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Variable Selection in Seemingly Unrelated
Regressions with Random Predictors

David Puelz∗, P. Richard Hahn†, and Carlos M. Carvalho‡

Abstract. This paper considers linear model selection when the response is vector-
valued and the predictors, either all or some, are randomly observed. We propose
a new approach that decouples statistical inference from the selection step in a
“post-inference model summarization” strategy. We study the impact of predic-
tor uncertainty on the model selection procedure. The method is demonstrated
through an application to asset pricing.

Keywords: decoupling shrinkage and selection, seemingly unrelated regressions,
penalized utility selection.

1 Introduction and overview

This paper develops a method for parsimoniously summarizing the shared dependence
of many individual response variables upon a common set of predictor variables drawn
at random. The focus is on multivariate Gaussian linear models where an analyst
wants to find, among p available predictors X, a subset which work well for predicting
q > 1 response variables Y . The multivariate normal linear model assumes that a set of
responses {Yj}qj=1 are linearly related to a shared set of covariates {Xi}pi=1 via

Yj = βj1X1 + · · ·+ βjpXp + εj , ε ∼ N(0,Ψ), (1)

where Ψ is a non-diagonal covariance matrix.

Bayesian variable selection in (single-response) linear models is the subject of a
vast literature, from prior specification on parameters (Bayarri et al., 2012) and models
(Scott and Berger, 2006) to efficient search strategies over the model space (George and
McCulloch, 1993; Hans et al., 2007). For a more complete set of references, we refer
the reader to the reviews of Clyde and George (2004) and Hahn and Carvalho (2015).
By comparison, variable selection has not been widely studied in concurrent regression
models, perhaps because it is natural simply to apply existing variable selection meth-
ods to each univariate regression individually. Indeed, such joint regression models go
by the name “seemingly unrelated regressions” (SUR) in the Bayesian econometrics
literature, reflecting the fact that the regression coefficients from each of the separate
regressions can be obtained in isolation from one another (i.e., conducting estimation
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as if Ψ were diagonal). However, allowing non-diagonal Ψ can lead to more efficient
estimation (Zellner, 1962) and can similarly impact variable selection (Brown et al.,
1998; Wang, 2010).

This paper differs from Brown et al. (1998) and Wang (2010) in that we focus on the
case where all or some of the predictor variables (the regressors, or covariates) are treated
as random as opposed to fixed. Our goal will be to summarize codependence among
multiple responses in subsequent periods, making the uncertainty in future realizations
highly central to our selection objective. This approach is natural in many contexts
(e.g., macroeconomic models) where the purpose of selection is inherently forward-
looking. Measurement errors in the predictors may also contribute to randomness, so this
approach is naturally applicable in an “errors-in-variables” context. To our knowledge,
no existing variable selection methods are suitable in this context. The new approach is
based on the sparse summary perspective outlined in Hahn and Carvalho (2015), which
applies Bayesian decision theory to summarize complex posterior distributions. By using
a utility function that explicitly rewards sparse summaries, a high dimensional posterior
distribution is collapsed into a more interpretable sequence of sparse point summaries.

A related approach to variable selection in multivariate Gaussian models is the
Gaussian graphical model framework (Jones et al., 2005; Dobra et al., 2004; Wang and
West, 2009). In that approach, the full conditional distributions are represented in terms
of a sparse (p+ q)-by-(p+ q) precision matrix. By contrast, we partition the model into
response and predictor variable blocks, leading to a distinct selection criterion that
narrowly considers the p-by-q covariance between Y to X.

This paper is structured as follows. Section 2 describes the methodology. A meth-
ods overview is presented followed by three subsections discussing the details of the
approach. Section 3 presents a simulation study utilizing the methodology with com-
parisons to alternative approaches. Section 4 demonstrates how the methodology works
in practice by considering an application in asset pricing. Section 5 concludes.

2 Posterior summary variable selection

2.1 Methods overview

Posterior summary variable selection consists of three phases: model specification and
fitting, utility specification, and graphical summary. Each of these steps is outlined below.
Additional details of the implementation are described in Supplementary Appendices
A and B (Puelz et al., 2017).

Step 1: Model specification and fitting

The statistical model may be described compositionally as p(Y,X) = p(Y |X)p(X). For
(Y,X) ∼ N(μ,Σ), the regression model (1) implies Σ has the following block structure:

Σ =

[
βTΣxβ +Ψ (Σxβ)

T

Σxβ Σx

]
. (2)
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We denote the unknown parameters for the full joint model as Θ = {μx, μy,Σx,β,Ψ}
where μ = (μT

y , μ
T
x )

T and Σx = cov(X).

For a given prior choice p(Θ), posterior samples of all model parameters are com-
puted by routine Monte Carlo methods, primarily Gibbs sampling. Details of the specific
modeling choices and associated posterior sampling strategies are described in Supple-
mentary Appendix A.

A notable feature of our approach is that steps 2 (and 3) will be unaffected by
modeling choices made in step 1 except insofar as they lead to different posterior dis-
tributions. In short, step 1 is “obtain a posterior distribution”; posterior samples then
become inputs to step 2.

Step 2: Utility specification

For our utility function we use the log-density of the regression p(Y |X) above. It is
convenient to work in terms of negative utility, or loss:

L(Ỹ , X̃,Θ,γ) =
1

2
(Ỹ − γX̃)TΩ(Ỹ − γX̃),

where Ω = Ψ−1. Note that this log-density is being used in a descriptive capacity, not
an inferential one; that is, all posterior inferences are based on the posterior distribution
from step 1. The “action” γ is regarded as a point estimate of the regression parameters
β, which would be a good fit to future data (Ỹ , X̃) drawn from the same model as the
observed data given by Y ∈ R

N×q and X ∈ R
N×p.

Taking expectations over the posterior distribution of all unknowns,

p(Ỹ , X̃,Θ|Y,X) = p(Ỹ |X̃,Θ)p(X̃|Θ)p(Θ|Y,X)

yields expected loss

L(γ) ≡ E[L(Ỹ , X̃,Θ,γ)] = tr[MγSγT ]− 2tr[AγT ] + constant,

where A = E[ΩỸ X̃T ], S = E[X̃X̃T ] = Σx, and M = Ω, the overlines denote posterior
means, and the final term is a constant with respect to γ.

Finally, we add an explicit penalty, reflecting our preference for sparse summaries:

Lλ(γ) ≡ tr[MγSγT ]− 2tr[AγT ] + λ ‖vec(γ)‖1 , (3)

where ‖vec(γ)‖1 sums the absolute values of components in vec(γ). In practice, it is
well known that the �1 penalty selects relevant components by shrinking irrelevant ones
to zero.

Step 3: Graphical summary

Traditional applications of Bayesian decision theory derive point-estimates by minimiz-
ing expected loss for certain loss functions. The present goal is not an estimator per se,
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but a parsimonious summary of information contained in a complicated, high dimen-
sional posterior distribution. This distinction is worth emphasizing because we have not
one, but rather a continuum of loss functions, indexed by the penalty parameter λ. This
class of loss functions can be used to summarize the posterior distribution as follows.

Using available convex optimization techniques, expression (3) can be optimized
efficiently for a range of λ values simultaneously. Posterior graphical summaries con-
sist of two components. First, graphs depicting which response variables have non-zero
γ∗
λ coefficients on which predictor variables can be produced for any given λ. Second,

posterior distributions of the quantity

Δλ = L(Ỹ , X̃,Θ,γ∗
λ)− L(Ỹ , X̃,Θ,γ∗)

can be used to gauge the impact λ has on the descriptive capacity of γ∗
λ. Here, γ

∗ = γ∗
λ=0

is the unpenalized optimal solution to the minimization of loss (3). Note that these
graphs defined by γ∗

λ provide appropriate variable selection for SUR models – different
sets of predictors are connected to each of the responses.

The statistical model is given in (1) and (2); prior specification and model fitting
details can be found in Supplementary Appendix A. To briefly summarize, we use a
multivariate version of the priors presented in George and McCulloch (1993) and similar
to Brown et al. (1998) and Wang (2010) for the exercises in this paper. We choose the
g-prior parameter using an empirical Bayes procedure, and the marginal distribution
of the predictors is modeled via a Gaussian linear latent factor model. In the following
three subsections, we flesh out the details of steps 2 and 3, which represent the main
contributions of this paper.

2.2 Deriving the sparsifying expected utility function

Define the optimal posterior summary as the γ∗ minimizing some expected loss Lλ(γ) =
E[Lλ(Ỹ , X̃,Θ,γ)]. Here, the expectation is taken over the joint posterior predictive and
posterior distribution: p(Ỹ , X̃,Θ | Y,X).

As described in the previous section, our loss takes the form of a penalized log
conditional distribution:

Lλ(Ỹ , X̃,Θ,γ) ≡ 1

2
(Ỹ − γX̃)TΩ(Ỹ − γX̃) + λ ‖vec(γ)‖1 , (4)

where Ω = Ψ−1, ‖vec(γ)‖1 =
∑

j |vec(γ)j |, and vec(γ) is the vectorization of the
action matrix γ. The first term of this loss measures the distance (weighted by the
precision Ω) between the linear predictor γX̃ and a future response Ỹ . The second
term promotes a sparse optimal summary, γ. The penalty parameter λ determines the
relative importance of these two components. Expanding the quadratic form gives:

Lλ(Ỹ , X̃,Θ,γ) =
1

2

(
Ỹ TΩỸ − 2X̃TγTΩỸ + X̃TγTΩγX̃

)
+ λ ‖vec(γ)‖1

=
(
X̃TγTΩγX̃ − 2X̃TγTΩỸ

)
+ λ ‖vec(γ)‖1 + constant.
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Integrating over (Ỹ , X̃,Θ | Y,X) (and dropping the constant) gives:

Lλ(γ) = E[Lλ(Ỹ , X̃,Θ,γ)]

= E

[
tr[γTΩγX̃X̃T ]

]
− 2E

[
tr[γTΩỸ X̃T ]

]
+ λ ‖vec(γ)‖1

= E
[
tr[γTΩγS]

]
− 2tr[AγT ] + λ ‖vec(γ)‖1

= tr[MγSγT ]− 2tr[AγT ] + λ ‖vec(γ)‖1 ,

(5)

where:

A ≡ E[ΩỸ X̃T ],

S ≡ E[X̃X̃T ] = Σx,

M ≡ Ω,

(6)

and the overlines denote posterior means. Define the Cholesky decompositions M =
LLT and S = QQT . Expression (5) can be formulated in the form of a standard penal-
ized regression problem:

Lλ(γ) =
∥∥[QT ⊗ LT

]
vec(γ)− vec(L−1AQ−T )

∥∥2
2
+ λ ‖vec(γ)‖1 , (7)

with “covariates” QT ⊗ LT , “data” L−1AQ−T , and regression coefficients γ (see Sup-
plementary Appendix B for details). Accordingly, (7) can be optimized using existing
software such as the lars R package of Efron et al. (2004) and still yield sparse solutions.

The lars formulation of the utility function provides fast computation as well as
flexibility. For example, suppose we wish to always include certain (potentially different)
predictors in each SUR equation. This can be easily achieved by removing the �1 penalty
on the relevant components of vec(γ) (since γ represents the dependence structure
between the responses and predictors) by zeroing the appropriate penalty parameters λ.

What if only a subset of predictors are random?

Building on the previous derivation, we consider a scenario where some predictors are
known, or fixed, and the remainder are random. This may occur when one would like to
condition on a particular value of a predictor at some fixed future value. In this case, an
expected utility function can be derived in a similar manner to the random predictors
case.

Let the covariates X be divided into two pieces, those that are considered random:
Xr ∈ R

pr , and those that are considered fixed: Xf ∈ R
pf , so that the column vector

X = [XT
r XT

f ]
T ∈ R

p and p = pr + pf . So, future values of the covariates are given by

X̃ = [X̃T
r XT

f ]
T .

Conditioning on the fixed covariates, the distribution of unknowns is: p(Ỹ , X̃r,Θ|Xf )
where Θ is a vector of parameters from a specified model. If we assume conditional
independence, then we can write:

p(Ỹ , X̃r,Θ|Xf ) = p(Ỹ |X̃r, Xf ,Θ)p(X̃r|Xf ,Θ)p(Θ|Xf ),
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where, as before, p(Θ|Xf ) is the posterior distribution of model parameters conditional
on the fixed covariates. Following step 1 of the methodology, any models may be chosen
for the conditional Y |Xr, Xf and the marginal Xr|Xf . For example, in the case of X
following a multivariate normal distribution implied by a latent factor regression model,
we automatically know the conditionals including Xr|Xf .

Define the following block structure for the action, γ:

γ =
[
γr γf

]
,

so that γr ∈ R
q×pr and γf ∈ R

q×pf . We expand out (4) and drop terms that don’t
involve the action γ:

Lλ(Ỹ , X̃,Θ,γ) =
1

2

(
X̃T

r γ
T
r ΩγrX̃r +XT

f γ
T
f ΩγfXf − 2X̃T

r γ
T
r ΩỸ − 2XT

f γ
T
f ΩỸ

)

+ λ ‖vec(γ)‖1 + constant.

Taking expectations over p(Ỹ , X̃r,Θ|Xf ) and dropping the one-half and constant, we
obtain the integrated loss function:

Lλ(γ) =E

[
tr[γT

r ΩγrX̃rX̃
T
r ]
]
− 2E

[
tr[γT

r ΩỸ X̃T
r ]
]
+ E

[
tr[γT

f ΩγfXfX
T
f ]
]

− 2E
[
tr[γT

f ΩỸ XT
f ]
]
+ λ ‖vec(γ)‖1 .

We simplify the expectations in a similar way to our derivation of the original loss
function presented at the beginning of Section 2.2.

Lλ(γ) =tr[MγrSrγ
T
r ]− 2tr[Arγ

T
r ] + tr[MγfSfγ

T
f ]− 2tr[Afγ

T
f ]

+ λ ‖vec(γ)‖1 ,

where:

Ar ≡ E[ΩỸ X̃T
r ], Af ≡ E[ΩỸ X̃T

f ],

Sr ≡ E[X̃rX̃
T
r ], Sf = XfX

T
f ,

M ≡ Ω.

Combining the matrix traces, we simplify the loss function as follows:

Lλ(γ) = tr[MγṠγT ]− 2tr[ȦγT ] + λ ‖vec(γ)‖1 ,

where:

Ṡ ≡
[
Sr 0
0 Sf

]
, Ȧ ≡

[
Ar

Af

]
.

This form is analogous to the loss function derived when all predictors are assumed
random, now for a case when fixed and random predictors are present. This can similarly
be formulated into a penalized regression problem. The full derivation of the lasso form
of this problem is presented in Supplementary Appendix B.
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The effect on step 3 of assuming only a subset of predictors are random is intuitive.
Less statistical uncertainty will propagate into the Δλ metric, and the algorithm will
favor denser graphs. This will be shown in the results section where we study two
extremes: all random predictors and all fixed predictors.

2.3 Sparsity-utility trade-off plots

Rather than attempting to determine an “optimal” value of λ, we advocate displaying
plots that reflect the utility attenuation due to λ-induced sparsification. We define the
“loss gap” between a λ-sparse solution, L(Ỹ , X̃,Θ,γ∗

λ), and the optimal unpenalized

(non-sparse, λ = 0) summary, L(Ỹ , X̃,Θ,γ∗) as

Δλ = L(Ỹ , X̃,Θ,γ∗
λ)− L(Ỹ , X̃,Θ,γ∗).

As a function of (Ỹ , X̃,Θ), Δλ is itself a random variable which we can sample by ob-
taining posterior draws from p(Ỹ , X̃,Θ | Y,X). The posterior distribution(s) of Δλ (for
various λ) therefore reflects the deterioration in utility attributable to “sparsification”.
Plotting these distributions as a function of λ allows one to visualize this trade-off.
Specifically, πλ ≡ Pr(Δλ < 0 | Y,X) is the (posterior) probability that the λ-sparse
summary is no worse than the non-sparse summary. Using this framework, a useful
heuristic for obtaining a single sparse summary is to report the sparsest model (associ-
ated with the highest λ) such that πλ is higher than some pre-determined threshold, κ;
we adopt this approach in our application section.

We propose summarizing the posterior distribution of Δλ via two types of plots.
First, one can examine posterior means and credible intervals of Δλ for a sequence of
models indexed by λ. Similarly, one can plot πλ across the same sequence of models. Also,
for a fixed value of λ, one can produce graphs where nodes represent predictor variables
and response variables and an edge is drawn between nodes whenever the corresponding
element of γ∗

λ is non-zero. All three types of plots are exhibited in Section 4.

2.4 Relation to previous methods

Loss function (7) is similar in form to the univariate DSS (decoupled shrinkage and
selection) strategy developed by Hahn and Carvalho (2015). Our approach generalizes
Hahn and Carvalho (2015) by optimizing over the matrix γ ∈ R

qxp rather than a
single vector of regression coefficients, extending the sparse summary utility approach
to seemingly unrelated regression models (Brown et al., 1998; Wang, 2010). Additionally,
the present method considers random predictors, X̃, whereas Hahn and Carvalho (2015)
considered only a matrix of fixed design points. The impact of accounting for random
predictors on the posterior summary variable selection procedure is examined in more
detail in the application section.

To the best of our knowledge, the most comparable method for analyzing sparse
linear covariance structures are the SUR models described in Wang (2010), which uti-
lize independent point-mass priors for each element of β. Our method differs from this
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approach for the following reasons. A sparse SUR model provides posterior draws of the
coefficient matrix β, but as in the simpler linear regression case described in Hahn and
Carvalho (2015), obtaining a sparse summary is non-trivial. Two common approaches
for extracting a summary from posterior draws of a sparse SUR model are either to re-
port a maximum a posteriori estimate (MAP) or to hard-threshold posterior inclusion
probabilities of matrix components of β describing the model sparsity pattern. Neither
approach is fully satisfactory; the MAP estimate is not well-motivated if the goal is
future prediction and approaches based on thresholding the edge inclusion probabilities
fail to take into account co-dependence between individual edges coming in and out of
the model together. By contrast, our method begins with a principled loss function;
by focusing on the expected log-density of future predictions, our approach synthesizes
information from all model parameters simultaneously in gauging how important they
are for prediction. A comprehensive simulation comparing inclusion probability thresh-
olding and our approach is presented in Section 3.

3 Simulation study

In this section, we present a simulation study to compare our posterior model selection
summary to that of the median (posterior) probability model (using the model of Wang
(2010)) for a fixed data generating process (DGP). This comparison is not meant to
demonstrate the superiority of one method over the other, but rather to highlight that
the two methods can give quite distinct summaries. More specifically, we observe that
the median probability model (MPM) can differ substantially from our penalized utility
summary when the predictor variables are highly correlated.

The data generating process is the following two equation seemingly unrelated re-
gression model:

X ∼ N(0,Σsim

x ),

Y |X ∼ N(βT
simX,Ψsim),

(8)

where:

Σsim

x =

⎡
⎢⎢⎢⎢⎣

1 0 0.9 0 0
0 1 0 0.8 −0.3
0.9 0 1 0 0
0 0.8 0 1 0
0 −0.3 0 0 1

⎤
⎥⎥⎥⎥⎦ , βsim =

⎡
⎢⎢⎢⎢⎣

1 1
1 0
0 1
0 1
0 0

⎤
⎥⎥⎥⎥⎦ , Ψsim =

[
1 0.5
0.5 1

]
.

Figure 1 graphically depicts the association structure encoded by βsim. In words, Y1

is related to {X1, X2} and Y2 is related to {X1, X3, X4}. Estimation of βsim is compli-
cated by the large positive correlation between {X1, X3} and {X2, X4} and negative
correlation between {X2, X5}, as well as the non-diagonality of the residual variance
Ψsim. We simulate 500 data sets, each with 50 samples of (Y,X).

As outlined in Section 2, the first step of our analysis consists of fitting a Bayesian
model. We fit model (1) using a multivariate version of the priors presented in George
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Figure 1: Graphical representation of the true graph defined by the coefficient matrix
βsim.

and McCulloch (1993) and similar to Brown et al. (1998) and Wang (2010). Specifi-
cally, we use conjugate normal g-priors on the regression coefficients and choose the g
parameter by an empirical Bayes procedure. The marginal distribution of the predic-
tors is modeled via a Gaussian latent factor model. Details for all models and fitting
algorithms are given in Supplementary Appendix A. Note that this is one of many such
priors a researcher may choose.

Figures 2 display an example solution path for one of the data sets that selected the
true model. The left axis is on the utility scale and shows the Δλ metric for decreasing
penalty parameters λ. The right axis show the probability that the sparsified model is
no worse than the saturated model πλ. Posterior summary variable selection correctly
identified the true model in 258 out of 500 simulated data sets at a 20% posterior
uncertainty interval. Notice that the true model has a considerable jump in utility and
πλ on the left plot in Figures 2. In addition, the true model is contained in 400 out of
the 500 posterior summary variable solution paths. This implies that our utility chooses
the true model as the best 5-edge graph out of all possible graphs of equal size in 90%
of the simulated data sets.

Next, we compare these results to a related method, based on the model of Wang
(2010), which extends the stochastic search variable selection of George and McCulloch
(1993) to seemingly unrelated regression models. Their model allows for sparsity in the
β matrix and provides an inclusion probability for each entry in the matrix representing
an edge in the graph. Details of the specific priors used may be found in Wang (2010).
Although this model uses point-mass priors and produces posterior samples across var-
ious sparse regressions, the most common posterior summary, the (arithmetical) mean,
generally produces non-sparse summaries. By contrast, among widely used summaries,
the median probability model does provide a sparse point summary. In Barbieri and
Berger (2004), the median probability model is shown to be optimal under squared
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Figures 2: (left) Example of evaluation of Δλ and πλ along the solution path for one
of the simulated data sets where the true graph was correctly selected. Uncertainty
bands are 20% posterior intervals on the Δλ metric. The large black dot and associated
dashed line represent the graph selected and shown on the right. (right) The most
selected graph for simulated data. This is the true graph given by βsim and was selected
for 258 out of the 500 simulated data sets and is present in 400 out of 500 posterior
summary solution paths. The responses and predictors are colored in gray and white,
respectively. Edges represent nonzero components of the optimal action, γ.

error prediction loss, as long as the predictor variables are mutually orthogonal. In
practice, the median probability model is defined as the model containing all and only
those variables with marginal inclusion probabilities greater than 1/2, whether or not
the orthogonality condition is satisfied.

covariate
response X1 X2 X3 X4 X5

Y1 0.8540 0.9588 0.1381 0.0335 0.0039
Y2 0.5511 0.0467 0.5779 0.9492 0.0097

Table 1: Average edge inclusion probabilities for the β matrix across the 500 simulated
data sets.

Table 1 shows the average edge inclusion probabilities for the β matrix across the
500 simulated data sets. Edge {Y1, X3} was slightly sampled less than others, but the
correlation in the predictors prohibits the inference from accurately ruling this out
completely. The strong dependence between {X1, X3} effects the inconclusive sampling
of edges {Y2, X1} and {Y2, X3} as well – often when one edge is sampled, the other is
excluded. Overall, the inclusion probabilities vary widely depending on the simulated
data set.
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Figures 3 depict the most common MPMs across the 500 data sets. The left graph
was selected in 181 out of the 500 simulated data sets, and the right graph was selected
in 149 out of the 500 data sets. The true graph shown in Figure 1 was only selected in
55 out of the 500 data sets.

Figures 3: The two most frequently appearing median probability models from the sparse
SUR inference on each of the 500 simulated data sets. The left graph was selected in
181 out of the 500 simulated data sets, and the right graph was selected in 149 out of
the 500 data sets.

To obtain a sense of how dissimilar the MPM summary can be compared to our
approach, we tally how often the MPM appears in the posterior summary solution path
displayed in, for example, the left side of Figures 2. A selected graph depends on the
posterior uncertainty interval of Δλ; where a larger interval leads to sparser graphs.
Therefore, if the MPM is contained in the solution path, it is a desirable model under
our utility function modulo a degree of statistical uncertainty. We find that the MPM
is contained in only 241 out of the 500 posterior summary solution paths. In other
words, in 259 out of 500 solution paths, our utility function prefers a different model
over the MPM of equal size (where size is measured by number of edges). Of the 241
occasions that they coincided, 55 of those recovered the true structure. We speculate
that the difference between the two approach is largely due to strong correlation between
predictors X1 and X3; our utility function explicitly considers this structure whereas the
MPM formulation does not. In a similar simulation study with orthogonal predictors,
the MPM recovers the true sparse structure in 488 out of 500 simulated data sets.

4 Applications

In this section, the sparse posterior summary method is applied to a data set from the
finance (asset pricing) literature. A key component of our analysis will be a comparison
between the posterior summaries obtained when the predictors are drawn at random
versus when they are assumed fixed.



980 Variable Selection in SUR Models

The response variables are returns on 25 tradable portfolios and our predictor vari-
ables are returns on 10 other portfolios thought to be of theoretical importance. In the
asset pricing literature (Ross, 1976), the response portfolios represent assets to be priced
(so-called test assets) and the predictor portfolios represent distinct sources of variation
(so-called risk factors). More specifically, the test assets Y represent trading strategies
based on company size (total value of stock shares) and book-to-market (the ratio of
the company’s accounting valuation to its size); see Fama and French (1992) and Fama
and French (2015) for details. Roughly, these assets serve as a lower-dimensional proxy
for the stock market. The risk factors are also portfolios, but ones which are thought
to represent distinct sources of risk. What constitutes a distinct source of risk is widely
debated, and many such factors have been proposed in the literature (Cochrane, 2011).
Moreover, finding a small subset of factors (even from these 10) is useful for a finance
researcher by providing ease of interpretation. If 3 factors are good enough predictively
and easier for the finance researcher to grasp mentally, then this dimension reduction
is useful; even in this moderately sized problem. We use monthly data from July 1963
through February 2015, obtained from Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

Our analysis investigates which subset of risk factors are most relevant (as defined
by our utility function). As our initial candidates, we consider factors known in previous
literature as: market, size, value, direct profitability, investment, momentum, short term
reversal, long term reversal, betting against beta, and quality minus junk. Each factor is
constructed by cross-sectionally sorting stocks by various characteristics of a company
and forming linear combinations based on these sorts. For example, the value factor
is constructed using the book-to-market ratio of a company. A high ratio indicates
the company’s stock is a “value stock” while a low ratio leads to a “growth stock”
assessment. Essentially, the value factor is a portfolio built by going long stocks with high
book-to-market ratio and shorting stocks with low book-to-market ratio. For detailed
definitions of the first five factors, see Fama and French (2015). In the figures to follow,
each is labeled as, for example, “Size2 BM3,” to denote the portfolio buying stocks in
the second quintile of size and the third quintile of book-to-market ratio.

Recent related work includes Ericsson and Karlsson (2004) and Harvey and Liu
(2015). Ericsson and Karlsson (2004) follow a Bayesian model selection approach based
off of inclusion probabilities, representing the preliminary inference step of our method-
ology. Harvey and Liu (2015) take a different approach that utilizes multiple hypothesis
testing and bootstrapping.

4.1 Results

As outlined in Section 2.1, the first step of our analysis consists of fitting a Bayesian
model. We fit model (1) using a multivariate version of the priors presented in George
and McCulloch (1993) and similar to Brown et al. (1998) and Wang (2010). Specifically,
we use conjugate normal g-priors on the regression coefficients and choose the g param-
eter by an empirical Bayes procedure. The marginal distribution of the predictors are
modeled via a Gaussian latent factor model. Note that this is one of many such priors

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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a researcher may choose. The advantage of posterior summary variable selection is that
any reasonable statistical model for the joint (Y,X) may be chosen.

Recalling the block structure for the covariance of the full joint distribution of (Y,X)
from expression (2) we obtain posterior samples of Σ by sampling the conditional model
parameters using a matrix-variate stochastic search algorithm (described below) and
sampling the covariance of X from a latent factor model where it is marginally normally
distributed. To reiterate our procedure is

• Σx is sampled from independent latent factor model,

• β and Ψ are sampled using a matrix-variate Markov Chain Monte Carlo algorithm.

The conditional model for Y |X also includes the sampling of an indicator variable
α that records if a given variable is non-zero (included in the model). In our simulation
and application results, we fix α to the identity vector. This is done to emphasize that
even when dense models are sampled in the inference step, our procedure has the ability
to select a sparse set of predictors. Details of the model fitting algorithm may be found
in Supplementary Appendix A.

In the subsections to follow, we will show a panel consisting of two figures. First, we
plot the expectation of Δλ (and associated posterior credible interval) across a range of
λ penalties. Recall, Δλ is the “loss gap” between a sparse summary and the best non-
sparse (saturated) summary, meaning that smaller values are “better”. Additionally, we
plot the probability that a given model is no worse than the saturated model πλ on this
same figure, where “no worse” means Δλ < 0. Note that even for very weak penalties
(small λ), the distribution of Δλ will have non-zero variance and therefore even if it
is centered about zero, some mass can be expected to fall above zero; practically, this
means that πλ > 0.5 is a very high score.

Second, we display a summary graph of the selected variables for the κ = 12.5%
threshold. Recall that this is the highest penalty (sparsest graph) that is no worse than
the saturated model with 12.5% posterior probability. For these graphs, the response
and predictor variables are colored gray and white, respectively. A test asset label of, for
example, “Size2 BM3,” denotes the portfolio that buys stocks in the second quintile of
size and the third quintile of book-to-market ratio. The predictors without connections
to the responses under the optimal graph are not displayed.

These panels of two figures are shown in two scenarios:

1. Random predictors.

2. Fixed predictors.

Random predictors

This section introduces our baseline example where the risk factors (predictors) are
random. We evaluate the set of potential models by analyzing plots such as the left plot
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Figures 4: (left) Evaluation of Δλ and πλ along the solution path for the 25 size/value
portfolios modeled by the 10 factors. An analyst may use this plot to select a particular
model. Uncertainty bands are 75% posterior intervals on the Δλ metric. The large black
dot and associated dashed line represents the model selected and shown on the right.
(right) The selected model for 25 size/value portfolios modeled by the 10 factors. The
responses and predictors are colored in gray and white, respectively. Edges represent
nonzero components of the optimal action, γ.

in Figures 4. This shows Δλ and πλ evaluated across a range of λ values. Additionally,
we display the posterior uncertainty in the Δλ metric with gray vertical uncertainty
bands; these are the centered P% posterior credible intervals where κ = (1 − P )/2.
As the accuracy of the sparsified solution increases, the posterior of Δλ concentrates
around zero by construction, and the probability of the model being no worse than the
saturated model, πλ, increases. We choose the sparsest model such that its corresponding
πλ > κ = 12.5%. This model is displayed on the right in Figures 4 – also referred to as
the “graphical summary”.

The selected set of factors are the market (Mkt.RF), value (HML), and size (SMB).
This three factor model is no worse than the saturated model with 12.5% posterior
probability where all test assets are connected to all risk factors. Note also that in our
selected model almost every test asset is distinctly tied to one of either value or size
and the market factor. These are the three factors of Ken French and Eugene Fama’s
pricing model developed in Fama and French (1992). They are known throughout the
finance community as being “fundamental dimensions” of the financial market, and our
procedure is consistent with this widely held belief at a small κ level.

The characteristics of the test assets in the selected graph from Figure 4 are also
important to highlight. The test portfolios that invest in small companies (“Size1” and
“Size2”) are primarily connected to the SMB factor which is designed as a proxy for the
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Figure 5: Sequence of selected models for varying threshold level κ under the assumption
of random predictors.

risk of small companies. Similarly, the test portfolios that invest in high book-to-market
companies (“BM4” and “BM5”) have connections to the HML factor which is built on
the idea that companies whose book value exceeds the market’s perceived value should
generate a distinct source of risk. As previously noted, all of the test portfolios are
connected to the market factor suggesting that it is a relevant predictor even for the
sparse κ = 12.5% selection criterion.

In Figure 5, we examine how different choices of the κ threshold change the selected
set of risk factors. In this analysis, there is a trade-off between the posterior proba-
bility of being “close” to the saturated model and the utility’s preference for sparsity.
When the threshold is low (κ = 2 and 12.5%) the summarization procedure selects rel-
atively sparse graphs with up to three factors (Mkt.RF, HML, and SMB). The market
(Mkt.RF) and size (SMB) factors appear first, connected to a small number of the test
assets (κ = 2%). As the threshold is increased, the point summary becomes denser and
correspondingly more predictively accurate (as measured by the utility function). The
value factor (HML) enters at κ = 12.5% and quality minus junk (QMJ), investment
(CMA), and profitability (RMW) factors enter at κ = 32.5%. The graph for κ = 32.5%
excluding QMJ is essentially the new five factor model proposed by Fama and French
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(2015). The five Fama–French factors (plus OMJ, BAB and LTR with a small number
of connections) persist up to the κ = 47.5% threshold. This indicates that, up to a high
posterior probability, the five factor model of Fama and French (2015) does no worse
than an asset pricing model with all ten factors connected to all test assets.

Notice also that our summarization procedure displays the specific relationship be-
tween the factors and test assets through the connections. Using this approach, the
analyst is able to identify which predictors drive variation in which responses and at
what thresholds they may be relevant. This feature is significant for summarization
problems where individual characteristics of the test portfolios and their joint depen-
dence on the risk factors may be a priori unclear.

As κ approaches the 50% threshold (κ = 47.5% in Figure 5), the model summary
includes eight of ten factors. Requesting a summary with this level of certainty re-
sults in little sparsification. However, an additional contribution of a factor results in
minor increases in out utility. Sparse posterior summarization applied in this context
allows an analyst to study the impact of risk factors on pricing while taking uncer-
tainty into account. Coming to a similar conclusion via common alternative techniques
(e.g., component-wise ordinary least squares combined with thresholding by t-statistics)
is comparatively ad hoc; our method is simply a perspicuous summary of a posterior
distribution. Likewise, applying sparse regression techniques based on �1 penalized like-
lihood methods would not take into account the residual correlation Ψ, nor would that
approach naturally accommodate random predictors.

Fixed predictors

In this section, we consider posterior summarization with the loss function derived
under the assumption of fixed predictors. The analogous loss function when the predictor
matrix is fixed at pre specified points X is:

Lλ(γ) =
∥∥∥[QT

f ⊗ LT
]
vec(γ)− vec(L−1AfQ

−T
f )

∥∥∥2
2
+ λ ‖vec(γ)‖1 , (9)

with QfQ
T
f = XTX, Af = E[ΩỸ

T
X], and M = Ω = LLT ; compare to (6) and (7).

The derivation of (9) is similar to the presentation in Section 2 and may be found in
Supplementary Appendix C.

The corresponding version of the loss gap is

Δλ = L(Ỹ,X,Θ,γ∗
λ)− L(Ỹ,X,Θ,γ∗),

which has distribution induced by the posterior over (Ỹ,Θ) rather than (Ỹ , X̃,Θ) as
before. By fixing X, the posterior of Δλ has smaller dispersion which results in denser
summaries for the same level of κ. For example, compare how dense the graph in Figures
4 is relative to the graph in Figures 6. The denser graph in Figures 6 contains all ten
potential risk factors compared to just three in Figures 4, which correspond to the Fama–
French factors described in Fama and French (1992). Recall that both graphs represent
the sparsest model such that the probability of being no worse than the saturated model
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Figures 6: (left) Evaluation of Δλ and πλ along the solution path for the 25 size/value
portfolios modeled by the 10 factors under the assumption of fixed predictors. An
analyst may use this plot to select a particular model. Uncertainty bands are 75%
posterior intervals on the Δλ metric. The large black dot and associated dashed line
represents the model selected and shown on the right. (right) The selected model for
25 size/value portfolios modeled by the 10 factors. The responses and predictors are
colored in gray and white, respectively. Edges represent nonzero components of the
optimal action, γ.

is greater than κ = 12.5% — the difference is that one of the graphs defines “worse-
than” in terms of a fixed set of risk factor returns while the other acknowledges that
those returns are themselves uncertain in future periods.

Figure 7 demonstrates this problem for several choices of the uncertainty level. Re-
gardless of the uncertainty level chosen, the selected models contain most (if not all) of
the ten factors and many edges. In fact, it is difficult to distinguish even the κ = 2%
and κ = 47.5% models.

5 Conclusion

In this paper, we propose a model selection summary for multivariate linear models
when future realizations of the predictors are unknown. Such models are widely used in
many areas of science and economics, including genetics and asset pricing. Our utility-
based sparse posterior summary procedure is a multivariate extension of the “decoupling
shrinkage and selection” methodology of Hahn and Carvalho (2015). The approach we
develop has three steps: (i) fit a Bayesian model, (ii) specify a utility function with a
sparsity-inducing penalty term and optimize its expectation, and (iii) graphically sum-
marize the posterior impact (in terms of utility) of the sparsity penalty. Our utility
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Figure 7: Sequence of selected models for varying threshold level κ under the assumption
of fixed predictors.

function is based on the kernel of the conditional distribution responses given the pre-
dictors and can be formulated as a tractable convex program. We demonstrate how our
procedure may be used in asset pricing under a variety of modeling choices.

The remainder of this discussion takes a step back from the specifics of the seemingly
unrelated regressions model and considers a broader role for utility-based posterior
summaries.

A paradox of applied Bayesian analysis is that posterior distributions based on rel-
atively intuitive models like the SUR model are often just as complicated as the data
itself. For Bayesian analysis to become a routine tool for practical inquiry, methods for
summarizing posterior distributions must be developed apace with the models them-
selves. A natural starting point for developing such methods is decision theory, which
suggests developing loss functions specifically geared towards practical posterior sum-
mary. As a matter of practical data analysis, articulating an apt loss function has been
sorely neglected relative to the effort typically lavished on the model specification stage,
specifically prior specification. Ironically (but not surprisingly) our application demon-
strates that one’s utility function has a dominant effect on the posterior summaries
obtained relative to which prior distribution is used.
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This paper makes two contributions to this area of “utility design”. First, we pro-
pose that the likelihood function has a role to play in posterior summary apart from its
role in inference. That is, one of the great practical virtues of likelihood-based statis-
tics is that the likelihood serves to summarize the data by way of the corresponding
point estimates. By using the log-density as our utility function applied to future data,
we revive the fundamental summarizing role of the likelihood. Additionally, note that
this approach allows three distinct roles for parameters. First, all parameters of the
model appear in defining the posterior predictive distribution. Second, some parame-
ters appear in defining the loss function; Ψ plays this role in our analysis. Third, some
parameters define the action space. In this framework there are no “nuisance” param-
eters that vanish from the estimator as soon as a marginal posterior is obtained. Once
the likelihood-based utility is specified, it is a natural next step to consider augmenting
the utility to enforce particular features of the desired point summary. For example, our
analysis above was based on a utility that explicitly rewards sparsity of the resulting
summary. A traditional instance of this idea is the definition of high posterior density
regions, which are defined as the shortest, contiguous interval that contains a prescribed
fraction of the posterior mass.

Our second contribution is to consider not just one, but a range, of utility functions
and to examine the posterior distributions of the corresponding posterior loss. Specifi-
cally, we compare the utility of a sparsified summary to the utility of the optimal non-
sparse summary. Interestingly, these utilities are random variables themselves (defined
by the posterior distribution) and examining their distributions provides a fundamen-
tally Bayesian way to measure the extent to which the sparsity preference is driving
one’s conclusions. The idea of comparing a hypothetical continuum of decision-makers
based on the posterior distribution of their respective utilities represents a principled
Bayesian approach to exploratory data analysis. This is an area of ongoing research.

Supplementary Material

Supplement for Variable selection in seemingly unrelated regressions with random pre-
dictors (DOI: 10.1214/17-BA1053SUPP; .pdf).
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