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EXTREMAL QUANTILE TREATMENT EFFECTS

BY YICHONG ZHANG

Singapore Management University

This paper establishes an asymptotic theory and inference method for
quantile treatment effect estimators when the quantile index is close to or
equal to zero. Such quantile treatment effects are of interest in many appli-
cations, such as the effect of maternal smoking on an infant’s adverse birth
outcomes. When the quantile index is close to zero, the sparsity of data jeop-
ardizes conventional asymptotic theory and bootstrap inference. When the
quantile index is zero, there are no existing inference methods directly ap-
plicable in the treatment effect context. This paper addresses both of these
issues by proposing new inference methods that are shown to be asymptoti-
cally valid as well as having adequate finite sample properties.

1. Introduction. The sign and magnitude of treatment effects vary depending
on their place in the overall distribution of outcomes, a heterogeneity captured by
quantile treatment effects (QTEs). In many empirical applications, the populations
of interest, such as infants with low birth weights or students with low scores,
are located in the tail of the outcome distribution. Thus researchers encounter not
only the usual missing counterfactual, but also data sparsity because there are not
many observations in the tails. While previous literature has considered the two
problems separately, how to cope with both at the same time while conducting
proper statistical inferences has yet to be addressed.

This paper establishes a new asymptotic theory and inference method for an
estimator of the QTE for low-rank populations. To resolve the usual missing coun-
terfactual problem, it assumes unconfoundedness and rely on the propensity score
(i.e., the conditional probability of an individual being treated) to identify QTEs.
To address the data sparsity, it models a small quantile index τ as a drifting object
with sample size n; that is, τ := τn → 0 as n → ∞. Then, it uses the modeling of
extremal quantiles to derive a new asymptotic approximation for the finite sample
distribution of the QTE estimator when the quantile index τ is close to zero.

This paper establishes the asymptotic properties for extremal QTE estimators
when τn → 0. It finds that there are two asymptotic distributions of the estimator
of τnth QTE, depending on how rapidly τn approaches zero. Following the termi-
nology used in [15], τn is called intermediate when τn → 0 and τnn → ∞. In this
case, this paper shows that the asymptotic distribution for the proposed estimator
of QTE is still Gaussian. Again, following [15], when τn → 0, τnn → k, for some
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FIG. 1. Asymptotic distribution over the quantile index.

k > 0, τn is called extreme. In this case, the paper shows that the asymptotic dis-
tribution is non-Gaussian. For completeness, a quantile index is called regular if
it is fixed strictly between zero and one. In this case, [28] showed that the QTE
estimator is asymptotically normal. Figure 1 summarizes the asymptotic behaviors
of the estimator of QTE.

This paper builds on the established literature on treatment effects and extremal
quantiles. For the treatment effect literature addressing the missing counterfactual
problem, it adapts the unconfoundedness assumption proposed in [45, 46] and [47].
For the extremal quantile literature addressing the data sparsity problem, [15, 16,
27, 38, 43], and [48] assumed that the conditional quantile is linear, while [7, 10],
and [24] investigated extremal percentiles. See [17] for a recent overview.

When there are no covariates except the constant term and the treatment status
is randomly assigned, the QTE and quantile treatment effect on treated (QTT)
studied in this paper are equal to each other and reduce to the difference of two
percentiles from the treatment and control groups. This difference is equal to the
linear coefficient obtained by a quantile regression of observed outcome on the
treatment status. In this case, the distributional and inferential theories established
in this paper reduce to those of extremal percentiles as well as the extremal quantile
regressions established in [15] and [16].

On the other hand, when there are covariates, the models, parameters of interest,
estimation methods, distributional theories, and inferences in this paper are differ-
ent from those in [15] and [16] as well as the extremal percentile literature. For
the model in this paper, both the conditional quantiles of the potential outcomes
and the propensity score are nonparametrically specified, which is different from
the linear quantile regression model assumed in [15] and [16]. For the parameters,
QTE and QTT studied in this paper are unconditional objects, which are different
from the linear coefficient in the conditional quantile regression studied in [15] and
[16]. The QTE is also distinct from the difference of the conventional percentiles
of the treatment and control groups because the data are not missing at random.
For estimation, the propensity score as an infinite dimensional nuisance parame-
ter is estimated nonparametrically and used to correct for the selection bias. For
the distributional theories, this paper establishes uniform results for the quantile
index in both intermediate and extreme regions. The new theories rely on a high-
level condition on the behavior of covariates as the quantile index approaches zero,
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which is further revealed to depend on the structure of the conditional boundaries
of the potential outcomes given covariates.

For inference, when the quantile index is intermediate, the paper shows that the
standard bootstrap confidence interval (CI) for the QTE estimator controls size. For
the extreme-order quantile case, the paper proves that the conventional bootstrap
CI does not control size. It then proposes a resampling method with or without re-
placement that controls size uniformly over a range of quantile indices. Lastly, by
considering a linear combination of extreme QTE estimators with carefully cho-
sen weights, one can construct a consistent CI for the 0th QTE without imposing
additional restrictions or extrapolating.

To choose among different categories of quantile index, this paper proposes a
quantile-order-category-selection procedure similar to the identification-category-
selection procedure used in [4]. The difference here is that I have two thresholds
while they only have one. When the quantile index is smaller than the first thresh-
old, the extreme-order quantile asymptotic distribution is expected to approximate
the finite sample distribution of the QTE estimator better than the normal approx-
imation. In this case, the new resampling CI developed in this paper can be used
to conduct inference. The simulations in this paper examine the performance of
this threshold in various designs with small, moderate and large size samples. In
all cases, it is found that when the criterion is satisfied, the new resampling CI
controls size while the standard bootstrap CI undercovers (i.e., over-rejects) by as
much as 18 absolute percentage points. When the quantile index is greater than
the second threshold, the paper proves that the standard bootstrap CI controls size.
Last, when the quantile index is between the first and second threshold, the paper
suggests using a conservative critical value.

The modeling of extremal quantiles in this paper is related to the concept of
drifting sequence asymptotics. This concept goes back to [42] using Pitman drift
to characterize power functions. Recently, the concept has been used in the context
of weak instruments by, for example, [49] and [50], and other various models by
[4, 5, 14] and [37].

The rest of the paper is organized as follows. Section 2 defines the parameters
of interest, introduces additional notation and provides relevant background on
extreme value theory. Sections 3 and 4 consider the asymptotic properties of the
estimators for intermediate and extreme QTEs, respectively. Section 5 establishes
the inference theory and provides a step-by-step description of implementation.
A supplement [53] gathers additional theoretical results on estimating the extreme
value (EV) index and conducting two-sample inference, numerical examples of
limiting distributions, empirical and simulation results of the inference methods
proposed in the paper and all theoretical proofs.

2. Definition, extreme value theory and notation. First, denote the potential
outcomes for treated and control groups as Y1 and Y0, respectively. The treatment
status is denoted as D, where D = 1 means treated and D = 0 means untreated.
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The researcher can only observe (Y,X,D) where Y = Y1D +Y0(1 −D), and X is
a collection of confounders. The propensity score P(D = 1|X = x) is denoted as
�(x). The parameters of interest are the τ th QTE defined as

q(τ) := q1(τ ) − q0(τ )

and the τ th QTT defined as

q|D=1(τ ) := q1|D=1(τ ) − q0|D=1(τ ),

in which qj (τ ) and qj |D=1(τ ) denote the τ th quantile of random variables Yj and
Yj |D = 1, j = 0,1, respectively.

As originally defined by [25] and [40], the QTE, for a fixed percentile, cor-
responds to the horizontal difference between the marginal distributions of two
potential outcomes and is called the shift function in [25]. If an individual can
maintain his ranking in the potential outcome distributions regardless of his treat-
ment status, the QTE is equal to the quantile of the treatment effect (Y1 − Y0).
Without the rank preservation, the QTE still summarizes interesting distributional
aspects of the treatment effect which complements the average treatment effect.
Similarly, the QTT, for a fixed percentile, is the horizontal difference between the
two potential outcome distributions of the individuals in the treatment group. In
the program evaluation, the treatment effect for the group of treated individuals is
of particular interest. QTT provides summary statistics to the distributional aspect
of this effect.

Next, I introduce some extreme value theory, which will be used when I charac-
terize the asymptotic theories in Sections 3 and 4. The cumulative distribution
function (CDF) F belongs to the domain of attraction of generalized extreme
value distributions if there exist sequences (αn)n∈N, (βn)n∈N and a CDF G in-
dexed by a parameter ξ , such that, for any independent draws (U1, . . . ,Un) from
F , αn(min(U1, . . . ,Un) − βn) converges in distribution to G. Here, F belongs to
the domain of attraction of generalized extreme value distributions with a param-
eter ξ called the extreme value (EV) index. Define A(z) := F(z)/F ′(z) for some
z > sl as the auxiliary function, in which sl is the lower end point of the support
of U . In addition, for two generic functions f1(·) and f2(·), denote f1(z) ∼ f2(z)

if

f1(z)

f2(z)
→ 1 as z → sl.

Then based on the value of ξ , F has three types of tails:

type 1 tail (ξ = 0): as z → sl, F
(
z + vA(z)

) ∼ F(z)ev ∀v ∈ R,

type 2 tail (ξ > 0): as z → −∞, F (vz) ∼ v−1/ξF (z) ∀v > 0,

type 3 tail (ξ < 0): as z → 0, F (sl + vz) ∼ v−1/ξF (sl + z) ∀v > 0.
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For example, normal, T and Beta distributions have type 1, 2 and 3 tails, respec-
tively.

Finally, I provide two weak convergence concepts this paper will rely on. I use
Un � U to indicate weak convergence as defined by [51]. When Un and U are
k-dimensional elements, the space of the sample path is R

k equipped with the
Euclidean metric. When Un and U are stochastic processes, the space of the sample
path will be specified later in each different context. For this paper, the space is
either l∞({v ∈ R : |v| < B}), for some positive B equipped with the sup norm or
the Skorohod space D([−B,B]), for some positive B equipped with the Skorohod
metric.1

3. Intermediate quantile treatment effects. Recall the setup in Section 2.
I further assume the following.

ASSUMPTION 1.

(1) {Yi,Di,Xi}ni=1 is i.i.d.
(2) (Y1, Y0) ⊥⊥ D|X.
(3) X is r-dimensional. The support of X, Supp(X), is compact. For some c >

0, c < �(x) < 1 − c, ∀x ∈ Supp(X).

Assumption 1(1) is stronger than necessary. Since the parameters of interest in
this paper are all tail objects, I only require the conditional tails of (Y1, Y0) given
X to be the same across individuals, which allows the middle and the upper tail
of the distributions to be heterogeneous.2 Assumption 1(2) is the unconfounded-
ness assumption, which states that the potential outcomes are independent of the
treatment status conditional on additional covariates X. Although strong, this as-
sumption has been widely used in both theoretical investigations and empirical
studies; see, for example, [12, 18, 28, 34, 45]. For extremal QTEs, it is appropriate
to start with this unconfoundedness condition. When the quantile index is regular,
that is, bounded away from 0 and 1, papers such as [1, 19, 20] and [30] extend the
assumption to allow for endogenous treatment status and rely on an instrumental
variable to correct the selection bias. Similar strategies can be applied here to the
extremal quantile case. While important, I leave the problem of establishing the
corresponding asymptotic theory to future research.

ASSUMPTION 2. The quantile index τn is intermediate, that is, (1) τn → 0 as
n → ∞, (2) τnn → ∞ as n → ∞.

1To differentiate, D is reserved for the binary treatment status and {Di,j }∞i=1, j = 0,1 are the sets
of random variables defined in the limiting objective function in Section 4.

2I thank the referee for pointing this out.
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Under Assumption 1 and the fact that Y is continuously distributed, [28] found
that the four quantiles q1(τ ), q0(τ ), q1|D=1(τ ) and q0|D=1(τ ) for any τ ∈ (0,1)

are identified based on the following four moment equalities:

E

[
D

�(X)

(
τ − 1

{
Y ≤ q1(τ )

})] = 0,

E

[(
1 − D

1 − �(X)

)(
τ − 1

{
Y ≤ q0(τ )

})] = 0,

E
[
D

(
τ − 1

{
Y ≤ q1|D=1(τ )

})] = 0

and

E

[
(1 − D)�(X)

1 − �(X)

(
τ − 1

{
Y ≤ q0|D=1(τ )

})] = 0,

respectively.
Define q̂(τn), the estimator of the τnth QTE, as q̂(τn) := q̂1(τn) − q̂0(τn) and

q̂|D=1(τn), the estimator of τnth QTT, as q̂|D=1(τn) := q̂1|D=1(τn) − q̂0|D=1(τn).
Despite the extremal feature of the quantile index, the natural sample estimator
q̂1(τn) for the τnth quantile of Y1 can be computed through an inverse propensity
score weighted quantile regression:

(3.1) q̂1(τn) := arg min
q∈R

n∑
i=1

Di

�̂(Xi)
(Yi − q)

(
τn − 1{Yi ≤ q}),

in which �̂(·) is an estimator of �(·) to be defined later. Similarly, q̂0(τn), an
estimator of the τnth quantile of Y0, can be computed as

(3.2) q̂0(τn) := arg min
q∈R

n∑
i=1

1 − Di

1 − �̂(Xi)
(Yi − q)

(
τn − 1{Yi ≤ q}).

For estimating the QTT, q̂1|D=1(τn) and q̂0|D=1(τn) can be computed as

q̂1|D=1(τn) := arg min
q∈R

n∑
i=1

Di(Yi − q)
(
τn − 1{Yi ≤ q})

and

q̂0|D=1(τn) := arg min
q∈R

n∑
i=1

(1 − Di)�̂(Xi)

1 − �̂(Xi)
(Yi − q)

(
τn − 1{Yi ≤ q}),

respectively.
Under some suitable conditions specified later, the propensity score estimator

�̂(·) is strictly between 0 and 1 with probability approaching one. This implies
that the objective functions for estimating (q̂j (τn), q̂j |D=1(τn)), j = 0,1 are all
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convex. One can also directly compute (q̂j (τn), q̂j |D=1(τn)), j = 0,1 based on the
subgradient conditions of the minimization problems.3

Following [28] and [34], �(X), the propensity score, is estimated by the
sieve method of fitting a logistic model. The method does not require the true
propensity score to be correctly specified as a logistic model. I denote the logis-
tic CDF by L(a) := exp(a)/(1 + exp(a)) and the number of sieve bases by hn,
which depends on the sample size n and can grow to infinity as n → ∞. Let
Hhn(x) := (b1n(x), . . . , bhnn(x))′, where {bhn}hn

h=1 are hn bases of a linear sieve
space B. Given all r elements of X are continuously distributed, one can construct
the linear sieve space B as follows:

1. For each element X(l) of X, l = 1, . . . , r , let Bl be the univariate sieve space
of dimension Jn. For example, Bl is a linear span of Jn dimensional power series,
that is,

Bl =
{

Jn∑
k=0

αkx
k, x ∈ Supp

(
X(l)), αk ∈ 


}
or a linear span of third-order splines with Jn nodes, that is,

Bl =
{ 2∑

k=0

αkx
k +

Jn∑
j=1

bj

[
max(x − tj ,0)

]2
, x ∈ Supp

(
X(l)), αk, bj ∈ 


}
,

where −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partition Supp(X(l)) into Jn + 1
subsets Ij = [tj , tj+1) ∩ Supp(X(l)), j = 1, . . . , Jn − 1, I0 = (t0, t1) ∩ Supp(X(l)),
and IJn = (tJn, tJn+1) ∩ Supp(X(l)).

2. Let B be the tensor product of {Bl}rl=1, which is defined as a linear space
spanned by functions

∏r
l=1 gl , where gl ∈ Bl . The dimension of B is then hn :=

rJn.

Denote �̂(x) := L(Hhn(x)′π̂n) with

π̂n := arg max
π∈Rhn

n∑
i=1

(
Di logL

(
Hhn(Xi)

′π
) + (1 − Di) log

(
1 − L

(
Hhn(Xi)

′π
)))

.

3The subgradient conditions for q̂j (τn), j = 0,1 imply q̂j (τn) = Yhj
for some positive integers

hj , j = 0,1 such that Dhj
= j ,

τnn − 1

�̂(Xh1)
≤ ∑

i �=h1

Di

�̂(Xi)
1{Yi < Yh1 } ≤ τnn

and

τnn − 1

1 − �̂(Xh0)
≤ ∑

i �=h0

1 − Di

1 − �̂(Xi)
1{Yi < Yh0 } ≤ τnn.

Both hj , j = 0,1 are uniquely defined as long as the above two conditions do not hold in equality,
which is usually the case in practice.
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There are other methods to estimate the regular QTE in addition to the inverse
propensity weighting method used in this paper. [2] established the large sample
properties of the matching estimator and showed that bootstrap inference is invalid.
[36] considered using propensity score to balance the covariates in the treatment
and control groups. [29], [31] and [44] studied the use of doubly robust moment
conditions to estimate the regular QTE. It is still an open question how these esti-
mators behave as the quantile index approaches 0.

For brevity, the rest of the paper only considers the estimation of q̂1(τn), q̂0(τn)

and q̂(τn). The asymptotic results for q̂1|D=1(τn), q̂0|D=1(τn), and q̂|D=1(τn) can
be derived in a similar manner.

Furthermore, for the intermediate case, instead of only one quantile index τn, I
focus on a range of them. That is, kτn, k ∈ [κ1, κ2] for some fixed and known con-
stants κ1 and κ2 such that 0 < κ1 < κ2 < ∞. I then aim to derive a uniform asymp-
totic theory for the process {(q̂1(kτn), q̂0(kτn)) : k ∈ [κ1, κ2]}, where for each k,

q̂(kτn) := q̂1(kτn) − q̂0(kτn),

q̂1(kτn) := arg min
q∈R

n∑
i=1

Di

�̂(Xi)
(Yi − q)

(
kτn − 1{Yi ≤ q})

and

q̂0(kτn) := arg min
q∈R

n∑
i=1

1 − Di

1 − �̂(Xi)
(Yi − q)

(
kτn − 1{Yi ≤ q}).

The following sufficient regularity conditions are adapted from Assumptions
A.1 and A.2 of [28].

ASSUMPTION 3.

(1) The density of X is bounded above and bounded away from 0 over its sup-
port.

(2) The propensity score �(x) is s-times continuously differentiable with all
the derivatives bounded.

(3) The conditional expectation E(kτn − 1{Yj ≤ qj (kτn)}|x) is t-times con-
tinuously differentiable in x with all derivatives bounded by Mn uniformly over
(x, k) ∈ Supp(X) × [κ1, κ2].

(4) Let ζ(hn) = supx∈Supp(X) ‖Hhn(x)‖.4 Then, ζ(hn)2hn√
n

→ 0, τnζ(hn)10hn

n
→ 0,

nτnζ(hn)
6h

−s/r
n → 0 and nMn

τnh
t/r
n

→ 0 where r is the dimension of X.

Assumptions 3(1) and 3(2) are common in the sieve estimation literature, for ex-
ample, [13, 28] and [34]. Assumptions 3(3) and 3(4) are tailored to fit the special

4For an arbitrary vector or matrix A, denote ‖A‖ as
√

tr(AT A).
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case in which the quantile index is intermediate and the derivative of the quantile
varies with the sample size. In fact, the magnitude of Mn depends on the tail be-
havior of Yj conditional on X. When the density of Yj |X vanishes in its lower tail,
Mn decreases to zero. When the density of Yj |X diverges in its lower tail (such as
a Beta distribution with the first shape parameter less than 1), Mn diverges to in-
finity. Assumptions 3(3) and 3(4) implicitly deal with the case that all r elements
of X are continuous. If some elements of X are discrete, dimension r is inter-
preted as the dimension of continuous covariates and Assumptions 3(3) and 3(4)
can be extended in a conceptually straightforward manner by using the continuous
covariates estimator within samples that are homogeneous in discrete covariates,
at the expense of additional notation. Furthermore, based on the standard sieve
estimation results, ζ(hn) = O(h

1/2
n ) and ζ(hn) = O(hn) for B-splines and power

series, respectively. Therefore, if B-splines are used to form the sieve bases and
hn = Cnc for some positive constants C and c, then Assumption 3(4) is equiv-
alent to c < 1

4 , τnn
6c−1 → 0, τnn

1+c(3−s/r) → 0 and Mnn
1−t/r/τn → 0. Given

sufficient smoothness, if c ≤ 1/6, Assumption 3(4) holds. In addition, the conver-

gence rate of �̂(·) to �(·) is of order (hn

n
)1/2 + h

− s
r

n . Therefore, Assumption 3(4)
requires the convergence rate of �̂(·) to be faster than n5/12. This rate is faster
than the usual n1/4 rate in semiparametric estimations, which suggests Assump-
tion 3 may be relaxed. On the other hand, the convergence rate of the intermediate
QTE estimator is not n1/2. This implies the slowest rate allowed for the propen-
sity score estimator may not be n1/4. Estimation of the intermediate QTE under
minimal requirement on the convergence rate of the propensity score is left as a
potential area for future research. Last, Assumptions 3(3) and 3(4) are expected
to be further relaxed by using the doubly robust estimation method as illustrated
in [29].

Next, I impose regularity conditions on the tails of Y1 and Y0.

ASSUMPTION 4. For j = 0,1:

(1) Yj , Yj |X are continuously distributed with density fj (·) and fj (·|X), re-
spectively.

(2) The density fj (·) is monotone in its lower tails.
(3) The CDF of Yj belongs to the domain of attraction of generalized EV dis-

tributions with the EV index ξj .

These restrictions are mild. Assumption 4(1) is common in the quantile regres-
sion literature. Assumption 4(2) refers to the tail of the distribution, which is satis-
fied by most well-known continuous distributions. Assumption 4(3) is a standard
condition in extreme value theory and is satisfied by almost all continuous distri-
butions.



3716 Y. ZHANG

Before stating the first main theoretical result of the paper, I introduce the nor-
malizing factor λj,n(k) for q̂j (kτn):

(3.3) λj,n(k) :=
√

n

kτn

fj

(
qj (kτn)

)
for j = 0,1 and k ∈ [κ1, κ2].

Recall that for the estimator of the τ th percentile in which τ is regular, the conver-
gence rate is

√
n and the asymptotic variance is τ(1−τ)

f 2
j (qj (τ ))

. By moving the asymp-

totic standard deviation to the same side of the convergence rate, we obtain a nor-
malizing factor √

n

τ(1 − τ)
fj

(
qj (τ )

)
.

Then letting τ := τn → 0, we heuristically obtain the normalizing factor for the
intermediate-order quantile estimators defined in (3.3) with k = 1.

THEOREM 3.1. If Assumptions 1–4 hold, then(
λ1,n(k)

(
q̂1(kτn) − q1(kτn)

)
, λ0,n(k)

(
q̂0(kτn) − q0(kτn)

))
as a two-dimensional stochastic process indexed by k is asymptotically tight un-
der the uniform metric. In addition, if there exist functions H1(k1, k2), H0(k1, k2),
H01(k1, k2) and H10(k1, k2) on (k1, k2) ∈ [κ1, κ2] × [κ1, κ2] such that, as τn → 0,

1

τn

E

[
P(Y1 ≤ q1(min(k1, k2)τn)|X)

�(X)

− 1 − �(X)

�(X)
P

(
Y1 ≤ q1(k1τn)|X)

P
(
Y1 ≤ q1(k2τn)|X)] → H1(k1, k2),

1

τn

E

[
P(Y0 ≤ q0(min(k1, k2)τn)|X)

1 − �(X)

− �(X)

1 − �(X)
P

(
Y0 ≤ q0(k1τn)|X)

P
(
Y0 ≤ q0(k2τn)|X)] → H0(k1, k2),

1

τn

EP
(
Y0 ≤ q0(k1τn)|X)

P
(
Y1 ≤ q1(k2τn)|X) → H01(k1, k2)

and

1

τn

EP
(
Y1 ≤ q1(k1τn)|X)

P
(
Y0 ≤ q0(k2τn)|X) → H10(k1, k2),

then for k ∈ [κ1, κ2],(
λ1,n(k)

(
q̂1(kτn) − q1(kτn)

)
, λ0,n(k)

(
q̂0(kτn) − q0(kτn)

))
� B(k),
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where B(k) is a Brownian bridge with covariance kernel:

H(k1, k2) :=

⎛⎜⎜⎜⎝
H1(k1, k2)√

k1k2

H10(k1, k2)√
k1k2

H01(k1, k2)√
k1k2

H0(k1, k2)√
k1k2

⎞⎟⎟⎟⎠ .

Theorem 3.1 shows that the asymptotic distribution of the intermediate QTE
estimator is still Gaussian, just as when the quantile index is regular. Intuitively,
this is because for j = 0,1, q̂j (τn) can be interpreted as a cutoff for which the
numbers of {Yi,j }ni=1 below and above the cutoff are of the same order of nτn and
n(1 − τn), respectively. When τn is intermediate, both orders diverge to infinity,
which is the same as the case in which τ is regular. Thus the shapes of asymptotic
distributions under regular and intermediate-order quantile indices are the same.

Based on [28], the influence function for q̂1(τ ) with regular τ is

(3.4)

1

f1(q1(τ ))

[
Di

�(Xi)

(
τ − 1

{
Yi,1 ≤ q1(τ )

})
− E((τ − 1{Yi,1 ≤ q1(τ )})|Xi)

�(Xi)

(
Di − �(Xi)

)]
.

Theorem 3.1 shows the influence function for q̂j (τn) is

(3.5) φi,1,n := 1√
τn

[
Di

�(Xi)
Ti,1,n − E(Ti,1,n|Xi)

�(Xi)

(
Di − �(Xi)

)]
,

where

Ti,1,n := τn − 1
{
Yi,1 ≤ q1(τn)

}
.

Comparing (3.4) and (3.5), we find that the two influence functions are the same up
to a deterministic sequence f1(q1(τn))√

τn
when k = 1 and τ in (3.4) is replaced by τn.

In the influence function, the first term represents the estimation error when the
propensity score is known and the second term is the information gain by non-
parametrically estimating the propensity score. For the regular case, both the first
and second terms in (3.4) contribute to the asymptotic variance of the estimator.
However, for the intermediate case, the second term in (3.5) may be asymptoti-
cally negligible, implying that there is no information gain by nonparametrically
estimating the propensity score. This is in contrast to the regular case. To see this,
note

1

τn

E

(
E(Ti,1,n|Xi)

�(Xi)

(
Di − �(Xi)

))2
= E

P 2(Y1 ≤ q1(τn)|X)(1 − �(X))

τn�(X)
+ o(1).

Since P(Y1 ≤ q1(τn)|X) = Op(τn), under some suitable integrability condition,
the second term in the influence function vanishes as τn → 0.
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There are two difficulties to derive the asymptotic theory of q̂(τn) := q̂1(τn) −
q̂0(τn). First, since the density fj (·) is unknown, the normalizing factors proposed
in Theorem 3.1 are not feasible. Second, as τn → 0, fj (qj (τn)) may decay to zero
(e.g., normal distribution, T distribution, Beta distribution with the first parameter
greater than 1) or diverge to infinity (e.g., Beta distribution with the first parameter
less than 1). Therefore, due to the difference of tail behaviors of Y1 and Y0, the
convergence rates of q̂1(τn) and q̂0(τn) are not necessarily the same. To address
the first point, I follow [15] and build a feasible normalizing factor. To address the
second point, I use the following assumption.

ASSUMPTION 5. Let m be some spacing parameter that is greater than 1. Then

q1(mτn) − q1(τn)

q0(mτn) − q0(τn)
→ ρ ∈ [0,+∞].

Assumption 5 aims to bridge the normalizing factors of q̂1(τn) and q̂0(τn) by
considering the ratio of the differences of quantiles of Y1 and Y0 at quantile in-
dices mτn and τn. Given other assumptions in the paper, if Assumption 5 holds for
one m, then it holds for any positive value of m as well. For the analytical infer-
ence, researchers need to choose m. The choice of m is discussed in Section 5.5.
In addition, for the intermediate case, the bootstrap inference will be shown to be
valid and does not require that the value of m to be specified. When ρ = 0, the
convergence rate of q̂0 is slower so the estimation error of q̂1(τn) is asymptotically
negligible. On the other hand, if ρ = ∞, q̂0(τn) has a faster convergence rate than
q̂1(τn), and thus can be treated as known. Finally, when ρ ∈ (0,∞), the conver-
gence rates of q̂1(τn) and q̂0(τn) are the same. For analytical inference, when τn is
intermediate, ρ can be estimated by

ρ̂ = q̂1(mτn) − q̂1(τn)

q̂0(mτn) − q̂0(τn)
.

Under Assumption 5, I define the feasible normalizing factor for q̂(τn) as

λ̂n(k) :=
√

nkτn

max{(q̂1(mkτn) − q̂1(kτn)), (q̂0(mkτn) − q̂0(kτn))} .
The next theorem shows that the intermediate QTE estimator is asymptotically
normal with the feasible normalizing factor λ̂n(k).

THEOREM 3.2. Let ρ(k) = kξ0−ξ1ρ, C1(ρ,m, k) := (1−m−ξ1

ξ1
)−1 ρ(k)

max(1,ρ(k))
,

C0(ρ,m, k) := (1−m−ξ0

ξ0
)−1 1

max(ρ(k),1)
, 5 and B(·) be as defined in Theorem 3.1.

If Assumptions in Theorem 3.1 and Assumption 5 hold, then uniformly over

5Here I adapt the convention that c∞ = 0, c
0 = sign(c)∞ for any real number c, and 1−m−ξ

ξ =
log(m) when ξ = 0.
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k ∈ [κ1, κ2],
λ̂n(k)

(
q̂(kτn) − q(kτn)

)
�

[
C1(ρ,m, k),−C0(ρ,m, k)

]
B′(k).

The next theorem shows that the standard bootstrap inference for the interme-
diate QTE controls size. It is worth noting that the propensity score has to be
re-estimated for every bootstrap sample. Let q̂†(τn) be the estimator computed
using the bootstrap sample and C̃nn

a (τn) be the ath quantile of q̂†(τn)− q̂(τn) con-
ditional on data. The two-sided (1 − a)th bootstrap CI for any a ∈ (0,1) can be
written as

CIboot(τn) = (
q̂(τn) − C̃nn

1−a/2(τn), q̂(τn) − C̃nn
a/2(τn)

)
.

THEOREM 3.3. If Assumptions 1–5 hold, then

lim
n→∞P

(
q(τn) ∈ CIboot(τn)

) = 1 − a.

The key advantage of using bootstrap inference is that it does not require esti-
mation of either the normalizing factor λ̂n or the asymptotic variance-covariance
matrix. [26] has already proven the validity of bootstrap inference for the
intermediate-order percentiles. For the regression case, [22] pointed out that the
bootstrap inference is valid for linear intermediate-order quantile regressions. Re-
cently, [23] proved that the bootstrap inference for the intermediate-order quantile
regression is valid in sample selection models. This paper shows that the bootstrap
inference is also valid for the intermediate-order QTE estimator.

4. Extreme quantile treatment effects. Section 4.1 establishes asymptotic
theory for the τnth QTE when τn is extreme. It serves as the foundation for the
inference theory in Section 5. Section 4.2 considers the asymptotic distribution
of the extreme QTE estimator with a feasible normalizing factor, which permits
inference through a resampling method proposed in Section 5.2.

4.1. The main result.

ASSUMPTION 6. Assume τn is extreme; that is, (1) τn → 0 as n → ∞,
(2) τnn → k for some positive constant k as n → ∞.6

6The use of k in this section is slightly different from the use in the intermediate case. In the
intermediate case, the limiting distribution is established for τnk, in which τn serves as the anchor
quantile index and k is a positive multiplier. In the extreme case here, k is the limit of τnn. However,
we can set the anchor quantile index τn to 1/n. Then k can still be interpreted as the multiplier and
the limiting distribution will be derived for τnk.
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Define the estimator q̂(τn) of the τnth QTE q(τn) as

(4.1) q̂(τn) := q̂1(τn) − q̂0(τn),

where q̂1(τn) and q̂0(τn) are computed from (3.1) and (3.2), respectively.
I use the same objective functions as those used to compute the regular and

intermediate QTE, although, as will be shown later, the asymptotic behavior of
q̂j (τn) is no longer normal compared to the ones with intermediate and regular
quantile indices. This is because the number of observations below qj (τn) is of the
same order of magnitude of τnn, which does not diverge to infinity (Assumption 6).
I also need the propensity score estimator �̂(·) to be uniformly consistent.

ASSUMPTION 7. The estimator of the propensity score is uniformly consis-
tent, that is, supx∈Supp(X) |�̂(x) − �(x)| = op(1).

This assumption does not require that the convergence rate for the nonpara-
metric propensity score estimator be faster than n1/4, as usually assumed; see, for
example, [41]. The reason is similar to the nonnormality of the limiting distribu-
tion: there are only a finite number of observations below the estimator of q̂j (τn),
which are thus counted in the summations in (3.1) and (3.2). Summing over a finite
number of observations prevents the accumulation of the first-order approximation
error �̂(Xi) − �(Xi).

The next high-level assumption determines the shape of the asymptotic distri-
bution of the extreme QTE estimator.

ASSUMPTION 8. For j = 0,1:

(1) Let P(X ∈ ·|Yj = y) denote the conditional distribution of X given Yj = y.
Then P(X ∈ ·|Yj = y) weakly converges to the CDF of a random vector Xj as
y → qj (0).

(2) Let P +
j (Xj ∈ ·|Yj = qj (0)) be the CDF of Xj . Then P +

j (Xj ∈ ·|Yj =
qj (0)) has finite mass points.

(3) Let S be the discontinuity of the function x �→ �(x). Then P +
j (Xj ∈

S|Yj = qj (0)) = 0.

Assumption 8(1) is high-level. Section C in the supplement provides primitive
sufficient conditions for Assumption 8(1) to hold. Section D in the supplement
contains more numerical illustrations. In general, P +

j (Xj ∈ ·|Yj = qj (0)) depends
on the conditional boundary of Yj given X. The phenomenon that the asymptotic
distribution depends on boundary conditions is common in nonregular estimations;
see, for example, [21, 35] and [39]. For Assumption 8(2), the number of mass
points depends on the number of discrete minimizers of the conditional boundary
of Yj given X which is usually finite. Also, Assumption 8(2) holds when Xj is
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continuous, in which case there is no mass point. Assumption 8(3) is mild as in
many parametric models, for example, probit and logit, S =∅.

Theorem 4.1, the main theoretical result of this section, establishes the joint
asymptotic distribution of q̂j (τn), j = 0,1 by showing that a normalized version
of q̂j (τn), j = 0,1 weakly converges to the minimizer of an asymptotic objective
function. I first state the normalized version of q̂j (τn), j = 0,1.

For j = 0,1, the normalized versions of q̂j (τn) with or without centering are

Ẑc
j,n(k) := αj,n

(
q̂j (τn) − qj (τn)

)
and

Ẑj,n(k) := αj,n

(
q̂j (τn) − aj − βj,n

)
,

respectively, where aj is an auxiliary constant so that Uj = Yj − aj has lower
endpoint 0 or −∞. In particular, if qj (0) > −∞, then aj = qj (0); otherwise, aj

is arbitrary. The normalizing constants (αj,n, βj,n) for j = 0,1 are given by

type 1 tails (ξj = 0): αj,n = 1/
(
A

(
F−1

Uj
(1/n)

))
, βj,n = F−1

Uj
(1/n),

type 2 tails (ξj > 0): αj,n = −1/
(
F−1

Uj
(1/n)

)
, βj,n = 0,

type 3 tails (ξj < 0): αj,n = 1/
(
F−1

Uj
(1/n)

)
, βj,n = 0,

in which FUj
is the CDF of Uj and A(·) := FUj

(·)
F ′

Uj
(·) is the auxiliary function defined

in Section 2.
The asymptotic objective function of the local parameter z is

(4.2) −kz +
∞∑
i=1

Wj

(
Di,j ,�(Xi,j )

)
lδ(Ji,j , z),

in which W1(d,π) = d
π

and W0(d,π) = 1−d
1−π

. To see the meaning of each term in
(4.2), I denote, for j = 0,1,

type 1 tails (ξj = 0): hj (l) = exp(l) for l ∈ R, ηj (k) = log(k),

type 2 tails (ξj > 0): hj (l) = (−l)−1/ξj for l < 0, ηj (k) = (−k)−ξj ,

type 3 tails (ξj < 0): hj (l) = l−1/ξj for l > 0, ηj (k) = k−ξj .

Then {Ei,j ,Di,j ,Xi,j } is an i.i.d. sequence such that

{Ei,1,Di,1,Xi,1} ⊥⊥ {Ei,0,Di,0,Xi,0}
and for j = 0,1, Xi,j is governed by the law P +

j (Xj ∈ ·|Yj = qj (0)), Di,j is
Bernoulli distributed with success probability �(Xi,j ) conditional on Xi,j , and Ei,j

is standard exponentially distributed independently of both (Xi,j ,Di,j ). In addi-
tion, Ji,j := h−1

j (
∑i

l=1 El,j ) and lδ(u, v) := 1{u < v}(v−u)−1{u ≤ −δ}(−δ−u)

for an arbitrary δ > 0. The same function of lδ(u, v) is first used in [15].
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ASSUMPTION 9. For both j = 0,1 and a generic fixed constant k > 0,

−kz +
∞∑
i=1

Wj

(
Di,j ,�(Xi,j )

)
lδ(Ji,j , z)

has a unique minimizer almost surely.

Assumption 9 indicates that the asymptotic objective function has a unique min-
imizer which is needed for applying the argmin theory. This type of assumption
is common in nonregular estimation literature; see, for example, [16, 21, 32] and
[39]. Lemma G.6 provides a sufficient condition for this assumption to hold. In
general, the assumption holds when Xj is absolutely continuous. If Xj has a unique
mass point at x0, the sufficient condition requires that k�(x0) is not an integer,
where �(·) is the propensity score. Since integers are sparse on the real line, this
sufficient condition is mild. In addition, [32] considered the nonparametric estima-
tion of the conditional boundary and encountered the problem that their asymptotic
objective function does not have a minimizer. This problem is mainly due to the
fact that their estimator may not be tight.7 In contrast, the tightness of the extreme
QTE estimator is established in the supplement. Last, it is possible to regularize
the linear program in the subgradient condition to guarantee a unique minimizer
for every n, and thus, relax Assumption 9.8

THEOREM 4.1. If Assumptions 1, 4 and 6–8 hold, there exist κ1 and κ2 such
that 0 < κ1 < κ2 < ∞ and (κ1, κ2) satisfy Assumption 9, then (Ẑ1,n(k), Ẑ0,n(k)) �
(Z1,∞(k),Z0,∞(k)) in D2([κ1, κ2]), where(

Z1,∞(k),Z0,∞(k)
)

:= arg min
(z1,z0)∈R2

∑
j=0,1

[
−kzj +

∞∑
i=1

Wj

(
Di,j ,�(Xi,j )

)
lδ(Ji,j , zj )

]
.

In addition, in D2([κ1, κ2]),(
Ẑc

1,n(k), Ẑc
1,n(k)

)
�

(
Zc

1,∞(k),Zc
0,∞(k)

) := (
Z1,∞(k)−η1(k),Z0,∞(k)−η0(k)

)
.

The immediate corollary of Theorem 4.1 is the finite dimensional convergence.
Due to the lack of continuity of the sample path of (Z1,∞(·),Z0,∞(·)), the projec-
tion mapping is only continuous when the index k is not at the discontinuity.

7To be more precise, the distributions of Hall and Van Keilegom’s [32] estimator as a sequence
indexed by the sample size n may not be tight in the sense of [11].

8I thank the referee for this point.
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COROLLARY 4.1. If the assumptions in Theorem 4.1 hold and Assumption 9
is satisfied for k ∈ {kl}Ll=1, then(

Ẑ1,n(kl), Ẑ0,n(kl)
)L
l=1 �

(
Z1,∞(kl),Z0,∞(kl)

)L
l=1

such that(
Z1,∞(kl),Z0,∞(kl)

)L
l=1

:= arg min
(z1,l ,z0,l )

L
l=1

∑
j=0,1

L∑
l=1

{
−klzj,l +

∞∑
i=1

Wj

(
Di,j ,�(Xi,j )

)
lδ(Ji,j , zj,l)

}

and (
Ẑc

1,n(kl), Ẑ
c
0,n(kl)

)L
l=1 �

(
Zc

1,∞(kl),Z
c
0,∞(kl)

)L
l=1

:= (
Z1,∞(kl) − η1(kl),Z0,∞(kl) − η0(kl)

)L
l=1.

REMARK 1. Theorem 4.1 and Theorem 3.1 (for the intermediate-order quan-
tile), along with Theorem 1 in [28] (for the regular quantile), characterize the
asymptotic distribution of the QTE estimator when the quantile index ranges from
0 to 1. Starting with the regular quantile, the asymptotic distribution is normal.
Estimating the unknown propensity score provides additional information. When
the quantile index is intermediate, the shape of the asymptotic distribution remains
normal, but the additional information from estimating the propensity score be-
comes asymptotically negligible. When the quantile index moves even closer to
the origin so that it is extreme, the shape of the asymptotic distribution becomes
non-Gaussian, but the information from estimating the propensity score is still
asymptotically negligible.

REMARK 2. I do not impose any parametric restriction on the conditional
quantile of Yj given X, in contrast to [15], which considered linear extreme-order
quantile regressions. The parameters considered in linear quantile regressions are
conditional objects, while QTEs in this paper are unconditional objects. In order
to deal with conditional quantiles, [15] proposed an innovative solution: use the
asymptotic independence between residuals and covariates X in the tails in addi-
tion to linearity to regulate the conditional tail behavior. On the other hand, As-
sumption 8 does not nest, nor is nested by, the linearity and asymptotic indepen-
dence condition in [15]. In particular, linearity is not imposed by Assumption 8.
Section C in the supplement verifies Assumption 8 under three different condi-
tional boundary conditions.

REMARK 3. Theorem 4.1 has shown that q̂1(τn) and q̂0(τn) are asymptotically
independent because, by construction,

{Ji,1,Xi,1,Di,1}i≥1 ⊥⊥ {Ji,0,Xi,0,Di,0}i≥1.
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Thus the joint asymptotic distribution of (q̂0(τn), q̂1(τn)) is fully characterized by
the marginals. In Section D of the Supplementary Material I compute the marginal
distribution of q̂1(τ ) under various boundary conditions.

REMARK 4. Directly computing the critical value of the asymptotic distribu-
tion of q̂(τn) is infeasible. Note that the ultimate parameter of interest is q(τn) :=
q1(τn) − q0(τn). Although the joint asymptotic distribution of (q̂0(τn), q̂1(τn)) has
been established by Theorem 4.1, the convergence rates depend on the tails of
Y1 and Y0 and are difficulty to estimate consistently. Furthermore, the asymp-
totic distributions of q̂0(τn) and q̂1(τn) are complicated and depend on un-
known boundary conditions. In Section 5, I propose to use a modified b out
of n bootstrap with or without replacement to construct a CI and draw infer-
ences.

REMARK 5. As pointed out in Remark 1, the shape of the asymptotic distri-
bution changes as the quantile index moves from the intermediate region to the ex-
treme region. Therefore, the extreme-order quantile asymptotic distributions pro-
posed in Theorem 4.1 are valid only if k = τnn is not large, that is, τn ≤ τ

(1)
n for

some τ
(1)
n which will be defined in Section 5.3.

4.2. Feasible normalizing factor. This section considers the next missing
piece needed for the resampling inference: the feasible normalizing factor. Follow-
ing [16], I propose a feasible normalizing factor and establish the corresponding
asymptotic theory.

The normalizing factor for the τnth QTE estimator when τn is extreme has not
been obvious. Note that the estimator of τnth QTE is q̂(τn) := q̂1(τn) − q̂0(τn).
Due to the different tail behaviors, the normalizing factors for q̂1(τn) and q̂0(τn)

are not necessarily the same. In addition, by Theorem 4.1, the normalizing factors
for q̂1(τn) and q̂0(τn) depend on first-order statistics that are unknown and difficult
to estimate.

I propose the following feasible normalizing factor:

(4.3) α̂n :=
√

τn,0n

max{q̂1(mτn,0) − q̂1(τn,0), q̂0(mτn,0) − q̂0(τn,0)} ,

where m is a spacing parameter that is greater than one and τn,0 is an extreme quan-
tile index. How to choose m and τn,0 will be discussed in Section 5.5. The feasible
normalizing factor uses the smaller of the two factors for q̂1(τn) and q̂0(τn). In
addition, the proposed factor has the same order of magnitude as, but is not a con-
sistent estimator of, the infeasible normalizing factor αj,n, which is made possible
by the following assumption.
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ASSUMPTION 10.

(1) τn,0n → k0 ∈ (0,∞).
(2) k0 satisfies the condition in Lemma G.7 as well as Assumption 9.

Similar to Assumption 5, I have to bridge the two normalizing factors.

ASSUMPTION 11. Let m be the spacing parameter in (4.3). Then

q1(
mk0
n

) − q1(
k0
n
)

q0(
mk0
n

) − q0(
k0
n
)

→ ρ ∈ [0,∞].

Assumption 11 rules out the case in which the ratio of two normalizing factors
oscillates and neither converges to a finite number nor diverges to infinity. Since ρ

can be 0 and ∞, the assumption incorporates the case in which one convergence
rate dominates another.

The next theorem characterizes the weak convergence of the extreme QTE esti-
mator with the feasible normalizing factor. Let

χ(ξ,m, k) =
{
k
−ξ
0

(
m−ξ − 1

)
if ξ �= 0,

log(m) if ξ = 0.

THEOREM 4.2. The assumptions in Theorem 4.1 and Assumptions 10 and 11
hold. Denote

ρ̃ := χ(ξ1,m, k0)

χ(ξ0,m, k0)ρ
and Ẑc

n(k) := α̂n

(
q̂(τn) − q(τn)

)
for any τnn → k. Then, for k0 fixed,

Ẑc
n(k) � Zc∞(k) in D[κ1, κ2],

in which

Zc∞(k) :=
√

k0(Z
c
1,∞(k) − ρ̃Zc

0,∞(k))

max{Z1,∞(mk0) − Z1,∞(k0), ρ̃(Z0,∞(mk0) − Z0,∞(k0))} .

An immediate corollary from the above theorem is the weak convergence
of a linear combination of Ẑc

n(k)’s. In Section 5.4, I use the linear combina-
tion of extreme QTE estimators to construct a point estimator and a CI for the
0th QTE. Corollary 4.2 establishes the theoretical foundation for this construc-
tion.
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ASSUMPTION 12. Let {r̂l}Ll=1 be a set of weights that can be random, and:

(1)
∑L

l=1 r̂l = 1,

(2) r̂l
p−→ rl for all l = 1, . . . ,L and {rl}Ll=1 a set of constant real numbers,

(3) τn,ln → kl where {kl}Ll=1 satisfy Assumption 9.

COROLLARY 4.2. If the assumptions in Theorem 4.2 and Assumption 12 hold,
then

α̂n

(
L∑

l=1

r̂l q̂(τn,l) −
L∑

l=1

rlq(τn,l)

)
�

L∑
l=1

rlZ
c∞(kl).

5. Inference. This section establishes inference theories for extreme QTE es-
timators. Section 5.1 shows the conventional bootstrap CI does not control size.
Section 5.2 establishes a new confidence band that controls size uniformly over a
range of quantile indices. Section 5.3 considers a robust confidence interval over
different categories of quantile indices. Section 5.4 proposes to infer the 0th QTE
by combining a set of extreme QTE estimators.

5.1. The standard bootstrap inference. First define the bootstrap estimator
with proper normalizations:(

Ẑ
†
1,n(k), Ẑ

†
0,n(k)

)
:= arg min

(z1,z0)∈R2

∑
j=0,1

{
−

n∑
i=1

(
n∑

l=1

1{Il = i}
)
Wj

(
Di, �̂(Xi)

)
τnzj

+
n∑

i=1

(
n∑

l=1

1{Il = i}
)
Wj

(
Di, �̂(Xi)

)
lδ

(
αj,n(Ui,j − βj,n), zj

)}

in which Ẑ
†
j,n(k) := αj,n(q̂

†
j,n(τn)−aj −βj,n) for τnn → k, aj and βj,n are defined

in Section 4.1, and q̂
†
j,n(τn) is the point estimator computed from (3.1) and (3.2)

using the bootstrap sample. Similarly, Ẑ
c†
j,n(k) := αj,n(q̂

†
j,n(τn) − qj (τn)). Here,

(In,1, In,2, . . . , In,n) is a multinomial vector with parameter n and probabilities
( 1
n
, . . . , 1

n
). The data is denoted as �n and

(In,1, In,2, . . . , In,n) ⊥⊥ �n.

Let {Ji,j ,Di,j ,Xi,j }i≥1,j=0,1 be the same as the ones in Theorem 4.1 and
{�i,j }i≥1 is a sequence of i.i.d. Poisson random variables with unit mean such
that

{�i,j }i≥1,j=0,1 ⊥⊥ {Ji,j ,Di,j ,Xi,j }i≥1,j=0,1

and �i,1 ⊥⊥ �i,0.
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THEOREM 5.1. If the Assumptions in Theorem 4.1 hold, then in D2([κ1, κ2]),(
Ẑ

†
1,n(k), Ẑ

†
0,n(k)

)
�

(
Z

†
1,∞(k),Z

†
0,∞(k)

)
,

in which(
Z

†
1,∞(k),Z

†
0,∞(k)

)
:= arg min

(z1,z0)∈R2

∑
j=0,1

[
−kzj +

∞∑
i=1

�i,jWj

(
Di,j ,�(Xi,j )

)
lδ(Ji,j , zj )

]

and(
Ẑ

c†
1,n(k), Ẑ

c†
1,n(k)

)
�

(
Z

c†
1,∞(k),Z

c†
0,∞(k)

) := (
Z

†
1,∞(k)−η1(k),Z

†
0,∞(k)−η0(k)

)
.

The asymptotic distribution of the bootstrap estimator of extreme QTE is dif-
ferent from the original estimator. Compared with the limiting process in Theo-
rem 4.1, there is an additional Poisson random variable term. Since the asymptotic
objective function is not quadratic, Z

†
j,∞(k), j = 0,1 are not linear in �i,j which

implies the standard bootstrap inference does not control size. Furthermore, due to
the lack of linear expansion of the estimator, Ẑ

†
j,n(k) − Ẑj,n(k) does not share the

same limiting distribution with Ẑj,n(k).
The intuition behind the invalidity of standard bootstrap is similar to the case

of order statistics. When there are no missing counterfactuals or the data are fully
missing at random, the extreme-order quantile estimator considered in this pa-
per reduces to an order statistic. However, Bickel and Freedman [9] have already
shown that the standard n out of n bootstrap inference does not work for order
statistics. More generally, Zarepour and Knight [52] pointed out the usual boot-
strap fails asymptotically in cases for which there exists a Poisson point process in
the limit.9

5.2. The modified b out of n bootstrap inference. Let the quantile index for the
subsample be τb. The key insight for the modified b out of n bootstrap inference
is to align τbb with τnn. Theorem 4.2 shows that the asymptotic distribution of
the τnth QTE is indexed by k. Letting τbb = τnn = k ensures that the sample
distribution of the subsample estimator can mimic the asymptotic distribution of
the full sample estimator.

I consider the modified b out of n bootstrap inference for extreme QTEs
both with and without replacement. Not allowing for replacement (subsampling),
Bertail et al. [7] studied the validity of inference for extreme-order statistics with-
out covariates. Chernozhukov and Fernández-Val [16] considered a similar infer-
ence procedure in linear extreme-order quantile regressions. Allowing for replace-
ment, Bickel and Sakov [10] considered the modified b out of n bootstrap inference

9I thank the referee for this reference.
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in extreme-order statistics without covariates. Theorem 5.2 proves that the modi-
fied b out of n bootstrap inferences both with and without replacement control size
when inferring the extreme QTE.10

Before stating the main theorem of this section, I introduce the resampling ver-
sion of the feasible normalizing factor for the subsample

α̂∗
b :=

√
τb,0b

max{q̂∗
1 (mτb,0) − q̂∗

1 (τb,0), q̂
∗
0 (mτb,0) − q̂∗

0 (τb,0)} ,

where τb,0b = τn,0n and (τn,0,m) are the same as the ones used to compute α̂n in
Theorem 4.2. Then the normalized estimator for the subsample is

Ẑc∗
n (k) := α̂∗

b

(
q̂∗(τb) − q̂(τb)

)
.

In the above two equations, q̂∗(τ ) := q̂∗
1 (τ ) − q̂∗

0 (τ ) where q̂∗
j (τ ) is computed by

(3.1) and (3.2) with τn replaced by τ = τb or τb,0 and using only the data from
the subsample, which is generated either with or without replacement. Without the
star symbol, q̂(τb) := q̂1(τb)− q̂0(τb) where q̂j (τb) is computed by (3.1) and (3.2)
with τn replaced by τb and using the full sample.

THEOREM 5.2. If the assumptions in Theorem 4.2 hold and as n → ∞, b
n

→ 0

and b → ∞ polynomial in n, then Ẑc∗
n (k) � Zc∞(k) in D([κ1, κ2]).

Theorem 5.2 builds the theoretical foundation for constructing the uniform con-
fidence band for the extreme QTE over k ∈ [κ1, κ2], in which κ1, κ2 are not at
the discontinuity of the limiting process with probability 1. Next, I want to stu-
dentize the process Ẑc∗

n (k). When the limiting process is Gaussian, it is common
to first studentize the process by the pointwise standard deviation and then con-
struct the uniform confidence band. Here I consider the same studentization in the
non-Gaussian case. Let Sn(k) and σ(k) be the feasible and infeasible studentizing
factors.

ASSUMPTION 13. For a (random) scale function Sn(k), there exists σ(k) > 0,
a deterministic function of k, such that

sup
k∈[κ1,κ2]

∣∣∣∣Sn(k)

σ (k)
− 1

∣∣∣∣ = op(1).

In addition, with probability approaching one, σ(k) and Sn(k) are both continuous
in k and uniformly bounded and bounded away from zero over k ∈ [κ1, κ2].

10I suggest using the modified b out of n bootstrap with replacement because it performs better in
simulations.
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Note Sn(k) can be Sn(k) := 1 or Sn(k) := k−ξ̂1 + k−ξ̂0 with corresponding
σ(k) := 1 or σ(k) := k−ξ1 + k−ξ0 , respectively. In the latter case, ξj , j = 0,1 are
unknown. I replace them by their consistent estimators ξ̂j , j = 0,1. I refer readers
to Section A in the supplement for the detail of these estimators. The choice of
studentizing factors will not affect the asymptotic size of the uniform confidence
band, but will rather affect its power. Unlike the case with Gaussian limit in which
letting σ(k) be the pointwise standard deviation is natural, the best choice for the
studentizing factor in this non-Gaussian case is still an open question and should
be the focus of future research.

COROLLARY 5.1. Let Ĉ1−a denote the (1 − a)th quantile of

max
k∈[κ1,κ2]

∣∣Ẑc∗
n (k)/Sn(k)

∣∣.
If the assumptions in Theorem 5.2 and Lemma G.8 as well as Assumption 13 hold,
then

P

(
q

(
k

n

)
∈

[
q̂

(
k

n

)
− Sn(k)Ĉ1−a/α̂n, q̂

(
k

n

)
+ Sn(k)Ĉ1−a/α̂n

]
: k ∈ [κ1, κ2]

)
→ 1 − a.

Let {kl}Ll=1 be a fine grid, τn,l = kl

n
, τb,l = kl

b
, τn,0 = k0

n
and τb,0 = k0

b
. The

number of subsamples is Bn, which is as large as computationally possible. Re-
searchers can compute the uniform confidence band (CBα) based on the following
procedure:

1. Compute q̂(τn,l) and q̂(τb,l) as in (4.1). Compute α̂n, Sn(k) and the propen-
sity score �̂(·) using the full sample.

2. For the ith subsample, compute q̂∗(τb,l) for l = 0, . . . ,L as in (4.1). Denote

α̂∗
b :=

√
τb,0b

max{q̂∗
1 (mτb,0) − q̂∗

1 (τb,0), q̂
∗
0 (mτb,0) − q̂∗

0 (τb,0)} ,

where for j = 0,1, q̂∗
j (·) is computed as in (3.1) and (3.2), respectively, using the

subsample data and the propensity score estimated in the first step. Denote

V̂ ∗
i,b := max

l=1,...,L
α̂∗

b

∣∣(q̂∗(τb,l) − q̂(τb,l)
)
/Sn(k)

∣∣.
3. Repeat step 2 for i = 1, . . . ,Bn.11 Compute Ĉ1−a as the (1 − a)th quantile

of the {V̂ ∗
i,b}Bn

i=1.

11Note that step 1 is not repeated, which means the propensity score only needs to be estimated
once.
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4. Construct

CBα =
{[

q̂

(
k

n

)
− Sn(k)Ĉ1−a/α̂n, q̂

(
k

n

)
+ Sn(k)Ĉ1−a/α̂n

]
: k ∈ [κ1, κ2]

}
.

Next, I consider the modified b out of n inference for a linear combination of
extreme QTEs. Let Ca be the ath quantile of

∑L
l=1 γrZ

c∞(kl) and Ĉa be the ath
quantile of

α̂∗
b

(
L∑

l=1

γ̂l q̂
∗(τb,l) −

L∑
l=1

γ̂l q̂(τb,l)

)
.

Given that
∑L

l=1 γrZ
c∞(kl) is continuously distributed,12 Proposition 5.1 shows

that Ĉa is a consistent estimator of Ca . Denote

L∑
l=1

r̂l q̂(τn,l) − Ĉ0.5/α̂n and

[
L∑

l=1

r̂l q̂(τn,l) − Ĉ1−a/2/α̂n,

L∑
l=1

r̂l q̂(τn,l) − Ĉa/2/α̂n

]

the median-unbiased estimator and a (1 − a) × 100% CI, respectively.

PROPOSITION 5.1. Under the assumptions in Theorem 5.2 and Assump-
tion 12, I have

α̂∗
b

(
L∑

l=1

γ̂l q̂
∗(τb,l) −

L∑
l=1

γ̂l q̂(τb,l)

)
�

L∑
l=1

γrZ
c∞(kl),(5.1)

lim
n→∞P

(
L∑

l=1

r̂l q̂(τn,l) − Ĉ0.5/α̂n ≤
L∑

l=1

rlq(τn,l)

)
= 0.5(5.2)

and

(5.3)

lim
n→∞P

(
L∑

l=1

r̂l q̂(τn,l) − Ĉ1−a/2/α̂n

≤
L∑

l=1

rlq(τn,l) ≤
L∑

l=1

r̂l q̂(τn,l) − Ĉa/2/α̂n

)

= 1 − a.

12This is shown in Lemma G.7 in the supplement.
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In Proposition 5.1, (5.1) shows the weak convergence of the linear combination
of extreme QTE estimators, (5.2) shows the median-unbiased estimator is asymp-
totically median-unbiased, and (5.3) implies the CI asymptotically controls size.

To implement, let Bn denote the number of subsamples. I use the following
steps to compute Ĉa :

1. Compute {r̂l , q̂(τb,l), q̂(τn,l)}Ll=1 and the propensity score estimator �̂(x)

using the full sample.
2. For the ith subsample, compute q̂∗

i,b(τb,l) for l = 0, . . . ,L as in (4.1). Denote

α̂∗
b :=

√
τb,0b

max{q̂∗
1 (mτb,0) − q̂∗

1 (τb,0), q̂
∗
0 (mτb,0) − q̂∗

0 (τb,0)} ,

where for j = 0,1, q̂∗
j (τb) is computed as in (4.1) for each subsample. Denote

V̂ ∗
i,b := α̂∗

b

[
L∑

l=1

r̂l
(
q̂∗(τb,l) − q̂(τb,l)

)]
.

3. Repeat the second step for i = 1, . . . ,Bn. Compute Ĉ1−a as the (1 − a)th
quantile of the {V̂ ∗

i,b}Bn

i=1.

When L = 1, one can use this procedure to construct the pointwise CI for the
τnth QTE. The finite sample performance of the CI is examined in Section E of the
supplement.

5.3. A robust confidence interval. The inference methods for intermediate and
extreme QTE estimators are different. This difference raises the practical issue of
how to choose the inference method in a given dataset with a small but given
quantile index. Note that for a ∈ (0,1), any two-sided (1 − a)th CI can be written
as

(5.4) CI = (
q̂(τn) − C̃1− a

2
(τn), q̂(τn) − C̃ a

2
(τn)

)
,

where C̃a(τn) is some critical value. However, the choice of C̃a(τn) depends on
the order of τn.

Ideally, I want to use different critical values for different quantile index orders.
For the extreme-order quantile index,

C̃a(τn) = C̃bn
a (τn) := Ĉa(τn)/α̂n,

where Ĉa(τn) is the critical value computed by a modified b out of n bootstrap
procedure for τn. The corresponding CI is called BN-CI. For the intermediate-
and regular-order quantile indices, C̃a(τn) = C̃nn

a (τn) where C̃nn
a (τn) is the critical

value computed by a standard bootstrap procedure. The corresponding CI is called
NN-CI. But in practice, it is impossible to determine the order of any quantile
index because the size of the dataset is finite. The ideal procedure is not feasible.
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Andrews and Cheng [4] faced a similar problem because the model they consid-
ered can be either weakly, semi-strongly or strongly identified. What they propose
is an identification-category-selection (ICS) procedure based on the strength of
identification. Similarly, I propose an order-category-selection (OCS) procedure
based on the quantile index of interest and construct a robust CI.

Let τ
(1)
n := min(40

n
, 0.1b

n
), τ

(2)
n = b

n
√

log(n)
, and for any a ∈ (0,1),

C̃
lf
a/2(τn) = max

(
C̃bn

a/2(τn), C̃
nn
a/2(τn)

)
and

C̃
lf
1−a/2(τn) = min

(
C̃bn

1−a/2(τn), C̃
nn
1−a/2(τn)

)
.

The robust CI is constructed based on a hybrid critical value C̃h
a (τn) defined as

follows:

C̃h
a (τn) =

⎧⎪⎪⎨⎪⎪⎩
C̃bn

a (τn) if τn ≤ τ (1)
n ,

C̃lf
a (τn) if τn ∈ (

τ (1)
n , τ (2)

n

)
,

C̃nn
a (τn) if τn ≥ τ (2)

n .

In general, τ
(1)
n takes the form of min(C1

n
, C2b

n
), where C1 and C2 are two positive

constants. If k := τn is large, the approximation error from estimating the propen-
sity score will contaminate the asymptotic approximation. To prevent this contam-
ination, I require nτ ≤ C1. Chernozhukov [15] and Chernozhukov and Fernández-
Val [16] suggest using C1 ∈ [40,80]. To be cautious, I choose C1 = 40.

Second, the modified b out of n bootstrap method with subsample size b is only
valid if the quantile index used in the subsample, τb := k

b
= τn

b
, is close to zero,

which leads to the second requirement that τb ≤ C2. Based on the simulations, the
quantile index τb is small enough if it is less than C2 = 0.1. Combining these two
requirements, I obtain τ

(1)
n .

For n large enough, τ
(1)
n = 40

n
. If τ ≤ τ

(1)
n , nτ ≤ 40 < ∞. For such τ , it is

expected that the extreme-order asymptotic distribution can approximate the finite
distribution of the τ th QTE estimator better than the standard normal distribution.
In this case, the robust CI equals the BN-CI.

On the other hand, if τ ≥ τ
(2)
n ,

τn ≥ b√
log(n)

→ ∞
because b → ∞ polynomially in n. For such τ , it is expected that the finite sample
distribution of the τ th QTE estimator is well approximated by the intermediate or
regular-order quantile asymptotic distribution. In such a case, the standard boot-
strap CI controls size and the robust CI is just the NN-CI.

When τ ∈ (τ
(1)
n , τ

(2)
n ), it is unclear whether normal or EV approximation works

better. In this case, the robust CI uses the least favorable critical value, which is
conservative.
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The OCR procedure is different from the ICS procedure used in [4] because here
I have two thresholds and when the quantile index is less than the first threshold,
the asymptotic size is exact, while in [4], they only have one threshold and when
the strength of identification is less than the threshold, their asymptotic size is
conservative.

Let

�ex := {{τn}n≥1 : τn → 0, nτn → k ∈ (0,∞), k satisfies Assumption 9
}
,

�int := {{τn}n≥1 : τn → 0, nτn → ∞}
and

�reg := {{τn}n≥1 : τn = τ ∈ (0,1)
}

denote the collections of extreme-, intermediate- and regular-order sequences of
quantile indices. Then let � := �ex ∪ �int ∪ �reg.

THEOREM 5.3. Assumptions 1, 3–5 and 7–8 hold. Subsample size b → ∞
polynomially in n and b

n
→ 0. Then, for any a ∈ (0,1),

inf{τn}n≥1∈�
lim

n→∞P
(
q(τn) ∈ (

q̂(τn) − C̃h
1− a

2
(τn), q̂(τn) − C̃h

a
2
(τn)

)) = 1 − a.

Theorem 5.3 shows that the robust confidence interval controls size uniformly
over different types of quantile indices.

5.4. Inference theory for the 0th QTE. I use a linear combination of extreme
QTE estimators to infer the 0th QTE so that the estimation bias is canceled out. To
see the source of bias, I need to assume Y1 and Y0 have type 3 tails. This implies
that aj = qj (0) and βj,n = 0. Hence,

(5.5) q̂(τn) − (
q1(0) − q0(0)

) = q̂(τn) − q(τn) + k−ξ1 + o(1)

α1,n

− k−ξ0 + o(1)

α0,n

.

I can approximate the critical value of the asymptotic distribution for q̂(τn)−q(τn)

based on the procedure after Proposition 5.1. The second term on the RHS of (5.5)
is the bias caused by the fact that the parameter of interest is q(0), instead of q(τn).

To get rid of this bias, I propose a feasible estimator q̂(0) := ∑L
l=1 r̂l q̂(τn,l) in

which the weights {r̂l}Ll=1 solve the following system of equations:

(5.6)
L∑

l=1

r̂l = 1,

L∑
l=1

r̂lk
−ξ̂1
l = 0,

L∑
l=1

r̂lk
−ξ̂0
l = 0.

Here, (ξ̂0, ξ̂1) are consistent estimators of (ξ0, ξ1) studied in Section A of the sup-
plement.
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To implement, I compute q̂(0) using only three different values of τ̂n,l , that is,
L = 3. The reason is twofold: (i) I do not have a selection rule for choosing among
solutions of weights that satisfies (5.6) if the solution is not unique; and (ii) within
a fixed range, the more quantile indices I use, the higher the absolute values of the
weights, which will widen the implied CI.

PROPOSITION 5.2. Let ξ̂j be consistent estimates of ξj for j = 0,1, L = 3,
(r̂1, r̂2, r̂3) be computed as in (5.6), q̂(0) := ∑L

l=1 r̂l q̂(τn,l) and Ĉa be computed as
in the procedure after Proposition 5.1. If the assumptions in Theorem 4.2 hold and
Yj has a type 3 lower tail, for j = 0,1, then

lim
n→∞P

(
q̂(0) − Ĉ1−a/2/α̂n ≤ q(0) ≤ q̂(0) − Ĉa/2/α̂n

) = 1 − a.

Type 3 tails are also called Pareto-type tails, which are prevalent in economic
data such as wealth and incomes, as argued in Section 2.2 of [16]. Second, Yj has
a type 3 lower tail if and only if the EV index is negative, which is testable based
on Theorem A.1. In practice, it implies that the CDF of the two potential outcomes
decay or diverge polynomially as τ → 0.

Since the lower boundaries of Y1 and Y0 are bounded, Y1 and Y0 cannot have
type 2 tails. I still need to assume away type 1 tails when inferring the 0th quantile.
This is because, for type 1 tails, the location normalizing factor βj,n �= 0. Then
(5.5) becomes

q̂(τn) − (
q1(0) − q0(0)

)
= q̂(τn) − q(τn) + log(k) + α1,nβ1,n + o(1)

α1,n

− log(k) + α0,nβ0,n + o(1)

α0,n

.

The extra terms cannot be canceled by the proposed method.
There are two alternative methods to infer the 0th QTE, each of which has its

own restriction. The first alternative is to analytically compute k−ξ1

α1,n
− k−ξ0

α0,n
, the

leading term of the bias in (5.5), which requires the estimation of the infeasi-
ble convergence rate αj,n. However, computing an estimator α̃j,n of αj,n such

that α̃j,n

αj,n
→ 1 is harder than simply estimating the EV index ξj . Usually, in order

to compute α̃j,n, distributional assumptions such as αj,n = Cjn
ξj for some con-

stant Cj are imposed. See, for example, the discussion in [16] on the distributional
assumption and [8] on the point of conducting subsampling inference when the
convergence rate is unknown. These distributional assumptions are not needed in
Proposition 5.2.

The second alternative is to ignore the finite sample bias as it is asymptotically
negligible. To be more specific, combining Theorems 4.1 and 4.2, it is clear that
for τnn → k,

α̂n

(
q̂(τn) − q(0)

)
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converges weakly to a nondegenerate limiting distribution. I can then approximate
the critical value of the limiting distribution by computing

Ẑ∗
n(k) := α̂∗

b

(
q̂∗(τb) − q̂(τn)

)
for τbb = τnn. Comparing Ẑ∗

n(k) with Ẑc∗
n (k) in (5.2), the only difference is that

the subsample estimator q̂∗(τb) is now centered at q̂(τn) := q̂1(τn) − q̂0(τn), the
full sample QTE estimator at τn, instead of q̂(τb). The reason is that for the sub-
sample, q̂(τb) and q̂(τn) can be viewed as proxies for q(τb) and q(0), respectively.
Then, after obtaining an estimator of the critical value of the limiting distribu-
tion of Ẑ∗

n(k) by a similar b out of n bootstrap procedure, one can construct a
median-unbiased estimator and a consistent CI for q(0). This method works be-
cause the bias of using q̂(τn) as a proxy of q(0) vanishes asymptotically. However,
researchers have no control of the magnitude of the bias in a finite sample. The
properties of the implied CI in finite samples can be sensitive to both the choice of
k = τnn and the subsample size b. Therefore, this method is less robust than the
one proposed in Proposition 5.2.

5.5. Tuning parameters. On the one hand, it is almost inevitable to use tun-
ing parameters to infer extremal QTEs due to the nonparametric and nonregular
nature of the problem. On the other hand, to determine the optimal tuning param-
eters and establish a data-driven method to select them requires further analysis of
higher-order properties of the extremal QTE estimators, which is closely related
to this paper. This important topic will be the subject of future research. In this
section, I provide rules of thumb of selecting tuning parameters, based on either
the previous literature on nonparametric sieve estimation and extremal quantile re-
gressions or my own simulation experience. Detailed simulation evidence based
on the choice of tuning parameters discussed here can be found in Sections E and
H in the supplement.

The number of sieve bases hn. For the intermediate QTE, given sufficient
smoothness and B-spline sieve space, Assumption 3 boils down to hn = Cnc

where τnn
6c−1 → 0 and τn is the intermediate quantile index researchers are in-

terested in. In particular, I require τnn
6c−1 ≤ 0.1, which leads to hn ≤ C(0.1n

τn
)1/6.

For n = 5000, τn = 0.2 and C ∈ [0.5,2], (0.1n
τn

)1/6 ≈ 3.6, which indicates that
hn = 2, . . . ,7 are reasonable choices for the number of sieve bases. Alternatively,
if the power series are used, then Assumption 3 boils down to τnn

11c−1 → 0. By
the same reasoning, I require τnn

11c−1 ≤ 0.1, which leads to hn ≤ C(0.1n
τn

)1/11.

For n = 5000, τn = 0.2 and C ∈ [0.5,2], (0.1n
τn

)1/11 ≈ 2, which indicates that
hn = 1, . . . ,4 are reasonable choices for the number of sieve bases. This type of
heuristic calibration of hn was also considered in [3]. Recently, [33] proposed
to use cross-validation to determine hn, which also works here. For estimating
the extreme QTE, only consistency of the propensity score estimator is required,
which indicates the estimation and inference of extreme QTE is less sensitive to the
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choice of hn compared to the intermediate case. Last, when there are a rich set of
covariates (or sieve bases), [6] proposed to use the L1 penalized logistic regression
to estimate the propensity score and provided an algorithm to compute the penalty
loadings. Given the penalty loadings, the number of covariates (or sieve bases) is
determined by data. The exact same procedure can be applied to this paper. All
the simulation results in the Supplementary Material use hn = 4, which performs
quite well in all sixteen simulation designs with small, moderate and large sample
sizes.

The subsample size b. In Sections E and H, I use b = (120,300,1000) for sam-
ple sizes (300,1000,5000), respectively. By linear interpolation, I suggest the for-
mula for b as a function of n as follows:

b =
⌊

0.4n− 1

7
(n−300)+ − 2.3

28
(n−1000)+ − 7

40

(
1− log(5000)

log(n)

)
(n−5000)+

⌋
,

where x+ = max(0, x). Based on the formula, when n ≥ 5000,

b = 1000 + 7 log(5000)

40 log(n)
(n − 5000),

which implies b → ∞ polynomially in n and b
n

→ 0. The simulation results
also indicate that the coverages of BN-CI are quite stable across b ∈ (100,200),
(150,500) and (500,1500) for n = 300,1000,5000, respectively.

The spacing parameter m and τn,0 in the feasible normalizing factor. Theo-
retically, the choice of τn,0 in α̂n does not impact the asymptotic validity of the
normalizing factor. However, in finite samples, this choice involves a trade-off be-
tween bias and variance. If nτn,0 is small, there are fewer observations used for
estimating q̂j (τn,0), which produces a large variance. But, if nτn,0 is large, it can
introduce bias in two ways. First, as nτn,0 increases, the estimation error of the
propensity score will accumulate and contaminate the CI. In addition, since I use
a modified b out of n bootstrap method with subsample size b to construct the CI,
if nτn,0/b is large, then this quantile index cannot be interpreted as extreme-order.
Both imply that the extreme-order asymptotic approximation is not suitable. To
address all the above issues, I choose the index τn,0 as τn,0 = min(10

n
, 0.1b

n
) and

τn,0 = τ
(1)
n = min(40

n
, 0.1b

n
) with τn ≤ τ

(1)
n and τn > τ

(1)
n , respectively. The simu-

lation study in Section E in the supplement shows this rule performs well in finite
samples.

For m, I follow [16] and use

m = 1 + 1 + sp

k0
,
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where k0 = τn,0n and sp ranges from 2 to 20.13
 [16] reported the inference per-

formances of extreme quantile regressions are quite stable across sp ∈ [2,20]. For
simplicity, I choose sp = 9 which implies m = 1 + 10

k0
. In simulations, I find the

finite sample performance of BN-CI is insensitive to the choice of sp ∈ [2,20]
also.

The quantile indices {τn,l}3
l=1 used to infer the 0th QTE. Let kl = nτn,l , l =

1,2,3. As has already been discussed in Proposition 5.2, kl should be distant from
each other. In addition, to ensure that {τn,l}3

l=1 are extreme-order, kl should be
less than 40. With this two rules of thumb, I use (k1, k2, k3) = (5,17.5,30). Its
finite sample performances are satisfying, as illustrated in Sections E and H in
the supplement. In addition, Sections A and E.5 in the supplement contain the
estimators of the EV index and some implementation details, respectively.

6. Conclusion. By addressing the issues of missing data and data sparsity
simultaneously, this paper establishes asymptotic theory and inference procedures
for an estimator of the unconditional QTE when the quantile index is close to or
equal to zero.
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