be defined as above. Then for each
positive integer k, we have

(cmax)
2k ≥ 1

m− 1

(
m(

n+k−1
k

) − 1

)
. (3.1)

Welch proved this theorem by bounding the average cross-correlation (also sometimes
called the p-frame potential, with p = 2k [9]).

Lemma 3.2 (Welch). Let {z1, z2, . . . , zm} be unit vectors in Cn, then

1

m2

m∑
i,j=1

|〈zi, zj〉|2k ≥
(
n+ k − 1

k

)−1
. (3.2)

By separating the diagonal terms from the sum and rearranging the summands, it
is easy to see how (3.2) implies (3.1). Welch’s original proof of (3.2) was combinatorial
in nature. In 2003, Alon [1] provided a geometric proof based on examining the Gram
matrix associated to Z and dimension counting. The proof was reproduced by Datta et
al. [7] in 2012, who were apparently unaware of the earlier paper.

Both arguments are agnostic to whether the vectors are real or complex, and it is a
natural question whether one may improve the bound when we restrict to the case of real
vectors. Using the energy minimization property of rotationally invariant distributions,
we are able to show that this is indeed the case.

Lemma 3.3. Let {x1, x2, . . . , xm} be unit vectors in Rn. Then

1

m2

m∑
i,j=1

|〈xi, xj〉|2k ≥
1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)
. (3.3)

Proof. Let X be uniformly distributed on the set {x1, x2, . . . , xm}. Corollary 2.8 applies
and we have

E(〈X,X ′〉2k) ≥ 1 · 3 · · · (2k − 1)

n · (n+ 2) · · · (n+ 2k − 2)

for any positive integer k. On the other hand, we also have

E(〈X,X ′〉2k) =
1

m2

m∑
i,j=1

|〈xi, xj〉|2k.

Remark 3.4. Since (
n+ k − 1

k

)−1
=

1 · 2 · · · k
n · (n+ 1) · · · (n+ k − 1)

,

we see that the new bound (3.3) is equal to the old one (3.2) for k = 1, and is strictly
larger for k > 1.

Remark 3.5. In an earlier version of this paper, we stated that this result is new. I
have since found it stated in [9] by Ehler and Okoudjou, who attribute it to Venkov [10].
The proof in [9], however, proceeds via spherical harmonics and not the tensorization
machinery we have used here.

Let us illustrate the improved bound by revisiting an example from [7].

Example 3.6. Let x1, x2, . . . , x7 be the columns of[
0.99 0.14 0.56 −0.68 0.93 −0.86 0.30

0.08 0.99 0.83 0.73 −0.36 −0.50 0.95

]
.
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Energy optimization for distributions on the sphere

This collection achieves the k = 1 Welch bound (3.2), and its energy2

7∑
i,j=1

|〈xi, xj〉|6 = 15.3128

was experimentally observed to be minimal over all collections of 7 unit vectors in R2.
However, the k = 3 Welch bound gives a lower bound of 12.25 for the energy, so there
was a gap between theory and experiment. Using our improved bound (3.3), we get
15.3125, thereby bridging this gap completely.

Although the improved bounds do not hold for complex collections of vectors, we are
nonetheless able to recover the original Welch bounds using the same circle of ideas and
making a few adjustments.

Definition 3.7. For any random vector X in Cn, let Xuni denote a random vector that
is independent of X, has the same radial distribution as X, and whose distribution is
invariant under unitary transformations. We call Xuni the unitary symmetrization of X.

With this definition, we can state the following complex version of Theorem 2.7.

Theorem 3.8. Let X be a random vector in Cn with finite moments of all orders. Then
if X ′ is an independent copy of X, and Xuni, X

′
uni are independent copies of its unitary

symmetrization, we have

E|〈X,X ′〉|2k ≥ E|〈Xuni, X
′
uni〉|

2k
(3.4)

for any positive integer k.

Proof. By considering the moment tensors

M2k
X := EX⊗k ⊗ (X∗)⊗k,

we may define a complex version of eccentricity tensors. Next, we replace Q ∼
Haar (O(n)) with U ∼ Haar (U(n)) in Lemma 2.4 to prove an orthogonality result analo-
gous to (2.6). With this result, (3.4) follows immediately.

We are now able to complete the proof of (3.2) with the help of the following version
of Lemma 2.9.

Lemma 3.9 (Moments of complex spherical marginals). Let θ be uniformly distributed
on the complex sphere S2n−1 ⊂ Cn. Then for any unit vector v ∈ S2n−1 and any positive
integer k, we have

E|〈θ, v〉|2k =

(
n+ k − 1

k

)−1
. (3.5)

Proof. Let γ and g denote standard complex gaussians in 1 dimension and n dimensions
respectively. Then

E|〈θ, v〉|2k =
E|γ|2k

E‖g‖2k
.

Since |γ| is the norm of a two-dimensional standard real gaussian, while ‖g‖ is the
norm of a 2n-dimensional standard real gaussian, (3.5) follows from the calculations of
gaussian integrals done in Lemma 2.9.

2To compute this value, we renormalized the vectors x1, . . . , x7 in order to reduce roundoff error.
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Energy optimization for distributions on the sphere

Remark 3.10. Given Z = {z1, z2, . . . , zm} a set of unit vectors in a Hilbert space H, k a
positive integer, define the set

Z(k) = {z⊗k1 , z⊗k2 , . . . , z⊗km } ⊂ Symk (H) .

Datta et al.’s paper [7] characterized sets Z achieving equality in the k-th Welch average
cross-correlation bound (3.2) as those for which Z(k) forms a tight frame for Symk (H).
Since our results show that this bound is not tight when H is a real Hilbert space and
k > 1, we have proved that tight frames of the form Z(k) do not exist for symmetric
spaces of real tensors with k > 1. Indeed, this also holds true for generalized frames as
defined by the same authors.

Remark 3.11. Datta et al. [7] showed that the analogous statement for complex vector
spaces is false. In fact, if θ is distributed uniformly on the complex sphere S2n−1 ⊂ Cn,
then

Eθ⊗k ⊗ (θ∗)⊗k =

(
n+ k − 1

k

)−1
ISymk(Cn).

4 Applications to energy optimization on the sphere

In two recent papers [3, 4], Bilyk et al. presented a theorem characterizing prob-
ability measures minimizing geodesic distance energy integrals. This is an analogue
of Björck’s theorem from 1956 which characterized probability measures minimizing
energy integrals based on Euclidean distance [5]. Björck proved his theorem by consid-
ering Riesz potentials, while Bilyk et al. proved their result using spherical harmonic
expansions and the hermisphere Stolarsky principle. In this section, we show how to
derive both results using the tensorization trick and the energy minimization property of
the uniform distribution on the sphere.

Theorem 4.1 (Bilyk-Dai-Matzke, 2016). For δ > 0, define the geodesic energy integral

Gδ(µ) :=

∫
Sn−1

∫
Sn−1

d(x, y)δdµ(x)dµ(y), (4.1)

where d(x, y) denotes the geodesic distance between x and y. The maximizers of this
energy integral over Borel probability measures on Sn−1 can be characterized as follows:

a) 0 < δ < 1: the unique maximizer of Gδ(µ) is µ = σ, the uniform measure.

b) δ = 1: Gδ(µ) is maximized if and only if µ is centrally symmetric.

c) δ > 1: Gδ(µ) is maximized if and only if µ = 1
2 (δp + δ−p), i.e. the mass is supported

equally by two antipodal points.

Proof. Observe that the geodesic distance d(x, y) is simply the angle between x and y.
As such, we have d(x, y) = arccos (〈x, y〉). We may thus rewrite (4.1) as

Gδ(µ) = Earccos (〈X,X ′〉)δ,

where X and X ′ are independent random vectors with distribution µ.
Let us start by proving part b). It is an exercise to show that the even derivatives

of arccos vanish at 0, while the odd derivatives are strictly negative at 0. For −1 < t < 1

may hence write arccos as its Taylor series

arccos (t) =
π

2
−
∞∑
k=0

a2k+1t
2k+1 (4.2)
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Energy optimization for distributions on the sphere

where a2k+1 > 0 for all k. We claim that in fact, the above formula holds for all t in the
closed interval [−1, 1], and furthermore that the series is absolutely convergent. This is
the content of Lemma 4.2 to come. As a result, we may use Fubini to interchange sums
and expectations, thereby writing

Earccos (〈X,X ′〉) =
π

2
−
∞∑
k=0

a2k+1E〈X,X ′〉2k+1
.

Since E〈X,X ′〉2k+1 ≥ 0 for each k by identity (2.3), this last expression is maximized
if and only if E〈X,X ′〉2k+1

= 0 for every non-negative integer k. By the same identity,
this happens if and only if all odd moments of X are zero, i.e. if and only if X is centrally
symmetric. This proves the case δ = 1.

Now let 0 < δ < 1. We claim that for −1 ≤ t ≤ 1, we may write

arccos(t)δ =
(π

2

)δ
−
∞∑
k=1

akt
k (4.3)

where ak > 0 for all k > 0, and that the series is absolutely convergent. Lemma 4.3 (to
come) tells us that the Taylor series of arccos(t)δ has this form, which combined with
Lemma 4.2 proves this claim. As such, we may again use Fubini to write

Earccos (〈X,X ′〉)δ =
(π

2

)δ
−
∞∑
k=1

akE〈X,X ′〉k. (4.4)

By identity (2.3), E〈X,X ′〉k ≥ 0 for any distribution, while by Corollary 2.8, the uniform
measure uniquely minimizes all of these moments simultaneously. As such, we see that
it is the unique maximizer of Gδ(µ).

The remaining case where δ > 1 is easy and does not require a proof using our
methods. For completeness, we repeat the proof given by the original authors [4]. Since
d(x, y) ≤ π

2 , we have

Gδ(µ) ≤
(π

2

)δ−1 ∫
Sn−1

∫
Sn−1

d(x, y)dµ(x)dµ(y) ≤
(π

2

)δ
.

The first inequality is tight whenever d(x, y) only takes the values π
2 and 0, while by part

b), the second inequality becomes equality when µ is centrally symmetric. Together,
these imply that µ = 1

2 (δp + δ−p) for some p ∈ Sn−1.

Lemma 4.2. Let f be a function that is continuous on [−1, 1] and that agrees with its
Taylor series at 0 on the open interval (−1, 1). Suppose further that all but finitely many
of its derivatives at 0 have the same sign. Then the series is absolutely convergent over
the closed interval [−1, 1], and agrees with f over the interval.

Proof. By subtracting off polynomials and negating the function if necessary, we may
assume without loss of generality that the Taylor series for f(t) is given by

∑∞
k=0 ckt

k

where ck ≥ 0 for all k. By the monotone convergence theorem, together with our
assumptions on f , we have

∞∑
k=0

ck = lim
t→1−

∞∑
k=0

ckt
k = lim

t→1−
f(t) = f(1).

As such, the series
∑∞
k=0 ck is absolutely convergent, and the Taylor series is also

absolutely convergent on the closed interval [−1, 1]. Finally, we can apply the dominated
convergence theorem to see that f(−1) =

∑∞
k=0 ck(−1)k.
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Lemma 4.3. Let f be a function that has derivatives of all orders at 0 and let 0 < α < 1.
Suppose f(0) > 0 and f ′(0) < 0, while all higher derivatives f at 0 are non-positive, then
all derivatives of fα at 0 are strictly negative.

Proof. Let F (t) = f(t)α. By induction, one may observe that for any positive integer k,
F (k)(t) is a sum of 2k−1 terms of the form

g~n(t) := f(t)α−j

(
j−1∏
i=0

(α− i)

)(
j−1∏
i=0

f (ni)(t)

)
,

where 1 ≤ j ≤ k, and ~n = (n0, n1, . . . , nj−1) is a vector of positive integers. If there
is some index i such that f (ni)(0) = 0, then g~n(0) = 0. Otherwise,

∏j−1
i=0 f

(ni)(0) is a
product of j negative numbers and so has sign (−1)j . On the other hand, our assumption

on α imply that
(∏j−1

i=0 (α− i)
)

is a product of one positive number and j − 1 negative

numbers, and so has sign (−1)j−1. As such, g~n(0) ≤ 0.
Finally, notice that F (k)(0) always contains the term

g(1,1,...,1)(0) = f(t)α−k

(
k−1∏
i=0

(α− i)

)
f ′(0)k.

Since we have assumed that f ′(0) < 0, this term is strictly negative. As such, F (k)(0) is
also negative, as was to be shown.

In the course of proving the previous theorem, we have in fact proved the following
more general result.

Theorem 4.4. Let F be a function on on [−1, 1] that is given by the power series

F (t) = a0 −
∞∑
k=1

akt
k, (4.5)

where ak ≥ 0 for all k > 0. Then the energy integral

IF (µ) :=

∫
Sn−1

∫
Sn−1

F (〈x, y〉)dµ(x)dµ(y) (4.6)

is maximized over all Borel probability measures on Sn−1 by the uniform measure.
Furthermore, if ak > 0 for all k > 0, then the maximizer is unique.

Let us see how we may apply this more general theorem to recover Björck’s original
result.

Theorem 4.5 (Björck, 1956). For δ > 0, define the energy integral

Eδ(µ) =

∫
Sn−1

∫
Sn−1

‖x− y‖δdµ(x)dµ(y). (4.7)

The maximizers of this energy integral over Borel probability measures on Sn−1 can be
characterized as follows:

1. 0 < δ < 2: the unique maximizer of Eδ(µ) is µ = σ, the uniform measure.

2. δ = 2: Eδ(µ) is maximized if and only if the center of mass of µ is at the origin.

3. δ > 2: Eδ(µ) is maximized if and only if µ = 1
2 (δp + δ−p), i.e. the mass is supported

equally by two antipodal points.

ECP 22 (2017), paper 43.
Page 10/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP73
http://www.imstat.org/ecp/


Energy optimization for distributions on the sphere

Proof. We rewrite (4.7) as

Eδ(µ) = E‖X −X ′‖δ

where X and X ′ are independent random vectors with distribution µ. The easy case
δ > 2 is proved exactly as in Theorem 4.1. The case δ = 2 is also clear, for we may write
‖X −X ′‖2 = 2− 2〈X,X ′〉, and by identity (2.3),

E2(µ) = 2− E〈X,X ′〉 = 2− ‖EX‖2.

This is maximized if and only if EX = 0.
For 0 < δ < 2, we set f(t) = 2− 2t and F (t) = f(t)δ/2. Then f and α = δ/2 satisfy the

hypotheses of Lemma 4.3, so F (k)(0) < 0 for all positive integers k. This, together with
Lemma 4.2, implies that F satisfies the hypothesis of Theorem 4.4. Since

Eδ(µ) =

∫
Sn−1

∫
Sn−1

(2− 2〈x, y〉)δ/2 dµ(x)dµ(y) =

∫
Sn−1

∫
Sn−1

F (〈x, y〉)dµ(x)dµ(y),

we can conclude that Eδ(µ) is uniquely maximized by the uniform measure.

Remark 4.6. In their paper [4], Bilyk et al. remarked that while the Euclidean and
geodesic distances are both metrics on the sphere, the phase transition for the behavior
of their energy integrals is different. In the Euclidean case, Björck’s theorem shows that
it occurs at δ = 2, while in the geodesic case, Bilyk et al.’s theorem shows that it occurs
at δ = 1. This peculiar phenomenon is explained by our unified proof of both results.

In both cases, the existence of a phase transition as we let δ decrease to 0 is asserted
by Lemma 4.3 and Theorem 4.4. If the integrand satisfies the hypotheses of Lemma 4.3
for some δ0, then for all 0 < δ < δ0, the integrand will satisfy the hypothesis of Theorem
4.4, from which we can conclude that the unique maximizer is the uniform measure. For
the Euclidean integral, we have δ0 = 2, while for the geodesic integral, we have δ0 = 1.

Remark 4.7. Bilyk et al. were also interested in understanding continuous functions F
for which the uniform measure σ is the unique minimizer of IF as defined in (4.6). They
managed to characterize these functions as those for which all non-constant Gegenbauer
coefficients are strictly positive, i.e.

F̂ (k, λ) > 0

for all positive integers k, and where λ = n
2 − 1. On the other hand, by flipping signs,

Theorem 4.4 implies that a sufficient condition for this to happen is to require all
non-constant Taylor series coefficents to be strictly positive.

5 Discussion

After submitting the first version of this paper, I became aware that a partial version
of Corollary 2.8 was proved by Ehler and Okoudjou in [9] (see Theorem 4.10 therein).
Their result gives the inequality portion of the corollary but not the uniqueness part of it.
They also do not prove any other part of Theorem 2.7, which applies to more general
random vectors, and for all positive integer moments (as opposed to just even integer
moments).

Like Bilyk et al., Ehler and Okoudjou obtained their result using spherical harmonics,
and in particular, by considering the Gegenbauer coefficients of monomial functions.
This is more evidence that there should be a close relationship between the theory
of eccentricity tensors and that of spherical harmonics, and it will be interesting to
investigate this connection further.

ECP 22 (2017), paper 43.
Page 11/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP73
http://www.imstat.org/ecp/


Energy optimization for distributions on the sphere

References

[1] Noga Alon, Problems and results in extremal combinatorics I, Discrete Mathematics 273
(2003), nos 1–3, 31–53. MR-2025940

[2] Patrick Billingsley, Probability and Measure - Third Edition, 1995. MR-1324786

[3] Dmitriy Bilyk and Feng Dai, Geodesic distance Riesz energy on the sphere,
arXiv:1612.08442v1, (2016).

[4] Dmitriy Bilyk, Feng Dai, and Ryan Matzke, Stolarsky principle and energy optimization on
the sphere, arXiv:1611.04420v1 (2016).

[5] Göran Björck, Distributions of positive mass, which maximize a certain generalized energy
integral, Arkiv för matematik 3 (1956), no. 3, 255–269. MR-0078470

[6] E Çinlar, Probability and Stochastics, Graduate Texts in Mathematics, vol. 261, Springer,
New York, 2011. MR-2767184

[7] S. Datta, S. Howard, and D. Cochran, Geometry of the Welch bounds, Linear Algebra and Its
Applications 437 (2012), no. 10, 2455–2470. MR-2964699

[8] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization, Proceedings of the National Academy of Sciences 100
(2003), no. 5, 2197–2202. MR-1963681

[9] M. Ehler and K. A. Okoudjou, Minimization of the probabilistic p-frame potential, Journal of
Statistical Planning and Inference 142 (2012), no. 3, 645–659. MR-2853573

[10] B. Venkov, Réseaux et designs sphériques, Réseaux Euclidiens, Designs Sphériques et Formes
Modulaires, Monogr. Enseign. Math. 37, Enseignement Math., Gèneve, 2001. MR-1878745

[11] Roman Vershynin, Introduction to the non-asymptotic analysis of random matrices, Com-
pressed Sensing (Yonina C. Eldar and Gitta Kutyniok, eds.), Cambridge University Press,
Cambridge, 2011, pp. 210–268. MR-2963170

[12] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on
Information Theory 20 (1974), no. 3, 397–399.

Acknowledgments. I would like to thank Dmitriy Bilyk, Han Huang, and Roman
Vershynin for insightful discussions on these topics. I would also like to thank the
anonymous reviewer for their helpful feedback.

ECP 22 (2017), paper 43.
Page 12/12

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=2025940
http://www.ams.org/mathscinet-getitem?mr=1324786
http://arXiv.org/abs/1612.08442v1
http://arXiv.org/abs/1611.04420v1
http://www.ams.org/mathscinet-getitem?mr=0078470
http://www.ams.org/mathscinet-getitem?mr=2767184
http://www.ams.org/mathscinet-getitem?mr=2964699
http://www.ams.org/mathscinet-getitem?mr=1963681
http://www.ams.org/mathscinet-getitem?mr=2853573
http://www.ams.org/mathscinet-getitem?mr=1878745
http://www.ams.org/mathscinet-getitem?mr=2963170
http://dx.doi.org/10.1214/17-ECP73
http://www.imstat.org/ecp/

	Introduction
	Eccentricity tensors and the tensorization trick
	Applications to dictionary incoherence and the Welch bounds
	Applications to energy optimization on the sphere
	Discussion
	References

