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Exit time for a reaction diffusion model:
Case of a one well potential

Adrian Hinojosaa

aFederal University of Minas Gerais

Abstract. We consider a interacting particle system, the Glauber + Kawasaki
model. This model is the result of the combination of a fast stirring, the
Kawasaki part, and a spin flip process, the Glauber part. This process has
a Reaction–Diffusion equation as hydrodynamic limit, as is proven by De
Masi and Presutti (Mathematical Methods for Hydrodynamic Limits (1991)
Springer). The ergodicity of these dynamics (one well potential) was proven
in Brasseco et al. (Amer. Math. Soc. Transl. Ser. 2 198 (2000) 37–49), for any
dimension. In this article, we prove the asymptotic exponentiality for certain
exit time from a subset of the basin of attraction of the well.

1 Introduction

The class of interacting particle systems that we study, was proposed by De Masi,
Ferrari and Lebowitz, as alternative models for reaction–diffusion systems. On
the configuration space {−1,+1}Zd

, they are obtained from the superposition of a
Glauber (spin flip) type dynamics, corresponding to the reactive part, and a stirring
one, also called Kawasaki dynamics at infinite temperature, that corresponds to the
diffusive part, which is speeded by a factor, say ε−2. The kinetic limit, which here
corresponds to the hydrodynamical one, involves the simultaneous change of space
scaling in the diffusive limit for the stirring, to provide the macro scale (macro =
ε micro). Under such limit, the macroscopic description is verified, being given by
a reaction diffusion equation of the form

∂tm = �m + F(m), (1.1)

where m(r, t) ∈R represents the magnetization or density. The force term F(·) be-
ing determined by the Glauber rates. For example, given any polynomial F(·) we
may choose finite range spin flip rates which lead to the above equation (of course
there are innumerous choices, though the behaviour should be similar). That is,
the empirical magnetization, or the density of particles in small boxes, converges
in probability to the solution of the reaction diffusion equation. Indeed one knows
more: strong forms of propagation of chaos (i.e., asymptotic independence of dif-
ferent spins) have been proven, initially by De Masi, Ferrari and Lebowitz (1986),
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and later in sharper forms by several authors, see De Masi and Presutti (1991). At
the level of propagation of chaos, more general systems, with m(r, t) taking values
in R

n are treated just in the same way, though we restrict ourselves to the case
n = 1. So there is no loss in assuming F(m) = −V ′(m) in the above equation.

For a class of rates leading to a single well potential, the ergodicity for any
d ≥ 1, has been proven by Brassesco et al. (2000a). The same authors also proved
ergodicity in the case of a double well potential, provided V (·) has a unique min-
imizer, cf. Brassesco et al. (2000b). We also refer to the article of Durrett and
Neuhauser (1994), where a large classes of spin flip rates were considered, with
the characteristic of having a trapping configuration (e.g. the contact process). In
such case phase transition might occur, for the same reason which leads to the
existence of an invariant measure with magnetization different from the trapping
configuration, that is, is related to the minimizer of the potential.

The problem which we want to address refers to the large deviation behaviour
of the process, fixing Glauber rates which lead to a one well potential. Our goal
is to investigate the asymptotic loss of memory for the exit time from attracting
sets contained in the “basin of attraction” of the ergodic measure. Connected to the
reaction–diffusion model, related questions have been considered when the system
is obtained by the addition of a small random noise to the equation (1.1), as treated
by Martinelli, Olivieri and Scoppola (1989), Brassesco, Olivieri and Vares (1998),
using coupling arguments, together with estimates of large deviations, which in
this infinite dimensional setup were obtained by Faris and Jona-Lasinio (1982),
extending Freidlin and Wentzell results. There are many analogous results in the
context of low temperature Glauber dynamics on finite volumes, indeed extended
to a large class of Markov chains, but they involve rather different methods.

We consider a macroscopically finite volume, that is, a torus of side ε−1, though
the result extends to larger volumes, which are tending to infinity in the macro
scale, as for instance, ε−l , l > 1. Also, for simplicity we prove for dimension
d = 1, and study the problem when we start the process from the Bernoulli mea-
sure, which has the mean in one of the basins of the attraction. There is no problem
to generalizing to dimensions d ≥ 1, and to consider the initial configuration start-
ing from an smooth profile, which is contained also in a basin of attraction. We
prove that the properly rescaled exit time follows an exponential law. This result
uses more simple ideas than in Hinojosa (2004), because, in the case of a one
well potential, it is possible to couple two evolutions of the process starting in the
same basin of attraction in a time of order a| log ε| with a probability of order εn,
see Proposition 4.2 below, this fact was proven in Brassesco et al. (2000a). In the
case of a double well potential, there exists a similar result, see Brassesco et al.
(2000b), but the probability of this event is bounded by cεε

n, where cε is related to
the passage from one well to the other, the exponential exit time result is still valid,
see Hinojosa (2004), but the proof is more difficult. Finally, we use a result from
Azlarov and Volodin (1986), which bound the uniform distance between e−t and
P(ξ > t) (ξ is a random variable) from a bound over P(ξ > t +s|ξ > s)−P(ξ > t);
this is the loss of memory property.
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2 Definitions and results

We consider, for each ε > 0, a family of Markov process {σt }t≥0, σt ∈ �ε =
{−1,1}Zε , where we let Zε be the set of integers mod[ε−1], [x] is the integer part
of x ∈ R: Zε = Z[ε−1] = {0,1, . . . , [ε−1]}, with both ends identified. The evolution
of the process is governed by the generator:

L(ε)
μ = ε−2L0 + Lμ, (2.1)

where L0 is the generator of the stirring process:

L0f (σ) = ∑
|x−y|=1

[
f

(
σx,y) − f (σ)

]
, (2.2)

f is a function in �ε , x, y ∈ Zε , and

σx,y(z) =
⎧⎨
⎩

σ(z), z �= x, y;
σ(y), z = x;
σ(x), z = y,

and Lμ is the generator of the spin flip process:

Lμf (σ) = ∑
x∈Zε

cμ(x, σ )
[
f

(
σx) − f (σ)

]
, (2.3)

again f is a function in �ε , and

σx(z) =
{−σ(z), z = x;
σ(z), z �= x.

cμ(x, σ ), the spin flip intensity, is:

cμ(x, σ ) = c0(x, σ ) − μ

2
σ(x), (2.4)

and c0(x, σ ) is defined as:

c0(x, σ ) = 1 − γ σ(x)
[
σ(x − 1) + σ(x + 1)

] + γ 2σ(x − 1)σ (x + 1), (2.5)

μ is restricted to 0 ≤ μ < 2(1−γ )2 for cμ(x, σ ) to be positive, we will consider in
this article the case of μ = 0, and γ ∈ (0, 1

2), so cμ(x, σ ) = c0(x, σ ). The process
defined above is called the Glauber + Kawasaki process.

If ν is a probability on �ε (resp. a single configuration σ ), we will denote by
E

(ε)
ν (resp. by E

(ε)
σ ) the expectation of the above process starting with law ν (resp.

from the configuration σ ); also we write P
(ε)
ν (resp. P

(ε)
σ ) when we refer to the

law of the process. In De Masi, Ferrari and Lebowitz (1986), it was proved that, as
ε → 0, the process, in infinite volume, converges to the solution of the reaction–
diffusion equation:

∂m

∂t
= �m − V ′

μ(m), (2.6)
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Figure 1 One well potential on the left. Two well potential on the right.

where:

−V ′
μ = Eνm

(−2σ(0)cμ(0, σ )
) = −αm − βm3 + μ, (2.7)

νm denoting the Bernoulli product measure on �ε with average m and

α = 2(1 − 2γ ), β = 2γ 2. (2.8)

In the case μ = 0, the derivative of the potential is:

−V ′ = Eνm

(−2σ(0)c(0, σ )
) = −αm − βm3.

The polynomial V ′
μ is the derivative of the, in general double well, potential Vμ

(see Figure 1), and in the case we will consider (μ = 0, and γ ∈ (0, 1
2)) that poten-

tial V has only one well, with a minimum at 0.
The case of infinite volume (i.e., {−1,1}Zd

) was considered in Brassesco et al.
(2000a) (one well) and in Brassesco et al. (2000b) (two wells), with the same
dynamics. It was proved there that for ε small enough the process is ergodic (in our
case the process is immediately ergodic, since we are in finite volume). Observe
that (2.6) is not ergodic (in the sense that it has two invariant solutions), also that
m = 0 is the minimum in the case that we consider.

We shall consider the set of configurations with empirical magnetization in
small intervals (of size ε−a , where 0 < a < 1 is close to one), belongs to [−δ, δ],
with δ small enough, that is,

A
(ε)
δ =

{
σ ∈ �ε :

⏐⏐⏐⏐εa
∑

x:|x|≤ ε−a

2

σ(x + y)

⏐⏐⏐⏐ < δ,∀y ∈ Zε

}
. (2.9)

When it is clear from the context we drop the superscript ε and write simply Aδ .
Now consider the Bernoulli product measure, νm, on �ε with average m ∈ [−δ, δ],
and define the following stopping time

τ ε = inf
{
t > 0 : σt /∈ A

(ε)
δ

}
.
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Also, define βε as: P
(ε)
νm (τ ε > βε) = e−1. Regarding the asymptotic distribution of

τ ε/βε , the main result is the following theorem.

Theorem 2.1. For τ ε defined above and m ∈ [−δ, δ] it holds:

lim
ε→0

sup
t≥0

∣∣P (ε)
νm

(
τ ε > tβε

) − e−t
∣∣ = 0. (2.10)

3 Proof of Theorem 2.1

We shall prove that if we start the process from the Bernoulli product measure,
νm− , then, under P (ε), τ ε/βε converges, in the Levy metric, to a mean one ex-
ponential r.v. First, we prove that τ ε/βε is uniformly close, in the Levy metric,
to a family of exponentials r.v.; and then that this family converges also in the
Levy metric to a mean one exponential r.v. As convergence in Levy metric, with
an absolutely continuous limit, implies convergence in Kolmogorov metric, then
the theorem is proved.

Let k ≥ 1 be fixed. In Hinojosa (2004), it is proved the following lower bound
for βε: for any n ≥ 1, there exists cn > 0, such that for ε > 0 small enough it holds:

P (ε)
νm

(
τ ε < ε−k) ≤ cnε

n. (3.1)

Note that, by the Cramer–Chernov theorem for large deviations for i.i.d.
(Bernoulli) random variables, for any δ′ > 0, at time zero

P (ε)
νm

(
Ac

δ′
) ≤ ε−1P (ε)

νm

(∣∣∣∣εa
∑

|x|≤ ε−a

2

σ(x)

∣∣∣∣ ≥ δ′
)

≤ ε−1e−c̃ε−a ≤ e−cε−a

.

(3.2)

For some c > 0. Then we shall consider that with large νm-probability the initial
configuration starts from Aδ′ , for any δ′ < δ. Also, since (3.1), if ε is small enough
we have that:

P (ε)
νm

(
τ ε > ε−k) > e−1.

But by definition P
(ε)
νm (τ ε > βε) = e−1, therefore ε−k < βε , for any k ≥ 1, and ε

small enough.
The main part of the proof is contained in Proposition 3.1. It says that the family

of r.v. τ ε/βε has, uniformly in ε, loss of memory property (note that this feature
characterizes the exponential distribution). From this proposition, we shall prove
that, in fact, for each ε we have an exponential random variable that is close, in the
Levy metric sense, to τ ε/βε .

Before stating the loss of memory property, we let γε = ã| log ε|, where ã is a
positive constant that will be fixed later. Observe that

γε

βε

→ 0 as ε → 0,
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and, since (3.1)

P (ε)
νm

(
τ ε < γε

) ≤ cnε
n. (3.3)

Also let Fε(t) = P
(ε)
νm (τ ε > tβε) and

hε(t, s) = Fε(t + s)

Fε(s)
− Fε(t).

Proposition 3.1. For any n ≥ 0, there exists cn such that for ε small enough it
holds

sup
s≥0,t≥ γε

βε

∣∣hε(t, s)
∣∣ ≤ cnε

n.

We shall prove this proposition in the next section.
This result will allow us to prove the following proposition.

Proposition 3.2. For any n ≥ 1 there exists cn such that for any ε small enough
the following holds

dL

(
τ ε

βε

,E(λε)

)
≤ cnε

n,

where dL(·, ·) refers to the Levy metric between two random variables, that is,

dL(X,Y ) = inf
{
� > 0 :

P(X > t + �) − � ≤ P(Y > t) ≤ P(X > t − �) + �,∀t ∈ R
}
,

and E(λ) is a exponential random variable with mean λ−1, recall that λ−1
ε =

E
(ε)
νm

τε

βε
.

We defer the proof of this proposition to the end of this section.
Finally, the Theorem 2.1 will be proved after showing that λε → 1, since this

implies that dL(E(1),E(λε)) → 0, and then

dL

(
τ ε

βε

,E(1)

)
→ 0.

The proof that λε → 1 follows easily. We give some details of the proof of
this result, we follow the exponential characterization from Azlarov and Volodin
(1986). We have that τ ε

βε
has finite moments of all orders, in particular λ−1

ε =
E

(ε)
νm

τε

βε
< ∞. By definition P

(ε)
νm (τ ε > βε) = e−1, and this implies that e−1 ≤ λ−1

ε ,
so that 0 < λε ≤ e, for all ε > 0.

Take any � ≥ 0 in the the defining property of dL(τε

βε
,E(λε)) and t = 1, so that:

e−λε(1+�) − � ≤ e−1 ≤ e−λε(1−�) + �,
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then

e−1 − e−λε ≤ e−λε
(
eλε� − 1

) + �

≤ �
(
ee�+1 + 1

)
,

also

e−1 − e−λε ≥ (
e−e� − 1

) − � ≥ −�
(
e1−e� + 1

)
,

but the infimum of such � is less than cnε
n, so that

∣∣e−1 − e−λε
∣∣ ≤ c′

nε
n,

and then λε → 1, as ε goes to zero.

Proof of Proposition 3.2. It’s enough to prove that the two inequalities in the
definition of the Levy distance, dL(τε

βε
,E(λε)), hold for � = cnε

n, with n ≥ 1.

Take θε(t) = λε

∫ ∞
0 P

(ε)
νm (τ ε > sβε)hε(t, s) ds, note that |θε(t)| ≤ 1, for all t , and

by Proposition 3.1, for t ≥ γε

βε
, |θε(t)| ≤ cnε

n. From Azlarov and Volodin (1986),
the following representation of Fε(t) holds:

Fε(t) = e−λεt + λε

∫ t

0
e−λε(t−u)θε(u) du − θε(t).

We begin with the first inequality of the Levy metric. Since, for k > n large and
ε small enough γε

2cnεn ≤ ε−k < βε , then γε

βε

 2cnε

n = �, So that t + � >
γε

βε
, and

we can use the Proposition 3.1 to get

Fε(t + �) = e−λε(t+�) + λε

∫ (t+�)

0
e−λε(t+�−u)θε(u) du − θε(t + �)

≤ e−λε(t+�) + λε

∫ γε
βε

0
e−λε(t+�−u) du

+ cnε
nλε

∫ (t+�)

γε
βε

e−λε(t+�−u) du + cnε
n

≤ e−λεt e
−λε(�− γε

βε
) + �

≤ e−λεt + �.

(3.4)

Now for the other inequality in the Levy metric, we must analyse various cases

(i) If t < �, then Fε(t − �) = 1 so obviously Fε(t − �) ≥ e−λεt − �.
(ii) If t > � and t − � <

γε

βε
then Fε(t − �) ≥ Fε(

γε

βε
) ≥ 1 − cnε

n ≥ e−λεt − �, by
Eq. (3.3).
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(iii) If t > � and t − � >
γε

βε
then

Fε(t − �) = e−λε(t−�) + λε

∫ (t−�)

0
e−λε(t−�−u)θε(u) du − θε(t − �)

≥ e−λε(t−�) − λε

∫ γε
βε

0
e−λε(t−�−u) du

− cnε
nλε

∫ (t+�)

γε
βε

e−λε(t+�−u) du − cnε
n

≥ e−λε(t−�) − (
e
−λε(t−�− γε

βε
) − e−λε(t−�)) − �

= e−λεt
[
2eλε� − e

λε(�+ γε
βε

)] − �.

(3.5)

All we need to prove is that 2eλε� − e
λε(�+ γε

βε
)
> 1. To this end, first observe that

for z close to 1 we have that 2z − 1 > z3/2. Since � = 2cnε
n and 0 ≤ λε ≤ e we

have that λε� → 0 as ε → 0, so that taking z = eλε�, for ε small enough,

2eλε� − e3/2λε� > 1.

But γε

βε
< �/2, so e

λε(�+ γε
βε

)
< e3/2λε�, using this in (3.5), we can conclude that

Fε(t − �) ≥ e−λεt − �.

So, the infimum in the Levy distance, is less than � = cnε
n, and the proposition is

proved. �

4 Loss of memory property

In this section we prove the loss of memory property of τ ε .

Proof of Proposition 3.1. We shall prove that
∣∣P (ε)

νm

(
τ ε > (t + s)βε

) − P (ε)
νm

(
τ ε > tβε

)
P (ε)

νm

(
τ ε > sβε

)∣∣
≤ cnε

nP (ε)
νm

(
τ ε > sβε

)
,

(4.1)

for t ≥ γε

βε
. To do this, we shall condition on the first summand at time sβε +γε , and

after some algebra we will get the difference between terms like P
(ε)
σ (τ ε > tβε),

σ ∈ A
(ε)
δ′ , multiplied by P

(ε)
νm (τ ε > sβε), with 0 < δ′ < δ. So, we need to bound

such differences. The main tool is the following proposition, that permits us to
couple two processes before the exit time of A

(ε)
δ . Recall that γε = ã| log ε|.
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Proposition 4.1. Let 0 < δ′ < δ. For any n ≥ 0 there exists cn > 0 such that for
any ε > 0 small enough, the following holds:

sup
t≥0

∣∣P (ε)
σ

(
τ ε > tβε

) − P
(ε)
σ ′

(
τ ε > tβε

)∣∣

≤ P (ε)
σ

(
τ ε < γε

) + P
(ε)
σ ′

(
τ ε < γε

) + cnε
n,

(4.2)

for any σ,σ ′ ∈ A
(ε)
δ′ .

We defer the proof to the end of the section. Turning to the proof of (4.1), note
that γε < βε and for n ≥ 1 there exists cn > 0 such that

P (ε)
νm

(
τ ε < γε

) ≤ cnε
n,

for ε small enough. We begin by bounding from above

P (ε)
νm

(
τ ε > (t + s)βε

) − P (ε)
νm

(
τ ε > tβε

)
P (ε)

νm

(
τ ε > sβε

)
.

Since, by hypothesis, tβε ≥ γε , we can condition the process up to time sβε + γε

and after using the Markov property, we get that this expression is less than

E
(ε)
νm

(
1τ ε>sβεP

(ε)
σsβε+γε

(
τ ε > tβε − γε

)) − P (ε)
νm

(
τ ε > tβε − γε

)
P (ε)

νm

(
τ ε > sβε

)

+ P (ε)
νm

(
τ ε > tβε − γε

)
P (ε)

νm

(
τ ε > sβε

) − P (ε)
νm

(
τ ε > tβε

)
P (ε)

νm

(
τ ε > sβε

)
.

Decomposing the first summand according to {σsβε+γε ∈ Aδ′ }, or not (recall that
δ′ < δ), the last expression is

E
(ε)
νm

(
1τ ε>sβε 1σsβε+γε ∈Aδ′

[
P (ε)

σsβε+γε

(
τ ε > tβε − γε

) − P (ε)
νm

(
τ ε > tβε − γε

)])

+E
(ε)
νm

(
1τ ε>sβε 1σsβε+γε /∈Aδ′

[
P (ε)

σsβε+γε

(
τ ε > tβε − γε

) − P (ε)
νm

(
τ ε > tβε − γε

)])

+ P (ε)
νm

(
τ ε > sβε

)[
P (ε)

νm

(
τ ε > tβε − γε

) − P (ε)
νm

(
τ ε > tβε

)]
.

(4.3)

By Proposition 4.1, the first term in (4.3) can be bounded by:

E
(ε)
νm

(
1τ ε>sβε1σsβε+γε∈Aδ′ P

(ε)
σsβε+γε

(
τ ε ≤ γε

)) + cnε
nP (ε)

νm

(
τ ε > sβε

)
.

The first summand could be expressed, after conditioning up to sβε + γε

2 , as

E
(ε)
νm

(
1τ ε>sβε1σ

sβε+ γε
2

∈Aδ′ P
(ε)
σ

sβε+ γε
2

(
∃u,

γε

2
≤ u ≤ 3γε

2
, σu /∈ Aδ

))

+ cnε
nP (ε)

νm

(
τ ε > sβε

)
.

The conditional probability that appears inside, could be bounded by cnε
n, since

if σ ∈ Aδ then, at times of order γε , it belongs to Aδ′, δ > δ′ with probability of
order cnε

n. For the proof of this we can follow the same steps of Proposition 4.3
in Hinojosa (2004).
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So that the first summand in (4.3) can be bounded by

P (ε)
νm

(
τ ε > sβε

)
cnε

n.

In similar way for the second term of (4.3), after conditioning up to time sβε:

2E(ε)
νm

(1τ ε>sβε1σsβε+γε /∈Aδ′ ) ≤ 2E(ε)
νm

(
1τ ε>sβεP

(ε)
σsβε

(σγε /∈ Aδ′)
)

≤ 2P (ε)
νm

(
τ ε > sβε

)
cnε

n,
(4.4)

where we used again Hinojosa (2004), in the second inequality.
Finally, the third term in (4.3), after decomposing according to the event

{σγε ∈ Aδ′ }, and using the Proposition 4.1. As above, we get the same bound:

P (ε)
νm

(
τ ε > sβε

)(
P (ε)

νm

(
τ ε > tβε − γε

) −E
(ε)
νm

(
1τ ε>γεP

(ε)
σγε

(
τ ε > tβε − γε

)))

≤ P (ε)
νm

(
τ ε > sβε

)

× (
2P (ε)

νm

(
τ ε ≤ γε

) + cnε
n +E

(ε)
νm

(
1σγε∈Aδ′ P

(ε)
σγε

(
τ ε ≤ γε

)))

≤ P (ε)
νm−

(
τ ε > sβε

)
cnε

n.

(4.5)

So, until now we proved that

P (ε)
νm

(
τ ε > (t + s)βε

) − P (ε)
νm

(
τ ε > tβε

)
P (ε)

νm

(
τ ε > sβε

)
(4.6)

is bounded from above by P
(ε)
νm (τ ε > sβε)cnε

n, for s > 0 and t >
γε

βε
. Now, pro-

ceeding similarly we shall get the same bound by below, and the proposition is
proved. �

Proof of Proposition 4.1. Note that, if we take σ,σ ′ ∈ A
(ε)
δ′ , and consider the

coupling P
(ε)
σ,σ ′ of two process starting at σ,σ ′, see the Appendix below, then:

∣∣P (ε)
σ

(
τ ε
σ > tβε

) − P
(ε)
σ ′

(
τ ε
σ ′ > tβε

)∣∣
≤ P

(ε)
σ,σ ′

(
τ ε
σ > tβε, τ

ε
σ ′ ≤ tβε

) + P
(ε)
σ,σ ′

(
τ ε
σ ′ > tβε, τ

ε
σ ≤ tβε

)

≤ P
(ε)
σ,σ ′

(
τ ε
σ > tβε, τ

ε
σ ′ < γε

) + P
(ε)
σ,σ ′

(
τ ε
σ > tβε, γε ≤ τ ε

σ ′ ≤ tβε

)

+ P
(ε)
σ,σ ′

(
τ ε
σ ′ > tβε, τ

ε
σ < γε

) + P
(ε)
σ,σ ′

(
τ ε
σ ′ > tβε, γε ≤ τ ε

σ ≤ tβε

)

≤ P (ε)
σ

(
τ ε < γε

) + P
(ε)
σ ′

(
τ ε < γε

) + 2P
(ε)
σ,σ ′

(
σγε �= σ ′

γε

)
.

(4.7)

For the last term, we have

P
(ε)
σ,σ ′

(
σγε �= σ ′

γε

) ≤ ∑
x∈Zε

P
(ε)
σ,σ ′

(
σγε(x) �= σ ′

γε
(x)

)

≤ ε−1
E

(ε)
σ,σ ′

∣∣σγε(0) − σ ′
γε

(0)
∣∣

(4.8)

in the last inequality by translation invariance.
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Thus, the main step of the proof is to get a bound for the last term. For this
part we use Theorem 2.1 in Brassesco et al. (2000a), as stated below, where it is
found a bound of order εn for the discrepancies between the processes σ+

T and
σ−

T , which is defined as the expected value of the site differences for the cou-

pling P
(ε)
1,−1 of the processes that starts from 1 and −1 and at times T := ã| ln ε|:

E
(ε)
1,−1(σ

+
T (0)−σ−

T (0)). Using this result and that the coupling is order preserving,
see the Appendix, we have the following proposition.

Proposition 4.2. For any γ < 1
2 , n ≥ 1 and ε > 0 small enough there exists posi-

tive constants ã and cn such that:

0 ≤ E
(ε)
σ,σ ′

∣∣σT (0) − σ ′
T (0)

∣∣ ≤ cnε
n,

where T := ã| ln ε|, and σ,σ ′ ∈ Aδ .

Observe that by attractiveness of the coupling at time T : σ+
T (x) ≥ σT (x) and

σT (x) ≥ σ−
T (x) for any x ∈ Zε and any processes σt .

Using this result, the right-hand side of (4.8) could be bounded by cnε
n−1 uni-

formly in Aδ , and the Proposition 4.1 is proved. �

Appendix: Graphical representation

In this section, we will describe the graphical construction of the process, due to
Harris (see Haken (1978)), the same that appears in Brassesco et al. (2000b), see
also Brassesco et al. (2000a). This allows us to exploit the comparison between
different evolutions of the process.

For each x ∈ Zε let N x,+, N x,−, be Poisson process of intensity cmax :=
(1 + γ )2 + μ

2 (i.e., the maximum flip rate for the Glauber process), and for
each bond (x, x + ei) (where ei = (0, . . . ,1, . . . ,0), one in the ith position),
let N ε

x,ei
be a Poisson process of intensity ε−2. Let also Ux,+

n ,Ux,−
n , n ≥ 1

be i.i.d. Uniform(0,1) random variables. We also assume that all the process
N x,+,N x,−,N ε

x,ei
and {Ux,+

n }n≥1, {Ux,−
n }n≥1, n ≥ 1, x ∈ Zε are independent of

each other.
The graphical representation is a realization of the process which applies for

any initial configuration. Whenever a mark N ε
x,ei

appears then we exchange the
spins at x and x + ei . At the time of the nth mark of N x,+ (N x,−), we flip the spin
at x if σ(x) = 1 and cμ(x, σ ) > Ux,+

n cmax (σ(x) = −1 and cμ(x, σ ) > Ux,−
n cmax).

This prescription defines the evolution of the Glauber + Kawasaki process.
In the marked process, consider a realization ω. For each x ∈ Zε , and t ≥ 0,

there are functions fx,t (σ,ω) with the property that, once σ is fixed, the law of the
variables σt (x) := fx,t (σ,ω), is the same as the law of the Glauber + Kawasaki
process which starts from σ ; moreover, fx,t (σ,ω) ≤ fx,t (σ

′,ω) if σ ≤ σ ′. This
coupling preserves the order since the rates are attractive.
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