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Abstract. The Birnbaum–Saunders (BS) distribution has been largely stud-
ied and applied. A random variable with BS distribution is a transformation of
another random variable with standard normal distribution. Generalized BS
distributions are obtained when the normally distributed random variable is
replaced by another symmetrically distributed random variable. This allows
us to obtain a wide class of positively skewed models with lighter and heav-
ier tails than the BS model. Its failure rate admits several shapes, including
the unimodal case, with its change-point being able to be used for different
purposes. For example, to establish the reduction in a dose, and then in the
cost of the medical treatment. We analyze the failure rates of generalized
BS distributions obtained by the logistic, normal and Student-t distributions,
considering their shape and change-point, estimating them, evaluating their
robustness, assessing their performance by simulations, and applying the re-
sults to real data from different areas.

1 Introduction

The failure rate (FR) is a useful indicator for reliability and survival analyses. It
can be increasing (IFR class), decreasing (DFR class) or constant (exponential
distribution), but the non-monotone cases are also detected in practice. In these
latter cases, the change-point of the FR, conducting to bathtub (BT) or inverse
bathtub (IBT) shapes, is of interest, as well as its limit behavior approaching to
zero, to a positive constant (not at zero), or to infinity. Then, the change-point of
the FR is an important value, because the hazard begins to decrease at this point.

Atypical data are present in several fields, including reliability and survival,
which have a harmful effect on the estimation of parameters. Distributions of
lifetime data have often positive skewness (asymmetry to the right), which are
called life distributions; see Marshall and Olkin (2007). A life distribution known
as Birnbaum–Saunders (BS) has received considerable attention due to its good
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properties. Because of its genesis from fatigue of materials, the BS distribution
has been largely applied to engineering, but recent applications range across di-
verse fields as biology, business, environment and industry, which have been con-
ducted by an international, transdisciplinary group of researchers; see, for exam-
ple, Bhatti (2010), Leiva et al. (2011, 2014a, 2014b, 2014c, 2015a, 2015b, 2016a,
2016b, 2017), Santana, Vilca and Leiva (2011), Villegas, Paula and Leiva (2011),
Ferreira, Gomes and Leiva (2012), Paula et al. (2012), Lemonte (2013), Marchant
et al. (2013), Saulo et al. (2013, 2019), Kundu (2015b), Sánchez et al. (2015),
Wanke and Leiva (2015), Santos-Neto et al. (2016), Vanegas and Paula (2016),
Bourguignon et al. (2017), Garcia-Papani et al. (2017), Desousa et al. (2018), Leão
et al. (2017, 2018a, 2018b) and Lillo et al. (2018).

A random variable (RV) with BS distribution can be considered as a transfor-
mation of another basis RV distributed as standard normal, that we call normal
generator. Generalized BS (GBS) distributions are obtained by considering dif-
ferent symmetric distributions for the generator; see Sanhueza, Leiva and Bal-
akrishnan (2008). It allows us to reach a high flexibility essentially in the kur-
tosis of GBS distributions. The BS (normal generator), BS-L (logistic generator)
and BS-t (Student-t generator) distributions, among others, are particular cases of
GBS distributions, which are implemented in the gbs package of the R statisti-
cal software; see Barros, Paula and Leiva (2009) and https://cran.r-project.org/src/
contrib/Archive/gbs. GBS distributions have several shapes for their FRs, includ-
ing the unimodal (non-monotone) case; see Azevedo et al. (2012), Athayde (2017),
Bebbington, Lai and Zitikis (2008), and Kundu, Kannan and Balakrishnan (2008),
for detailed analyses of the FR of the BS and BS-t distributions. Studies of robust-
ness in the parameter estimation for the BS distribution have been considered by
Dupuis and Mills (1998) and Wang et al. (2013, 2015), whereas Paula et al. (2012)
considered the robustness in the estimation of parameters for a logarithmic version
of the BS-t distribution, but no studies have been considered for the BS-L and BS-t
distributions.

The objectives of this paper are (i) to analyze the shape and change-point of the
BS-L FR, comparing it to the BS and BS-t FRs; (ii) to propose estimation proce-
dures for these FRs and their change-points, detecting their statistical robustness;
and (iii) to evaluate the obtained results numerically with simulated and real-world
data.

The remaining of this paper is organized as follows. Section 2 presents prelim-
inary aspects useful to develop our work. In Section 3, shape and change-point
analyses of the BS-L FR are conducted, comparing it to the BS and BS-t FRs. In
Section 4, we derive estimates of the BS, BS-L and BS-t FRs with the maximum
likelihood (ML) and moment methods, including a robustness study. Section 5
evaluates the performance of the proposed estimators with simulated data, ana-
lyzing the robustness of the ML estimation procedure. Section 6 illustrates the
obtained results with real-world data. In Section 7, we provide the conclusions of
this work and some comments on future research related to the topic under study.

https://cran.r-project.org/src/contrib/Archive/gbs
https://cran.r-project.org/src/contrib/Archive/gbs
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2 Preliminary aspects

If an RV T has a BS distribution with shape (α > 0) and scale (β > 0) parameters,
we denote it by T ∼ BS(α,β). Here, β is also the median of the distribution. RVs
with BS and N(0, 1) distributions are related by

T = β
(
αZ/2 +

√
(αZ/2)2 + 1

)2 ∼ BS(α,β) and
(2.1)

Z = (1/α)ξ(T /β) ∼ N(0,1),

where ξ(x) = √
x − 1/

√
x. If the assumption given in (2.1) is relaxed suppos-

ing Z to follow any standard symmetric distribution in R, with probability den-
sity function (PDF) f and cumulative distribution function (CDF) F , then we ob-
tain the class of GBS distributions. In this case, the notation T ∼ GBS(α,β;f ) is
used and its PDF and CDF are, respectively, fT (t) = f (ξ(t/β)/α)ψ(t/β)/(2tα)

and FT (t) = F(ξ(t/β)/α), for t > 0, where ψ(x) = √
x + 1/

√
x. Some prop-

erties of GBS distributions are: (A1) cT ∼ GBS(α, cβ;f ), for c > 0; (A2)
1/T ∼ GBS(α,1/β;f ); and (A3) U = (ξ(T /β)/α)2 ∼ Gχ2(1, f ), that is, U fol-
lows the generalized χ2 distribution with one degree of freedom, which has the
χ2(1) distribution as a special case if f is the standard normal PDF given by
f (z) = φ(z) = exp(−z2/2)/

√
2π , for z ∈ R.

If the RVs S and V follow standard logistic and Student-t (simply t thereafter)
distributions, which are symmetrical in R, we use the notations S ∼ L(0,1) and
V ∼ t (ν), where ν is a shape parameter often corresponding to the degrees of free-
dom of the t distribution, for ν = 1,2, . . . The PDFs of S and V are, respectively,

φL(s) = exp(−s)

(1 + exp(−s))2 and

φt(v;ν) = 
((ν + 1)/2)√
νπ
(ν/2)

(
1 + v2/ν

)− ν+1
2 , s, v ∈ R, ν > 0.

Special cases of the t distribution are the Cauchy and normal distributions, when
ν = 1 and ν → +∞, respectively.

BS-L and BS-t distributions are obtained replacing Z ∼ N(0,1) in (2.1) by S ∼
L(0,1) and V ∼ t (ν), respectively, leading to T = β(αS/2 +

√
(αS/2)2 + 1)2 ∼

BS-L(α,β) and T = β(αV/2 +
√

(αV/2)2 + 1)2 ∼ BS-t(α,β, ν). The logis-
tic distribution has heavier tails than the normal distribution in the sense that
limt→±∞ φL(t)/φ(t) = +∞. In addition, its coefficient of kurtosis (CK) is β2 =
4.2. As a consequence, the BS-L distribution has heavier tails than the BS distri-
bution, thus having the ability to accommodate atypical cases well, but not in a
flexible way as the t distribution does. Note that the t distribution has CK given by
β2 = 3(ν − 2)/(ν − 4), for ν > 4.
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Figure 1 Scaled TTT functions for distributions with the indicated FR shape.

3 Shape and change-point analyses of the BS-L failure rate

A good property of the FR is that it allows the behavior of statistical distributions
to be characterized. A misspecification of the FR can produce inconveniences in
the estimation procedure; see, for example, Bhatti (2010). The FR of T is given in
general by hT (t) = fT (t)/(1 − FT (t)), for t > 0 and 0 < FT (t) < 1, where fT is
the PDF of the RV T and FT is its CDF. The FR of an RV T can be characterized by
its total time on test (TTT) function; see details in Appendix A and its theoretical
TTT plot in Figure 1 and Athayde (2017). Next, we present the FR of the BS and
BS-t distributions and study the FR of the BS-L distribution, including its change-
point, denoted by tc, and its limiting behavior.

Let T ∼ BS(α,β). Then, the FR of T is given by

hT (t) = φ(ξ(t/β)/α)ψ(t/β)

2tα�(−ξ(t/β)/α)
, t > 0,

where φ and � are the N(0, 1) PDF and CDF, respectively. Thus, the following
holds: (B1) hT (t) is unimodal for any α, increasing for t < tc, and decreasing for
t > tc, where tc is the change-point of hT (t); (B2) limt→+∞ hT (t) = 1/(2α2β);
and (B3) hT (t) tends to be increasing as α → 0. For more details about (B1)–(B3),
see Chang and Tang (1993) and Kundu, Kannan and Balakrishnan (2008).

Let T ∼ BS-t(α,β, ν). Then, the FR of T is given by

hT (t;ν) = φt(ξ(t/β)/α;ν)ψ(t/β)

2tα�t(−ξ(t/β)/α;ν)
, t > 0, ν > 0,

where φt and �t are the t PDF and CDF, respectively. Thus, the following holds:
(C1) limt→0hT (t;ν) = limt→0 φt(ξ(t/β)/α;ν) and equals +∞ if ν = 1, α2/(2β)

if ν = 2, and zero if ν > 2; also limt→+∞ hT (t;ν) = 0 if ν > 0; (C2) for ν = 1,
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hT (t;ν) is decreasing or with two turning points, for α > 0.8859, and decreasing
for α > 1.5964; (C3) for ν = 2, hT (t;ν) is decreasing or IBT for α > 0.4524,
and decreasing for α > 1.2649; and (C4) for ν > 2, hT (t;ν) has an IBT shape for
α2 > 1/ν. For more details about (C1)–(C4), see Azevedo et al. (2012).

Let T ∼ BS-L(α,β). Then, the FR of T is given by

hT (t) = φL(ξ(t/β)/α)ψ(t/β)

2tα�L(−ξ(t/β)/α)
= ψ(t/β)

2tα(1 + exp(−ξ(t/β)/α))
, t > 0,

where φL and �L are the standard logistic PDF and CDF, respectively. As β is a
scale parameter, the shape of hT does not depend on β in the sense that, for the
same value of α, two FRs for distinct values of β differ only by a scale factor,
since haT (t) = hT (t/a)/a, for any a > 0. Thus, from now on we suppose β =
1, without loss of generality. First, it is easy to prove that: (D1) limt→0 hT (t) =
limt→+∞ hT (t) = 0; and (S2) h′

T (t) = 0 if and only if fα(t) = 0, where

fα(t) = 1 + exp
(

t − 1

α
√

t

)
− (t + 1)2

α
√

t(t + 3)
.

Therefore, the following theorem holds, with its proof being given in Appendix B.

Theorem 1. Let T ∼ BS-L(α,β). Then, hT (t), with t > 0, is unimodal for all
α > 0.

Remark 1. Let tc = tc(α) denote the change-point of the BS-L FR, that is, tc(α)

is the solution in t of fα(t) = 0. Then, it can be proved that tc(α) increases
if α ∈]0, α0[, and it decreases if α ∈ [α0,+∞[. Here, α0 = ((4x − 4x2 + 8 −
8
√

2 − x)/(x2(x − 2)(x + 2)))1/2 ≈ 0.2383, where x ≈ 1.2785 is the unique solu-
tion of exp(x) = 1/(x − 1). Moreover, tc(α0) ≈ 1.3545; see Figure 2 (left). This is
quite different from the BS case, where the change-point is a decreasing function
of α.

Similarly to the BS and BS-t cases, the change-point of the BS-L(α,β) FR
has no closed-form. For several values of α, the turning points have been cal-
culated by a standard root solving technique; see Figure 2. An approximation for
the change-point tc(α) (with β = 1, without loss of generality) of the BS-L FR
can be obtained as in Kundu, Kannan and Balakrishnan (2008), for α > 1.4, fit-
ting a first-order linear function to y−1/2 depending on α. This approximation is
given by tc(α) ≈ 1/(3.1683α − 0.3235)2. Moreover, for β 	= 1, the change-point
is tc(α,β) = βtc(α), due to the fact that β is a scale parameter, and thus a similar
approximation is possible. As an example, for β = 10, it is easy to check that the
approximation is tc(α,10) ≈ 1/(1.0019α − 0.1023)2 ≈ 10/(3.1683α − 0.3235)2.
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Figure 2 Plot of tc(α) = tc(α,β = 1) for α ≤ 2 (left) and α ∈ [2,10] (right).

4 Estimation and robustness of the FR and its change-point

Let T ∼ BS-L(α,β). Then, the ML estimates of α and β are given from

α̂ =
(

1

n

n∑
i=1

wi

(
ti

β̂
+ β̂

ti
− 2

))1/2

and

(4.1)

β̂ =
( 1

2α̂2

∑n
i=1 witi

1
2α̂2

∑n
i=1

wi

ti
− ∑n

i=1
1

ti+β̂
+ n

2β̂

)1/2
,

where wi = tanh(ξ(ti/β̂)/(2α̂))/(ξ(ti/β̂)/α̂). An iterative procedure to solve the
equations in (4.1) has been implemented in R code, which is available under re-
quest from the authors and not in an Appendix due to restrictions of space. The
iterative procedure considers the following as starting values. Ng, Kundu and Bal-
akrishnan (2003) obtained modified moment (MM) estimates of α and β for the
BS distribution, taking the mean of T and the mean of 1/T (instead of T 2) by
using property (A2). For the BS-t and BS-L distributions, the corresponding MM
estimates are

α̃ =
(

2

u1

(( 1
n

∑n
i=1 ti( 1

n

∑n
i=1

1
ti

)−1

)1/2
− 1

))1/2
and β̃ =

(
1

n

n∑
i=1

ti

(
1

n

n∑
i=1

1

ti

)−1)1/2

,

where for the BS-t case, u1 = E(U) = ν/(ν − 2), with U = V 2, V ∼ t (ν) and
ν > 2; whereas for the BS-L case, u1 = E(U) = π2/3 ≈ 3.2899, with U = S2

and S ∼ L(0,1). Once the parameters α and β are estimated by the ML method,
considering as mentioned the MM estimates as starting values, we can use the
invariance property of the ML estimators to obtain the estimators of the FR and
its change-point. Note that, for both ML and MM methods, the asymptotic joint
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Table 1 Expressions for the indicated function � and its limits

Function Limit as t → 0 Limit as t → +∞
�(t,α;φ) +∞ +∞
�(t,β;φ) −∞ +∞
�(t,α;φt)

ν
α

ν
α

�(t, β;φt) − ν
2β

ν
2β

�(t, ν;φt) −∞ +∞
�(t,α;φL) +∞ +∞
�(t,β;φL) −∞ +∞

distribution of the estimators of α and β of GBS distributions is bivariate normal;
see Engelhardt, Bain and Wright (1981) for the ML estimators in the BS case,
Ng, Kundu and Balakrishnan (2003) for the MM estimators in the BS case and
Sanhueza, Leiva and Balakrishnan (2008) for ML and MM estimators in the gen-
eral case of GBS distributions, under regularity conditions (for example, that ν > 4
in the BS-t case). The delta method was applied by Kundu, Kannan and Balakrish-
nan (2008) to obtain a normal asymptotic distribution for the change-point of the
BS FR, based on MM estimators. Actually, it can be proved that the corresponding
estimated change-points, based on MM and ML estimators, are also asymptoti-
cally normal, following the same procedures used by Ng, Kundu and Balakrishnan
(2003) and Kundu, Kannan and Balakrishnan (2008) for the BS case. We illustrate
this procedure for the BS-L case in Appendix D.

An estimation procedure is qualitatively robust if the corresponding influence
function (IF), defined by

IF(t, θ;f ) = −
(

E
(

∂

∂θ
�(t, θ;f )

))−1
�(t, θ;f ), with θ = (θ1, . . . , θk)

�, (4.2)

is bounded, where � is such that
∑n

i=1 �(ti, θ, f ) = 0 produces the ML estimate
of θ and f is the corresponding PDF. For the three distributions under study, we
prove that the indicated limits in Table 1 hold.

To obtain the IF given in (4.2), for α and β of the BS and BS-L distributions,
and for α, β and ν of the BS-t distribution, we first compute the derivatives of �

given in (4.2), then its expected value, the corresponding inverse matrix and finally
we multiply by �; see derivatives of � , as well as the IFs of BS, BS-L and BS-t
distributions in Appendix C. Thus, based on these results, we have the following.

Let T ∼ BS(α,β) and θ = (α,β)�. Then, the corresponding IF is proportional
to its score, namely � , since E(∂�(t, θ;φ)/∂θ) is a diagonal matrix. Now, as
t → 0, we have �(t,α;φ) → +∞ and �(t,β;φ) → −∞; and, as t → +∞, we
have �(t,α;φ) → +∞ and �(t,β;φ) → +∞. Hence, �(t,α,φ) and �(t,β,φ)

are unbounded, and therefore, their IFs are unbounded as well. This confirms that
the ML estimation procedure based on the BS distribution is non-robust, providing
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estimates that are sensitive to atypical cases, which is consequent with what occurs
in the case of the normal generator; see Leiva et al. (2010) and Paula et al. (2012).

Let T ∼ BS-t(α,β, ν) and now θ = (α,β, ν)�. Then, the functions �(t,α;φt)

and �(t,β;φt) are bounded, whereas �(t, ν;φt) is unbounded. In fact, we have
the following limits as t → 0: �(t,α;φt) → ν/α, �(t,β;φt) → −ν/(2β) and
�(t, ν;φt) → −∞; and as t → +∞: �(t,α;φt) → ν/α, �(t,β;φt) → ν/(2β)

and �(t, ν;φt) → +∞. Therefore, the IF for β is bounded, since it is proportional
to �(t,β;φt). However, the IFs for α and ν are unbounded, because they are lin-
ear combinations of �(t,α;φt) and �(t, ν;φt) (both unbounded). Indeed, these
two IFs tend to +∞ as t goes to zero or +∞. Notice that if ν is known, then
the IFs for α and β are bounded, because they are proportional to �(t,α;φt) and
�(t,β;φt), respectively. In this way, the procedure of estimation for β based on
the BS-t distribution is qualitatively robust. When ν is estimated, the procedure of
ML estimation for α based on this distribution is non-robust and as consequence
is sensitive to atypical cases. Hence, the unboundedness of the IF of the ML es-
timator of α crucially depends on the fact that ν is estimated rather than fixed,
due to the unboundedness of the score associated with ν. This is because if ν is
assumed to be known instead of estimated, the IF for α is proportional to its score
and functionally independent of �(t, ν,φt). Therefore, we have demonstrated the
non-robustness of the ML estimation procedure using the BS distribution and high-
lighted that this procedure based on the BS-t distribution is robust only when ν is
fixed, which is consequent with what occurs in the case of the t generator; see
Lucas (1997) and Paula et al. (2012).

Let T ∼ BS-L(α,β) and again θ = (α,β)�. Then, the functions �(t,α;φL) and
�(t,β;φL) are unbounded and E(∂�(t, θ;φ)/∂θ) is a diagonal matrix, such as in
the BS case, which implies that the ML estimation procedure is robust only in the
BS-t case, when ν is fixed. Thus, although the BS-L distribution has a heavier tail
than the BS distribution, the estimation procedure based on the ML method is not
robust. This is consequent with what occurs in the case of the logistic generator;
see Balakrishnan (2013).

5 Simulation study

We use the R software and R = 5000 Monte Carlo simulations to evaluate the
behavior of the ML and MM estimators of the change-point tc of the BS-L FR.
A similar study that compares BS and BS-t FRs is presented in Azevedo et al.
(2012). Our simulation considers a sample size n ∈ {30,50,75,100,500}, a BS-L
parameter α ∈ {0.5,1.0,1.5,2.0} and β = 1.0, without loss of generality, because
as mentioned β is a scale parameter. To analyze the point estimation results, we
compute, for each n and α, the empirical mean, bias and mean squared error (MSE)
of the change-point estimators of the BS-L FR. For interval estimation, we com-
pute the empirical coverage probabilities (CPs) from the relative frequencies, at
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Algorithm 1 Bootstrap CIs for the BS-L distribution
1: Fix α and β and generate n data t1, . . . , tn from the BS-L distribution.
2: Estimate α and β and then tc as t̂c by the ML method with a quasi-Newton

technique implemented by the optim command of the R software with
t1, . . . , tn.

3: Collect a bootstrap sample from t1, . . . , tn.
4: Compute the bootstrap estimate of the change-point t̂∗c .
5: Repeat steps 2 and 3 B times (bootstrap replications) and obtain t̂∗c1

, . . . , t̂∗cB
.

6: Calculate a CI of ρ × 100% for tc with the percentile bootstrap method as
CI(tc) = [̂t∗

c(
ρ
2 )

; t̂∗
c(1− ρ

2 )
].

7: Repeat steps 1 to 6 R times (Monte Carlo replications) and obtain the em-
pirical CPs from the relative frequencies, at which the true parameter value
belongs to the CI.

which the true parameter value belongs to the confidence interval (CI). Bootstrap
CIs are computed with Algorithm 1. We consider B = 5000 bootstrap replications.
Tables 2 and 3 show that, in general, as n and α increase, the bias significantly
decreases (in absolute value), for both ML and MM estimators, as expected. The
same occurs with the MSE. The ML method performs better than the MM method.
In addition, the CPs decrease with α and increase with n, which are closer to the
nominal level of 95% for the ML method.

Next, we demonstrate the robustness of the ML estimation with a simulated data
set based on survival times of n = 72 pigs; see Kundu, Kannan and Balakrishnan
(2008). We generated 72 cases from a BS-t(0.61,75.6,3) distribution, which pa-
rameters were chosen suitably; see data sets in Appendix E. Table 4 (where SD,
CV and CS stand for standard deviation and coefficients of variation and skewness,
respectively) provides a descriptive summary of these data. Figure 3 presents (left)
the frequency plot by kernel estimation (see Saulo et al., 2013), (center) boxplot
and (right) TTT plot for these data. From the results in Table 4 and Figure 3 (left),
a positively skewed distribution (CS = 4.30) seems to be appropriate. In addition,
a high level of kurtosis (CK = 26.98) indicates a heavy-tailed positively skewed
distribution generating the data. From Figure 3 (center), some atypical data are
detected by the boxplot on the upper tail. In Figure 3 (right), note that the em-
pirical scaled TTT plot indicates that a ∩-shaped FR seems to be appropriate for
describing the data; see theoretical TTT plot in Figure 1. Therefore, based on the
mentioned points, we realize BS-t or BS-L distributions can be good candidates
for modeling these data, since they take into account their degrees of skewness
and kurtosis, as well as the shape of their FR.

We compute the MM and ML estimates of the change-point of the correspond-
ing FR, as well as the fitted log-likelihood (log-L) finction, such as Kundu, Kannan
and Balakrishnan (2008) and Azevedo et al. (2012) did for the BS and BS-t mod-
els, respectively. The results for the ML case are summarized in Table 5. Figure 4
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Table 2 Empirical mean, bias and MSE of the ML and MM estimators of tc for the indicated values
with simulated data

MM method ML method

n α tc Mean Bias MSE Mean Bias MSE

30 0.5 1.0000000 1.0222 0.0222 0.0370 1.0040 0.0040 0.0354
1.0 0.1416738 0.1924 0.0508 0.0150 0.1768 0.0351 0.0098
1.5 0.0517645 0.0649 0.0132 0.0011 0.0604 0.0086 0.0007
2.0 0.0274099 0.0336 0.0062 0.0002 0.0313 0.0039 0.0001

50 0.5 1.0000000 1.0167 0.0167 0.0247 1.0024 0.0024 0.0231
1.0 0.1416738 0.1708 0.0292 0.0057 0.1621 0.0204 0.0045
1.5 0.0517645 0.0594 0.0076 0.0004 0.0568 0.0050 0.0003
2.0 0.0274099 0.0311 0.0036 0.0000 0.0297 0.0023 0.0000

75 0.5 1.0000000 1.0084 0.0084 0.0177 1.0013 0.0013 0.0161
1.0 0.1416738 0.1594 0.0178 0.0029 0.1546 0.0129 0.0023
1.5 0.0517645 0.0564 0.0047 0.0002 0.0550 0.0032 0.0002
2.0 0.0274099 0.0297 0.0022 0.0000 0.0289 0.0015 0.0000

100 0.5 1.0000000 1.0076 0.0076 0.0130 1.0039 0.0039 0.0122
1.0 0.1416621 0.1580 0.0131 0.0018 0.1521 0.0104 0.0016
1.5 0.0517744 0.0554 0.0036 0.0002 0.0544 0.0027 0.0001
2.0 0.0274056 0.0292 0.0017 0.0000 0.0287 0.0012 0.0000

500 0.5 0.1000000 1.0003 0.0003 0.0028 1.0018 0.0018 0.0025
1.0 0.1416621 0.1438 0.0021 0.0003 0.1440 0.0023 0.0002
1.5 0.0517744 0.0523 0.0006 0.0000 0.0523 0.0006 0.0000
2.0 0.0274056 0.0277 0.0003 0.0000 0.0277 0.0003 0.0000

shows the empirical and fitted survival functions (SF) and the estimated FR with
the ML method for the BS, BS-t and BS-L distributions, as well as the true SF and
FR. Similar calculations were obtained with the MM method, whose change-points
are estimated as 51.40, 92.47 and 79.64 for the BS, BS-t and BS-L distributions,
respectively. The change-point for the true distribution is 84.26. In Figure 5, we
present the graphical plots of diagnostics based on local influence, which show
the robustness of the ML estimation procedure when the BS-t distribution with ν

known is used; see Barros, Paula and Leiva (2009) for details on the local influence
method.

Algorithm 2 provides goodness-of-fit (GOF) graphical tools based on the
Kolmogorov–Smirnov (KS) test to evaluate whether a GBS distribution fits the
data set well; see Barros et al. (2014). The KS test is associated with the probabil-
ity versus probability (PP) plot. We consider p-values of the KS test to examine
the goodness of fit of these distributions to the data; see Table 5. Figure 6 shows
the good fitting of the mentioned distributions to the data by PP plots with 95%
acceptance bands constructed using the KS test. Here, the BS-t distribution is the
best (see KS p-value in Table 5) among the BS, BS-t and BS-L distributions, as
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Table 3 Empirical CP and lower (LL) and upper limits (UL) of 95% CIs of tc for the indicated
value with simulated data

MM method ML method

n α tc LL UL CP (%) LL UL CP (%)

30 0.5 1.0000000 0.7329 1.2886 88.0 0.6527 1.2808 89.9
1.0 0.1416738 0.1090 0.5531 80.3 0.0908 0.5256 89.3
1.5 0.0517645 0.0408 0.1710 79.6 0.0347 0.1597 89.1
2.0 0.0274099 0.0218 0.0794 79.1 0.0186 0.0744 89.1

50 0.5 1.0000000 0.7545 1.2500 86.2 0.7029 1.2391 92.2
1.0 0.1416738 0.1051 0.3952 85.2 0.0940 0.3724 91.9
1.5 0.0517645 0.0399 0.1169 84.9 0.0361 0.1109 91.8
2.0 0.0274099 0.0214 0.0573 84.8 0.0193 0.0544 91.8

75 0.5 1.0000000 0.7735 1.2159 88.4 0.7459 1.2063 92.7
1.0 0.1416738 0.1047 0.3108 87.7 0.0978 0.2976 92.6
1.5 0.0517645 0.0399 0.0955 87.5 0.0375 0.0919 92.6
2.0 0.0274099 0.0214 0.0480 87.4 0.0201 0.0462 92.8

100 0.5 1.0000000 0.7941 1.1949 89.8 0.7800 1.1862 92.9
1.0 0.1416738 0.1060 0.2728 89.2 0.1017 0.2632 92.8
1.5 0.0517645 0.0404 0.0864 88.6 0.0389 0.0837 92.8
2.0 0.0274099 0.0217 0.0440 88.5 0.0208 0.0426 92.9

500 0.5 1.0000000 0.8942 1.096 94.1 0.9003 1.0928 94.5
1.0 0.1416738 0.1182 0.1811 94.0 0.1189 0.1791 94.5
1.5 0.0517645 0.0444 0.0631 93.9 0.0446 0.0625 94.5
2.0 0.0274099 0.0237 0.0330 93.9 0.0238 0.0327 94.4

Table 4 Descriptive statistics for simulated data

Mean Median SD CV CS CK Range Min. Max. n

120.70 80.74 147.28 122% 4.30 26.98 1075.20 10.23 1085.43 72

Figure 3 PDF plot with kernel estimation (left), boxplot (center) and TTT plot (right) for simulated
data.
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Table 5 Indicated model parameter and change-point estimate, KS p-value and log-L for simulated
data

Model α̂ β̂ ν (fixed) t̂c KS p-value log-L

BS 0.9396 84.1955 – 51.66 0.0725 −408.8250
BS-t 0.6474 79.6503 3 85.59 0.5331 −406.4600
BS-L 0.5024 81.3337 – 80.81 0.1927 −406.6249
True model 0.6100 75.6000 3 84.26 – −406.7489

Figure 4 Empirical and fitted SF (left) and estimated FR (right) for the indicated model with sim-
ulated data.

Figure 5 Local influence index plot for BS (left), BS-L (center) and BS-t with ν = 3 fixed (right)
distributions using simulated data.

expected due to that the data were simulated from such a distribution. This good
fitting is corroborated by CDF plots of GBS distributions shown in Figure 4.

Observations with a potential influence detected by the total local influence
method are usually analyzed by the relative change (RC) of each parameter es-
timate. This is obtained by dropping the influential cases and re-estimating the dis-
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Algorithm 2 GOF test for GBS distributions
1: Collect data t1, . . . , tn and order them as t1:n, . . . , tn:n.
2: Estimate α and β of a GBS distribution by α̂ and β̂ , respectively, with

t1, . . . , tn.
3: Compute v̂j :n = FT (tj :n; α̂, β̂), for j = 1, . . . , n, with FT being the GBS CDF.
4: Calculate ŷj = �−1(v̂j :n), where �−1 is the inverse function of the N(0, 1)

CDF.
5: Obtain ûj :n = �(̂zj ), with ẑj = (ŷj − ȳ)/sY , ȳ = ∑n

j=1 ŷj /n and sY = (
∑n

j=1(ŷj −
ȳ)2/(n − 1))1/2.

6: Draw the PP plot with points wj :n = (2j − 1)/(2n) versus ûj :n, for j =
1, . . . , n.

7: Construct acceptance bands according to (max{w − dζ + 1/(2n),0},min{w +
dζ − 1/(2n),1}), where dζ is the 100 × ζ th percentile of the KS distribution
and w is a continuous version of wj :n.

8: Determine the p-value of the KS statistic and reject the null hypothesis of a
GBS distribution for the specified significance level based on this p-value.

9: Corroborate coherence between steps 7 and 8.

Figure 6 PP plots with 95% acceptance bands for the BS (left), BS-t with ν = 3 fixed (center) and
BS-L (right) distributions using simulated data.

tribution parameters according to the expression RC(θ̂(i)) = |(θ̂ − θ̂(i))/θ̂ | × 100,
for θ = α,β and i = 1, . . . ,72, where θ̂(i) denotes the ML estimate of θ after the
case i is removed. We conduct an RC study for the simulated data and the obtained
results are provided in Table 6. As an empirical illustration of the robustness re-
sults obtained in Section 4, observe that the RCs for β are smaller for the BS-t
distribution than for the BS distribution. Therefore, we conclude that the BS-t and
BS-L fittings accommodate potential influential data in a better way than in the BS
fitting, as expected, with a better performance of the BS-t distribution in relation
to the BS-L distribution. This RC study is coherent with the GOF analysis carried
out in Figure 6 and supported by KS p-values provided in Table 5.
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Table 6 ML estimates and RC (in %) for the indicated parameter, dropped case (DC) and model
with simulated data

BS BS-L BS-t (ν = 3)

DC α̂ RC β̂ RC α̂ RC β̂ RC α̂ RC β̂ RC

– 0.9396 – 84.20 – 0.5024 – 81.33 – 0.6474 – 79.65 –
1 0.8967 4.56 87.84 4.33 0.4830 3.86 83.35 2.48 0.6265 3.23 80.73 1.36

72 0.8566 8.83 78.34 6.96 0.4727 5.91 78.67 3.27 0.6231 3.76 78.52 1.42

Table 7 Descriptive statistics for the indicated data set

Set Mean Median SD CV CS CK Range Min. Max. n

S1 99.82 70.00 81.12 81.27% 1.76 5.46 364.0 12 376.0 72
S2 8996.41 6765.25 8790.71 97.71% 5.58 51.11 16,477.7 109 116,586.7 542
S3 (×100) 13.93 9.95 14.93 107.1% 3.53 16.68 98.1 1 99.1 104

6 Examples with real-world data

We illustrate the potential use of the proposed models for practical purposes by
means of the following three data sets, coming from different areas of application
and detailed in Appendix E:

(S1) Survival times (in days) of n = 72 pigs injected with the same dose of tuber-
cle bacilli, corresponding to 4.0×106 bacillary units per 0.5 ml (log10(4.0×
106) = 6.6), that is, to a regimen number of the base-10 logarithm of bacil-
lary units in 0.5 ml of challenge solution, denoted by survpig66; see
Kundu, Kannan and Balakrishnan (2008).

(S2) Claim amounts corresponding to n = 542 injuries paid by an insurance Aus-
tralian company, denoted by amount; see Paula et al. (2012).

(S3) Total phosphorus (mg/l) in Melides lagoon, Portugal, measured from 05-
April-2004 to 26-Jan-2013 with n = 104, denoted by phosphorus; see
http://www.snirh.pt (Portuguese National System of Information for Water
Resources).

Table 7 provides a descriptive summary of the three data sets. Figure 7 presents
(left) PDF plots by kernel estimation, (center) boxplot and (right) TTT plot from
these data sets. We first conduct exploratory data analyses considering that distri-
butions skewed to the right (see CS in Table 7) with positive support seem to be
appropriate. In addition, a high level of kurtosis (see CK in Table 7), as mentioned,
indicates a heavy right tail. Moreover, from Figure 7 (right), observe that the em-
pirical scaled TTT plots suggest distributions with ∩-shaped or nearly ∩-shaped
FR seem to be appropriate for describing these data; see theoretical TTT plot in

http://www.snirh.pt
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Figure 7 PDF plot by using kernel estimation (left), boxplot (center) and TTT plot (right) for S1
(first panel), S2 (second panel) and S3 (third panel) data sets.

Figure 1. Therefore, we realize GBS distributions (such as BS, BS-t or BS-L) can
be good candidates for modeling these data, since they take into account their de-
grees of skewness and kurtosis, as well as the shape of their FR. Note that BS-L
FRs are IBT, such as BS and most BS-t (ν ≥ 3) FRs. This includes the nearly-IBT
case, which leads to TTT plots with a clearly convex graph on the left side, and
then a concave or nearly linear graph at the right side, as in the data sets S1, S2
and S3. In Figure 8, we illustrate this fact with three TTT plots for simulated data
(n = 1000) from a BS-t with α = 0.75 and ν = 3,5 and 7, respectively, showing a
wide variety of IBT shapes.

For S1, S2 and S3, we compute the ML estimates of the BS, BS-t and BS-L
distribution parameters, modified KS statistic (see Chen and Balakrishnan, 1995,
D’Agostino and Stephens, 1986) and fitted log-L, such as Kundu, Kannan and
Balakrishnan (2008), Azevedo et al. (2012) and Paula et al. (2012) did for the BS
and/or BS-t models. The results for the ML method are summarized in Table 8.
Figure 9 shows the empirical and fitted SFs and estimated FR based on the ML
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Figure 8 TTT plots for the BS-t(α = 0.75, β = 1, ν) with ν = 3 (left), ν = 5 (center) and ν = 7
(right) using simulated data.

Table 8 Parameter and change-point ML estimates, KS p-value and log-L for the indicated model
and data

Model α̂ β̂ ν (fixed) t̂c KS p-value log-L

(S1) survpig66
BS 0.760 77.535 – 90.4 0.039 −390.917
BS-t 0.608 75.588 5 90.2 0.177 −390.054
BS-L 0.415 75.998 – 90.7 0.164 −389.876

(S2) amount
BS 0.844 6592.406 – 3296.2 0.000 −5438.130
BS-t 0.509 6853.522 3 3426.7 0.125 −5353.927
BS-L 0.406 6882.437 – 3441.2 0.000 −5372.379

(S3) phosphorus
BS 0.787 0.107 – 0.11130 0.000 118.995
BS-t 0.499 0.101 3 0.11867 0.533 128.959
BS-L 0.399 0.102 – 0.12515 0.024 126.060

method for the BS, BS-t and BS-L models with the analyzed data sets. These
results show a better performance of the BS-t distribution in all data sets; see KS
p-values in Table 8 and PP plots with 95% acceptance bands in Figure 10. Once the
best model is selected, we can use the estimated change-point of its FR for different
purposes. For example, in the case of the data set S1, based on this estimate, we
can establish the reduction in the dose, and therefore, in the cost of the treatment.

As an example, for the sample survpig66, we have estimated the asymptotic
standard errors of the corresponding ML and MM estimators, t̂c and t̃c, for the
three models; see Table 9. In the BS-L case, these results agree with the simulation
results obtained in Table 2 for n = 75, α = 0.5 and β = 1.0, where the empirical
MSEs are 0.0161 and 0.0177 for the ML and MM methods, respectively. Then,
using the fact that tc(α,β) = βtc(α,1), the estimated standard errors of the change-
point, based on the ML and MM estimates of β , employing survpig66 data, are
9.643 and 10.284, respectively. Note that these values are similar to the asymptotic
estimated standard errors given in Table 9 for the BS-L case.
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Figure 9 Estimated SF (first panel) and FR (second panel) using S1 (left), S2 (center) and S3
(right) data sets, with ν for the BS-t distribution fixed according to values in Table 8.

Table 9 ML and MM estimates of the change-point (with estimated asymptotic standard errors in
parenthesis) for survpig66 data

Model t̂c t̃c

BS 90.3951 (24.37) 90.2996 (25.13)
BS-t (ν = 5) 90.1533 (8.71) 93.7848 (10.32)
BS-L 90.6961 (9.40) 91.8113 (10.34)

7 Concluding remarks and future research

We have studied the shape of the failure rate of the Birnbaum–Saunders-logistic
distribution, which is unimodal (upside down-shaped). Its change-point is an
important value, because the hazard begins to decrease at this point. Such a
change-point can be obtained as a solution of a non-linear equation. We have
provided an approximation to this change-point and have shown that it works
very well whenever the shape parameter is not too small. We have discussed and
compared some robustness issues related to the Birnbaum–Saunders, Birnbaum–
Saunders-logistic and Birnbaum–Saunders-t distributions. In addition, we have
carried out a simulation to assess the performance of two estimation procedures
of the change-point in these three distributions. Finally, we have illustrated the
obtained results, including estimation and robustness, by means of data analy-
ses.
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Figure 10 PP plots with 95% acceptance bands for the BS (left), BS-t with ν fixed according to
values in Table 8 (center) and BS-L (right) distributions using S1 (first panel), S2 (second panel) and
S3 (third panel) data sets.

We hope to report new findings related to modeling (of fixed and mixed effects),
diagnostics and censored data analysis based on generalized Birnbaum–Saunders
distributions beyond the normal and Student-t generators. Also, semi-parametric
and error-in-variables formulations, as well as non-parametric estimation of kernel
can be conducted with this wide family of distributions. Multivariate versions,
copula methods and spatio-temporal models may also be addressed based on these
distributions, some of which have been already partially considered for Birnbaum–
Saunders and Birnbaum–Saunders-t distributions, but not for other members of
the generalized Birnbaum–Saunders family; see Vilca, Balakrishnan and Zeller
(2014), Kundu (2015a, 2015b), Vanegas and Paula (2015), Marchant, Leiva and
Cysneiros (2016a), Marchant et al. (2016b, 2018) and Garcia-Papani et al. (2017).
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Appendix A: TTT plot

The TTT function and its scaled version, if H−1(1) = E(T ) is finite, are, respec-
tively,

H−1(u) =
∫ F−1

T (u)

0

(
1 − FT (y)

)
dy and W(y) = H−1(y)

H−1(1)
, 0 ≤ y ≤ 1,

where F−1
T is the inverse function of FT . Now, W can be empirically approxi-

mated allowing the empirical scaled TTT function to be constructed by plotting
the consecutive points (k/n,Wn(k/n)), where

Wn

(
k

n

)
=

∑k
i=1 t(i) + (n − k)t(k)∑n

i=1 t(i)
, k = 1, . . . , n,

with t(i) being the corresponding observed ith order statistic. By means of the
empirical scaled TTT function, we can detect the type of FR that the lifetime data
have and, as a consequence, the type of distribution that these data can have. From
Figure 1, note the different theoretical shapes for the scaled TTT function. For
more details about the TTT method, see Aarset (1987). Thus, a TTT function that
is concave (or convex) corresponds to the IFR (or DFR) class. A TTT function
that is concave (convex) for t < tc and convex (concave) for t > tc corresponds to
an IBT (BT) FR. A TTT plot expressed by a straight line is an indication that the
underlying distribution is exponential.

Appendix B: Proof of Theorem 1

For β = 1.0, we have

f ′
T (t) =

√
t

2α

(
t (1 + exp(−at )) − (1 + t)(3

2(1 + exp(−at )) − t exp(−at )At )

(1 + exp(−at ))2t3

)
,

where

at = ξ(t)

α
= t − 1

α
√

t
and At = a′

t = t−3/2(1 + t)

2α
.

Thus,

f ′
T (t) = 0

⇔ t
(
1 + exp(−at )

) − (1 + t)

(
3

2

(
1 + exp(−at )

) − t exp(−at )At

)
= 0

⇔ fα(t) = 0,

where

fα(t) = 1 + exp
(

t − 1

α
√

t

)
− (t + 1)2

α
√

t(t + 3)
.
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In addition, we have

f ′
α(t) = (t + 1)gα(t)

2α
√

t3(t + 3)2
,

with

gα(t) = exp
(

t − 1

α
√

t

)
(t + 3)2 − (t + 3)2 + 12.

Note that: (E1) fα(1) = 2 − 1/α (then f1/2(1) = 0); (E2) limt→0fα(t) = −∞
and limt→+∞fα(t) = +∞ (then fα(t) = 0 for at least one t > 0); (E3) if α > δ,
fα(t) > fδ(t), for t ≤ 1, and gα(t) > gδ(t), for t < 1; (E4) f ′

α(t) > 0 if and only
if gα(t) > 0; and (E5) if t ≥ 1, f ′

α(t) > 0, because gα(t) ≥ 12. Thus, if we prove
that f ′

1/2(t) > 0, then: from (E1), it follows that f1/2(t) < 0, for all t ∈]0,1[, and
f1/2(t) > 0, for all t ∈]1,+∞[; if α > 1/2, f ′

α(t) > 0 by (E5), for t ≥ 1, and by
(E3) and (E4), for t < 1; consequently fα has a unique root, which is necessarily
less than one, since fα(1) > 0 from (E1); if α < 1/2, fα has exactly one root,
because (F3) implies fα(t) < f1/2(t) < 0, for t ≤ 1, and fα(t) increases for t > 1,
from (E5); also, this root is greater than one. This means that fα has a unique root
and also h′

T , which proves the theorem. Now, we have to prove that f ′
1/2(t) > 0,

that is, g1/2(t) > 0. In fact, it suffices to prove that g1/2(t) > 0 for t < 1, according
to (E5).

Let r(t) = exp(2(t − 1)/
√

t), for t > 0. Note that r is an increasing positive
function over t . Then,

g1/2(t) = r(t)(t + 3)2 − (t + 3)2 + 12 > −(t + 3)2 + 12 > 0,

if t < c1 = −3 + 2
√

3 ≈ 0.4641. However, if t ≥ c1, then

g1/2(t) = r(t)(t + 3)2 − (t + 3)2 + 12 ≥ r(c1)(t + 3)2 − (t + 3)2 + 12

= (
r(c1) − 1

)
(t + 3)2 + 12.

Thus, g1/2(t) > 0 for t < c2 = −3 + 2
√

3/
√

1 − r(c1) ≈ 0.8909. If t ≥ c2, then

g1/2(t) ≥ (
r(c2) − 1

)
(t + 3)2 + 12 > 0,

for t < −3 + 2
√

3/
√

1 − r(c2) ≈ 4.6260 > 1. This completes the proof.

Appendix C: Score functions for proving robustness

BS distribution.

�(t,α;φ) = 1

α3

(
t

β
+ β

t
− 2

)
− 1

α
,

�(t, β;φ) = 1

t + β
−

(
1

2α2

)(
1

t
− t

β2

)
− 1

2β
.
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BS-t distribution.

�(t,α;φt) =
(

ν + 1

ν + (ξ(t/β)/α)2

)
1

α3

(
t

β
+ β

t
− 2

)
− 1

α
,

�(t, β;φt) = 1

t + β
− 1

2α2

(
ν + 1

ν + (ξ(t/β)/α)2

)(
1

t
− t

β2

)
− 1

2β
,

�(t, ν;φt) = 1

2

(
γ

(
ν + 1

2

)
− γ

(
ν

2

)

− log
(

1 + (ξ(t/β)/α)2

2

)
− ν − (ξ(t/β)/α)2

ν + (ξ(t/β)/α)2

)
,

where γ is the digamma function given by γ (x) = d log(
(x))/dx = 
′(x)/
(x).
Now, with θ = (α,β, ν)�, we have

E
(

∂

∂θ
�(t, θ;φt)

)
=

⎛⎝a 0 d

0 b 0
d 0 c

⎞⎠ , (C.1)

where

a = E
(

∂

∂α
�(t, α;φt)

)
= − 2ν

α2(3 + ν)
,

b = E
(

∂

∂β
�(t, β;φt)

)
= 3α2 − 4(2 + ν)

4α2β2(3 + ν)
− Bν,

c = E
(

∂

∂ν
�(t, ν;φt)

)
= − 1

(1 + ν)(3 + ν)
− 1

4
γ

(
ν

2

)
+ 1

4
γ

(
ν + 1

2

)
,

d = E
(

∂

∂ν
�(t, α;φt)

)
= E

(
∂

∂α
�(t, ν;φt)

)
= 2

α(3 + 4ν + ν2)
,

with Bν = E(1/(β + T )2) and T ∼ BS-t(α,β, ν). Then, the inverse matrix of (C.1)
is given by

E
(

∂

∂θ
(t, θ;φt)

)−1
= 1

abc − bd2

⎛⎜⎝ bc 0 −bd

0 ac − d2 0
−bd 0 ab

⎞⎟⎠ .

Therefore, we have

IF(t, θ;φt) = −
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1

ac − d2

(
c�(t, α;φt) − d�(t, ν;φt)

) − 1

b
�(t, β;φt)

1

ac − d2

(−d�(t, α;φt) + a�(t, ν;φt)
)

⎤⎥⎥⎦ .

BS-L distribution.

�(t,α;φL) =
( tanh(1

2(ξ(t/β)/α))

ξ(t/β)/α

)
1

α3

(
t

β
+ β

t
− 2

)
− 1

α
,
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�(t,β;φL) = 1

t + β
− 1

2α2

( tanh(1
2(ξ(t/β)/α))

ξ(t/β)/α

)(
1

t
− t

β2

)
− 1

2β
.

Here, again E[∂�(t, θ;φ)/∂θ ] is a diagonal matrix, but now with θ = (α,β)� and

E
(

∂

∂α
�(t, α;φL)

)
= −3 + π2

9α2 ,

E
(

∂

∂β
�(t, β;φL)

)
= −12 + α2(21 + π2) + 126ζ(3)

π2

72α2β2 ,

where ζ denotes the Riemann zeta function, given by ζ(s) = ∑
k≥1 k−s . Note that

ζ(3) ≈ 1.20206. Therefore, we have

IF(t, θ;φL) =

⎡⎢⎢⎢⎢⎣
9α2

3 + π2 �(t,α;φL)

72α2β2

12 + α2(21 + π2) + 126ζ(3)

π2

�(t,β;φL)

⎤⎥⎥⎥⎥⎦ .

Appendix D: Asymptotic normality of estimators

For the MM method, as u1 = E(U) = π2/3 and u2 = E(U2) = 7π4/15 in the BS-
L case, it follows that the asymptotic distribution of the MM estimators α̃ and β̃ is
bivariate normal with mean (α,β) and variance-covariance matrix

�θ̃ =

⎛⎜⎜⎝
8

10

α2

n
0

0
9

15

(
20 + 7(πα)2

(6 + π2α2)2

(παβ)2

n

)
⎞⎟⎟⎠ ,

whereas the estimator of the change-point t̃c follows a normal asymptotic distribu-
tion with mean tc and variance C/n, where

C = 8α2

10

( ∂2hT (t;α,β)
∂t ∂α

∂2hT (t;α,β)

∂t2

)2
+ 9

15

(
20 + 7(πα)2

(6 + π2α2)2

)
(παβ)2

( ∂2hT (t;α,β)
∂t ∂β

∂2hT (t;α,β)

∂t2

)2
.

For the ML method, the asymptotic distribution of θ̂ = (α̂, β̂)� is bivariate nor-
mal with mean (α,β)� and covariance matrix �θ̂ . This matrix can be approxi-
mated by −�̈−1, with −�̈ being evaluated at θ̂ and obtained from the correspond-
ing log-likelihood function �; see Sanhueza, Leiva and Balakrishnan (2008). The
elements of −�̈ are given by

�̈αα = n

α2 − 2

α6

n∑
i=1

v′
i

(
ti

β
+ β

ti
− 2

)2
− 3

α4

n∑
i=1

vi

(
ti

β
+ β

ti
− 2

)
,
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�̈αβ = 1

α3

(
1

α2 − 2

α6

n∑
i=1

v′
i

(
1

ti
− ti

β2

)(
ti

β
+ β

ti
− 2

)
+

n∑
i=1

vi

(
1

ti
− ti

β2

))
,

�̈ββ = n

α2β2 −
n∑

i=1

(
1

ti + β

)2
− 1

2α4

n∑
i=1

v′
i

(
1

ti
− ti

β2

)2
− 1

α2β3

n∑
i=1

viti,

where vi and v′
i depend on the underlying model, letting ai = (ξ(ti/β)/α)2. There-

fore, (i) for the BS case, vi = 1 and v′
i = 0; (ii) for the BS-t case,

vi = ν + 1

ν + ai

and v′
i = − ν + 1

(ν + ai)2 ;
(iii) for the BS-L case,

vi = tanh(
√

ai)√
ai

and v′
i =

√
ai − sinh(

√
ai)

2
√

a3
i (1 + cosh(

√
ai))

.

Computing −�̈−1 and letting its diagonal elements be denoted by b11 and b22, we
obtain the asymptotic normal distribution for the estimator of the change-point t̂c
using the standard delta method, as Kundu, Kannan and Balakrishnan (2008) did
for the BS case. This asymptotic distribution is N(tc, σ

2) with

σ 2 = b11

( ∂hT (t,α,β)
∂t ∂α

∂2hT (t,α,β)

∂t2

)2
+ b22

( ∂hT (t,α,β)
∂t ∂β

∂2hT (t,α,β)

∂t2

)2
.

Appendix E: Data sets

[S0] Simulated data set. 10.23, 13.95, 17.75, 17.76, 22.81, 27.02, 29.69, 30.12, 30.92, 31.21,

34.88, 35.29, 35.90, 37.24, 43.01, 46.69, 46.75, 48.10, 50.28, 53.08, 57.11, 60.73, 63.04, 64.30,

64.58, 64.63, 65.65, 68.03, 68.53, 69.21, 71.34, 73.15, 74.00, 74.84, 78.56, 80.30, 81.19, 82.45,

83.69, 83.98, 84.44, 86.51, 86.75, 90.45, 91.13, 93.50, 94.03, 96.19, 99.46, 111.44, 113.93, 114.84,

119.48, 120.69, 132.87, 133.72, 143.27, 143.35, 161.04, 180.22, 183.39, 188.50, 216.16, 225.45,

278.59, 296.74, 336.41, 345.91, 358.19, 385.79, 403.86, 1085.43.
[S1] survpig66. 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56,

57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,

91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263,

297, 341, 341, 376.
[S3] phosphorus. 0.010, 0.059, 0.089, 0.121, 0.142, 0.081, 0.127, 0.194, 0.071, 0.047, 0.071,

0.097, 0.166, 0.134, 0.553, 0.709, 0.183, 0.047, 0.111, 0.072, 0.074, 0.073, 0.070, 0.190, 0.128,

0.170, 0.185, 0.122, 0.194, 0.445, 0.169, 0.134, 0.081, 0.991, 0.300, 0.139, 0.098, 0.092, 0.040,

0.164, 0.030, 0.240, 0.070, 0.085, 0.150, 0.160, 0.110, 0.130, 0.170, 0.150, 0.092, 0.670, 0.029,

0.077, 0.073, 0.120, 0.071, 0.096, 0.092, 0.092, 0.110, 0.130, 0.064, 0.041, 0.070, 0.050, 0.050,

0.039, 0.047, 0.075, 0.110, 0.100, 0.170, 0.110, 0.130, 0.140, 0.059, 0.150, 0.099, 0.081, 0.096,
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0.091, 0.150, 0.120, 0.160, 0.091, 0.130, 0.310, 0.041, 0.031, 0.042, 0.045, 0.048, 0.039, 0.050,

0.075, 0.110, 0.160, 0.690, 0.140, 0.140, 0.100, 0.062, 0.093.
[S2] amount. 109.00, 253.26, 529.40, 624.38, 878.37, 1000.00, 1005.42, 1018.42, 1325.00,

1350.00, 1500.00, 1570.82, 1727.03, 1750.00, 1800.00, 1800.00, 1838.00, 1994.00, 2000.00,

2000.00, 2000.00, 2000.00, 2000.00, 2118.15, 2242.32, 2265.15, 2269.09, 2382.61, 2397.92,

2444.78, 2484.25, 2500.00, 2500.00, 2500.00, 2510.12, 2521.00, 2551.25, 2598.10, 2652.85,

2672.25, 2780.55, 2915.07, 2920.00, 2932.40, 3000.00, 3000.00, 3000.00, 3000.00, 3000.00,

3000.00, 3000.00, 3001.00, 3015.00, 3100.00, 3148.00, 3211.00, 3250.00, 3251.70, 3323.00,

3382.64, 3455.00, 3480.30, 3480.30, 3493.50, 3500.00, 3500.00, 3500.00, 3503.00, 3515.80,

3556.32, 3579.36, 3581.50, 3591.00, 3658.50, 3666.00, 3666.00, 3718.50, 3750.00, 3750.00,

3800.00, 3878.00, 3892.00, 3897.00, 3900.00, 3976.00, 3994.88, 4000.00, 4000.00, 4000.00,

4000.00, 4000.00, 4000.00, 4000.00, 4000.00, 4020.00, 4020.18, 4075.85, 4146.00, 4151.85,

4248.30, 4250.00, 4250.00, 4257.45, 4269.00, 4285.00, 4300.24, 4346.00, 4358.00, 4380.77,

4410.06, 4472.85, 4476.00, 4476.00, 4500.00, 4500.00, 4500.00, 4500.00, 4530.00, 4550.00,

4581.10, 4590.00, 4650.00, 4672.10, 4676.35, 4691.16, 4691.50, 4699.00, 4700.00, 4717.00,

4729.45, 4746.00, 4751.41, 4774.50, 4908.00, 4920.01, 4923.36, 4938.00, 4989.50, 4991.75,

4999.05, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00,

5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.11,

5002.21, 5021.00, 5022.45, 5025.00, 5025.00, 5026.00, 5039.00, 5045.35, 5064.45, 5091.83,

5098.00, 5098.52, 5099.60, 5119.00, 5136.11, 5136.19, 5144.15, 5171.80, 5208.92, 5275.00,

5275.00, 5303.45, 5309.10, 5372.30, 5379.15, 5381.51, 5388.00, 5393.95, 5428.00, 5444.15,

5470.22, 5497.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5506.00, 5522.05,

5527.50, 5527.50, 5541.00, 5543.00, 5544.90, 5575.74, 5598.00, 5600.00, 5600.00, 5606.15,

5625.00, 5628.75, 5650.00, 5664.50, 5792.21, 5793.17, 5882.90, 5929.54, 5955.00, 5955.00,

5963.20, 5982.53, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6021.00,

6033.17, 6038.00, 6078.50, 6113.00, 6149.45, 6154.70, 6164.47, 6179.49, 6202.50, 6248.35,

6295.30, 6300.00, 6316.50, 6326.50, 6333.00, 6342.15, 6400.00, 6424.00, 6458.05, 6460.00,

6500.00, 6500.00, 6507.65, 6524.56, 6548.33, 6550.00, 6553.00, 6602.50, 6607.15, 6631.40,

6647.15, 6670.50, 6673.30, 6673.50, 6695.65, 6700.00, 6704.35, 6713.71, 6719.50, 6724.50,

6750.00, 6750.00, 6780.50, 6791.82, 6795.50, 6798.67, 6800.00, 6800.00, 6810.00, 6815.15,

6874.25, 6875.15, 6887.40, 6901.60, 6920.35, 6933.49, 6958.50, 6958.97, 7000.00, 7000.00,

7000.00, 7005.05, 7022.65, 7038.93, 7055.51, 7063.00, 7073.50, 7074.55, 7097.00, 7099.50,

7101.10, 7141.02, 7213.50, 7248.36, 7293.35, 7303.60, 7338.10, 7384.95, 7448.50, 7460.00,

7490.50, 7494.50, 7496.88, 7500.00, 7500.00, 7500.00, 7500.00, 7500.00, 7527.30, 7572.17,

7642.15, 7642.26, 7666.65, 7670.05, 7673.00, 7675.20, 7693.56, 7704.79, 7762.35, 7765.00,

7781.36, 7791.32, 7802.55, 7827.01, 7850.95, 7890.39, 7915.30, 8000.00, 8000.00, 8001.67,

8043.15, 8070.30, 8104.00, 8117.84, 8135.00, 8168.90, 8171.12, 8172.50, 8212.83, 8225.66,

8229.40, 8296.95, 8301.51, 8331.20, 8375.10, 8437.35, 8500.00, 8500.00, 8500.00, 8500.00,

8564.00, 8637.40, 8639.80, 8706.32, 8742.00, 8782.55, 8828.56, 8831.05, 8855.00, 8908.40,

8999.75, 9000.00, 9009.05, 9061.50, 9084.00, 9138.90, 9152.10, 9163.74, 9227.21, 9248.35,

9314.08, 9319.67, 9326.95, 9354.90, 9423.05, 9437.85, 9456.65, 9467.75, 9481.94, 9520.14,

9646.50, 9664.62, 9665.85, 9742.50, 9805.10, 9839.50, 9900.00, 9950.00, 9990.00, 10,000.00,

10,000.00, 10,000.00, 10,000.00, 10,000.00, 10,061.21, 10,081.15, 10,152.40, 10,156.65, 10,186.92,
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10,213.00, 10,213.55, 10,315.40, 10,329.00, 10,342.86, 10,344.90, 10,356.32, 10,395.38, 10,457.00,

10,687.42, 10,746.16, 10,854.90, 10,979.39, 11,000.00, 11,000.00, 11,056.34, 11,133.30, 11,245.32,

11,250.00, 11,363.00, 11,377.15, 11,500.00, 11,500.00, 11,512.49, 11,850.50, 11,860.92, 11,874.50,

11,878.95, 11,949.74, 12,000.00, 12,000.00, 12,000.00, 12,000.00, 12,140.00, 12,310.25, 12,358.00,

12,417.00, 12,555.35, 12,783.42, 12,804.25, 12,853.15, 13,000.00, 13,000.00, 13,184.65, 13,321.14,

13,386.93, 13,500.00, 13,592.41, 13,688.55, 13,715.24, 13,946.00, 14,000.00, 14,000.00, 14,138.89,

14,336.51, 14,546.60, 14,709.60, 14,725.81, 14,736.74, 14,909.15, 14,950.00, 14,958.35, 14,979.07,

15,000.00, 15,000.00, 15,000.00, 15,060.15, 15,066.15, 15,104.00, 15,128.32, 15,163.10, 15,174.50,

15,268.64, 15,460.00, 15,466.15, 15,591.00, 15,654.21, 16,000.00, 16,038.25, 16,149.55, 16,164.15,

16,368.50, 16,999.90, 17,000.00, 17,215.00, 17,708.09, 17,734.58, 17,901.50, 17,904.38, 17,977.10,

18,286.00, 18,358.00, 18,707.16, 18,849.90, 18,872.70, 19,000.00, 19,500.00, 19,839.78, 19,912.57,

20,000.00, 20,000.00, 20,000.00, 20,245.58, 21,200.00, 21,241.09, 21,450.00, 21,502.25, 22,175.00,

22,400.00, 22,575.50, 22,800.00, 23,535.88, 24,135.00, 24,435.00, 24,495.15, 25,000.00, 26,275.83,

29,000.00, 29,279.00, 30,579.89, 30,732.68, 31,207.99, 32,500.00, 32,691.00, 33,000.00, 33,796.00,

34,465.40, 37,413.25, 37,806.20, 43,600.00, 47,446.50, 67,750.00, 76,255.76, 116,586.72.
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