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ADAPTIVE ESTIMATION OF THE SPARSITY IN THE GAUSSIAN
VECTOR MODEL

BY ALEXANDRA CARPENTIER1 AND NICOLAS VERZELEN
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Consider the Gaussian vector model with mean value θ . We study the
twin problems of estimating the number ‖θ‖0 of nonzero components of θ

and testing whether ‖θ‖0 is smaller than some value. For testing, we estab-
lish the minimax separation distances for this model and introduce a minimax
adaptive test. Extensions to the case of unknown variance are also discussed.
Rewriting the estimation of ‖θ‖0 as a multiple testing problem of all hy-
potheses {‖θ‖0 ≤ q}, we both derive a new way of assessing the optimality
of a sparsity estimator and we exhibit such an optimal procedure. This gen-
eral approach provides a roadmap for estimating the complexity of the signal
in various statistical models.

1. Introduction. Many estimation methods in high or infinite-dimensional
statistics rely on the assumption that the parameter of interest belongs to some
smaller parameter space. Depending on the problem at hand, the assumptions on
the structure of the unknown parameter take various forms. In high-dimensional
linear regression, it is usually assumed that the regression parameter is sparse [4].
In matrix completion, the underlying matrix may be supposed to be low-rank [30].
In density estimation, many nonparametric methods are based on the assumption
that the function satisfies some smoothness properties [21]. Many model-based
clustering methods require the data to follow a mixture distribution with several
Gaussian components [22]. In practice, the exact complexity of the parameter (e.g.,
the rank of the matrix, the smoothness of the function) is unknown. Although a lot
of work has been devoted to the construction of statistical procedures performing
as well as if the model complexity was known (e.g., [4, 20, 35]), the literature on
the estimation of the complexity of the parameter is scarcer.

In this paper, we are interested in the twin problems of estimating the complex-
ity of the parameter and testing whether the parameter belongs to some complexity
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class. There are several motivations for these problems. First, complexity estima-
tion allows to assess the relevance of specific parameter estimation approaches.
For instance, inferring the smoothness of a function allows to justify the use of
regularity-based procedures. Second, the construction of adaptive confidence re-
gions is related to the model testing problem since the size of an adaptive con-
fidence region should depend on the complexity of the unknown parameter [23].
Finally, in some practical applications, the primary objective is rather to evalu-
ate the complexity of the parameter than the parameter itself. This is for instance
the case in some heritability studies where the goal is to decipher whether a trait
is multigenic or “highly polygenic” which amounts to inferring whether a high-
dimensional regression parameter is sparse or dense [34, 41].

In this paper, we focus on a comparatively simple, yet emblematic setting,
namely the Gaussian vector model, that we define as follows:

(1) Yi = θi + εi, i = 1, . . . , n,

where θ = (θi) ∈ Rn is unknown and the noise components εi are independent
and follow a centered normal distributions with variance σ 2. We are interested in
(i) estimating the number ‖θ‖0 of nonzero components of θ and (ii) given some
nonnegative integer k0, testing whether ‖θ‖0 ≤ k0 or ‖θ‖0 > k0. The former prob-
lem is called sparsity estimation and the latter sparsity testing.

1.1. Sparsity testing and separation distances. As the sparsity testing problem
is easier to formalize than the sparsity estimation problem, let us first be more
specific about it. Given a nonnegative integer k0 ∈ [0, n], we write

(2) B0[k0] := {
θ ∈ Rn : ‖θ‖0 ≤ k0

}
,

for the set of k0-sparse vectors θ , that is to say the set of vectors θ with less than k0
nonzero coefficients. Our goal is to test whether θ belongs to B0[k0] or not. Before
describing our results and the literature, we shall first define the notion of minimax
separation distance of a test.

Let ‖ · ‖2 stand for the Euclidean norm in Rn. For any θ ∈ Rn, we write
d2(θ,B0[k0]) := infu∈B0[k0] ‖θ − u‖2 for the distance of θ to the set of k0-sparse
vectors. Intuitively, any α-level test T of the null hypothesis {θ ∈ B0[k0]} cannot
reject the null with high probability when the true parameter θ is arbitrarily close
(in the d2(θ,B0[k0]) sense) to B0[k0]. Conversely, any reasonable test should reject
the null hypothesis with high probability for parameters θ that are really distant to
B0[k0]. In order to quantify the performances of a given test T , it is then clas-
sical [2, 25] to rely on the notion of separation distance. Given positive integers
k1 > k0 and a real number ρ > 0, define

(3) B0[k1, k0, ρ] := {
θ ∈ B0[k1] : d2

(
θ,B0[k0])≥ ρ

}
,

as the set of k1-sparse vectors that lie at distance larger than ρ from the null. Then,
for a fixed � > 0 and ρ > 0, we consider the testing problem

(4) Hk0 : θ ∈ B0[k0] versus H�,k0,ρ : θ ∈ B0[k0 + �,k0, ρ].
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The purpose of this definition is to remove from the alternative hypothesis pa-
rameters θ that are too close to the null hypothesis. Given a test T , its risk
R(T ;k0,�,ρ) for the above problem (4) is defined as the sum of the type I and
type II error probabilities:

(5) R(T ;k0,�,ρ) := sup
θ∈B0[k0]

Pθ,σ [T = 1] + sup
θ∈B0[k0+�,k0,ρ]

Pθ,σ [T = 0].

Here, Pθ,σ stands for the distribution of Y . The function ρ �→ R(T ;k0,�,ρ) is
nonincreasing and equals at least one for ρ = 0. For a fixed γ ∈ (0,1), the separa-
tion distance ργ (T ;k0,�) is the largest ρ such that the hypotheses

(6) ργ (T ;k0,�) := sup
{
ρ > 0|R(T ;k0,�,ρ) > γ

}
.

The separation distance of a good test T should be the smallest possible. Finally,
the minimax separation distance is

(7) ρ∗
γ [k0,�] := inf

T
ργ (T ;k0,�),

where the infimum is taken over all tests T . In other words, ρ∗
γ [k0,�] is the mini-

mal distance to B0[k0] such that some test is able to reliably distinguish parameters
in B0[k0] from parameters in B0[k0 + �,k0, ρ]. Hence, it characterizes the diffi-
culty of the testing problem. A test T whose separation distance ργ (T ;k0,�) is
(up to a multiplicative constant) smaller than ρ∗

γ [k0,�] is said to be minimax.

1.2. Our contribution. Our contribution is threefold:

(i) When σ is known, we first establish the minimax separation distance
ρ∗

γ [k0,�] for all integers k0 and all � > 0. Besides, we introduce a new test which
is minimax adaptive for all �.

(ii) In the more realistic setting where the noise level σ is unknown, the min-
imax separation distance ρ∗

γ,var[k0,�] (defined in Section 3) is established and
minimax adaptive tests are exhibited. Interestingly, it is proved that the sparsity
testing problem under unknown noise level is no more difficult than under known
noise level for small �. For large �, the knowledge of σ plays an important role.

(iii) We reformulate the sparsity estimation problem as a multiple testing prob-
lem where we simultaneously consider all nested hypotheses Hq for q ∈ [0, n].
Introducing a multiple testing procedure which is simultaneously optimal over all
q , we derive an estimator k̂ which is less than or equal to ‖θ‖0 with high probabil-
ity and is also closest to ‖θ‖0 in a minimax sense. Interestingly, this property will
be valid for all possible θ ∈ Rn and avoid us to rely on any particular assumption
on the parameter. More generally, this perspective also provides a general roadmap
to handle the problem of complexity estimation using simultaneous separation dis-
tances.

In order to discuss more specifically our contribution, we need to contrast them
with earlier results for related problems such as signal detection. This is why we
review the related literature before describing in depth our results.
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1.3. Related literature. Although the twin problems of sparsity testing and
sparsity estimation are closely connected, we start by discussing the literature
mostly related to the testing version of our problem and then turn to the estimation
version.

Signal detection. The signal detection problem which amounts to testing
whether θ = 0 is a special instance of the sparsity testing problem (correspond-
ing to k0 = 0). Signal detection in the Gaussian vector model has been exten-
sively studied [2, 15, 17, 25] in the last fifteen years and is now well understood.
For instance, it has been established in [15] that the minimax separation distance
ρ∗

γ [0,�] satisfies

ρ∗2
γ [0,�] 	γ σ 2� log

(
1 +

√
n

�

)
,

where f (�,n) 	γ g(�,n) means that there exist positive constants cγ and c′
γ

(possibly depending on γ ) such that f (�,n) ≤ cγ g(�,n) ≤ c′
γ f (�,n). Besides,

some tests are able to simultaneously achieve the above separation distances for
all positive �.

Looking more closely at the above equation, one can distinguish two main
regimes for this problem depending on the sparsity � of the alternative: the sparse
case (� ≤ √

n) and the dense case (� >
√

n). In the sparse case, ρ∗2
γ [0,�] is of

order � log(1 + √
n/�). This entails that it is possible to detect sparse vectors θ

whose nonzero values are of order
√

log(n1/2/�). Known optimal tests such as
the Higher Criticism test [17] or the one proposed in [15] amount to counting the
number of values |Yi | that are larger than some threshold t and to compare this
number to what is expected under the null hypothesis. Doing this simultaneously
for a wide range of t leads to near-optimal performances simultaneously for all
� ∈ [1,

√
n]. In the dense case (� ≥ √

n), the situation is qualitatively different as
the square minimax separation distance ρ∗2

γ [0,�] is of order
√

n. A near-optimal

test proposed, for example, in [2], is based on the statistic ‖Y‖2
2/σ

2, which, under
the null, follows a χ2 distribution with n degrees of freedom and, under the alter-
native, follows a noncentral χ2 distribution with noncentrality parameter ‖θ‖2

2.
Composite-composite testing problems and functional estimation. For the signal

detection problem (k0 = 0), the null hypothesis is simple whereas for the general
case k0 > 0, the null hypothesis is composite, thereby making the analysis of the
problem more challenging. Although we are not aware of any general treatment
of this kind of problem in the literature, some partial results and methods may be
derived in our setting from prior work on related problems.

Minimax analysis of composite-composite testing problems has, up to our
knowledge, been tackled per se in a few work [3, 12, 16, 28]. As the minimax
analysis of confidence regions and functional estimation problems is related to
such testing problems, some work in these two fields (e.g., [5, 6, 9, 10, 23, 38]
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and [7, 8, 11, 19, 32]) have also lead to progress in the understanding of composite-
composite problems.

To be more specific on the challenge of composite-composite problems, let
us describe a simple strategy called ”infimum testing” [20]. Consider a signal
detection test based on the statistic S(·), that rejects the null hypothesis Hk0

with k0 = 0 for large values of S(Y ). The corresponding infimum test for the
composite-composite testing problem (4), is a test rejecting Hk0 for large values
of Sinf := infu∈B0[k0] S(Y − u). Indeed, there exists, under the null hypothesis Hk0 ,
some u such that the expectation of Y −u is zero. As one may expect, considering
this infimum over all possible parameters in the null hypothesis is not priceless and
the separation distance ργ [Tk0;k0,�] of the corresponding infimum test Tk0 may
depend on the complexity of the null hypothesis. Conversely, simple inclusion ar-
guments that will be recalled in our proofs entail that the composite problem is at
least as difficult as the signal detection problem, that is, ρ∗

γ [k0,�] is at least of the
order of ρ∗

γ [0,�]. The main challenge is therefore to decipher whether ρ∗
γ [k0,�]

is indeed of order ρ∗
γ [0,�] or if it is larger than that and really depends on k0.

In other words, we seek to understand how the complexity of the null hypothesis
influences the difficulty of the testing problem.

Sparsity estimation. Closer to our setting, Cai, Jin and Low [8] study the prob-
lem of estimating ‖θ‖0 for sparse vectors θ such that ‖θ‖0 ≤ √

n. They consider a
Bayesian framework, where each component θi is drawn independently from a two
points mixture distribution (1 − η)δ0 + ηδa for some unknown a > 0 (δx denotes
the Dirac measure at x). The goal is then to estimate η = E[‖θ‖0]/n. Relying on
the tail distribution of Y , they introduce an estimator η̂ that satisfies η̂ ≤ η with
high probability and such that the risk E[|1 − η̂/η|] is as small as possible. In [26],
Jin introduced a class of estimators of θ based on the empirical characteristic func-
tion of Y to handle the denser case ‖θ‖0 ≥ √

n. Later, these procedures have been
extended [7, 27] to allow for unknown noise level σ and even unknown mean in the
more general model Yi = u + θi + εi , where u is unknown. Again, in a Bayesian
framework where all θi’s follow the same mixture distribution (1 − η)δ0 + ηπ for
some smooth density π , their estimator η̂ is proved to achieve an optimal minimax
rate.

In multiple testing, estimating the number of false hypotheses has a longer his-
tory. Rephrased in the Gaussian vector model, multiple hypotheses testing amounts
to testing simultaneously whether each θi is zero or not. Hence, estimating the
number of false hypotheses is equivalent to sparsity estimation. Nevertheless, most
work on this field (e.g., [14, 31, 36, 39, 40]) consider a more general setting where
each Yi follows a mixture of a normal distribution and some unknown distribu-
tion that stochastically dominates the normal distribution. Hence, the methods and
results are not directly comparable to ours.

1.4. Further description of our results. We now discuss in more details our
three contributions (known variance sparsity testing, unknown variance sparsity
testing and sparsity estimation) mentioned in Section 1.2.
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TABLE 1
Square minimax separation distances (in the 	γ sense) when the noise level σ is known for all

k0 ∈ [0, n − 1] and � ∈ [1, n − k0]

k0 � ρ∗2
γ [k0,�]/σ 2

k0 ≤ √
n 1 ≤ � ≤ √

n � log(1 +
√

n
� )√

n < � ≤ n − k0
√

n

k0 >
√

n 1 ≤ � ≤
√

n1/2k0 � log(1 + k0
� )√

n1/2k0 ≤ � ≤ k0 �
log2(1+ k0

�
)

log(1+ k0√
n
)

k0 ≤ � ≤ n − k0
k0

log(1+ k0√
n
)

Sparsity testing for known σ . Table 1 summarizes the squared minimax sep-
aration distances ρ∗2

γ [k0,�]. Interestingly, for k0 ≤ √
n, the minimax separation

distance is the same as for signal detection (k0 = 0). In contrast, for more complex
null hypotheses (k0 ≥ √

n), the complexity of the null hypothesis comes into play.
For instance, when � ≥ k0 ≥ √

n, then ρ∗2
γ [k0,�] is of order k0/[log(1 + k0√

n
)].

This is smaller by a polylog multiplicative term than what can be obtained by
infimum tests and we have to rely on really different statistics. Our minimax adap-
tive procedure is a combination of three tests. The first one is an adaptation of
the Higher Criticism test introduced in [17]. The second one relies on the empiri-
cal characteristic function of Y and borrows ideas from [26]. The third statistic is
novel and relies on deconvolution ideas. As for the lower bounds of the minimax
separation distances for large k0, the proof ideas are more involved than for signal
detection [2] and make use of the moment matching techniques introduced in [32]
and later refined in [11, 28].

Sparsity testing for unknown σ . The results discussed above hold under the
restrictive assumption that the noise level σ is known. For unknown σ , the situ-
ation is qualitatively different (see Table 2). As a first step, we study the signal
detection problem (k0 = 0) for which only partial results had been established. For
sparse alternatives (� ≤ √

n), one can plug an estimator of σ in the signal de-
tection statistic so that the minimax separation distance ρ∗

γ,var(0,�) for unknown
variance [defined in (30)] is the same as ρ∗

γ (0,�). However, for � larger than
√

n

and much smaller than n, one cannot simply plug a variance estimator and new
test statistics are required. The squared separation distance ρ∗2

γ,var(0,�) is of order√
�n1/2 whereas ρ∗2

γ (0,�) is only of order
√

n. In the really dense case where �

is proportional to n, we establish that the separation distance ρ∗2
γ,var(0,�) is even

larger. Turning to the general case k0 > 0, we establish that ρ∗
γ,var(k0,�) is larger

than its counterpart for known σ for all � ≥ max(
√

n, k0). In comparison to the
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TABLE 2
Square minimax separation distance ρ∗2

γ,var[k0,�] [as defined in equation (30)] when the noise level
σ is unknown but belongs to some known fixed interval [σ−, σ+]. Here, c ∈ (0,1) is some fixed

universal constant and ξ ∈ (0,1) can be chosen arbitrarily small

k0 � ρ∗2
γ,var[k0,�]/σ 2+

0 ≤ k0 ≤ √
n 1 ≤ � ≤ √

n � log(1 +
√

n
� )√

n < � ≤ cn
√

�n1/2

√
n ≤ k0 ≤ n1−ξ 1 ≤ � ≤

√
k0n1/2 � log(1 + k0

� )√
k0n1/2 < � ≤ k0 �

log2(1+ k0
�

)

log(1+ k0√
n
)

k0 < � ≤ cn

√
�k0

log(1+ k0√
n
)

known variance case, one cannot simply accommodate the adaptive test by estimat-
ing the noise level. In fact, the minimax adaptive test in this new setting is based
on quite different statistics. Differences of minimax rates between known and un-
known noise level have already been observed in other statistical problems such
as signal detection [24, 42] and confidence intervals [6] in the high-dimensional
linear model.

Sparsity estimation. Let us first verbalize the desirable properties of a good es-
timator of ‖θ‖0. The functional ‖θ‖0 is not continuous with respect to θ . Consider
a one-sparse vector θ (with one large nonzero component) and a perturbation θ ′ of
θ whose components are all nonzero but are arbitrarily small. As the distribution
Pθ,σ is close to Pθ ′,σ , the estimator k̂ will follow almost the same distribution for
both parameters. It is obviously preferable for k̂ to be concentrated around one
under Pθ ′,σ than around n under Pθ,σ . In other words, a good estimator k̂ should
have a small overestimation probability. Besides, a good estimator k̂ should be
larger than any fixed q , as soon as the distance of θ to the collection B0[q] is large
enough.

To formalize the above intuition, let us consider the multiple testing problems
with all hypotheses (Hq), for q = 0, . . . , n where Hq is defined in (4). Then the
set of true hypotheses is exactly {Hq,q ≥ ‖θ‖0}. Similarly, an estimator k̂ of ‖θ‖0
can be interpreted as a multiple testing procedure rejecting all hypotheses Hq with
q < k̂ and accepting all hypotheses Hq with q ≥ k̂. Conversely, one can build an
estimator of ‖θ‖0 from any multiple testing procedure. Building on this corre-
spondence between complexity tests and complexity estimation, we first construct
a multiple sparsity testing procedure. Although the minimax optimality of mul-
tiple testing procedures is difficult to assess (but see [18]), we are able to prove
that our procedure is simultaneously minimax for all single hypotheses Hq . Then
the corresponding estimator k̂ satisfies, with high probability, the three following
properties:
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(a) k̂ ≤ ‖θ‖0, which is equivalent to θ(k̂) �= 0 (here θ(i) stands for the ith largest
entry of θ in absolute value2 with the convention θ(0) = +∞).

(b) For all q = 1, . . . , n − k̂, |θ(k̂+q)| ≤ cψ
k̂,q

, where c is a numerical constant
and the function ψk̂,q is defined in (24). In other words, we can certify, that even
if k̂ is possibly smaller than ‖θ‖0, each of its remaining (‖θ‖0 − k̂) nonzero com-
ponents are small enough.

(c) d2(θ,B0[̂k]) ≤ c′ρ∗
γ [̂k,‖θ‖0 − k̂], where c′ is a numerical constant and γ is

fixed. In other words, θ is close in l2 distance to the collection of k̂-sparse vectors.

Note that both properties (a) and (b) produce data-driven certificates for all θ(k̂+q),
q ≥ 0 in the sense that corresponding bounds are explicit. Besides, the three above
properties are valid for all θ ∈ Rn, whereas previous work [7, 8, 27] only consid-
ered specific classes θ by assuming for instance that the θi ’s are sampled according
to a mixture of a Dirac at 0 and a smooth distribution. For a given θ , one can invert
the inequalities in conditions (b) and (c) to obtain a bound for |̂k − ‖θ‖0|. Finally,
both conditions (b) and (c) are optimal from a minimax perspective defined in
Section 4.

1.5. Notation and organization of the paper. Although some of the notation
have already been introduced, we gather them here to ease the reading. Given a
vector u ∈ Rn and p ≥ 1, we denote ‖u‖p

p := (
∑

i |ui |p)1/p its lp norm. Also,
‖u‖∞ := maxi |ui | stands for its l∞ norm and ‖u‖0 =∑

i 1ui �=0 its l0 function. In
the sequel, φ(·) stands for the density of a standard normal variable, and �(·) for
its survival function. Also N (x, σ 2) stands for the normal distribution with mean
x and variance σ 2. Given x ∈ R, we write as usual �x� for the integer part of x and
�x� for the rounding to the upper integer, and (x)+ := max(x,0). Given x, y ∈ R,
x∨y (resp., x∧y) corresponds to the maximum (resp., minimum) of x and y. Also
[n] is short for the set {1, . . . , n}. For any i ∈ [n], θ(i) stands for the ith largest entry
of θ in absolute value. In other words, one has |θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(n)|.

In the sequel, c, c1, . . . denote positive universal constants that may change
from line to line. We also denote cα , c′

β, . . . , positive constants whose values may
depend on α or β .

When Y is distributed according to the model (1), we write Pθ,σ for the distri-
bution of Y . As σ is fixed and supposed to be known in Sections 2 and 4, we drop
the dependency on σ in these two sections and simply write Pθ .

In Section 2, we describe our model testing results when the variance of the
noise is known, presenting both upper and lower bounds. Section 3 is devoted to
the unknown variance case. In Section 4, we detail how these testing results can be
applied to the relevant problem of sparsity estimation. Finally, remaining results
and all the proofs are postponed the Supplementary Material [13].

2Consequently, we have |θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(n)|.
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2. Sparsity testing with known variance.

2.1. Minimax lower bound. In this section, we consider the sparsity testing
problem (4) in a setting when the noise variance σ 2 is known. The following the-
orem states a lower bound on the minimax separation distance ρ∗

γ [k0,�].

THEOREM 1. There exists a numerical constant c > 0 such that the following
holds. Consider any γ ≤ 0.5. For any k0 ≤ √

n and � ≤ n − k0, we have

(8) ρ∗2
γ [k0,�] ≥ σ 2� log

[
1 +

√
n

8�

]
.

For any k0 >
√

n, we have

(9) ρ∗2
γ [k0,�] ≥ cσ 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

[ log2[1 + k0
�

]
log[1 + k0√

n
] ∧ log

[
1 + k0

�

]]
if � ≤ k0 ∧ (n − k0),
k0

log[1 + k0√
n
]

if k0 < � ≤ n − k0.

As proved in the next subsection, this lower bound turns out to be sharp. We
shall precisely discuss these quantities later. Before this, we only give a glimpse of
the different regimes unveiled by the above theorem.

Whenever k0 ≤ √
n, the lower bound on the minimax separation distance is the

same as the signal detection minimax separation distance ρ∗
γ [0,�]; see [2, 15]. In

this regime, the size k0 of the null hypothesis does not play a role in the separation
distance. In fact, the proof of (8) is a consequence of known results for the signal
detection problem. More precisely, we follow Le Cam’s method and choose a par-
ticular θ0 ∈ B0[k0] and a prior distribution ν on the collection B0[k0 + �,k0, ρ].
Let us write Q1 := ∫

Pθν(dθ) the marginal distribution of Y when θ is sam-
pled according to ν. Then the risk R(T ;k0,�,ρ) (5) of any test T is larger than
1 − ‖Pθ0 − Q1‖TV (‖ · ‖TV is the total variation distance) and we bound the total
variation distance by the χ2 distance (see the proof for more details).

For k0 much larger than
√

n and for � ≥ k0, the lower bound (9) is of order
k0/ log[ k0√

n
]—which is significantly larger than the signal detection rate ρ∗

γ [0,�].
In this regime, the complexity of the null hypothesis Hk0 has to be taken into ac-
count to obtain the right lower bound. Following an approach pioneered in [32], we
build two product prior distributions μ⊗n

0 and μ⊗n
1 (almost) supported by B0[k0]

and B0[k0 + �,k0, ρ] in such a way that the first moments of μ0 and μ1 are
matching. Writing Q0 := ∫

Pθμ
⊗n
0 (dθ) and Q1 := ∫

Pθμ
⊗n
1 (dθ), we need to upper

bound the χ2 distance between Q0 and Q1. It turns out that matching the moments
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of μ0 and μ1 enforces the χ2 distribution between Q0 and Q1 to be small enough.
The main technical hurdle in the proof is the construction of the two measures μ0
and μ1 that maximize the number of matching moments, while being supported
respectively on the null and alternative hypothesis with ρ as large as possible.

Finally, consider the first equation in (9) that corresponds to the regime k0 ≥√
n and � ≤ k0. When � ≤ √

n1/2k0 (sparse alternative), the lower bound is of
the order of � log[1 + k0/�]. For

√
n1/2k0 ≤ � ≤ k0, the lower bound (9) is of

order � log2[k0/�]/ log[1 + k0/
√

n]. In this intermediary regime, the logarithmic
terms vary smoothly from the sparse regime (log[1 + k0/�]) to the dense regime
(log−1[1 + k0/

√
n]).

2.2. Minimax upper bound. In this subsection, we construct three tests that
are most effective in three different situations: the Higher Criticism regime (large
but few nonzero components), the bulk regime (many but small nonzero com-
ponents) and the intermediary regime. Then a combination of these three proce-
dures is proved to achieve the minimax lower bounds of Theorem 1 and is even
adaptive to the sparsity �. Each of the statistics introduced in this section are of
the form S =∑n

i=1 h(Yi) for some function h. Denoting g the function such that
Eθ [h(Yi)] = g(θi), we shall choose functions h in such a way that g approximates
well the indicator function 1x �=0, so that Eθ [S] approximates ‖θ‖0. All the statis-
tics considered in this subsection correspond to symmetric functions g such that
g(0) = 0 and g(x) converge to 1 for x → ∞. However, these statistics differ in the
way g approximates the indicator function in the vicinity of 0 (this corresponds to
a bias term) and in the size of their variance. As explained below, a large bias and
a small variance are tailored to detect a few large coefficients (Higher Criticism
statistic) whereas a small bias and a higher variance are mostly suited to detect
many small coefficients (bulk statistic). Throughout this subsection, we consider
some fixed α and β in (0,1).

2.2.1. Higher criticism statistic. Let us adapt the Higher Criticism statistic
introduced in [17] for signal detection. Recall that, for t > 0, �(t) is the survival
function of the standard normal distribution For any t > 0, define

(10) Nt := #
{
i, |Yi | ≥ t

}
,

the number of components larger (in absolute value) than t , tHC∗,α := �√2 log[4n/α]�
and the collection Tα := {1, . . . , tHC∗,α}. Then the test T HC

α,k0
rejects the null hypothe-

sis Hk0 , if either NσtHC∗,α
≥ k0 + 1 or for some t ∈ Tα ,

(11) Nσt ≥ k0 + 2(n − k0)�(t) + uHC
t,α ,

where

(12) uHC
t,α := 2

√
n�(t) log

(
t2π2

3α

)
+ 2

3
log
(

t2π2

3α

)
.
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Under the null hypothesis Hk0 , θ contains at most k0 nonzero coefficients and
Nσt − k0 is therefore stochastically dominated by a Binomial random variable
with parameters (n − k0,2�(t)). It then follows from Chebychev inequality that
Nσt ≤ k0 + 2(n − k0)�(t) + Op(

√
(n − k0)�(t)). Note that, for large t , Nσt has

a smaller variance but it does manage to select coordinates θi that are close to
zero. For small t , the variance is higher but smaller nonzero components at taken
into account. This is why the test T HC

α,k0
is an aggregation of such statistics for a

wide scope of values of t . The specific choice of the term uHC
t,α allows to handle the

multiplicity of the tests. For k0 = 0 (signal detection), T HC
α,k0

is somewhat analogous
to the vanilla Higher Criticism test [17], but there are some differences that we
discuss below.

PROPOSITION 1. There exists a positive constant cα,β such that the following
holds. The size of the test T HC

α,k0
does not exceed α. Besides, any θ ∈ Rn such that

(13) |θ(k0+q)| ≥ cα,βσ

√
log
(

2 +
√

n ∨ k0

q

)
for some q ∈ [1, n − k0]

belongs to the high probability rejection region of T HC
α,k0

, that is Pθ [T HC
α,k0

= 1] ≥
1 − β .

In the specific case k0 = 0, we recover the known behavior or the Higher Crit-
icism statistic in the signal detection setting. The test T HC

α,k0
is powerful when, for

a given integer q , there are least (k0 + q) coefficients larger than some thresh-
old depending on q . For q = 1, the threshold is of order σ

√
log(n), whereas for

q ≥ √
n∨ k0, the threshold is of order one. More generally, Proposition 1 provides

an upper bound matching to the minimax lower bound in Theorem 1 whenever
� ≤ √

n for k0 ≤ √
n and � ≤√

(k0n1/2) for k0 ≥ √
n.

REMARK. In signal detection, alternatives to the Higher Criticism have been
considered. In particular, Li and Siegmund [33] and Moscovich et al. [37] advo-
cate for the use of Berk–Jones-type procedures. It has been numerically demon-
strated that these methods exhibit slightly better finite sample performances than
the Higher Criticism while achieving the same asymptotic power as the Higher
Criticism [17]. In our context, the original Higher Criticism would amount to con-
sidering a supremum of normalized statistics of the form

sup
t∈Tα

Nσt − k0 − 2(n − k0)�(t)√
(n − k0)2�(t)(1 − 2�(t))

,

whereas the exact Berk–Jones [37] would correspond to a minimum of p-values
for each individual tests

(14) inf
t∈Tα

gn−k0,2�(t)

[
(Nσt − k0)+

]
,
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where gn,p(k) stands the probability a Binomial random variable with parameters
(n,p) is larger than or equal to k. In (11), we use an intermediary approach be-
tween computing the exact p-values (Berk–Jones) and an upper bound based on
empirical normalization (Higher Criticism) by taking the Bernstein’s upper bound
of the quantiles. Instead of T HC

α,k0
, we could have studied a statistic based on (14).

We did not pursue this strategy, as the analysis seems to be more technical and
T HC

α,k0
is already minimax optimal for sparse alternatives.

2.2.2. Detecting the signal in the bulk distribution. When there are many
small coefficients, we rely on the empirical characteristic functions of Y following
an approach introduced in [26]. Given s > 0, define the function

(15) κs(x) :=
∫ 1

−1

(
1 − |ξ |)es2ξ2/2 cos(sξx) dξ,

and the test statistic Z(s)

(16) Z(s) :=
n∑

i=1

(
1 − κs(Yi/σ )

)
.

Let us describe the intuition behind this statistic using a population approach. De-
noting ϕn(s) the empirical characteristic function and ϕ(s) its expectation

(17) ϕn(s) := n−1
n∑

i=1

cos(sYi), ϕ(s) := n−1
∑
i≤n

cos(sθi)e
− s2σ2

2 ,

one can derive the expectation of Z(s)

Eθ

[
Z(s)

]= n∑
i=1

[
1 −

∫ 1

−1

(
1 − |ξ |) cos(sξθi/σ ) dξ

]
=

n∑
i=1

[
1 − 2

1 − cos(sθi/σ )

(sθi/σ )2

]
,

with the convention (1 − cos(x))/x2 = 1/2 for x = 0. Denoting g(x) = 1 −
2(1 − cos(x))/x2, one may easily show that g(x) ∈ [0,1], g(x) ≥ 1 − c/x2 for
large x and g(x) = x2/12 + o(x2) around 0. As a consequence, Eθ (Z(s)) =∑n

i=1 g(sθi/σ ) approximates ‖θ‖0 and is able to partially take into account even
small values of θi . If θ contains many coefficients that are large in front of σ/s or
if there are so many small coefficients |θi | that the corresponding sum

∑
i θ

2
i s2/σ 2

is large in front of k0, then at least in expectation, Z(s) is larger than under the
null. Proposition 2 below makes this informal argument rigorous.

REMARK. Rewriting the statistic Z(s)/n = 1 − ∫ 1
−1(1 − |ξ |)es2ξ2/2ϕn(sξ/

σ )dξ , one observes that the empirical characteristic function is multiplied by the
function (1 − |ξ |) before integration. In [26], Jin also suggests other statistics such
as
∫ 1
−1 es2ξ2/2ϕn(sξ/σ ) dξ or the deconvolution estimator es2/2ϕn(s/σ ). However,

these two statistics turn out to be suboptimal in our setting.



SPARSITY ESTIMATION AND TESTING 105

In practice, we set sk0 :=
√

log(ek2
0/n)∨ 1 and we define the test T B

α,k0
rejecting

the null hypothesis when

(18) Z(sk0) ≥ k0 + uB
k0,α

where uB
k0,α

:= e
s2
k0

/2

sk0

√
8n log(2/α).

PROPOSITION 2. There exist three positive constants cα,β, c′
α,β, c′′

α,β such that

the following holds. The type I error probability of T B
α,k0

does not exceed α. Be-
sides, any θ ∈ Rn satisfying any of the two following conditions:

|θ(k0+q)| ≥ cα,βσ

√√√√ k0

q log(1 + k0√
n
)

for some q ≥ c′
α,βk0√

log(1 + k2
0
n

)

,(19)

n∑
i=1

[
θ2
i ∧ s−2

k0

]≥ c′′
α,βσ 2 k0

log(1 + k0/
√

n)
,(20)

belongs to the high probability rejection region of T B
α,k0

, that is, Pθ [T B
α,k0

= 1] ≥
1 − β .

The above proposition provides two sufficient conditions for T B
α,k0

to be power-
ful. The second condition (20) formalizes the above discussion for the population
version of the statistic: when the squared l2 norm of the restriction of θ to its small
coefficients is larger than σ k0

log(1+k0/
√

n)
, then the test is powerful. Condition (19)

ensures that the test is also powerful when there are more than k0 + q coefficients
larger than some threshold depending on q . In comparison to the Higher Criticism
test, Condition (19) is effective for large q (many nonzero coefficients), but these
coefficients can be much smaller than one.

As justified in the proof of Corollary 1, the test T B
α,k0

together with the previous

test T HC
α,k0

match the minimax lower bound whenever � ≥ k0 ∨ √
n.

Practical implementation. In order to compute Z(s), one can approximate the
integral by its Riemann sum. Given some large M > 0 large, we approximate∫ 1
−1(1 − |ξ |) exp(s2ξ2/2) cos(sξx) dξ , by

2

M

M∑
i=1

(
1 − i

M

)
exp

[(
i

M

)2 s2

2

]
cos
(
s

i

M

)
dξ.

As the function in the integral has higher variations near |ξ | = 1, one could also
take finer steps in vicinity of 1.

2.2.3. Intermediary regimes. A combination of the two previous tests cov-
ers the extreme regimes for the sparsity testing problem: a few large coefficients
(Higher Criticism) and many small coefficients (bulk). Unfortunately, they turn out
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to be suboptimal in intermediate regimes, that is, for any parameters in between.
This is why we have to devise a third test. In this subsection, we aim at discov-
ering intermediary signals whose signature is neither in the bulk of the empirical
distribution of (Yi) nor in its extreme values. This strategy is relevant for large k0
only and we assume henceforth that k0 ≥ 20

√
n.

Given two tuning parameters r and l, define the function

(21) ηr,w(x) := r

(1 − 2�(r))

∫ 1

−1

e−r2ξ2/2
√

2π
eξ2w2/2 cos(ξwx)dξ

and the statistic

V (r,w) :=
n∑

i=1

[
1 − ηr,w(Yi/σ )

]
.

In order to get a grasp this statistic, let us consider the expectation of ηr,w(X) for
X ∼N (x,1). Simple computations [see (41) in the proof of Proposition 3] lead to

E
[
1 − ηr,w(X)

]= 1 − 1

1 − 2�(r)

∫ r

−r
φ(ξ) cos

(
ξx

w

r

)
dξ,

which, for large r , is of order 1 − ∫
R φ(ξ) cos(ξx w

r
) dξ = 1 − exp(−x2 w2

2r2 ). As a
consequence, Eθ [V (r,w)] approximates the function ‖θ‖0 at an exponential rate.
In contrast, the population version of the statistic Z(s) [defined in (16)] only ap-
proximates the function ‖θ‖0 at a quadratic rate. Therefore, the statistic V (r,w)

better handles coefficients θi that are large compared to σr/w than the statistic
Z(s). Unfortunately, the variance V (r,w) is quite large which prevents us from
taking w/r as large as the tuning parameter sk0 in the previous test. This is why
this statistic is tailored to intermediary values of |θi |. As the optimal choice of
w/r depends on θ , we consider below a collection of such statistics and use an
aggregated test.

The test T I
α,k0

is an aggregation of multiple tests based on the statistics V (r,w)

for different tuning parameters r and w. Define lk0 := �(k0
√

n)1/2� and the dyadic
collection Lk0 = {lk0,2lk0,4lk0, . . . , lmax} where lmax := 2�log2(k0/lk0 )�lk0/4 ≤ k0/4
where log2 is the binary logarithm. Note that Lk0 is not empty if k0 ≥ 20

√
n and n

is large enough. Given any l ∈ Lk0 , define

(22) rk0,l :=
√

2 log
(

k0

l

)
, wl :=

√
log
(

l√
n

)
.

Then the test T I
α,k0

rejects the null hypothesis if, for some l ∈ Lk0 ,

V (rk0,l,wl) ≥ k0 + l + uI
k0,l,α

(23)

where uI
k0,l,α

:=
√

2ln1/2 log
(

π2[1 + log2(l/ lk0)]2

6α

)
.



SPARSITY ESTIMATION AND TESTING 107

PROPOSITION 3. There exists four positive constants c, cα,β, c′
α,β, c′′

α,β such
that the following holds. Assume that k0 ≥ 20

√
n and n ≥ c. The type I error prob-

ability of T I
α,k0

does not exceed α. If k0 ≥ cα,β

√
n, any θ ∈ Rn satisfying

|θ(k0+q)| ≥ c′
α,βσ

1 + log(1 + k0
q∧k0

)√
log(1 + k0√

n
)

for some q ≥ c′′
α,β

√
k0n1/2,

belongs to the high probability rejection region of T I
α,k0

, that is, Pθ [T I
α,k0

= 1] ≥
1 − β .

In view of the minimax lower bound in Theorem 1, Proposition 3 turns out to
be mostly relevant for k0 ≥ √

n and
√

n1/2k0 ≤ � ≤ k0 [the logarithmic terms in
Proposition 3 match those in (9)]. As justified in the next subsection, T I

α,k0
together

with T HC
α,k0

achieves a minimax separation distance in this regime.

2.3. Combination of the tests. For any integer q ∈ [n − k0], define ψk0,q > 0
by

(24) ψ2
k0,q

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
[
1 +

√
n

q

]
if k0 ≤ √

n,

log2(1 + k0
q

)

log(1 + k0√
n
)

∧ log
(

1 + k0

q

)
if k0 >

√
n and q ≤ k0,

k0

q log(1 + k0√
n
)

if k0 >
√

n and q > k0.

Let T C
α,k0

denote the aggregation of the three previous tests. We take T C
α,k0

:=
max(T HC

α/3,k0
, T B

α/3,k0
, T I

α/3,k0
), if k0 ≥ 20

√
n and T C

α,k0
:= max(T HC

α/2,k0
, T B

α/2,k0
)

else. The following result holds.

COROLLARY 1. There exist three constants c, cα,β and c′
α,β such that the

following holds for n ≥ c. The type I error probability of T C
α,k0

does not exceed α.

Besides, Pθ [T C
α,k0

= 1] ≥ 1 − β for any vector θ such that

(25) |θ(k0+q)| ≥ cα,βσψk0,q for some q ∈ [n − k0].
Also, Pθ [T C

α,k0
= 1] ≥ 1 − β for any vector θ satisfying,

θ ∈ B0(k0 + �) and
(26)

d2[θ,B0(k0)
]≥ c′

α,βσ 2�ψ2
k0,�

for some � ∈ [n − k0].



108 A. CARPENTIER AND N. VERZELEN

In view of Theorem 1 and (26) in Corollary 1, it holds that ρ∗
α+β[k0,�] 	γ

σ 2�ψ2
k0,δ

. Besides, the test T C
α,k0

simultaneously achieves (up to multiplicative
constants) these minimax separation distances over all � ∈ [n − k0]. Condition
(25) provides a complementary characterization of T C

α,k0
power function. This

bound will be central for sparsity estimation in the next section.
To conclude this section, we summarize the results on the testing separation dis-

tance ρ∗2
γ [k0,�] as depicted in Table 1 in the Introduction. For k0 ≤ √

n, ρ∗
γ [k0,�]

is of same order as the signal detection separation distance ρ∗
γ [0,�]. For k0 >

√
n,

the minimax-optimal separation distance ρ∗
γ [k0,�] becomes significantly larger

than the signal detection separation distance. The complexity of the null hypothesis
plays an important role in ρ∗

γ [k0,�]. For instance, when k0 = nζ with ζ > 1/2 and

for � ≥ k0, ρ∗2
γ [k0,�] is of order k0/ log(n). Besides, for � between

√
n1/2k0 and

k0, there is smooth transition from squared separation distances of order � log(n)

to �/ log(n).

3. Sparsity testing with unknown variance. In this part, we consider the
problem of testing the sparsity of θ when the noise level σ is unknown. For the
sake of simplicity, it is assumed that σ belongs to some fixed interval [σ−, σ+]
where 0 < σ− < σ+ are known. This assumption is not restrictive since, in most
interesting settings, one may build a data-driven interval [σ̂−, σ̂+] containing σ

with large probability and such that the ratio σ̂+/σ̂− remains bounded. See Sec-
tion A for further explanations.

In this section and in the corresponding proofs, we denote Pθ,σ the distribu-
tion of Y . Given two integers k0 ≥ 0 and � > 0, we consider the sparsity testing
problem with unknown variance

Hk0,var : θ ∈ B0[k0], σ ∈ [σ−, σ+] versus

H�,k0,ρ,var : θ ∈ B0[k0 + �,k0, ρ], σ ∈ [σ−, σ+].(27)

Given a test T , let us define its risk Rvar(T ;k0,�,ρ) for the problem (27) by

Rvar(T ;k0,�,ρ) := sup
θ∈B0[k0],σ∈[σ−,σ+]

Pθ,σ [T = 1]
(28)

+ sup
θ∈B0[k0+�,k0,ρ],σ∈[σ−,σ+]

Pθ,σ [T = 0],

and its γ -separation distance ργ,var(T ) by

(29) ργ,var(T ;k0,�) := sup
{
ρ > 0 : Rvar(T ;k0,�,ρ) > γ

}
.

Finally, the minimax separation distance for the problem with unknown variance
is defined by

(30) ρ∗
γ,var[k0,�] := inf

T
ργ,var(T ;k0,�).
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3.1. Detection problem (k0 = 0). Before turning to the general case, let us first
restrict ourselves to the signal detection problem. To the best of our knowledge,
the minimax separation distances for unknown variance have not been derived yet.
Besides, this provides an introduction to the general case. Obviously, the problem
with unknown variance is at least as difficult as the initial problem (4) so that,
for all �, ρ∗

γ,var[k0,�] ≥ ρ∗
γ [k0,�] (where ρ∗2

γ [k0,�] is defined for known σ =
σ+). Our purpose is to pinpoint the range of � such that ρ∗

γ,var[k0,�] is of order
ρ∗

γ [k0,�] so that the knowledge of the variance is not critical and the range of �

such that ρ∗
γ,var[k0,�] is much larger than ρ∗

γ [k0,�] so that the knowledge of the
variance effectively makes the testing problem easier.

PROPOSITION 4. Fix any γ < 0.25. There exist two positive constants cγ and
c′
γ such that the following holds For any � ≤ √

n, we have

(31) cγ σ 2+� log
(

1 +
√

n

�

)
≤ ρ∗2

γ,var[0,�] ≤ c′
γ σ 2+� log

(
1 +

√
n

�

)
.

For any η < 1/3 and any � ∈ [√n, (1
3 − η)n],

(32) cγ σ 2+
√

�n1/2 ≤ ρ∗2
γ,var[0,�] ≤ c′

γ,ησ
2+
√

�n1/2,

where the constant cγ,η and c′
γ,η only depend on γ and η.

For � ≤ √
n, the minimax separation distance is the same as for known vari-

ance. This can be achieved, for instance, by a generalization of the Higher Criti-
cism to the unknown variance setting as explained in Section 3.3.

For � between
√

n and n/3, ρ∗2
γ,var[0,�] is of order

√
�n1/2 which is much

larger than the squared separation distance
√

n for known variance. When σ

is known, a near optimal test amounts to rejecting the null hypothesis when
S2 = ‖Y‖2

2/σ
2 − n is large compared

√
n. Under the null, S2 + n follows a χ2

distribution with n degrees of freedom whereas, under the alternative, S2 + n fol-
lows a noncentral χ2 distribution with noncentrality parameter ‖θ‖2

2/σ
2 so that

the test is powerful when ‖θ‖2
2 is large compared to σ 2√n. When σ is unknown,

one cannot simply rely on the second moment of Y and higher order moments are
needed. For instance, a test achieving the separation distance (32) is based on the
statistic

(33) S4 = n‖Y‖4
4

‖Y‖4
2

− 3.

Under the null, it follows from Chebychev inequality that S4 = OP (n−1/2). Under
the alternative, Eθ,σ [‖Y‖2

2] = ‖θ‖2
2 + nσ 2 and Eθ,σ [‖Y‖4

4] = ‖θ‖4
4 + 6σ 2‖θ‖2

2 +
3nσ 2 so that, one may expect that S4 is of order

n‖θ‖4
4 − 3‖θ‖4

2

(‖θ‖2
2 + nσ 2)2

≥ (
n − 3‖θ‖0

) ‖θ‖4
4

(‖θ‖2
2 + nσ 2)2

,
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by Cauchy–Schwarz inequality. As a consequence, S4 takes significantly larger
values when (n − 3‖θ‖0)‖θ‖4

4 is large compared to n3/2. When n − 3� is of or-
der n, this occurs when ‖θ‖2

2 is larger than
√

�n1/2. See the proof of Proposition 4
for further details.

Conversely, the proof of the minimax lower bound (32) also proceeds from mo-
ments arguments. For known variance σ = 1, one builds a prior probability mea-
sure ν on θ supported by B0[�] such that the expectation of

∑n
i=1 Yi is the same

under
∫
Pθ,σ ν(dθ) and P0,σ . When the variance is unknown, one may choose

the prior ν and σ1 �= σ0 such that all expectations of
∑n

i=1 Y
q
i for q = 1,2,3

are matching under
∫
Pθ,σ1ν(dθ) and P0,σ0 . As explained in the proof of Theo-

rem 2, these moment matching properties translate into a smaller total variation
between

∫
Pθ,σ1ν(dθ) and P0,σ0 which in turn implies that the separation distance

ρ∗
γ,var[0,�] is large.

Proposition 4 above characterizes the signal detection separation distance for all
� small compared to n/3. For � = cn with c < 1/3, ρ∗2

γ,var[0,�] is of order n3/4.
One may then wonder if ρ∗2

γ,var[0,�] remains of order n3/4 for all � ∈ (n/3, n].
This turns out to be false. In fact, ρ∗2

γ,var[0, n] is of order (σ 2+ − σ 2−)n. Indeed, let
ν denote the centered normal distribution with variance (σ 2+ − σ 2−)In. When θ is
sampled according to ν and for σ = σ−, the marginal distribution of Y is P0,σ+ . As
a consequence, it is impossible to distinguish θ = 0 from θ ∼ ν for which ‖θ‖2

2 is
of order (σ 2+ − σ 2−)n. This entails that ρ∗2

γ,var[0, n] is at least of order (σ 2+ − σ 2−)n.
In fact, the squared minimax separation distance ρ∗2

γ,var[0,�] jumps above n3/4

well before � = n as stated by the next proposition.

PROPOSITION 5. Consider any 0 ≤ γ ≤ 0.25. Fix any η ∈ (0,2/3) and take
� = �(1

3 + η)n�. For n large enough, we have

ρ∗2
γ,var[k0,�] ≥ cησ

2+n5/6,

for some constant cη > 0 only depending on η.

As a consequence, the detection problem become much more difficult when �

is above n/3 and the condition on � in Proposition 4 is tight. In comparison to
the proof of the lower bound (32), for � larger than n/3, it is possible to define a
prior measure ν supported on B0[�], σ0 and σ1 such that all expectations

∑n
i=1 Y

q
i

for q = 1, . . . ,5 are matching under
∫
Pθ,σ1ν(dθ) and P0,σ0 . Matching these five

moments then allows to recover the n5/6 rate. See the proof of Proposition 5 for
details.

To summarize, for � ≤ √
n the minimax detection distance is the same as for

known variance. For � ∈ [√n, cn] with c < 1/3, the square minimax detection dis-
tance is of order

√
�n1/2 which is larger than its counterpart for known variance.

For � > cn with c > 1/3, the difficulty of the testing problem greatly increases.
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In view of this phenomenon, we shall restrict ourselves, for the general sparsity
testing problems, to values (k0,�) such that k0 +� ≤ cn where c is some constant
small enough.

3.2. Lower bounds. For � ≤ √
n ∨ k0, we simply use the lower bound

ρ∗2
γ,var[k0,�] ≥ ρ∗2

γ [k0,�] (where ρ∗2
γ [k0,�] is defined for known σ = σ+). The

following corollary is then a direct consequence of Theorem 1.

COROLLARY 2. Consider any γ ≤ 0.5. For any k0 ≤ √
n and � ≤ n − k0, we

have

(34) ρ∗2
γ,var[k0,�] ≥ σ+� log

[
1 +

√
n

8�

]
.

There exists a numerical constant c > 0 such that the following holds. For any
k0 >

√
n and � ≤ k0 ∧ (n − k0), we have

(35) ρ∗2
γ,var[k0,�] ≥ cσ+�

[ log2[1 + k0
�

]
log[1 + k0√

n
] ∧ log

[
1 + k0

�

]]
.

Additional work is needed to pinpoint the minimax separation distance
ρ∗

γ,var[k0,�] for � ≥ √
n ∨ k0. As for known variance, there are two different

regimes depending whether k0 ≤ √
n or k0 >

√
n.

THEOREM 2. Consider any 0 ≤ γ ≤ 0.25. For any 0 ≤ k0 ≤ √
n and

max(
√

n,48) ≤ � ≤ n − k0, we have

ρ∗2
γ,var[k0,�] ≥ cσ 2+

√
�n1/2,

where c is a numerical constant.

For k0 ≤ √
n and � ≥ √

n, the separation distance ρ∗2
γ,var[k0,�] is the same as in

the signal detection setting ρ∗2
γ,var[0,�]. In comparison to ρ∗2

γ [k0,�], the squared

distance
√

n has increased up to
√

�n1/2. The intuition behind Theorem 2 has
been already described below Proposition 4.

THEOREM 3. Consider any 0 ≤ γ ≤ 0.25. There exist three positive constants
c1, c2 and c3 such that the following holds. Assume that n/c1 ≥ � ≥ c1k0 ≥ c1

√
n

and that n ≥ c2. Then we have

ρ∗2
γ,var[k0,�] ≥ c3σ

2+
√

�k0

log(1 + k0/
√

n)
.
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In the known variance setting, the squared separation distance is of order
k0

log(1+k0/
√

n)
. The price to pay for not knowing the variance is a multiplicative

factor of order
√

�/k0.
Contrary to the proof of Theorem 1 for known variance, it is difficult to follow

here a moment matching approach. Given two suitable prior distributions μ⊗n
0 and

μ⊗n
1 on θ and variances σ 2

0 and σ 2
1 in such a way that μ⊗n

0 is almost supported in
B0[k0] and μ⊗n

1 is almost supported in B0[k0 + �,k0, ρ], the goal is to prove that
the two marginal distribution of Y ,

∫
Pθ,σ0μ

⊗n
0 (dθ) and

∫
Pθ,σ1μ

⊗n
1 (dθ) are close

to each other in total variation distance. Since the two last measures are product
measures, this is equivalent to proving that the densities π0(x) := ∫

φ( t−x
σ0

)μ0(dx)

and π1(x) := ∫
φ( t−x

σ1
)μ1(dx) are close in l1 distance [recall that φ(·) denotes the

density of the standard normal distribution]. It is difficult to obtain an analytic ex-
pression of the l1 distance between two mixture distribution, and hence one cannot
directly choose the measure μ0 and μ1 minimizing this l1 distance. As performed
earlier in, for example, [11, 29], we choose instead μ0 and μ1 in such a way that
the Fourier transforms π̂0 and π̂1 are matching for all frequencies small enough.
Afterwards, we prove that this particular choice of μ0 and μ1 makes the l1 dis-
tance between π0 and π1 small. Although the general approach is not new, the
control of the l1 distance is more delicate than in previous work, especially in the
regime where k0 is close to

√
n. In the proof, our implicit construction of the prior

distributions μ0 may be of independent interest.

3.3. Upper bounds. In this subsection, we build matching upper bounds for
all (k0,�) such that k0 + � ≤ cn where c a numerical constant small enough.
Indeed, when � is of order n, it has been proved in Proposition 5 that the detec-
tion problem becomes much more difficult, so that there is no hope to find tests
matching Theorems 2 and 3 when k0 + � is too large. Note that, in the regime
k0 + � ≤ cn, one may construct a data-driven confidence interval of σ so that the
knowledge of the fixed interval [σ+, σ−] is not really critical. In Appendix A, we
provide such a confidence interval and we briefly explain how to how to extend the
testing procedures to completely unknown variances σ ∈ R+.

Throughout this subsection, we consider some fixed α and β in (0,1).

3.3.1. Adaptive higher criticism statistic. The principle underlying the Higher
Criticism is to compare the number Nt of components of Y larger than t in absolute
value to an upper bound of their expectation under the null, namely k0 + (n −
k0)�(t/σ ). This is why we adapt this test by plugging a suitable estimator of σ

and adding some correcting terms accounting for the variance estimation error. Let

(36) σ̂ 2 = σ̂ 2(v) := − 2

v2 log
[
ϕn(v)

]
where v2 := 2

σ 2+

[
log
(

1 + k0√
n

)
∨ 1

]
,
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where we recall that ϕn is the empirical characteristic function (17) of Y . Let us
briefly explain the idea behind this definition by replacing ϕn(v) by its expectation
ϕ(v) (17). Intuitively, σ̂ 2 is expected to be close to

(37) − 2

v2 log
[
e−v2σ 2/2 1

n

∑
i

cos(vθi)

]
= σ 2 − 2

v2 log
[

1

n

∑
i

cos(vθi)

]
,

so that when 1
n

∑
i cos(vθi) is close to one, σ̂ 2 should be close to σ 2. Estimation

of σ based on the empirical characteristic function has been first tackled by Cai
and Jin [7, 27]. Nevertheless, our estimator (36) differs from theirs, as we do not
assume that the nonzero components of θ are sampled from a smooth distribution.

Defining tHC,var∗,α := �2
√

2 log(4n
α

)�, we consider the test T
HC,var
α,k0

that rejects the
null hypothesis, if either N

σ+t
HC,var∗,α

≥ k0 + 1 or if for some integer t ≥ 1,

(38) Nσ+t ≥ k0 + 2(n − k0)�

(
tσ+
σ̂

)
+ u

HC,var
t,α ,

where

u
HC,var
t,α :=

√
4n�(t) log

(
t2π2

α

)
+ 2

3
log
(

t2π2

α

)
(39)

+ 8t
σ 3+
σ 3−

k0

log(1 + k0√
n
)
φ(t)

√
log
(

6

α

)
.

In comparison to the original calibration parameter uHC
t,α , the third term is new and

accounts for the estimation error of σ 2.

THEOREM 4. Let C be any constant larger than 1. There exist constants c, c′
α ,

c′′
β,σ+/σ−,C and c′′′

α,β such that the following holds. If n ≥ c′
α and k0 ≤ cn, the type

I error probability of T
B,var
α,k0

does not exceed α, that is,

Pθ,σ

[
T

HC,var
α,k0

= 1
]≤ α ∀θ ∈ B0[k0].

Now assume that n ≥ c′′
β,σ+/σ−,C . Any θ ∈ Rn satisfying ‖θ‖0 ≤ cn,

(40) |θ(k0+q)| ≥ c′′′
α,βσ+

[√
log(C) +

√
log
(

σ+
σ−

)
+
√

log
(

2 + k0 ∨ √
n

q

)
+

]
,

for some q ∈ [1, n − k0] and
n∑

i=1

[
(vθi)

4 ∧ 1
]≤ C(k0 ∨ √

n),(41)

belongs to the high probability rejection region of T
B,var
α,k0

, that is, Pθ,σ [T HC,var
α,k0

=
0] ≤ β .
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Condition (41) aside, the behavior of T
HC,var
α,k0

is similar to the one of T HC
α,k0

as stated in Proposition C.2. In fact, Condition (41) allows to bound the term
1
n

∑
i cos(vθi) in (37) and ensures that |σ̂ 2 −σ 2| is, with high probability, at most of

order k0
n log(1+k0/

√
n)

. When this condition (41) is not met, we are unable to control
the behavior of the adaptive Higher Criticism test. Nevertheless, it turns out that
parameters θ not satisfying (41) belong to the high-probability rejection region
of the test T

B,var
α,k0

described below so that a combination of T
HC,var
α,k0

and T
B,var
α,k0

achieves similar performances to the original Higher Criticism test T
HC,var
α,k0

. At the
end of the section, the constant C in Theorem 4 is carefully chosen to put the three
tests T HC,var, T B,var and T I,var together.

3.3.2. Detecting the signal in the bulk distribution. Analogously to the above
extension of the Higher Criticism test, it would be natural to plug a variance esti-
mator σ̂ 2 in the statistic Z(s) (16) and then to build a test based on this data-driven
statistic. Unfortunately, it turns out that the estimation error for such σ̂ is not negli-
gible in the dense setting. Such a phenomenon is not unexpected as we have proved
in Theorem 3 that no test in the unknown variance setting can perform as well as
T B

α,k0
for known σ .

This is why we define a new statistic which is almost invariant with respect to
the noise variance. Denoting PB the linear polynom PB(ξ) := 4ξ − 3, we define,
for s > 0, the statistic Zvar(s)

(42) Zvar(s) := n

∫ 1

0
PB(ξ) log

[(
ϕn

(
sξ

σ+

))
+

]
dξ.

The polynom PB has been defined in such a way that
∫ 1

0 PB(ξ)ξ2 dξ = 0. To un-
derstand the rationale behind Zvar(s), let us assume that ϕn(sξ) is close to its
expectation ϕ(sξ). Since for x close to 1, log(x) is approximately x − 1, we ob-
tain

Zvar(s) ≈ n

∫ 1

0
PB(ξ)

[
−ξ2s2σ 2

2σ 2+
+ log

(
1

n

n∑
i=1

cos
(

sξθi

σ+

))]
dξ

≈
n∑

i=1

∫ 1

0
PB(ξ)

(
cos
(

sξθi

σ+

)
− 1

)
dξ =

n∑
i=1

g

(
sθi

σ+

)
,

where g(x) = ∫ 1
0 PB(ξ)(cos(ξx) − 1) dξ . For small x, a Taylor expansion of the

cos function enforces that g(x) ≈ ∫ 1
0 PB(ξ)[−ξ2 x2

2 + ξ4 x4

12 ]dξ = x4 ∫ 1
0 PB(ξ) ×

ξ4

12 dξ > 0. For larger x (in absolute value), one can prove that g(x) is positive
and bounded away from zero. As a consequence,

∑n
i=1 g(sθi/σ+) behaves like∑n

i=1[(sθi/σ+)4 ∧ 1] and approximates ‖θ‖0. This informal discussion is made
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rigorous in the proof of Theorem 5 below. In practice, we set

(43) svar
k0

=
[√

1 + log
(

k0

n1/2

)
∨ 1

]
,

and we define T
B,var
α,k0

as the test rejecting the null hypothesis for large values of
Zvar(svar

k0
), that is when

(44) Zvar(svar
k0

)≥ 1.09k0 + 16
k2

0

n
+ 4

√
e
(√

k0n1/2 ∨ √
n
)√

log(2/α).

THEOREM 5. There exist numerical constants c, c′ and c′′
α,β such that the

following holds. Assume that n ≥ c and that k0 ≤ c′n. For any k0-sparse vector θ ,
the type I error probability of T

B,var
α,k0

is small, that is,

(45) Pθ,σ

[
T

B,var
α,k0

= 1
]≤ α + 2(‖θ‖1/σ+ + n)

n4 .

Any θ ∈ Rn such that ‖θ‖0 ≤ c′n, and

(46)
n∑

i=k0+1

[(
svar
k0

θ(i)

σ+

)4
∧ 1

]
≥ c′′

α,β(k0 ∨ √
n)

belongs to the high probability rejection region of T
B,var
α,k0

, that is,

Pθ,σ

[
T

B,var
α,k0

= 0
]≤ β + 2(‖θ‖1/σ+ + n)

n4 .

The sufficient condition (46) for T
B,var
α,k0

= 1 to be powerful corresponds to the
heuristics described above. This condition will be the main ingredient towards

matching the σ 2+
√

�k0
log(1+k0/

√
n)

separation distance of Theorem 3.
The main downside to the above theorem is the presence of the small term

‖θ‖1/(σ+n4) in the type I and type II error probabilities. Although in most relevant
case this term will be negligible, this makes the supremum of the type I error
bound (45) over all θ ∈ B0[k0] infinite. In Section 3.3.4, we sketch a trimming
approach which amounts to first discarding components large components Y and
then applying the test to the trimmed vector Ỹ .

3.3.3. Intermediary regimes. As for T B
α,k0

, one cannot easily adapt T I
α,k0

by
plugging an estimator of σ . Following the same approach as above, we modify the
statistic by considering the logarithm of the empirical characteristic function and
multiplying it by some suitable polynom.

As the following test aims at discovering intermediary signals whose signature
is neither in the bulk of the empirical distribution of (Yi) nor in its extreme values,



116 A. CARPENTIER AND N. VERZELEN

we restrict ourselves to the case k0 ≥ 20
√

n (as for T I
α,k0

). Consider the dyadic
collection Lk0 defined in Section 2.2.3. For l ∈ Lk0 , let

(47) rk0,l :=
√

16 log
(

k0

l

)
, wl :=

√
log
(

l√
n

)
.

Note that, if wl is defined as in (22) for T I
α,k0

, the definition of rk0,l is slightly
different. Equipped with this notation, we consider the statistic

(48) V var(rk0,l,wl) := nrk0,l

∫ 1

−1
Pl(rk0,lξ )φ(rk0,lξ ) log

[
ϕn

(
wlξ

σ+

)
+

]
dξ,

where Pl(t) = γl[ζlt
2 − κl] with

κl := −2r3
k0,l

φ(rk0,l) − 6rφ(rk0,l) + 3
(
1 − 2�(rk0,l)

)
,

ζl := −2rk0,lφ(rk0,l) + 1 − 2�(rk0,l),(49)

γl := [κl − ζl]−1 and δl := 4γl

(
rk0,l + 4r−1

k0,l

)
φ(rk0,l).

The purpose of this polynom Pl is to cancel the term
∫ 1
−1 Pl(rk0,lξ )φ(rk0,lξ )ξ2 dξ .

Heuristically, log[ϕn(wlξ/σ+)+] should be close to

log
[
ϕ

(
wlξ

σ+

)
+

]
= −σ 2w2

l ξ
2

2σ 2+
+ log

[
1

n

∑
i

cos
(

wlξθi

σ+

)]

≈ −σ 2w2
l ξ

2

2σ 2+
+ 1

n

∑
i

[
cos
(

wlξθi

σ+

)
− 1

]
.

Since Pl(rk0,lξ )φ(rk0,lξ ) is orthogonal to ξ2, we expect that

V var(rk0,l,wl) ≈
n∑

i=1

rk0,l

∫ 1

−1
Pl(rk0,lξ )φ(rk0,lξ )

[
cos
(

wlξθi

σ+

)
− 1

]
dξ.

Each term of this sum is zero for θi = 0. More generally, we show in the proof
of Theorem 6 that, when θ does not contain too many large coefficients, this sum
approximates the number of coefficient larger than r2

k0,l
/wl .

Finally, let T
I,var
α,k0

be the test rejecting the null hypothesis, if for some l ∈ Lk0 ,
V var(rk0,l,wl) is large enough, that is,

(50) V var(rk0,l,wl) ≥ k0(1 + δl) + 32
k2

0

n
+ 8

√
ln1/2 log

(
π2[1 + log2(l/ l0)]2

3α

)
.

THEOREM 6. There exist numerical constants c, c′, c′′
α,β and c′′′

α,β such that,
for any C > 2, the following holds. Assume that n ≥ c and that k0 ≤ c′n. For any
k0-sparse vector θ , the type I error probability of T

I,var
α,k0

is small, that is,

Pθ,σ

[
T

I,var
α,k0

= 1
]≤ α + 2(‖θ‖1/σ+ + n)

n4 .
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Recall svar
k0

defined in (43). Any parameter θ ∈ Rn satisfying ‖θ‖0 ≤ c′n and the
two following properties:

n∑
i=1

1svar
k0

|θi |≥σ+ ≤ Ck0,(51)

|θ(k0+q)| ≥ c′′
α,β log(C)σ+

1 + log(1 + k0
q∧k0

)√
log(1 + k0√

n
)

(52)

for some q ≥ c′′′
α,βC2

[√
k0n1/2 ∨ k2

0

n

]
,

belongs to the high probability rejection region of T
I,var
α,k0

, that is,

Pθ,σ

[
T

I,var
α,k0

= 0
]≤ β + 2(‖θ‖1/σ+ + n)

n4 .

Condition (52) for T
I,var
α,k0

to be powerful is analogous to Condition (38) in the

Supplementary Material for T I
α,k0

in the known variance setting except that q is

now restricted to be larger than k2
0/n. This restriction will turn out to be be-

nign except when k0 is too close to n. Also, contrary to Proposition C.4, θ is
assumed to contain less than Ck0 coefficients larger than σ+/svar

k0
[which is of or-

der σ+ log−1/2(k0/
√

n)]. Again, this restriction is not a serious issue as T
B,var
α,k0

is
powerful for such θ not satisfying this assumption.

3.3.4. Combination of the tests. For any integers k0 ≥ 0 and q > 0, define
ψvar

k0,q
> 0 by

(53)
(
ψvar

k0,q

)2 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2+ log
[
1 +

√
n

q

]
if k0 ≤ √

n and q ≤ √
n,

σ 2+
(√

n

q

)1/2
if k0 ≤ √

n and q >
√

n,

σ 2+
( log2(1 + k0

q
)

log(1 + k0√
n
)

∧ log
[
1 + k0

q

])
if k0 >

√
n and q ≤ k0,

σ 2+
k

1/2
0

q1/2 log(1 + k0√
n
)

if k0 >
√

n and q > k0.

Let T
C,var
α,k0

denote the aggregation of the three previous tests, that is,

T
C,var
α,k0

:= max
(
T

HC,var
α/3,k0

, T
B,var
α/3,k0

, T
I,var
α/3,k0

)
if k0 ≥ 20

√
n
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and

T
C,var
α,k0

:= max
(
T

HC,var
α/2,k0

, T
B,var
α/2,k0

)
else.

As pointed out above, it is not possible to control uniformly the type I error
probability of this test as such probabilities depend on the l1 norm of θ . This is
why introduce a trimmed version of this test by removing large components of Y .
Given z > 0 and V ∈ Rn, let S(z;V ) = {i ∈ [n], |Vi | > (z + 1)σ+n2}. Let U ∼
U[0,1] be an uniformly distributed random variable independent of Y . We write
S(U,Y ) = S[(U +1)σ+n2;Y ] for the coordinates i such that |Yi | > (U +1)σ+n2.
Let Ỹ (S(U,Y )) := (Yi), i ∈ ([n] \ S(U,Y )) be the subvector of Y of size n −
|S(U,Y )|. Finally, we define the trimmed test T

C,var
α,k0

rejecting the null hypothesis

if either k0 − |S(U,Y )| is negative or if the test T
C,var
α,k0−|S(U,Y )| applied to the size

n − |S(U,Y )| vector Ỹ (S(U,Y )) rejects the null hypothesis.
We use a random threshold (U + 1)σ+n2 instead of a deterministic one to make

the subset S of trimmed variable almost independent of Y , which facilitate the

analysis of the two-step procedure T
C,var
α,k0

.

COROLLARY 3. Fix any ξ ∈ (0,1). There exist positive constants c, c′, c′′
α,β,ξ

and c′′′
α,β,ξ such that the following holds. Consider any k0 ≤ n1−ξ and n ≥ c. Then,

for any θ ∈ B0[k0], one has

Pθ,σ

[
T

C,var
α,k0

= 1
]≤ α + c′ log(n)

n
.

Moreover, Pθ,σ [T C,var
α,k0

= 1] ≥ 1 − β − c′ log(n)
n

for any vector θ satisfying ‖θ‖0 ≤
c′n and

(54) |θ(k0+q)| ≥ c′′
α,β,ξ σ+ψvar

k0,q
for some q ∈ [1, n − k0].

Also, Pθ,σ [T C,var
α,k0

= 1] ≥ 1 − β − c′ log(n)
n

for any vector θ satisfying

θ ∈ B0(k0 + �) and
(55)

d2[θ,B0(k0)
]≥ c′′′

α,β,ξ σ
2+�
(
ψvar

k0,�

)2 for some � ∈ [1, c′n − k0
]
.

As a consequence, for k0 ≤ n1−ξ [and ξ is an arbitrary constant in (0,1)], T
C

α,k0
simultaneously achieves the minimax separation distance for all � such that k0 +
� ≤ cn where c is constant small enough.

Building on the statistics introduced in this section, one can then construct an
adaptive estimator of the sparsity for unknown variance in the spirit of what will
be done in Section 4. For reasons of space, we do not pursue this direction.
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4. Sparsity estimation. Given an observation Y , our goal is now to estimate
the number ‖θ‖0 of nonzero components of θ . As explained in the Introduction,
this estimation problem can be rephrased as a multiple testing problem. Let H =
(Hk)k=0,...,n denote the nested collection of all hypotheses Hk (4). For a parameter
θ , the set of true hypotheses T (θ) is the collection {Hk, k ≥ ‖θ‖0} and the set of
false hypotheses R(θ) is the collection {Hk, k < ‖θ‖0}. A multiple hypothesis test
is a measurable collection R̂ ⊂ R.

Let us make explicit the connection between these two problems. Given an esti-
mator k̂ of ‖θ‖0, taking R̂ = {Hk, k < k̂} defines a multiple test. Conversely, con-
sider a multiple test R̂. Then one may define the estimator k̂ = 1 + max{k : Hk ∈
R̂}. In our framework, a closed test R̂ is a test that satisfies the property “H ′ ⊂ H

and H ⊂ R̂ implies H ′ ⊂ R̂” (see, e.g., [18]). It follows from the above construc-
tion that sparsity estimators k̂ are in one to one correspondence with closed testing
procedures.

The above correspondence leads us (i) to build estimators k̂ that rely on the test
statistics introduced in the Section 2 and (ii) to evaluate the performances of k̂ in
terms of separation distances of a multiple testing procedure.

4.1. From single tests to multiple tests. Fix some α ∈ (0,1). We introduce an
estimator k̂

(56) k̂ := �k̂HC� ∨ �k̂B� ∨ �k̂I �,
that combines statistics for the three regimes (Higher Criticism, Bulk, Intermedi-
ary) unveiled in Section 2.

Construction of k̂HC. Let t∗ := tHC∗,α/3 where tHC∗,α/3 is defined in Section 2.2.1 and
write T = {1, . . . , t∗}. Define the Higher Criticism estimator of ‖θ‖0 by

(57) k̂HC := Nσt∗ ∨ sup
t∈T

Nσt − 2n�(t) − uHC
t,α/3

1 − 2�(t)
,

where Nt and uHC
t,α are introduced in Section 2.2.1. Note that k̂HC is reminis-

cent of the estimators of Meinshausen and Rice [36] and Li and Siegmund [33]
developed for mixtures. Let us explain the rationale behind this estimator. Re-
call that Nσt∗ is the number of coordinates of Y larger than t∗ (in absolute
value). With high probability, all coordinates Yi larger than t∗ have a nonzero
mean, which implies Nσt∗ ≤ ‖θ‖0. For t ∈ T , it follows from Bernstein inequal-
ity that with high probability, among the coordinates Yi larger than σ t , at most
2(n − ‖θ‖0)�(t) + uHC

t,α/3 of them correspond to null coordinates. As a conse-

quence, (Nσt − 2n�(t) − uHC
t,α/3)/(1 − 2�(t)), is with high probability less than

‖θ‖0. Since the optimal choice of the tuning parameter t depends on θ , we sim-
ply pick the largest of all these estimators. See the proof of Theorem 7 for more
details.
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Construction of k̂B and k̂I . Following the intuition explained in the Introduction,
it would be tempting to define k̂B − 1 as the largest q ∈ [n] such that the test
T B

αq,q (with some suitable tuning parameters αq ) rejects the null. However, this
simple strategy leads to a logarithmic loss in comparison to the optimal testing
separation rate. As explained in Sections 2.2.2 and 2.2.3, the statistics Z(s) and
V (r,w) involved in the tests T B

α,k0
and T I

α,k0
can be interpreted as (possibly biased)

estimators of ‖θ‖0. The bias and the variance of these estimators depends on choice
of the tuning parameters s, r and w. For instance, for a large value of s, the variance
Z(s) is higher but Eθ [Z(s)] is close to ‖θ‖0 (see Section 2.2.2). As the optimal
value of these tuning parameters depends on θ , we shall compute these statistics
for a collection of tuning parameters and take the largest estimator.

Define kmin := �√n� and consider the dyadic collection K0 := {kmin,2kmin, . . . ,

kmax}, where kmax ∈ (n/2;n]. In order to calibrate this large collection of statistics,
we have to adjust the thresholds uB

k0,α
and uI

k0,l,α
of the statistics. For any k0 ∈K0,

denote αk0 := 2α([1+ log2(
k0

kmin
)]2π2)−1 so that

∑
k0∈K0

αk0 ≤ α/3. Equipped with
this notation, we define the Bulk and Intermediary estimators of ‖θ‖0 as follows:

k̂B := sup
k0∈K0

Z(sk0) − uB
k0,αk0

,(58)

k̂I := sup
k0∈K0,k0≥20

√
n

sup
l∈Lk0

V (rk0,l,wl) − uI
k0,l,αk0

1 + l/k0
,(59)

where Z(s), V (r,w), uB
k0,α

and uI
k0,l,α

are introduced in Sections 2.2.2 and 2.2.3.

REMARK. The number of statistics required to compute k̂ is of order log2(n).

4.2. Optimal sparsity estimation rates.

THEOREM 7. Fix any β ∈ (0,1). There exist two positive constants cα,β and
c′
α,β such that the following holds for any θ ∈ Rn. With probability higher than

1 − α, k̂ does not overestimate the number of nonzero components,

(60) Pθ

[
k̂ > ‖θ‖0

]≤ α.

With probability higher than 1 − β , the vector θ contains no more than k̂ large
coefficients in the sense that

(61) |θ(k̂+q)| ≤ cα,βσψ
k̂,q

∀q = 1, . . . , n − k̂

and

(62) d2[θ,B0(k̂)
]≤ c′

α,βσ 2[‖θ‖0 − k̂
]
+ψ2

k̂,(‖θ‖0−k̂)+
,

where the sequence ψ is defined in equation (24).
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As a consequence, outside an event of probability less than α + β , we have
k̂ ≤ ‖θ‖0 and θ is so close to B0[̂k] that it is impossible to reliably decipher whether
θ ∈ B0[̂k] or not. Alternatively, Theorem 7 provides the following data-driven cer-
tificate: with high probability and simultaneously for all q ≥ 1, there are no more
than k̂ + q coefficients larger (up to constants) than ψk̂,q . In Section B, we restate
Theorem 7 in terms of separation distances for multiple testing procedures.

For a given θ , we can easily “invert” the conditions (61) and (62) to control the
error |̂k − ‖θ‖0|.

COROLLARY 4. There exists a positive constant cα,β such that the following
holds. For any θ ∈ Rn, the sparsity estimator satisfies the three following proper-
ties:

k̂ ≤ ‖θ‖0,(63) (‖θ‖0 − k̂
)
+ < min

{
q, s.t. d2

2
(
θ,B0

[‖θ‖0 − q
])≥ cα,βσ 2qψ2‖θ‖0−q,q

}
,(64)

k̂ ≥ 1 + max
{
r, s.t. ∃q ∈ [n − r], |θ(r+q)| ≥ cα,βσψr,q

}
,(65)

outside an event of probability less than α + β . In the above equations, we choose
the convention min{∅} = ∞ and max{∅} = −∞.

Conversely, it is not possible to improve the bounds (64) and (65).

PROPOSITION 6. There exists a positive constant c′
α,β such that the following

holds. Fix any integers q > 0 and k > 0 such that k + q ≤ n. No estimator k̃ can
satisfy simultaneously infθ∈B0[k] Pθ [k̃ ≤ k] ≥ 1 − α and at least one of the two
following properties:

inf
θ∈B0[k+q,k,c′

α,βσ
√

qψk,q ]
Pθ

[
k̃ ≥ ‖θ‖0 − q

]≥ 1 − β,(66)

inf
θ∈Rn,|θ(k+q)|≥c′

α,βσψk,q

Pθ [k̃ > k] ≥ 1 − β.(67)

For any fixed (r, q), if we replace ψ2
r,q in (64) by

c′
α,β

cα,β
ψ2

r,q , then (63) cannot hold
together with (64) on an event of large probability. The same optimality results
holds for (65).

To better grasp the implication of (64), let us consider a toy example with
‖θ‖0 = nγ for some γ ∈ (0,1). Given � ∈ [1, . . . ,‖θ‖0], we define m2

� =
1
�

∑�
j=1 θ2

(‖θ‖0+1−j) the mean square of the � smallest nonzero values of θ . Note
that m� is a nondecreasing function of �. It corresponds to the typical value of the
� smallest nonzero components of θ . Depending on the behavior of m� we may
bound the error of the estimator of ‖θ‖0. First, if m1 is large compared to

√
log(n),

then k̂ = ‖θ‖1 with high probability. Then we analysis is divided into two subcases
depending on ‖θ‖0:
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(i) γ ∈ (0,1/2) (sparse vector). Take � = nζ with ζ ∈ (0, γ ].

If m� ≥ cα,βσ
√

(1/2 − ζ ) log(n) then
‖θ‖0 − k̂

‖θ‖0
≤ nζ−γ .

Conversely, if m‖θ‖0 ≤ c′
α,βσ

√
(1/2 − γ ) log(n), then it is impossible to dis-

tinguish θ from 0. As a consequence, the relative estimation precision is
mainly driven by the proportion of nonzero components that are large com-
pared to σ

√
log(n).

(ii) γ ∈ (1/2,1) (sparse vector). Here, the situation is more intricate:
(a) � = nζ with ζ ∈ (0, γ ).

If m� ≥ cα,βσ

[√
2(γ − ζ ) ∧ 2(γ − ζ )√

γ − 1/2

]√
log(n)

then
‖θ‖0 − k̂

‖θ‖0
≤ nζ−γ .

In that case, all nonzero components of θ except a polynomially small
proportion of them are larger than σ

√
log(n) and the relative estimation

error |‖θ‖0−k̂|
‖θ‖0

converges polynomially fast to zero.

(b) � = ‖θ‖0
un

with un → ∞ and unn
−ζ → 0 for all ζ > 0.

If m� ≥ cα,βσ
log(un)√

(γ − 1/2) log(n)
then

‖θ‖0 − k̂

‖θ‖0
≤ 1

un

.

For concreteness, fix un = logζ (n) with ζ > 0. the relative convergence
rate is of order log−ζ (n) if all nonzero components of θ except a propor-
tion u−1

n of them are larger than σζ
log log(n)√

log(n)
.

(c) � = ζ‖θ‖0 with some ζ ∈ (0,1). If m� ≥ cα,βσ
log(1/ζ )√
γ log(n)

, then ‖θ‖0−k̂
‖θ‖0

≤
(1 − ζ ). In that setting, a fixed proportion of nonzero coefficients are
larger than σ 1√

log(n)
. One is able to estimate ‖θ‖0 up to a constant multi-

plicative factor.
(d) More generally, consider � = ‖θ‖0(1 − 1

un
) with un → ∞.

If m� ≥ cα,βσ
1√

un log(1 + ‖θ‖0
un

√
n
)

then k̂ ≥ ‖θ‖0

un

.

For instance, take un = nζ for ζ ∈ (0, γ ). Even if most nonzero com-
ponents of θ , are polynomially small, it is still possible to distinguish θ

from zero, but it is just possible to estimate log(‖θ‖0) up to a multiplica-
tive constant.
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Finally, let us emphasize that all these convergence rates are optimal in the sense
of Corollary 4 and Proposition 6.

Comparison with the literature. In [8], Cai et al. consider an asymptotic frame-
work where ‖θ‖0 = nγ with γ ∈ (0,1/2) and θ only takes the values 0 and
σ
√

2r log(n) for some r > 0. These authors obtain convergence rates similar to
Case (i) above but with explicit optimal constant c(α,β). In [7], Cai and Jin con-
sider an asymptotic framework where the nonzero components of θ are sampled
according to a fixed distribution with a smooth density h in the sense that its char-
acteristic function decays at rate not slower than t−α for some α > 2. Their esti-
mator k̃ [7], Section 3.1, achieves a relative convergence rate of order log−α/2(n).
However, if h does not satisfy an uniform smoothness assumption, then k̃ can be
inconsistent. According to Case (ii)(b), when h is continuous at 0, the relative con-
vergence rate of our estimator k̂ is of order log log(n)√

log(n)
. This rate is slightly slower

than that of Cai and Jin when h is highly smooth, but our estimator is not tailored
to vectors θ that are sampled according to a smooth distribution and is valid for
all θ .

5. Discussion.

5.1. Other noise distributions. Some of our testing procedures heavily rely on
the assumption that the noise distribution is Gaussian. For instance, the behavior of
the Bulk and Intermediary statistics depends on the exact form of the characteristic
function of the noise. The radical change in the rates between the known variance
case, and the unknown variance case, is already eloquent on the importance of
knowing the exact shape of the noise distribution—even a slight deformation of
the noise distribution by changing the variance has a strong effect on the minimax
separation distances. We may consider two different extensions to non-Gaussian
noises:

1. The noise distribution is not Gaussian but is explicitly known. For the sake
of discussion, let us also assume that it is symmetric. In that case, one could adapt
the Higher Criticism statistic by replacing �(·) by the survival function of this dis-
tribution. Also, both the Bulk and Intermediary statistics could be accommodated
by replacing exp(−ξ2w2/2) in (15) by the characteristic function of the noise dis-
tribution. Nevertheless, some additional work would be needed to adapt the lower
bounds

2. Only an upper bound of the tail distribution of the noise is known. For in-
stance, the noise is only assumed to be sub-Gaussian with a bounded sub-Gaussian
norm. In that situation, one cannot rely anymore on its characteristic function.
Nevertheless, one could adapt some signal detection tests [2] to build “infimum
test” [19, 38] such as those described in the Introduction. From rough calcula-
tions, it seems that the corresponding test would achieve the optimal separation
distances up to polylogarithmic multiplicative terms. It remains an open problem
to understand whether this polylog loss is intrinsic or not.
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5.2. Approximate sparsity. Fix some r ∈ (0,2) and define the (pseudo)-norm
‖θ‖r = (

∑
i θ

r
i )1/r of θ . Instead of estimating or testing the value of the exact

sparsity ‖θ‖0, one may try to evaluate an approximate sparsity. Thus amount to
estimating ‖θ‖r or testing whether ‖θ‖r is less than some given value B > 0. If
the case r = 2 have been thoroughly investigated (see [15] and references therein),
the literature on smaller r is scarcer. Cai and Low [11] have carefully considered
the case r = 1 whereas Lepski et al. [32] provide some minimax rates (up to poly-
logarithmic multiplicative terms) for more general r ∈ [1,2]. As a surrogate for the
sparsity, the case r ∈ (0,1) is more relevant and it would be of interest to pinpoint
sharp optimal rates of estimation and testing.

5.3. Other models. The same general roadmap of first deriving optimal sepa-
ration rates for a single test and then rephrasing parameter estimation as a multiple
testing problem can be adapted in other discrete functional estimation problems,
including rank estimation in matrix regression and matrix completion models,
smoothness estimation in the density framework, number of clusters estimation
in model-based clustering, etc. A prominent example is sparsity estimation in the
high-dimensional linear regression model. Let Y ∈ Rn, X ∈Rn×p be such that

Y = Xθ + ε,

where the parameter θ ∈ Rp is unknown and ε = (εi) is made of centered indepen-
dent normal distributions with variance σ 2. In the specific case where n = p and X
is the identity matrix, it is equivalent to Gaussian vector model (1). Estimation of
θ under sparsity assumptions has received a lot of attention in the last decade [4].
When the entries of X are independently sampled according to the standard normal
distribution, the minimax separation distances for the detection problem has been
derived in [1, 24]. For the purpose of building adaptive confidence intervals, Nickl
and van de Geer [38] have introduced and analyzed sparsity testing procedures.
However, the optimal separation distances for the sparsity testing problem remain
unknown (except in some specific regimes). Further work is therefore needed to
establish the minimax separation distances and to construct adaptive sparsity tests
and sparsity estimators. This setting is more challenging than the one considered
in this paper as the high-dimensional linear model also includes difficulties related
to inverse problems.

Acknowledgements. The authors thank Christophe Giraud and anonymous
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results.

SUPPLEMENTARY MATERIAL

Supplement to “Adaptive estimation of the sparsity in the Gaussian vector
model” (DOI: 10.1214/17-AOS1680SUPP; .pdf). Proofs of the results.

https://doi.org/10.1214/17-AOS1680SUPP
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