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Fast Simulation of Hyperplane-Truncated
Multivariate Normal Distributions

Yulai Cong∗, Bo Chen†§¶, and Mingyuan Zhou‡§

Abstract. We introduce a fast and easy-to-implement simulation algorithm for
a multivariate normal distribution truncated on the intersection of a set of hyper-
planes, and further generalize it to efficiently simulate random variables from a
multivariate normal distribution whose covariance (precision) matrix can be de-
composed as a positive-definite matrix minus (plus) a low-rank symmetric matrix.
Example results illustrate the correctness and efficiency of the proposed simulation
algorithms.

Keywords: Cholesky decomposition, conditional distribution, equality
constraints, high-dimensional regression, structured covariance/precision matrix.

1 Introduction

We investigate the problem of simulation from a multivariate normal (MVN) distribu-
tion whose samples are restricted to the intersection of a set of hyperplanes, which is
shown to be inherently related to the simulation of a conditional distribution of a MVN
distribution. A naive approach, which linearly transforms a random variable drawn from
the conditional distribution of a related MVN distribution, requires a large number of
intermediate variables that are often computationally expensive to instantiate. To ad-
dress this issue, we propose a fast and exact simulation algorithm that directly projects
a MVN random variable onto the intersection of a set of hyperplanes. We further show
that sampling from a MVN distribution, whose covariance (precision) matrix can be de-
composed as the sum (difference) of a positive-definite matrix, whose inversion is known
or easy to compute, and a low-rank symmetric matrix, may also be made significantly
fast by exploiting this newly proposed stimulation algorithm for hyperplane-truncated
MVN distributions, avoiding the need of Cholesky decomposition that has a computa-
tional complexity of O(k3) (Golub and Van Loan, 2012), where k is the dimension of
the MVN random variable.

Related to the problems under study, the simulation of MVN random variables
subject to certain constraints (Gelfand et al., 1992) has been investigated in many
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other different settings, such as multinomial probit and logit models (Albert and Chib,
1993; McCulloch et al., 2000; Imai and van Dyk, 2005; Train, 2009; Holmes and Held,
2006; Johndrow et al., 2013), Bayesian isotonic regression (Neelon and Dunson, 2004),
Bayesian bridge (Polson et al., 2014), blind source separation (Schmidt, 2009), and
unmixing of hyperspectral data (Altmann et al., 2014; Dobigeon et al., 2009a). A typical
example arising in these different settings is to sample a random vector x ∈ R

k from a
MVN distribution subject to k inequality constraints as

x ∼ NS(μ,Σ), S = {x : l ≤ Gx ≤ u}, (1)

where NS(μ,Σ) represents a MVN distribution truncated on the sample space S, μ ∈
R

k is the mean, Σ ∈ R
k×k is the covariance matrix, G ∈ R

k×k is a full-rank matrix,
l ∈ R

k, u ∈ R
k, and l < u. If the elements of l and u are permitted to be −∞ and +∞,

respectively, then both single sided and fewer than k inequality constraints are allowed.
Equivalently, as in Geweke (1991, 1996), one may let x = μ + G−1z and use Gibbs
sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) to sample the k elements
of z one at a time conditioning on all the others from a univariate truncated normal
distribution, for which efficient algorithms exist (Robert, 1995; Damien and Walker,
2001; Chopin, 2011). To deal with the case that the number of linear constraints imposed
on x exceed its dimension k and to obtain better mixing, one may consider the Gibbs
sampling algorithm for truncated MVN distributions proposed in Rodriguez-Yam et al.
(2004). In addition to Gibbs sampling, to sample truncated MVN random variables, one
may also consider Hamiltonian Monte Carlo (Pakman and Paninski, 2014; Lan et al.,
2014) and a minimax tilting method proposed in Botev (2016).

2 Hyperplane-truncated and conditional MVNs

For the problem under study, we express a k-dimensional MVN distribution truncated
on the intersection of k2 < k hyperplanes as

x ∼ NS(μ,Σ), S = {x : Gx = r}, (2)

where
G ∈ R

k2×k, r ∈ R
k2 ,

and Rank(G) = k2. The probability density function can be expressed as

p(x |μ,Σ,G, r) =
1

Z
exp

[
−1

2
(x− μ)TΣ−1(x− μ)

]
δ(Gx = r), (3)

where Z is a constant ensuring
∫
p(x |μ,Σ,G, r)dx = 1, and δ(x) = 1 if the condition

x is satisfied and δ(x) = 0 otherwise. Let us partition G, x, μ, Σ, and Λ = Σ−1 as

G = (G1,G2), x =

[
x1

x2

]
, μ =

[
μ1

μ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, and Λ =

[
Λ11 Λ12

Λ21 Λ22

]
,

whose sizes are

(k2×k1, k2×k2),

[
k1 × 1
k2 × 1

]
,

[
k1 × 1
k2 × 1

]
,

[
k1 × k1 k1 × k2
k2 × k1 k2 × k2

]
, and

[
k1 × k1 k1 × k2
k2 × k1 k2 × k2

]
,

respectively, where k = k1 + k2, Σ21 = ΣT
12, and Λ21 = ΛT

12.
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A special case that frequently arises in real applications is when G1 = 0k2×k1 and
G2 = Ik2 , which means (0k2×k1 , Ik2)x = x2 = r and the need is to simulate x1 given
x2 = r. For a MVN random variable x ∼ N (μ,Σ), it is well known, e.g., in Tong
(2012), that the conditional distribution of x1 given x2 = r, i.e., the distribution of x
restricted to S = {x : (0k2×k1 , Ik2)x = r}, can be expressed as

x1 |x2 = r ∼ N
[
μ1 +Σ12Σ

−1
22 (r − μ2), Σ11 −Σ12Σ

−1
22 Σ21

]
. (4)

Alternatively, applying the Woodbury matrix identity to relate the entries of the co-
variance matrix Σ to those of the precision matrix Λ, one may obtain the following
equivalent expression as

x1 |x2 = r ∼ N
[
μ1 −Λ−1

11 Λ12(r − μ2), Λ−1
11

]
. (5)

In a general setting where G �= (0k2×k1 , Ik2), let us define a full rank linear trans-
formation matrix H ∈ R

k×k, with (H1,H2) as the (k × k1, k × k2) partition of H,
where the columns of H1 ∈ R

k×k1 span the null space of the k2 rows of G, mak-
ing GH = (GH1,GH2) = (0k2×k1 ,GH2), where GH2 is a k2 × k2 full rank matrix.
For example, a linear transformation matrix H that makes GH = (0k2×k1 , Ik2) can be
constructed using the command H = inv([null(G)′;G]) in MATLAB and
H <−solve(rbind(t(Null(t(G))),G)) in R. With H and H−1, one may re-express the
constraints as S = {x : (0k2×k1 ,GH2)(H

−1x) = r}. Denote z = H−1x, then we can
generate x by letting x = Hz, where

z ∼ ND[H
−1μ,H−1Σ(H−1)T ], D = {z : GH2z2 = r} = {z : z2 = (GH2)

−1r}. (6)

More specifically, denoting Λ = [H−1Σ(H−1)T ]−1 = HTΣ−1H as the precision matrix
for z, we have

[
Λ11 Λ12

Λ21 Λ22

]
= HTΣ−1H =

[
HT

1 Σ
−1H1 HT

1 Σ
−1H2

HT
2 Σ

−1H1 HT
2 Σ

−1H2

]
, (7)

and hence x truncated on S can be naively generated using the following algorithm,
whose computational complexity is described in Table 1 of the Supplementary Material
(Cong et al., 2017).

For illustration, we consider a simple 2-dimensional example with μ = (1, 1.2)T ,
Σ = [(1, 0.3)T , (0.3, 1)T ], G = (1, 1), and r = 1. If we choose H1 = (−0.7071, 0.7071)T

and H2 = (1.3, 1.3)T , then we have z2 = (GH2)
−1r = (2.6)−1 = 0.3846, Λ11 = 1.4285,

and Λ12 = 0; as shown in Figure 1, we may generate x using

x = (−0.7071, 0.7071)T z1 + (1.3, 1.3)T z2,

where z1 ∼ N (0.1414, 0.7) and z2 = 0.3846.

For high dimensional problems, however, Algorithm 1 in general requires a large
number of intermediate variables that could be computationally expensive to compute.
In the following discussion, we will show how to completely avoid instantiating these
intermediate variables.
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Figure 1: Illustration of (a) p(x) in (3), where μ = (1, 1.2)T , Σ = [(1, 0.3)T , (0.3, 1)T ],
G = (1, 1), and r = 1, and (b) p(z) in (6), where H1 = (−0.7071, 0.7071)T , H2 =
(1.3, 1.3)T , and H−1 = [(−0.7071, 0.3846)T , (0.7071, 0.3846)T ]. The coordinate systems
of x and z are shown in black and red, respectively, and the first and second axes of a
coordinate system are shown as dotted and dashed lines, respectively.

Algorithm 1 Simulation of the hyperplane truncated MVN distribution x ∼ NS(μ,Σ),
where S = {x : Gx = r}, by transforming a random variable drawn from the conditional
distribution of another MVN distribution.

• Find H = (H1,H2) that satisfies GH = (GH1,GH2) = (0k2×k1 ,GH2), where
GH2 is a full rank matrix;

• Let z2 = (GH2)
−1r, Λ11 = HT

1 Σ
−1H1, and Λ12 = HT

1 Σ
−1H2;

• Sample z1 | z2 = (GH2)
−1r ∼ N (μz1 ,Λ

−1
11 ), where

μz1 = (Ik1 ,0k1×k2)H
−1μ−Λ−1

11 Λ12

[
(GH2)

−1r − (0k2×k1 , Ik2)H
−1μ

]
;

• Return x = Hz = H1z1 +H2(GH2)
−1r.

3 Fast and exact simulation of MVN distributions

Instead of using Algorithm 1, we first provide a theorem to show how to efficiently and

exactly simulate from a hyperplane-truncated MVN distribution. In the Supplementary

Material, we provide two different proofs. The first proof facilitates the derivations by

employing an existing algorithm of Hoffman and Ribak (1991) and Doucet (2010), which

describes how to simulate from the conditional distribution of a MVN distribution shown

in (4) without computing Σ11−Σ12Σ
−1
22 Σ21 and its Cholesky decomposition. Note it is

straightforward to verify that the algorithm in Hoffman and Ribak (1991) and Doucet

(2010), as shown in the Supplementary Material, can be considered as a special case of

the proposed algorithm with G = [0, I].
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Algorithm 2 Simulation of the hyperplane truncated MVN distribution x ∼ NS(μ,Σ),
where S = {x : Gx = r}, by transforming a random variable drawn from y ∼
N (μ,Σ).

• Sample y ∼ N (μ,Σ);
• Return x = y +ΣGT (GΣGT )−1(r −Gy), which can be realized using

– Solve α such that (GΣGT )α = r −Gy;

– Return x = y +ΣGTα.

Theorem 1. Suppose x is simulated with Algorithm 2, then it is distributed as x ∼
NS(μ,Σ), S = {x : Gx = r}, where G ∈ R

k2×k, r ∈ R
k2 , and Rank(G) =

k2 < k.

The above algorithm and theorem, whose computational complexity is described in
Table 2 of the Supplementary Material, show that one may draw y from the uncon-
strained MVN as y ∼ N (μ,Σ) and directly map it to a vector x on the intersection of
hyperplanes using x = ΣGT (GΣGT )−1r+ [I−ΣGT (GΣGT )−1G]y. For illustration,
with the same μ, Σ, G, and r as those in Figure 1, we show in Figure 2 a simple
two dimensional example, where the unrestricted Gaussian distribution N (μ,Σ) is rep-
resented with a set of ellipses, and the constrained sample space S is represented as
a straight line in the two-dimensional setting. With ΣGT (GΣGT )−1r = (0.5, 0.5)T ,[
I−ΣGT (GΣGT )−1G

]
= [(0.5,−0.5)T , (−0.5, 0.5)T ], one may directly maps a sam-

ple y ∼ N (μ,Σ) to a vector on the constrained space. For example, if y = (1, 2)T , then
it would be mapped to x = (0, 1)T on the straight line.

Figure 2: A two dimensional demonstration of Algorithm 2 that maps a random sample
from y ∼ N (μ,Σ) to a sample in the constrained space using x = ΣGT (GΣGT )−1r+
[I − ΣGT (GΣGT )−1G]y. For example, if μ = (1, 1.2)T , Σ = [(1, 0.3)T , (0.3, 1)T ],
G = (1, 1), and r = 1, then y = (1, 2)T would be mapped to x = (0, 1)T on a straight
line using Algorithm 2.
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3.1 Fast simulation of MVN distributions with structured
covariance or precision matrices

For fast simulation of MVN distributions with structured covariance or precision matri-
ces, our idea is to relate them to higher-dimensional hyperplane-truncated MVN distri-
butions, with block-diagonal covariance matrices, that can be efficiently simulated with
Algorithm 2. We first introduce an efficient algorithm for the simulation of a MVN dis-
tribution, whose covariance matrix is a positive-definite matrix subtracted by a low-rank
symmetric matrix. Such kind of covariance matrices commonly arise in the conditional
distributions of MVN distributions, as shown in (4). We then further extend this al-
gorithm to the simulation of a MVN distribution whose precision (inverse covariance)
matrix is the sum of a positive-definite matrix and a low-rank symmetric matrix. Such
kind of precision matrices commonly arise in the conditional posterior distributions of
the regression coefficients in both linear regression and generalized linear models.

Theorem 2. The probability density function (PDF) of the MVN distribution

x1 ∼ N (μ1, Σ11 −Σ12Σ
−1
22 Σ21), (8)

is the same as the PDF of the marginal distribution of x1 = (x1, . . . , xk1)
T in x =

(xT
1 , xk1+1, . . . , xk)

T , whose PDF is expressed as

p(x |μ, Σ̃,G, r) = N{x:Gx=r}

(
μ, Σ̃

)

=
1

Z
exp

[
−1

2
(x− μ)T Σ̃

−1
(x− μ)

]
δ(Gx = r), (9)

where Z is a normalization constant, G1 = Σ21Σ
−1
11 is a matrix of size k2 × k1, G2 is

a user-specified full rank invertible matrix of size k2 × k2, r ∈ R
k2 is a user-specified

vector, and

G = (G1,G2) ∈ R
k2×k, μ =

[
μ1

μ2

]
∈ R

k, Σ̃ =

[
Σ11 0

0 Σ̃22

]
∈ R

k×k, (10)

where

μ2 = G−1
2 (r −Σ21Σ

−1
11 μ1), (11)

Σ̃22 = G−1
2

(
Σ22 −Σ21Σ

−1
11 Σ12

)
(G−1

2 )T . (12)

The above theorem shows how the simulation of a MVN distribution, whose co-
variance matrix is a positive-definite matrix minus a symmetric matrix, can be real-
ized by the simulation of a higher-dimensional hyperplane-truncated MVN distribu-
tion. By construction, it makes the covariance matrix Σ̃ of the truncated-MVN be
block diagonal, but still preserves the flexibility to customize the full-rank matrix G2

and the vector r. While there are infinitely many choices for both G2 and r, in the
following discussion, we remove that flexibility by specifying G2 = Ik2 , leading to
G = (G1,G2) = (Σ21Σ

−1
11 , Ik2), and r = Σ21Σ

−1
11 μ1. This specific setting of G2 and r

leads to the following Corollary that is a special case of Theorem 2. Note that while we
choose this specific setting in the paper, depending on the problems under study, other
settings may lead to even more efficient simulation algorithms.
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Corollary 3. The PDF of the MVN distribution

x1 ∼ N (μ1,Σ11 −Σ12Σ
−1
22 Σ21) (13)

is the same as the PDF of the marginal distribution of x1 in x = (xT
1 , xk1+1, . . . , xk)

T ,
whose PDF is expressed as

p(x) = N{x:Σ21Σ
−1
11 x1+x2=Σ21Σ

−1
11 μ1}

(
μ, Σ̃

)

=
1

Z
exp

[
−1

2
(x− μ)T Σ̃

−1
(x− μ)

]
δ(Σ21Σ

−1
11 x1 + x2 = Σ21Σ

−1
11 μ1), (14)

where x2 = (xk1+1, . . . , xk)
T , Z is a normalization constant, and

μ =

[
μ1

0

]
∈ R

k, Σ̃ =

[
Σ11 0

0 Σ22 −Σ21Σ
−1
11 Σ12

]
∈ R

k×k. (15)

Further applying Theorem 1 to Corollary 3, as described in detail in the Supple-
mentary Material, a MVN random variable x with a structured covariance matrix can
be generated as in Algorithm 3, where there is no need to compute Σ11 −Σ12Σ

−1
22 Σ21

and its Cholesky decomposition. Suppose the covariance matrix Σ11 admits some spe-
cial structure that makes it easy to invert and computationally efficient to simulate
from N (0,Σ11), then Algorithm 3 could lead to a significant saving in computation if
k2 � k1. On the other hand, when k2 � k1 and Σ22 − Σ21Σ

−1
11 Σ12 admits no spe-

cial structures, Algorithm 3 may not bring any computational advantage and hence
one may resort to the naive Cholesky decomposition based procedure. Detailed compu-
tational complexity analyses for both methods are provided in Tables 3 and 4 of the
Supplementary Material, respectively.

Algorithm 3 Simulation of the MVN distribution

x1 ∼ N (μ1,Σ11 −Σ12Σ
−1
22 Σ21).

• Sample y1 ∼ N (0,Σ11) and y2 ∼ N (0,Σ22 −Σ21Σ
−1
11 Σ12);

• Return x1 = μ1 + y1 −Σ12Σ
−1
22 (Σ21Σ

−1
11 y1 + y2), which can be realized using

– Solve α such that Σ22α = Σ21Σ
−1
11 y1 + y2;

– Return x1 = μ1 + y1 −Σ12α.

Corollary 4. A random variable simulated with Algorithm 3 is distributed as x1 ∼
N (μ1,Σ11 −Σ12Σ

−1
22 Σ21).

The efficient simulation algorithm for a MVN distribution with a structured co-
variance matrix can also be further extended to a MVN distribution with a structured
precision matrix, as described below, where β ∈ R

p, μβ ∈ R
p, Φ ∈ R

n×p, and both
A ∈ R

p×p and Ω ∈ R
n×n are positive-definite matrices. Computational complexity

analyses for both the naive Cholesky decomposition based implementation and Algo-
rithm 4 are provided in Tables 5 and 6 of the Supplementary Material, respectively.
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Similar to Algorithm 3, Algorithm 4 may bring a significant saving in computation
when p � n and A admits some special structure that makes it easy to invert and
computationally efficient to simulate y1.

Algorithm 4 Simulation of the MVN distribution

β ∼ N
[
μβ , (A+ΦTΩΦ)−1

]
.

• Sample y1 ∼ N (0,A−1) and y2 ∼ N (0,Ω−1);
• Return β = μβ + y1 − A−1ΦT (Ω−1 + ΦA−1ΦT )−1 (Φy1 + y2), which can be
realized using

– Solve α such that (Ω−1 +ΦA−1ΦT )α = Φy1 + y2.

– Return β = μβ + y1 −A−1ΦTα.

Corollary 5. The random variable obtained with Algorithm 4 is distributed as β ∼
N (μβ ,Σβ), where Σβ = (A+ΦTΩΦ)−1.

4 Illustrations

Below we provide several examples to illustrate Theorem 1, which shows how to effi-
ciently simulate from a hyperplane-truncated MVN distribution, and Corollary 4 (Corol-
lary 5), which shows how to efficiently simulate from a MVN distribution with a struc-
tured covariance (precision) matrix. We run all our experiments on a 2.9 GHz computer.

4.1 Simulation of hyperplane-truncated MVNs

We first compare Algorithms 1 and 2, whose generated random samples follow the same
distribution, as suggested by Theorem 1, to highlight the advantages of Algorithm 2 over
Algorithm 1. We then employ Algorithm 2 for a real application whose data dimension
is high and sample size is large.

Comparison of Algorithms 1 and 2

We compare Algorithms 1 and 2 in a wide variety of settings by varying the data
dimension k, varying the number of hyperplane constraints k2, and choosing either a
diagonal covariance matrix Σ or a non-diagonal one. We generate random diagonal
covariance matrices using the MATLAB command diag(0.05 + rand(k, 1)) and random
non-diagonal ones using U.′ ∗ diag(0.05 + rand(k, 1)) ∗ U , where rand(k, 1) is a vector
of k uniform random numbers and U consists of a set of k orthogonal basis vectors.
The elements of μ, r, and G are all sampled from N (0, 1), with the singular value
decomposition applied to G to check whether Rank(G) = k2.

First, to verify Theorem 1, we conduct an experiment with k = 5000 data dimen-
sion, k2 = 20 hyperplanes, and a diagonal Σ. Contour plots of two randomly selected
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Figure 3: Comparison of the contour plots of two randomly selected dimensions of the
10,000 k = 5000 dimensional random samples simulated with Algorithm 1 (top row)
and Algorithm 2 (bottom row). Each of the five columns corresponds to a random trial.

dimensions of the 10,000 random samples simulated with Algorithms 1 and 2 are shown
in the top and bottom rows of Figure 3, respectively. The clear matches between the
contour plots of these two different algorithms suggest the correctness of Theorem 1.

To demonstrate the efficiency of Algorithm 2, we first carry out a series of experi-
ments with the number of hyperplane constraints fixed at k2 = 20 and the data dimen-
sion increased from k = 50 to k = 5000. The computation time of simulating 10,000
samples averaged over five random trials is shown in Figure 4(a) for non-diagonal Σ’s
and in Figure 4(d) for diagonal ones. It is clear that, when the data dimension k is high,
Algorithm 2 has a clear advantage over Algorithm 1 by avoiding computing unnecessary
intermediate variables, which is especially evident when Σ is diagonal. We then carry
out a series of experiments where we vary not only k, but also k2 from 0.1k to 0.9k for
each k. As shown in Figure 4, it is evident that Algorithm 2 dominates Algorithm 1 in
all scenarios, which can be explained by the fact that Algorithm 2 needs to compute
much fewer intermediate variables. Also observed is that a larger k2 leads to slower
simulation for both algorithms, but to a much lesser extent for Algorithm 2. Moreover,
the curvatures of those curves indicate that Algorithm 2 is more practical in a high
dimensional setting. Note that since Algorithm 2 can naturally exploit the structure
of the covariance matrix Σ for fast simulation, it is clearly more capable of benefiting
from having a diagonal or block-diagonal Σ, demonstrated by comparing Figures 4(b)
and 4(c) with Figures 4(e) and 4(f). All these observations agree with our computa-
tional complexity analyses for Algorithms 1 and 2, as shown in Tables 1 and 2 of the
Supplementary Material, respectively.

A practical application of Algorithm 2

In what follows, we extend Algorithm 2 to facilitate simulation from a MVN distribution
truncated on a probability simplex S

k = {x : x ∈ R
k,1Tx = 1, xi ≥ 0, i = 1, · · · , k}.
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Figure 4: Average time of simulating 10,000 hyperplane-truncated MVN samples
over five random trials in different dimensions with non-diagonal covariance matrixes
(top row) and diagonal ones (bottom row). (a)(d) Comparison with fixed k2 = 20.
(b)(e) Algorithm 1 with varying k2. (c)(f) Algorithm 2 with varying k2.

This problem frequently arises when unknown parameters can be interpreted as fractions
or probabilities, for instance, in topic models (Blei et al., 2003), admixture models
(Pritchard et al., 2000; Dobigeon et al., 2009b; Bazot et al., 2013), and discrete directed
graphical models (Heckerman, 1998). With Algorithm 2, one may remove the equality
constraint to greatly simplify the problem.

More specifically, we focus on a big data setting in which the globally shared simplex-
constrained model parameters could be linked to some latent counts via the multinomial
likelihood. When there are tens of thousands or millions of observations in the dataset,
scalable Bayesian inference for the simplex-constrained globally shared model parame-
ters is highly desired, for example, for inferring the topics’ distributions over words in
latent Dirichlet allocation (Blei et al., 2003; Hoffman et al., 2010) and Poisson factor
analysis (Zhou et al., 2012, 2016).

Let us denote the κth model parameter vector constrained on a V -dimensional sim-
plex by φκ ∈ S

V , which could be linked to the latent counts nvjκ ∈ Z of the jth
document under a multinomial likelihood as (n1jκ, . . . , nV jκ) ∼ Mult(n·jκ,φκ), where
Z = {0, 1, 2, · · · }, v ∈ {1, . . . , V }, κ ∈ {1, . . . ,K}, and j ∈ {1, . . . , N}. In topic model-
ing, one may consider K as the total number of latent topics and nvjκ as the number
of words at the vth vocabulary term in the jth document that are associated with the
κth latent topic. Note that the dimension V in real applications is often large, such
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as tens of thousands in topic modeling. Given the observed counts nvj for the whole
dataset, in a batch-learning setting, one typically iteratively updates the latent counts
nvjκ conditioning on φκ, and updates φκ conditioning on nvjκ.

However, this batch-learning inference procedure would become inefficient and even
impractical when the dataset size N grows to a level that makes it too time consuming
to finish even a single iteration of updating all local variables nvjκ. To address this issue,
we consider constructing a mini-batch based Bayesian inference procedure that could
make substantial progress in posterior simulation while the batch-learning one may still
be waiting to finish a single iteration.

Without loss of generality, in the following discussion, we drop the latent factor/topic
index κ to simplify the notation, focusing on the update of a single simplex-constrained
global parameter vector. More specifically, we let the latent local count vector nj =
(n1j , . . . , nV j)

T be linked to the simplex-constrained global parameter vector φ ∈ S
V

via the multinomial likelihood as nj ∼ Mult (n·j ,φ), and impose a Dirichlet distribution
prior on φ as φ ∼ Dir (η1V ).

Instead of waiting for all nj to be updated before performing a single update of φ,
we develop a mini-batch based Bayesian inference algorithm under a general framework
for constructing stochastic gradient Markov chain Monte Carlo (SG-MCMC) (Ma et al.,
2015), allowing φ to be updated every time a mini-batch of nj are processed. For the
sake of completeness, we concisely describe the derivation for a SG-MCMC algorithm,
as outlined below, for simplex-constrained globally shared model parameters. We refer
the readers to Cong et al. (2017) for more details on the derivation and its application
to scalable inference for topic modeling.

Using the reduced-mean parameterization of the simplex constrained vector φ, name-
ly ϕ = (φ1, · · · , φV−1)

T , where ϕ ∈ R
V−1
+ is constrained with ϕ· ≤ 1, we develop a

SG-MCMC algorithm that updates ϕ for the tth mini-batch as

ϕt+1=

[
ϕt+

εt
M

[(ρn̄:·+η)−(ρn··+ηV )ϕt]+N
(
0,

2εt
M

[
diag (ϕt)−ϕtϕ

T
t

])]
�
, (16)

where εt are annealed step sizes, ρ is the ratio of the dataset size N to the mini-batch
size, n:· = (n1·, · · · ,nV ·)

T =
∑

j∈It
nj , n̄:· = (n1·, · · · ,n(V−1)·)

T , [·]� denotes the

constraint that ϕ ∈ R
V−1
+ and ϕ· ≤ 1, and M := E[

∑N
j=1 n·j ] is approximated along

the updating using M = (1− εt)M + εtρE [n··]. Alternatively, we have an equivalent
update equation for φ as

φt+1=

[
φt+

εt
M

[(ρn:·+η)−(ρn··+ηV )φt]+N
(
0,

2εt
M

diag (φt)

)]
∠
, (17)

where [·]∠ represents the constraint that φ ∈ R
V
+ and 1Tφ = 1.

It is clear that (16) corresponds to simulation of a V − 1 dimensional truncated
MVN distribution with V inequality constraints. Since the number of constraints is
larger than the dimension, previously proposed iterative simulation methods such as the
one in Botev (2016) are often inappropriate. Note that, by omitting the non-negative



1028 Fast Simulation of Hyperplane-Truncated MVN Distributions

constraints, the update in (17) corresponds to simulation of a hyperplane-truncated
MVN simulation with a diagonal covariance matrix, which can be efficiently sampled
as described in the following example.

Example 1. Simulation of a hyperplane-truncated MVN distribution as

x ∼ NS [μ, a diag(φ)], S =
{
x : 1Tx = 1

}
,

where x ∈ R
k, μ ∈ R

k, 1Tx =
∑k

i=1 xi, φ ∈ R
k, a > 0, φi > 0 for i ∈ {1, · · · , k}, and

1Tφ =
∑k

i=1 φi = 1, can be realized as follows.

• Sample y ∼ N [μ, adiag(φ)];

• Return x = y + (1− 1Ty)φ.

The sampling steps in Example 1 directly follow Algorithm 2 and Theorem 1 with
the distribution parameters specified asΣ = adiag(φ),G = 1T , and r = 1. Accordingly,
we present the following fast sampling procedure for (16).

Example 2. Simulation from (16) can be approximately but rapidly realized as

• Sample y ∼ N [φt +
εt
M [(ρn:· + η)− (ρn·· + ηV )φt] ,

2εt
M diag (φt)];

• Calculate z = y + (1− 1Ty)φt;

• If z ∈ S, return ϕt+1 = (z1, · · · , zV−1)
T ; else calculate d = max(ε, z) with a small

constant ε ≥ 0, let e = d/
∑V

i=1 di, and return ϕt+1 = (e1, · · · , eV−1)
T .

To verify Example 2, we conduct an experiment using multinomial-distributed data
vectors of V = 2000 dimensions, which are generated as follows: considering that the
simplex-constrained vector φ is usually sparse in a high-dimensional application, we
sample a V = 2000 dimensional vector f whose elements are uniformly distributed
between 0 and 1, randomly select 40 dimensions and reset their values to be 100, and
set φ = f/

∑V
i=1 fi; we simulate N = 10, 000 samples, each nj of which is generated

from the multinomial distribution Mult(n·j ,φ), where the number of trials is random
and generated as n·j ∼ Pois(50). We set εt = t−0.99 and use mini-batches, each of which
consists of 10 data samples, to stochastically update global parameters via SG-MCMC.

For comparison, we choose the same SG-MCMC inference procedure but consider
simulating (16), as performed every time a mini-batch of data samples are provided,
either as in Example 2 or with the Gibbs sampler of Rodriguez-Yam et al. (2004).
Simulating (16) with the Gibbs sampler of Rodriguez-Yam et al. (2004) is realized
by updating all the V dimensions, one dimension at a time, in each Gibbs sampling
iteration. We set the total number of Gibbs sampling iterations for (16) in each mini-
batch based update as 1, 5, or 10. Note that in practice, the nj belonging to the current
mini-batch are often latent and are updated conditioning on the data samples in the
mini-batch and φ. For simplicity, all nj here are simulated once and then fixed.
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Figure 5: Comparisons of the residual errors of the simplex-constrained parameter vec-
tor, estimated under various settings of the stochastic-gradient MCMC (SG-MCMC)
algorithm, as a function of (a) the number of processed mini-batches and (b) time.
The curves labeled as “Batch posterior mean”, “SG-MCMC-fast”, and “SG-MCMC-
Gibbs” correspond to the batch posterior mean, SG-MCMC with (16) simulated as in
Example 2, and SG-MCMC with (16) simulated with the Gibbs sampler of Rodriguez-
Yam et al. (2004), respectively. The digit following “SG-MCMC-Gibbs” represents the
number of Gibbs sampling iterations to simulate (16) for each mini-batch.

Using φ∗
post = (

∑N
j=1 nj + η)/(

∑N
j=1 n·j + ηV ), the posterior mean of φ in a batch-

learning setting, as the reference, we show in Figure 5 how the residual errors for the
estimated φ∗, defined as ‖φ∗ − φ‖2, change both as a function of the number of pro-
cessed mini-batches and as a function of computation time under various settings of
the mini-batch based SG-MCMC algorithm. The curves shown in Figure 5 suggest that
for each mini-batch, to simulate (16) with the Gibbs sampler of Rodriguez-Yam et al.
(2004), it is necessary to have more than one Gibbs sampling iteration to achieve satis-
factory results. It is clear from Figure 5(a) that the Gibbs sampler with 5 or 10 iterations
for each mini-batch, even though each mini-batch has only 10 data samples, provides
residual errors that quickly approach that of the batch posterior mean with a tiny gap,
indicating the effectiveness of the SG-MCMC updating in (16). While simulating (16)
with Gibbs sampling could in theory lead to unbiased samples if the number of Gibbs
sampling iterations is large enough, it is much more efficient to simulate (16) with
the procedure described in Example 2, which provides a performance that is undistin-
guishable from those of the Gibbs sampler with as many as 5 or 10 iterations for each
mini-batch, but at the expense of a tiny fraction of a single Gibbs sampling iteration.

4.2 Simulation of MVNs with structured covariance matrices

To illustrate Corollary 4, we mimic the truncated MVN simulation in (16) and present
the following simulation example with a structured covariance matrix.
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Example 3. Simulation of a MVN distribution as

x1 ∼ N [μ1, a diag(φ1)− aφ1φ
T
1 ],

where x1 ∈ R
k−1, μ1 ∈ R

k−1, a > 0, φ1 = (φ1, . . . , φk−1)
T , φi > 0 for i ∈ {1, . . . , k−1},

and
∑k−1

i=1 φi < 1, can be realized as follows.

• Sample y1 ∼ N [0, a diag(φ1)] and y2 ∼ N (0, a−1 φk), where φk = 1−
∑k−1

i=1 φi;

• Return x1 = μ1 + y1 − (1Ty1 + ay2)φ1.

Denoting x = (xT
1 , xk)

T , φ = (φT
1 , φk)

T , μ = (μT
1 , μk)

T , and μk = 1−1Tμ1, the above
sampling steps can also be equivalently expressed as follows.

• Sample y ∼ N [μ, a diag(φ)];

• Return x1 = y1 + (1− 1Ty)φ1.

Directly following Algorithm 3 and Corollary 4, the first sampling approach for
the above example can be derived by specifying the distribution parameters as Σ11 =
adiag(φ1), Σ12 = φ1, Σ21 = φT

1 , and Σ22 = a−1, while the second approach can be
derived by specifying Σ11 = adiag(φ1), Σ12 = aφ1, Σ21 = aφT

1 , and Σ22 = a.

To illustrate the efficiency of the proposed algorithms in Example 3, we simulate
from the MVN distribution x1 ∼ N [μ1, a diag(φ1)− aφ1φ

T
1 ] using both a naive imple-

mentation via Cholesky decomposition of the covariance matrix and the fast simulation
algorithm for a hyperplane-truncated MVN random variable described in Example 3.
We set the dimension from k = 102 up to k = 104 and set μ = (1/k, . . . , 1/k) and
a = 0.5. For each k and each simulation algorithm, we perform 100 independent ran-
dom trials, in each of which φ is sampled from the Dirichlet distribution Dir(1, . . . , 1)
and 10,000 independent random samples are simulated using that same φ.

As shown in Figure 6, for the proposed Algorithm 3, the average time of simulat-
ing 10,000 random samples increases linearly in the dimension k. By contrast, for the
naive Cholesky decomposition based simulation algorithm, whose computational com-
plexity is O(k3) (Golub and Van Loan, 2012), the average simulation time increases at
a significantly faster rate as the dimension k increases.

For explicit verification, with the 10,000 simulated k = 104 dimensional random
samples in a random trial, we randomly choose two dimensions and display their joint
distribution using a contour plot. As in Figure 7, shown in the first row are the contour
plots of five different random trials for the naive Cholesky implementation, whereas
shown in the second row are the corresponding ones for the proposed Algorithm 3. As
expected, the contour lines of the two figures in the same column closely match each
other.

To further examine when to apply Algorithm 3 instead of the naive Cholesky de-
composition based implementation in a general setting, we present the computational
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Figure 6: Comparison of the naive Cholesky decomposition based implementation and
Algorithm 3 in terms of the average time of generating 10,000 k-dimensional random
samples from x1 ∼ N [μ1, a diag(φ1) − aφ1φ

T
1 ]. The distribution parameters are ran-

domly generated and computation time averaged over 100 random trials is displayed.

Figure 7: Comparison of the contour plots of two randomly selected dimensions of
the 10,000 k = 104 dimensional random samples simulated with the naive Cholesky
implementation (top row) and Algorithm 3 (bottom row). Each of the five columns
corresponds to a random trial.

complexity analyses in Tables 3 and 4 of the Supplementary Material for the naive ap-

proach and Algorithm 3, respectively. In addition, we mimic the settings in Section 4.1

to conduct a set of experiments with randomly generated Σ12, diagonal Σ11, and diag-

onal Σ22. We fix k1 = 4000 and vary k2 from 1 to 8000. The computation time for one

sample averaged over 50 random trials is presented in Figure 8. It is clear from Tables 3

and 4 and Figure 8 that, as a general guideline, one may choose Algorithm 3 when k2
is smaller than k1 and Σ11 admits some special structure that makes it easy to invert

and computationally efficient to simulate from N (0,Σ11).
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Figure 8: Comparison of the naive Cholesky decomposition based implementation and
Algorithm 3 in terms of the average time of generating one k1 = 4000 dimensional sample
from x1 ∼ N (μ1,Σ11 − Σ12Σ

−1
22 Σ21), with diagonal Σ11 and Σ22. The distribution

parameters are randomly generated and computation time averaged over 50 random
trials is displayed.

4.3 Simulation of MVNs with structured precision matrices

To examine when to apply Algorithm 4 instead of the naive Choleskey decomposition
based procedure, we first consider a series of random simulations in which the sample
size n is fixed while the data dimension p is varying. We then show that Algorithm 4
can be applied for high-dimensional regression whose p is often much larger than n.

We fix n = 4000, vary p from 1 to 8000, and mimic the settings in Section 4.1 to
randomly generate Φ, diagonal A, and diagonal Ω. As a function of dimensions p, the
computation time for one sample averaged over 50 random trials is shown in Figure 9. It
is evident that, identical to the complexity analysis in Tables 5 and 6, Algorithm 4 has
a linear complexity with respect to p under these settings, which will bring significant
acceleration in a high-dimensional setting with p � n. If the sample size n is large
enough that n > p, then one may directly apply the naive Cholesky decomposition
based implementation.

Algorithm 4 could be slightly modified to be applied to high-dimensional regression,
where the main objective is to efficiently sample from the conditional posterior of β ∈
R

p×1 in the linear regression model as

t ∼ N (Φβ,Ω−1), β ∼ N (0,A−1), (18)

where Φ ∈ R
n×p, Ω ∈ R

n×n, and different constructions on A ∈ R
p×p lead to a wide

variety of regression models (Caron and Doucet, 2008; Carvalho et al., 2010; Polson
et al., 2014). The conditional posterior of β is directly derived and shown in the fol-
lowing example, where its simulation algorithm is summarized by further generalizing
Corollary 5.
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Figure 9: Comparison of the naive Cholesky decomposition based implementation and
Algorithm 4 in terms of the average time of generating one p dimensional sample from
β ∼ N [μβ , (A+ΦTΩΦ)−1], with diagonal A and Ω. The distribution parameters are
randomly generated and computation time averaged over 50 random trials is displayed.

Example 4. Simulation of the MVN distribution

β ∼ N
[
(A+ΦTΩΦ)−1ΦTΩt, (A+ΦTΩΦ)−1

]

can be realized as follows.

• Sample y1 ∼ N (0,A−1) and y2 ∼ N (0,Ω−1);

• Return β = y1 +A−1ΦT (Ω−1 +ΦA−1ΦT )−1 (t−Φy1 − y2), which can be real-
ized using

– Solve α such that (Ω−1 +ΦA−1ΦT )α = t−Φy1 − y2;

– Return β = y1 +A−1ΦTα.

Note that if Ω = In, then the simulation algorithm in Example 4 reduces to the one
in Proposition 2.1 of Bhattacharya et al. (2016), which is shown there to be significantly
more efficient than that of Rue (2001) for high-dimensional regression if p � n.

5 Conclusions

A fast and exact simulation algorithm is developed for a multivariate normal (MVN)
distribution whose sample space is constrained on the intersection of a set of hyper-
planes, which is shown to be inherently related to the conditional distribution of a
unconstrained MVN distribution. The proposed simulation algorithm is further gen-
eralized to efficiently simulate from a MVN distribution, whose covariance (precision)



1034 Fast Simulation of Hyperplane-Truncated MVN Distributions

matrix can be decomposed as the sum (difference) of a positive-definite matrix and
a low-rank symmetric matrix, using a higher dimensional hyperplane-truncated MVN
distribution whose covariance matrix is block-diagonal.

Supplementary Material

Fast Simulation of Hyperplane-Truncated Multivariate Normal Distributions: Supple-
mentary Material (DOI: 10.1214/17-BA1052SUPP; .pdf).
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