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Modelling and Computation Using NCoRM
Mixtures for Density Regression

Jim Griffin∗ and Fabrizio Leisen†

Abstract. Normalized compound random measures are flexible nonparametric
priors for related distributions. We consider building general nonparametric re-
gression models using normalized compound random measure mixture models.
Posterior inference is made using a novel pseudo-marginal Metropolis-Hastings
sampler for normalized compound random measure mixture models. The algo-
rithm makes use of a new general approach to the unbiased estimation of Laplace
functionals of compound random measures (which includes completely random
measures as a special case). The approach is illustrated on problems of density
regression.

Keywords: dependent random measures, mixture models, multivariate Lévy
measures, pseudo-marginal samplers, Poisson estimator.

1 Introduction

The problem of Bayesian nonparametric inference for distributions at different regressor
values has been an extremely active area of research. Many approaches use dependent
nonparametric mixture models and build on the idea of dependent Dirichlet process
mixture models (MacEachern, 1999), which generalized the commonly-used Dirichlet
process mixture model. A generic dependent nonparametric mixture model assumes
that a sample y1, . . . , yn observed at regressor values x1, . . . , xn (where xi ∈ X for some
measureable space X) is modelled as

yi|xi ∼ q(yi|θci(xi)), p(ci = k) = wk(xi), k = 1, . . . ,∞, (1)

where q(y|θ) is a distribution for y (where y ∈ Y for some measureable space Y) with
parameter θ, wk(x) ≥ 0 for all k and x ∈ X,

∑∞
k=1 wk(x) = 1 almost surely for all

x ∈ X and θ1(x), θ2(x), θ3(x), . . . are independent realisations of a stochastic process.
We refer to θ1(x), θ2(x), θ3(x), . . . as the locations of the mixture components. The
model simplifies to a nonparametric mixture model if the sample is observed at a single
regressor value.

Many approaches to constructing specific models in the form of (1) generalize the
stick-breaking construction of the Dirichlet process (Sethuraman, 1994) and these were
reviewed by Dunson (2010). Alternatively, models can be constructed by normalising
dependent random measures. This generalizes the approach introduced by Regazzini
et al. (2003) to an arbitrary dimension. These constructions have several advantages.
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Firstly, the weights w1(x), w2(x), . . . are not ordered, as is the case with many stick-
breaking constructions. Secondly, dependence is defined at the level of the weights wk(x)
rather than, as is typical in stick-breaking constructions, through a non-linear transfor-
mation of the weights. Foti and Williamson (2012) defined a wide-class of such process
using normalized kernel-weighted random measures, which generalize the approach to
time-dependent random measures in Griffin (2011). Griffin et al. (2013) developed an
approach to modelling a finite set of dependent random measures using superpositions
of completely random measure (see also Lijoi and Nipoti, 2014; Lijoi et al., 2014a,b;
Chen et al., 2013). Alternatively, dependence can be modelled through a Lévy copula
(Leisen and Lijoi, 2011; Leisen et al., 2013; Zhu and Leisen, 2015). Compound random
measures (CoRM) (Griffin and Leisen, 2017) are a unifying framework for many depen-
dent random measures including many of the superposition and Lévy copula approaches.
They have been applied to modelling graphs for overlapping communities by Todeschini
and Caron (2016). Griffin and Leisen (2017) described posterior sampling methods for
a particular class of normalized compound random measure mixtures which exploits
a representation of the Laplace transform of a CoRM through a univariate integral of
a moment generating function. Ranganath and Blei (2017) independently developed a
normalized CoRM model where the weights depend on a Gaussian process and described
a variational Bayesian algorithm for inference.

In this paper, we will consider extending the class of compound random measures
(CoRM) from finite collections of distributions to infinite collections of distributions.
This allows us to define CoRM models where the weights follow a time series model,
the weights follow a regression model or the weights are defined through a hierarchical
model. The computational algorithms in Griffin and Leisen (2017) cannot be used in
this wider class of models since moment generating functions are not available in closed
form. Therefore, we develop a new Markov chain Monte Carlo (MCMC) algorithm for
nonparametric mixture models with Completely Random Measure (CRM) priors which
uses a novel pseudo-marginal MCMC method (Andrieu and Roberts, 2009).

The paper is organized in the following way. Section 2 discusses defining NCoRM
mixture models for distributions indexed by continuous covariates. Section 3 introduces
a novel computational algorithm for NCoRM mixtures which can be widely applied.
Section 4 illustrates how NCoRM can be used in density regression problems and how the
computational algorithm performs. Section 5 concludes. Matlab code for the examples in
this paper is available from http://www.kent.ac.uk/smsas/personal/jeg28/index.

htm.

2 Modelling with normalized compound random
measure mixtures

For simplicity, we will consider mixture models of the form in (1) with θk(x) = θk for all
x ∈ X, leading to a mixture model with weights which vary over X (many of the ideas
in this paper could be extended to the model where θk(x) follows a stochastic process,
such as a Gaussian process, over X). The model is

yi|xi ∼ q(yi|θci), p(ci = k) = wk(xi), k = 1, . . . ,∞. (2)

http://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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We consider the weights

wk(x) =
mk(x)Jk∑∞
l=1 ml(x)Jl

, (3)

where mk(x) is a random function on X for which mk(x) ≥ 0 for all x ∈ X and the
function mk is independent of ml, J1, J2, J3 . . . , are the jumps of the process with
directing Lévy process ν� and θ1, θ2, θ3, . . . are i.i.d. We will refer to mk(x) as a score or
score function and to ν� as the directing Lévy process. The model reduces to the NCoRM
models considered by Griffin and Leisen (2017) if X is a finite set. In particular, they
introduced a class of dependent random probability measures p̃1, p̃2, . . . , p̃d which can
be represented as

p̃i =

∞∑
k=1

wikδθk

with

wik =
mikJk∑∞
k=1 mikJk

,

where (m1k, . . . ,mdk) are i.i.d. draws from a d-variate score distribution h (for k =
1, 2, . . . ), J1, J2, J3 . . . , are the jumps of the process with directing Lévy process ν�

and θk
i.i.d.∼ α̃, with α̃ = α/α(Y) where α is a positive finite measure. Under suitable

conditions, the vector (p̃1, p̃2, . . . , p̃d) can be seen as a vector of normalized completely
random measures, i.e.

p̃j =
μ̃j

μ̃j(Y)
j = 1, . . . , d,

where (μ̃1, μ̃2, . . . , μ̃d) is a Compound Random Measure (CoRM). The model introduced
in (2) assumes that X could potentially be a countable set. In this case, we assume that,
for every finite subset S = {s1, . . . , sl} of covariates, the wk(s1), . . . , wk(sl) displayed in
(3) are the weights of a l-dimensional NCoRM process.

The specification of the weights displayed in (3) has several attractive features which
motivate our choice. Firstly, the nonparametric approach allows the definition of a flex-
ible model for density regression. Secondly, the dependence between wk(x) and wk(x

′)
for x, x′ ∈ X can be controlled by the choice of the distribution for the random function
mk. Many methods have been developed to model such random functions and can be
used to define a suitable dependent nonparametric mixture model. Thirdly, the weights
are not a priori stochastically ordered (as with many stick-breaking processes). Lastly,
the structure of the model allows simpler computational methods to be developed than
many other dependent extensions of normalized random measures.

We will concentrate on models where ml(x) = exp{rl(x)} and rl(x) is a random
function on X taking value on R. Griffin and Leisen (2017) considered using the variance
of the ratio of the same jump at values x, x′ ∈ X as a simple measure of the strength
of dependence between the (unnormalized) random measure at values x and x′. In this
case, the ratio is ζ(x, x′) = ml(x)/ml(x

′) = exp{rl(x) − rl(x
′)} and the distribution

of ζ(x, x′) will often be easy to work with. For example, ζ(x, x′) will be log normally
distributed if rl(x) and rl(x

′) have a bivariate normal marginal distribution.
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In this paper, we will consider models in which rl(x) is a stochastic process for
which E[rl(x)] = 0 for all x ∈ X. This gives CoRM models a high degree of flexibility.
To illustrate the use of NCoRM mixtures in a regression context, we will consider a
choice of rl(x) which is suitable for continuous regressors and a choice of rl(x) which is
suitable for categorical regressors:

• Continuous regressors: In this case, we define r1(x), r2(x), r3(x), . . . to be in-
dependent Gaussian processes with covariance function σ2

0κ(·, ·) where κ(·, ·) is a
correlation function. This implies that log ζ(·, ·) follows a normal distribution with
mean zero and variance 2σ2

0 .

• Categorical regressors: Suppose that we have two categorical regressors, xi =
(xi,1, xi,2) then we could assume a different parameter for each combination of

levels so that rl(xi) = γ
(l)
xi,1,xi,2 . Alternatively, we could use the specification

rl(xi) = α
(l)
xi,1 + β

(l)
xi,2 + γ

(l)
xi,1,xi,2 where

α
(k)
j ∼ N(0, σ2

1), β
(k)
j ∼ N(0, σ2

2), γ
(k)
i,j ∼ N(0, σ2

1,2).

Then, the α(l) and β(l) parameters act as main effects and γ(l) as interactions which
can be interpreted in a similar way to a logistic regression model. For example,
log ζ(x, x′) is normally distributed with mean 0 and variance 2(σ2

1 + σ2
2 + σ2

1,2) if
both levels of x are different to the levels of x′. Whereas, log ζ(x, x′) is normally
distributed with mean 0 and variance 2(σ2

2 + σ2
1,2) if only the second level of x

and x′ are different. This shows how the dependence of jump sizes depends on the
levels of the regressors.

Posterior inference is impossible using existing methods and the following section de-
scribes a general purpose algorithm for NCoRM mixture models.

3 Computational methods

Posterior inference for nonparametric mixture models is challenging due to the infinite-
dimensional random probability measure in the model. To address this problem, two
main MCMC approaches to defining a finite-dimensional target have been developed.
Firstly, marginal methods integrate the random probability measure from the posterior.
Secondly, conditional methods truncate the random probability measure. These methods
can be further divided into exact methods which use a random truncation to sample
exactly from the posterior and methods which fix the level of truncation leading to
some truncation error. Griffin and Leisen (2017) suggest a marginal method and an
exact conditional method (a slice sampler). The availability of an analytical expression
for the moment generating function for the score distribution is key to their sampling
methods but this is impossible to evaluate in closed form for the more general NCoRM
models described in this paper. We propose a hybrid conditional-marginal sampler using
a pseudo-marginal Metropolis-Hastings algorithm (Andrieu and Roberts, 2009).
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We assume that we observe data (x1, y1), . . . , (xn, yn) and wish to fit the model in (2).
Without loss of generality, we also assume that the values x1, x2, . . . , xn are distinct and
write mk,i = mk(xi) and mk = (mk,1, . . . ,mk,n). Following Griffin and Leisen (2017), it
is convenient to use an augmented form of the likelihood which introduces an allocation
variable for each observation. Let nk be the number of observations allocated to the
k-th jump, we order the jumps so that J1, . . . , JK have points allocated to them (i.e.
nk > 0 for 1 ≤ k ≤ K) and JK+1, JK+2, . . . have no points allocated to them (i.e.
nk = 0 for k > K). Marginalizing over jumps which have no points allocated and the
location of all atoms and writing M = α(Y) and α̃ = α/α(Y) gives

MK
K∏

k=1

⎧⎨
⎩Jnk

k

⎡
⎣ n∏
i=1;si=k

mk,i

⎤
⎦ exp

{
−

n∑
i=1

viJk mk,i

}
h(mk) ν

�(Jk)

⎫⎬
⎭L

K∏
k=1

q
(
y(k)

)
,

(4)

where

L = E

[
exp

{
−

n∑
i=1

vi

∞∑
k=1

Jk mk,i

}]

= exp

{
−

∫
(R+)n

∫ ∞

0

(
1− exp

{
−z

n∑
i=1

vi mi

})
h(m�) ν�(z) dz dm�

}
, (5)

q(y) =

∫ ∏
q(yi|θ) α̃(θ) dθ,

and y(k) = {y|si = k, 1 ≤ i ≤ n}. The expression in (4) is the (marginalized) likelihood
of the data. Griffin and Leisen (2017) use the analytical expression for L and integrals
over J1, . . . , JK to define a marginal sampler. In general, these integrals are not ana-
lytically available to us. We replace L by an unbiased estimate L̂ (a possible unbiased
estimator is discussed in the next Section) to define the following target

MK
K∏

k=1

⎧⎨
⎩Jnk

k

⎡
⎣ n∏
i=1;si=k

mk,i

⎤
⎦ exp

{
−

n∑
i=1

viJk mk,i

}
h(mk) ν

�(Jk)

⎫⎬
⎭ L̂

K∏
k=1

q
(
y(k)

)
.

Finally, we assume that h has parameters τ and ν� has parameters ξ on which we want
to make inference and define the target

p(τ)p(ξ)p(M)MK
K∏

k=1

⎧⎨
⎩Jnk

k

⎡
⎣ n∏
i=1;si=k

mk,i

⎤
⎦ exp

{
−

n∑
i=1

viJk mk,i

}
h(mk|τ) ν�ξ (Jk)

⎫⎬
⎭

× L̂

K∏
k=1

q
(
y(k)

)
.

We propose a novel sampling strategy for the variable s in a nonparametric mixture
model and a novel computational algorithm to deal with the Laplace transform com-
ponent of the target above. This algorithm can be applied to posterior inference for a
wide variety of Bayesian nonparametric processes beyond NCoRM processes.
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Updating c

To update ci, we write the full conditional distribution as proportional to

K−
i∏

k=1

(Jk mk,i k({yj |cj = k} ∪ yi))
I(ci=k)

(
M mK−

i +1,i γ
(
mK−

i +1

)
k(yi)

)I(ci=K−
i +1)

× p
(
JK−

i +1

∣∣∣mK−
i +1

)
h
(
mK−

i +1

∣∣∣ τ) ,

where K−
i is the number of distinct values in c1, . . . , ci−1, ci+1, . . . , cn, (J1,m1), . . . ,

(JK ,mK) are ordered so that ci = K,

γ(mk) =

∫
z exp

{
−z

n∑
i=1

vi mk,i

}
ν�ξ (z) dz

and

p
(
JK−

i +1

∣∣∣mK−
i +1

)
=

JK−
i +1 exp

{
−JK−

i +1

∑n
i=1 vi mK−

i +1,i

}
ν�ξ (JK−

i +1)

γ(mK−
i +1)

.

A new value of JK−
i +1 is sampled from this full conditional distribution leading to

an algorithm which is similar to Algorithm 8 of Neal (2000). See James et al. (2009),
Lijoi and Prünster (2010) and Favaro and Teh (2013) for extension to non-conjugate
normalized random measure mixtures.

If the i-th observation was allocated to a singleton cluster in the previous iteration,
the full conditional distribution of ci is

p(ci = j) ∝
{

Jj mj,i
q({yk|ck=j}∪yi)
q({yk|ck=j}) j = 1, . . . ,K−

i ,

M mj,i γ(mj) q({yi}) j = K−
i + 1.

If the i-th observation was not allocated to a singleton cluster in the previous itera-
tion, we propose mK−

i +1 ∼ h(mK−
i +1|τ) and JK−

i +1 ∼ p(JK−
i +1|mK−

i +1), then

p(ci = j) ∝
{

Jj mj,i
q({yk|ck=j}∪yi)
q({yk|ck=j}) j = 1, . . . ,K−

i ,

M mK−
i +1,i γ

(
mK−

i +1

)
q({yi}) j = K−

i + 1.

In Appendix B (Griffin and Leisen, 2017) we provide the details of the full conditional
distributions for the variables Jk,mk, vi, ξ,M and τ . The next Section will introduce the
novel pseudo-marginal Metropolis-Hastings algorithm used to address the intractability
of the Laplace transform part of the target distribution.

3.1 Unbiased estimation of the Laplace functional

Andrieu and Roberts (2009) introduced a sampling scheme, called pseudo-marginal
Metropolis-Hastings, which allows sampling from distributions which cannot be evalu-
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ated pointwise. The main idea of the method is to replace the target distribution with
a nonnegative unbiased estimator.

In our framework, we are often interested in evaluating objects such as the expecta-
tion in (5),

L = exp

{
−

∫
(R+)p

∫ ∞

0

(
1− exp

{
−z

n∑
i=1

vi m(xi)

})
p(m) ν�(z) dz dm

}
.

We will use the Poisson estimator (Papaspiliopoulos, 2009) which has been successfully
used in MCMC approaches for diffusions (see e.g. Fearnhead et al., 2010). Consider, the
equation

Lφ = exp

{
−

∫
D

φ(x) dx

}
≤ 1 (6)

for D ⊂ R
p where φ(x) ≥ 0 for all x ∈ D and

∫
D
φ(x) dx < ∞. The Poisson estimator

of (6) is introduced in the following Theorem where some properties are described. The
proof of the Theorem can be found in the Appendix. We denote the Poisson distribution
with parameter λ by Pn(λ).

Theorem 1. Consider the following estimator,

L̂φ =

K∏
i=1

(
1− φ(xi)

aC κ(xi)

)
, (7)

where κ is a p.d.f. on D, C > φ(x)
κ(x) for x ∈ D, a > 1, K ∼ Pn(aC) and xi

i.i.d.∼ κ. Then,

E[L̂φ] = exp

{
−

∫
D

φ(x) dx

}
and

V[L̂φ] = L2
φ

(
exp

{
1

aC

∫
D

φ(x)2

κ(x)
dx

}
− 1

)

≤ L2
φ

(
exp

{
1

a

∫
D

φ(x) dx

}
− 1

)
< ∞.

The estimator has the useful property that it is always positive. This contrasts
with other approaches which define unbiased estimators of infinite sums using random
truncation where it is difficult to ensure that estimates are always positive (see e.g.
Rhee and Glynn, 2015; Lyne et al., 2015).

Returning to the expression in (5) and, again, assuming that x1, x2, . . . , xn are dis-
tinct, this can be re-expressed as

L =exp

{
−

∫
(R+)n

∫ ∞

0

(
1− exp

{
−z

n∑
i=1

vi m
�
i

})
h(m�) ν�(z) dz dm�

}
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=exp

{
−

∫
(R+)n

∫ ∞

0

n∑
k=1

vk m
�
k

∫ z

0

exp

{
−t

n∑
i=1

vi m
�
i

}
dt h(m�) ν�(z) dz dm�

}

=exp

{
−

∫
(R+)n

∫ ∞

0

n∑
k=1

vk m
�
k h(m

�) exp

{
−t

n∑
i=1

vi m
�
i

} ∫ ∞

t

ν�(z) dz dt dm�

}

=exp

{
−

∫
(R+)n

∫ ∞

0

n∑
k=1

vk m
�
k h(m

�) exp

{
−t

n∑
i=1

vi m
�
i

}
Tν�(t) dt dm�

}

=

n∏
k=1

Lk, (8)

where Tν�(t) =
∫∞
t

ν�(z) dz is the tail mass function for the Lévy process with Lévy
intensity ν� and

Lk = exp

{
−

∫
(R+)n

∫ ∞

0

vk m
�
k h(m

�) exp

{
−t

n∑
i=1

vi m
�
i

}
Tν�(t) dt dm�

}
.

The expression for Lk has the form of (6) with x = (z,m�
k), D = (0,∞)× R

+n
and

φ(z,m�
k) = vk m

�
k h(m

�
k) exp

{
−z

n∑
i=1

vi m
�
k

}
Tν�(z).

Clearly
∫
D
φ(x) dx < ∞. To use the Poisson estimator, a suitable density is

κ(z,m�
k) = κν�(z)

m�
k h(m

�
k)

E[m�
k]

, (9)

where κν�(z) > Tν�(z) for all z ∈ R
+. We use C = vk E[m

�
k]B where Tν� (z)

κν� (z) < B

for all z. Suitable forms of κν� for some popular nonparametric processes are given in
Section 3.1.

In computation for more usual normalized random measures (Griffin and Walker,
2011; Favaro and Teh, 2013), we are interested in

E[exp{−vJ}] = exp

{
−

∫ ∞

0

(1− exp{−vz})ν(z) dz
}

≤ 1, (10)

where ν(z) is a Lévy process and the expectation is taken over all jumps on R
+. This

expectation can, similarly, be re-expressed as

= exp

{
−

∫ ∞

0

(1− exp{−vz})ν(z) dz
}

= exp

{
−v

∫ ∞

0

Tν(t) exp{−vt} dt
}
,

which is (6) with D = R
+ and φ(x) = vTν(x) exp{−vx}. The estimator in (7) provides

an unbiased estimator of (8) and (10) which can be used in the sampler described in
this section.
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Controlling the variability of L̂φ

Pseudo-marginal Metropolis-Hastings algorithms converge to the correct distribution
but the asymptotic variance of an average calculated using the algorithm depends on the
variance of the unbiased estimator. For example, suppose that the unbiased estimator is
an importance sampler. Andrieu and Vihola (2016) show that the asymptotic variance
of the pseudo-marginal sampler decreases as the number of samples in the importance
sampler increases (leading to an importance sampler with a lower asymptotic variance).
Although we do not use an importance sampler, the Poisson estimator is closely related
and it is intuitively reasonable that the asymptotic variance of averages calculated using
the pseudo-marginal Metropolis-Hastings sampler will decrease as the variance of the
Poisson estimator in (7) decreases.

The variability of the Poisson estimator is controlled by a with larger values of
a leading to a smaller variance. However, larger values of a will also lead to longer
computational times since the mean number of terms in L̂φ is aC. In this section,
we will assume that the expected number of evaluations of the ratio φ(x)/κ(x) is d.
Therefore, d = aC for the estimator in (7). An alternative method for controlling the

variability involves defining the estimator L̂AV E
φ = 1

N

∑N
i=1 L̂

(i)
φ where L̂

(1)
φ , . . . , L̂

(N)
φ

are independent realisations of L̂φ. The estimator has variance

V[L̂AV E
φ ] =

L2
φ

N

(
exp

{
1

aC

∫
D

φ(x)2

κ(x)
dx

}
− 1

)
=

L2
φ

N

(
exp

{
N

d

∫
D

φ(x)2

κ(x)
dx

}
− 1

)
,

since d = aC N . It is straightforward to show that

L2
φ

N + 1

(
exp

{
N + 1

d

∫
D

φ(x)2

κ(x)
dx

}
− 1

)
>

L2
φ

N

(
exp

{
N

d

∫
D

φ(x)2

κ(x)
dx

}
− 1

)

and so the variance of the estimator grows with N for fixed d. This suggests that we
should use L̂AV E

φ with N = 1 which is the Poisson estimator in (7). In this case, the

choice of κ(x) which minimizes the variance for fixed d is κ(x) = φ(x)
− logLφ

which provides

a criterion for choosing κ(x).

As we have already mentioned the asymptotic variance of averages calculated using
the pseudo-marginal algorithm will typically decreases as a increases but the compu-
tational time will increase. Therefore, there is an optimal value of a which is able to
provide the lowest asymptotic variance for a fixed computational budget (number of
evaluations of φ(x)/κ(x)). Doucet et al. (2015) established an upper bound for the
asymptotic variance under certain assumptions which allows this optimal value to be
derived. They demonstrated that this value can be close to optimal when the assump-
tions are violated. In our context, their main assumption is

L̂φ = εLφ,

where log ε ∼ N(−σ2/2, σ2). They refer to σ2 as the noise variance and it is straightfor-
ward to show that

σ2 =
1

aC

∫
D

φ(x)2

κ(x)
dx.
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Doucet et al. (2015) showed that the optimal value of the noise variance (in terms of
asymptotic variance), σ2

opt, depends on the properties of the chain but provide guidelines
on how this can be approximated. Following the derivation of Doucet et al. (2015), the
optimal value of a, for fixed κ, is

aopt =
1

σ2
opt C

∫
D

φ(x)2

κ(x)
dx.

In practice, we have found that the value a = 8 works well for the processes considered
in this paper.

Examples

Brix (1999) provided a bound for the tail-mass integral of the generalized gamma process
which is extended to the stable-Beta process by Arbel and Prünster (2016). However,
both bounds are not tight and we suggest tighter bounds for both processes. Indeed,
the estimator introduced in Theorem 1 with the proposal in (9) requires draws from a

Poisson distribution whose mean is proportional to vk E[m
�
k]D where Tν� (z)

κν� (z) < B for all

z. Therefore, better choices of κν�(x) can improve the computational efficiency of the
method by requiring a smaller value of B.

Generalized gamma process

The generalized gamma process has Lévy density ν�(y) = 1
Γ(1−σ)y

−1−σ exp{−λy}
and the tail-mass functions Tν�(t) is an incomplete gamma function. It is straightforward
to show that Tν�(t) < κ̃ν�(t) where

κ̃ν�(t) =

{
1

σΓ(1−σ) (t
−σ − 1) t < b,

1
σΓ(1−σ) (b

−σ − 1) exp{−λ(t− b)} t ≥ b,

and b = 0.65. A suitable choice of D is D = 1
σΓ(1−σ) [

b1−σ

1−σ − b + b−σ − 1] and the

bounding p.d.f. is κν�(t) = 1
D κ̃ν�(t). Consider κν�(t) truncated to t < b, taking the

transformation y = 1
σ (t

−σ − 1) leads to the density κ(y) ∝ y(σy + 1)−1/σ−1 truncated
to y > 1

σ (b
−σ − 1). This can be expressed as a mixture of gamma distributions where

y|Ξ ∼ Ga(2,Ξ), Ξ ∼ Ga(1/σ − 1, 1/σ).

As σ → 0 for λ = 1, the generalized gamma process converges to the gamma
process which has Lévy density ν(z) = z−1 exp{−z} and Tν(t) =

∫∞
t

ν(y) dy = E1(t)
where E1(t) is the exponential-integral function. Both the bounding p.d.f. and simulation
scheme for t < b also converge. It is straightforward to show that the limit is

κ̃ν�(t) =

{
− log t t < b,
−(log b) exp{−(t− b)} t ≥ b,

with D = b − b log b − log b. The appropriate transformation for t < b is y = − log(t)
which has p.d.f. z exp{−z}, i.e. z ∼ Ga(2, 1) truncated to y > − log b.
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If λ = 0, the generalized gamma process is stable process. However, the tail mass
function is infinite for a stable process and this simulation scheme is not possible.

Stable-Beta process

The stable-Beta process has Lévy density ν�(z) = Γ(φ)
Γ(σ+φ)Γ(1−σ)z

−σ−1(1−λ z)σ+φ−1

for 0 < z < 1/λ. It is straightforward to show that Tν�(t) < κ̃ν�(t) where

κ̃ν�(t) =

{
Γ(φ)

σΓ(σ+φ)Γ(1−σ) (t
−σ − 1) t < b,

Γ(φ)
σΓ(σ+φ)Γ(1−σ) (b

−σ − 1) (1−λt)γ+σ

(1−λb)γ+σ t ≥ b,

and b = 0.65. A suitable choice of D is D = Γ(φ)
Γ(σ+φ)Γ(1−σ) [

b1−γ

1−γ − b+ b−σ−1
λ(γ+σ+1) (1− λb)]

and the bounding p.d.f. is κν�(t) = 1
D κ̃ν�(t). As σ → 0 for λ = 1, the stable-Beta

process converges to the Beta process which has Lévy density ν(y) = 1
Γ(γ)y

−1(1−y)γ−1

for 0 < y < 1. In this case, the limit of κ̃ν�(t) is

κ̃ν�(t) =

{ − log t t < b,
− log b
(1−b)γ (1− t)γ t ≥ b,

and the limit of D is D = b− b log b− log b
γ+1 (1− b).

4 Illustrations

4.1 Example 1: Discrete regressors

The algorithms developed in this paper are illustrated using an analysis of hematological
data arising from a dose-escalation study which has previously been analysed by Müller
and Rosner (1997). The data are white blood cell counts over time for a sample of
52 patients receiving different levels of two treatments: cyclophosphamide (CTX) and
a second drug (GM-CSF). The data for each patient is summarized as the maximum
likelihood estimates from a non-linear regression model with seven parameters fitted to
that patient’s time profile. The model assumes that the mean response at time t with
parameters θ = (z1, z2, z3, τ1, τ2, β1) is given by

f(θ, t) =

⎧⎨
⎩

z1 t < τ1,
rz1 + (1− r)g(θ, τ2) τ1 ≤ t < τ2,
g(θ, t) t ≥ τ2,

where r = (τ2− t)/(τ2− τ1) and g(θ, t) = z2+ z3/[1+ exp{2.0−β1(t− τ2)}]. The model
implies that the white blood cell count is constant (at level z1) before τ1 followed by a
linear progression between τ1 and τ2 and a logistic recovery after τ2. The parameters z2
and z3 control the white blood cell count at the start and end of recovery. De Iorio et al.
(2004) applied an ANOVA-DDP model to these data which assumes a mixture model
with constant weights and an ANOVA model for the locations for each treatment. In
contrast, we fitted a mixture model with weights that vary with the treatment combi-
nation but with locations that do not depend on the treatment level. Specifically, we
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assume that yi are the estimated parameters for the i-th patient and that xi,1 is the
level of CTX and xi,2 is the level of GM-CSF. The model is

yi|si ∼ N(μsi ,Σ), μk ∼ N(μ0, λ
−1Σ),

Σ−1 ∼ W(ν,Ψ),

p(ci = k) =
Jk exp

{
α
(k)
xi,1 + β

(k)
xi,2 + γ

(k)
xi,1,xi,2

}
∑∞

l=1 Jl exp
{
α
(l)
xi,1 + β

(l)
xi,2 + γ

(l)
xi,1,xi,2

} ,

α
(k)
j ∼ N(0, σ2

1), β
(k)
j ∼ N(0, σ2

2), γ
(k)
i,j ∼ N(0, σ2

1,2)

where W (ν,Ψ) is a Wishart distribution with ν degrees of freedom and mean νΨ. The
directing Lévy process is taken to be a gamma process. The model assumes a two-way
ANOVA model with interaction for the logarithm of the weights. This does not place
restriction on the combination of weights but does encourage similar weights for similar
combinations of levels. The priors were σ2

1 ∼ Ga(1, 2), σ2
2 ∼ Ga(1, 2), σ2

1,2 ∼ Ga(1, 2)
and M ∼ Ga(1, 1). For the purposes of illustration, we set μ0 equal to the sample mean
of the data, Ψ = 1

9(ν−8) Σ̂ where Σ̂ is the covariance of the data which implies that the

prior mean of Σ is 1
9 Σ̂ and we choose λ = 0.01. The MCMC algorithms was run for a

total of 35 000 iterations. The first 5 000 were used as a burn-in with the subsequent
values thinned every fifth sample. This gave a sample of 6 000 values.

Figure 1: Posterior mean probability density of z1 for three levels of GM-CSF and four
levels of CTX shown as: solid line (CTX=1.5), dashed line (CTX=3.0), dot-dashed line
(CTX=4.5) and dashed line (CTX=6.0).

The inference about the marginal probability of two parameters z1 and z2 are shown
in Figures 1 and 2. The parameter z1 is the initial white blood cell count. The distri-
bution is bi-modal with the size of the smaller mode increasing with GM-CSF. This
indicates that there are differences in the proportion of patients with lower white blood
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Figure 2: Posterior mean probability density of z2 for three levels of GM-CSF and four
levels of CTX shown as: solid line (CTX=1.5), dashed line (CTX=3.0), dot-dashed line
(CTX=4.5) and dashed line (CTX=6.0).

Figure 3: Trace plots of the parameters M , σ2
1 , σ

2
2 and σ2

1,2.

cell count across the different treatments. The parameter z2 controls the level of white-
blood cells when recovery begins and this is again bi-modal with the smaller mode
decreasing with GM-CSF for z2.

Figure 3 shows trace plots for the total mass parameter M and the three parameters
controlling the differences between jumps at each treatment level. These clearly show
good performance of the sampler for this problem.

4.2 Example 2: Continuous Regressors

A regression model is used to define an infinite mixture model with regressor dependent
weights. We observe pairs (x1, y1), . . . , (xn, yn) where xi ∈ R

p and yi ∈ R and use the
model

yi ∼ N(θsi , aσ
2), θk ∼ N(μ, (1− a)σ2),

p(ci = k) =
Jk exp{rk(xi)}∑∞
l=1 Jl exp{rl(xi)}

,

where r1(x), r2(x), r3(x), . . . are independent Gaussian processes. A generalized gamma
directing Lévy process is used with λ = 1 and three values of σ: σ = 0 (a gamma
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process), σ = 0.1 and σ = 0.5.

We apply the model to data from a simulated motorcycle accident used to test
crash helmets (Silverman, 1985), which are available as the mcycle data frame in the
R package MASS. The data are head accelerations (in g) measured at different times
in milliseconds after impact. We assume that the Gaussian processes have covariance

function C(x, y) = φ exp{−‖x−y‖
L } where ‖ · ‖ is Euclidean distance and L is the

lengthscale. The priors are α ∼ U(0, 1), p(μ, σ2) ∝ σ−2, L ∼ Ga(1, 1), M ∼ Ga(1, 1),
and φ−1 ∼ Ga(1, 4). The prior for φ is chosen so that logmk(xi) typically takes values
in (−4, 4). The MCMC algorithms was a total of 33 000 iterations. The first 3 000 were
used as a burn-in with the subsequent values thinned every third sample. This gave a
sample of 10 000 values.

Figure 4: Motorcyle data: Data (dots) and posterior mean density of y|x (darker colours
show larger density) with σ = 0, σ = 0.1 and σ = 0.5.

Figure 4 shows the posterior mean of the conditional density of head acceleration
given time from impact for the three values of σ with the data superimposed. In each
case, the model was able to follow the data and capture the changing the heterogeneity
in the variance. The inference seems robust to the choice of σ.

Figure 5: Motorcyle data: Trace plots of the parameters M , φ and L for σ = 0 (the
gamma process).

Trace plots for the three parameters M , φ and L for the case σ = 0 (the gamma
process) are shown in Figure 5. These clearly show that the parameters are mixing well
across the MCMC chain.

4.3 Comparison of predictive performance

We ran a simulation exercise to understand how the NCoRM regression model developed
in this paper compared to two commonly used dependent nonparametric priors: the
single-p dependent Dirichlet process (De Iorio et al., 2004) and a probit stick-breaking
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process mixture (Rodriguez and Dunson, 2011). The methods were compared by 10-fold
cross-validation using simulated data sets of size 100 (leading to training data sets with
90 observations) according to the out-of-sample log-predictive scores (LPS), i.e.

LPS = − 1

100

10∑
i=1

10∑
j=1

log p
(
ytesti,j

∣∣ ytraini,1 , . . . , ytraini,90

)
,

where ytesti,1 , . . . , ytesti,10 is the i-th testing sample and ytraini,1 , . . . , ypredi,90 is the i-th training
sample. Three sets of data were simulated to cover different modelling situations. The
first two data sets used regressor-dependent mixture models covering the simple case of
a two component mixture and a more complicated scenario with four components. The
third dataset used a non-linear regression model which depends on four parameters a,
b, c and d. Different values of the parameters lead to different features of the data such
as homoscedascity or heteroscedascity, jumps or different levels of smoothness. In all
cases, there was a single regressor which was generated uniformly on (0, 1). The detailed
descriptions of the data sets are given below.

• Simulated Data Sets I

The responses were simulated as

y ∼
{

N(−1, σ2) if s = 1,
N(1, σ2) if s = 2,

where

p(s = 1) =
exp{r sin(2πx)}

1 + exp{r sin(2πx)} , p(s = 2) =
1

1 + exp{r sin(2πx)} .

We consider two values of σ (0.1 and 0.5) which allow for different levels of sepa-
ration between the two mixture components and two values of r (1 and 2) which
control the rate at p(s = 1) changes over the range of x.

• Simulated Data Sets II

The responses were simulated as

y ∼

⎧⎪⎪⎨
⎪⎪⎩

N(−1, σ2) if s = 1,
N(1, σ2) if s = 2,
N(−2, σ2) if s = 3,
N(2, σ2) if s = 4,

where p(s = 1) ∝ exp{2 sin(2πx)}, p(s = 2) ∝ 1/2 + 2/5(x − 1/2), p(s = 3) ∝
1/2− 2(x− 1/2)2 and p(s = 4) ∝ 1. Again, we consider two values of σ (0.1 and
0.5) to give different levels of separation between the clusters.

• Simulated Data Sets III

The responses were simulated as

y = ga,b(x) + I(c = 1)h(x) + 0.1 ε k(x)I(d=1),
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where

ga,b(x) =

⎧⎨
⎩

0 x < a,
sin(2π(x− a)/(b− a)) a ≤ x ≤ b,

0 x > b,

h(x) =

⎧⎨
⎩

−2 x < 1/3,
−3/4 1/3 < x < 3/4,
0 x > 3/4,

k(x) = 0.15(1 + 19| sin(2π)|) and ε ∼ N(0, 1). Different choices of a, b, c and d
lead to responses which have a nonlinear mean and potentially heteroscedascity.
If c = 0 and d = 0, the means of responses have a sine wave scaled to the
interval (a, b) (with zero mean outside the interval) with homoscedastic noise.
Additionally, the mean of the responses jumps at 1/3 and 3/4 if c = 1 and the
errors are heteroscedastic if d = 1.

σ r Probit SB DDP NCoRM
0.1 2 -0.33 -0.18 -0.36
0.1 1 0.30 0.51 0.26
0.5 2 1.35 1.41 1.26
0.5 1 1.53 1.54 1.50

Table 1: LPS of the probit stick-breaking, dependent Dirichlet process and NCoRM
mixtures for Simulated Data Sets I.

The LPS for the three different nonparametric priors with Simulated Data Sets I
are given in Table 1. The NCoRM mixture outperformed both the DDP and probit
stick-breaking processes for the four combination of σ and r. The LPS’s for Simulated

σ Probit SB DDP NCoRM
0.1 -0.22 -0.15 -0.22
0.5 1.49 1.54 1.48

Table 2: LPS of the probit stick-breaking, dependent Dirichlet process and NCoRM
mixtures for Simulated Data Sets II.

Data Sets II (Table 2) show that the DDP outperformed the other methods for σ = 0.1
and the NCoRM outperformed the other methods for σ = 0.5.

The LPS for Simulated Data Sets III are shown in Table 3. For these data sets,
the methods were ranked in the same order with the DDP giving the best perfor-
mance and the NCoRM mixture outperforming the probit stick-breaking mixtures. The
difference between the DDP and NCoRM was largest for the model without jumps
and with homoscedasticity (c = 0 and d = 0). This is not surprising since a Gaus-
sian process with normal errors would provide good approximation of the sine curve
and models which only allow dependence through the weights can only approximate
the curve using piecewise constant fits. If there are jumps, the advantage of the DDP
over the NCoRM was reduced. In all case, the NCoRM mixture substantially outper-
formed the probit stick-breaking mixture. This reflects the construction of the probit
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a b c d Probit SB DDP NCoRM
0 1 0 0 0.80 -0.81 -0.31
0 1 0 1 0.66 -0.42 -0.14
0 1 1 0 0.99 -0.01 0.25
0 1 1 1 0.80 0.12 0.25

1/4 3/4 0 0 0.58 -0.81 -0.27
1/4 3/4 0 1 0.87 -0.55 -0.43
1/4 3/4 1 0 0.48 -0.24 -0.16
1/4 3/4 1 1 0.89 -0.06 -0.08

Table 3: LPS of the probit stick-breaking, dependent Dirichlet process and NCoRM
mixtures for Simulated Data Sets III.

stick-breaking processes. In all stick-breaking processes, the weights are stochastically
ordered and the probit stick-breaking process assumes that the atom with largest a
priori expected weight does not depend on x. Although the data can change the order
a posteriori, this ordering persists in data sets of the size considered in these simulated
examples.

The results of these simulations suggest some guidelines which can be used in more
general situations. The model displayed in (1) is very general but in this form is rarely
used in real situations. By allowing the parameter θ and the weights wk to depend on the
regressor, the model becomes extremely flexible and prone to overfit the data. Therefore,
the models considered are typically used as special cases of the model displayed in (1).
We prefer the NCoRM mixture model to the DDP mixture model if we can identify
subpopulations with different levels of response and which are associated with different
regressor values. Clearly, this is the case in simulated datasets I and II but also simulated
dataset III when jumps are introduced (c = 1). On the other hand, the DDP works well
if there is a wide range of responses in each subpopulation.

5 Conclusions

Normalized compound random measures are a large class of dependent nonparametric
processes. The jumps of the processes are expressed as the product of a jump from
a Lévy process and a random variable. This allows the dependence of the nonpara-
metric processes to be modelled through the dependence in the random variables. In
this paper, we have developed Markov chain Monte Carlo methods to estimate non-
parametric mixture models where the mixing measure is given a normalized compound
random measure prior with a wide-range of dependences between the underlying ran-
dom variables. The NCoRM approach could be generalized to allow the jump locations
to depend on regressors and the MCMC method could be simply extended. The ex-
amples illustrate priors constructed using linear models and Gaussian processes. Other
types of dependence could be included such as time series models, spatial models or
hierarchical models. The MCMC methods are efficient and depend on approximating
the tail mass integral of a Lévy process. Examples of appropriate approximations are
given for the most popular classes of Lévy processes used in Bayesian nonparametrics.
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A simulation study illustrates that the NCoRM can provide better out-of-sample pre-
dictive performance than probit stick-breaking process mixtures in a range of simulated
data sets and can outperform DDP mixtures if the mean of the responses does not vary
smoothly.

Supplementary Material

Appendix of “Modelling and computation using NCoRM mixtures for density regres-
sion” (DOI: 10.1214/17-BA1072SUPP; .pdf).
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