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From a multiple testing viewpoint, Kolmogorov–Smirnov (KS)-type
tests are union-intersection tests which can be redefined in terms of local
levels. The local level perspective offers a new viewpoint on ranges of sen-
sitivity of KS-type tests and the design of new tests. We study the finite and
asymptotic local level behavior of weighted KS tests which are either tail,
intermediate or central sensitive. Furthermore, we provide new tests with ap-
proximately equal local levels and prove that the asymptotics of such tests
with sample sizes m and n coincides with the asymptotics of one-sample
higher criticism tests with sample size min(m,n). We compare the overall
power of various tests and introduce local powers that are in line with lo-
cal levels. Finally, suitably parameterized local level shape functions can be
used to design new tests. We illustrate how to combine tests with different
sensitivity in terms of local levels.

1. Introduction. Local levels of one-sample goodness-of-fit (GOF) tests were
introduced in [17] (also cf. [16]) in order to yield a better understanding of the
asymptotic and finite behavior of higher criticism (HC) statistics, among others, in
connection with sparse signals and detectability. The main focus in [17] is on the
local level behavior of the original HC statistic introduced in [9]. It is shown in [17]
that local levels of the original HC test are almost all asymptotically equal. One-
sample GOF tests defined in terms of equal local levels are studied extensively in
[15] and [16]. It is also indicated in [17] that local levels may serve as a useful tool
for designing new GOF tests. In this paper, we adopt this idea and investigate a
large class of (nonparametric) two-sample Kolmogorov–Smirnov (KS)-type tests
in terms of local levels. KS tests have its origins in the pathbreaking papers [21],
[26] and [27].
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Let F and G denote two continuous (unknown) cumulative distribution func-
tions (CDFs) on R and let X1, . . . ,Xm ∼ F and Y1, . . . , Yn ∼ G denote two inde-
pendent i.i.d. samples. Two-sample KS-type tests for

H= : F = G or H≥ : F ≥ G

rely on the difference of the corresponding empirical CDFs (ECDFs) F̂m and Ĝn.
Consider the local hypotheses H=

t : F(t) = G(t) and H
≥
t : F(t) ≥ G(t) for t ∈ R.

Then

H= = ⋂
t∈R

H=
t and H≥ = ⋂

t∈R
H

≥
t .

In what follows, Ht denotes either H=
t or H

≥
t . We restrict attention to tests related

to the union-intersection principle with local test statistics Tt = Tt (F̂m(t), Ĝn(t))

for testing Ht , t ∈ R. The global null hypothesis is rejected if Ht is rejected for at
least one t ∈ R. Once suitable test statistics are defined, we can define local levels
αt (say) as the rejection probability of the local test for Ht under the global null
hypothesis H=. Unfortunately, the local levels αt depend on the value of F(t) un-
der H=. In order to obtain distribution-free local levels, a key step is to redefine
KS-type tests in terms of conditional tests related to 2 × 2 table tests. Note that
mF̂m(t) ∼ Binl(m,F (t)) and nĜn(t) ∼ Binl(n,G(t)), where Binl(N,p) denotes
the binomial distribution with parameters N and p. Hence, each Ht can be tack-
led by some (conditional, unconditional, exact or asymptotic) test developed in the
area of two-sample binomial testing problems. The conditional point of view al-
lows us to define appropriate (conditional) distribution-free local levels αs given
that (m + n)Ĥm+n(t) = s, s ∈ {1, . . . ,m + n}, where Ĥm+n denotes the ECDF of
the combined sample. The local levels αs can be computed in terms of the under-
lying hypergeometric distributions.

On the one hand, local levels can be viewed as an interesting characteristic of
union-intersection related GOF tests indicating in which area we can expect high
or low sensitivity. On the other hand, we can design new GOF tests by choosing
suitable local levels reflecting our wishes concerning the sensitivity in specific ar-
eas. Clearly, larger local levels result in larger local power. We study local levels
of well established KS-type tests, especially weighted KS tests, and show how to
design new tests in terms of local levels or local level shape functions. A further
focus is on the asymptotics of local levels. Thereby, it depends heavily on the rela-
tion between the sample sizes m and n whether or not the asymptotics reflects the
finite local level behavior. For example, for m close to n, the local level behavior
of the two-sample HC statistics differs drastically from the local level behavior
of one-sample HC statistics. On the other hand, unequal sample sizes may result
in undesirable local level and power behavior of some tests. The overall power
behavior of two-sample KS-type tests also depends on the relation between the
sample sizes m and n and may lead to weird effects. For example, if we increase
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one sample size, the power may decrease, or, if we exchange m and n, the power
may change drastically. We will illustrate that a look at the underlying local levels
helps to explain and to avoid such phenomena.

The paper is organized as follows. In Section 2, we introduce and review basic
concepts and issues including a hypergeometric perspective, an important inherent
structural property of GOF tests (called proper) related to Barnard-convexity, a for-
mal look at local levels and local level shape functions. In Section 3, we consider
the class of weighted KS two-sample GOF tests in more detail. In Section 3.1,
we show that a large class of weight functions leads to proper two-sample GOF
tests and illustrate their local level behavior for the well-known weight functions
w(t) = (t (1 − t))ν , t ∈ (0,1), ν ∈ [0,1]. In Section 3.2, we derive the asymptotics
of local levels related to weighted KS statistics of this type. We distinguish three
cases: (i) ν ∈ [0,0.5), (ii) ν = 0.5 and (iii) ν ∈ (0.5,1], which lead to different
types of asymptotic distributions and different local level behavior. Section 4 is
concerned with two-sample GOF tests with (approximately) equal local levels. In
Section 4.1, we consider two-sample minimum p-value (minP) tests and study
their finite properties, and in Section 4.2, we derive the minP asymptotics. Sec-
tion 5 provides some power considerations. In Section 5.1, we compare GOF tests
from Sections 3 and 4 with respect to overall power. By means of numerical simu-
lations, we give some hints which of the tests considered here yield a good overall
performance and which of them are most likely to beat the original KS test. Some
thoughts on local power are outlined in Section 5.2. Section 6 provides some con-
cluding remarks. Among others, we discuss the possibility to construct new GOF
tests by combining local levels of different tests. As an example, we consider two
combinations of KS and minP tests. Proofs are deferred to Supplement A, that is,
[11]. In Supplement B, that is, [12], we provide some animated graphics in order
to illustrate the local level behavior of various KS-type tests.

2. Two-sample tests revisited.

2.1. A hypergeometric perspective. Setting Sm+n(t) = mF̂m(t) + nĜn(t), the
ECDF of the combined sample X1, . . . ,Xm,Y1, . . . , Yn is given by

Ĥm+n(t) = 1

m + n
Sm+n(t), t ∈ R.

Without loss of generality we assume that the ordered jump points ts (say) of Ĥm+n

satisfy t1 < · · · < tm+n. Note that Sm+n(ts) = s. Let Vm,s denote the number of
ranks related to the first sample being not larger than s, that is,

Vm,s = mF̂m(ts), s = 1, . . . ,m + n.

Since Vm,m+n = m for any m,n ∈ N, we restrict attention to s ∈ Im,n, where

Im,n ≡ {1, . . . ,m + n − 1}.
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Given that H= is true, Vm,s follows a hypergeometric distribution with probability
mass function

f (x|s,m,n) =
(
m

x

)(
n

s − x

)/(
m + n

s

)
, max(0, s − n) ≤ x ≤ min(s,m).

The related CDF is denoted by FHyp(·|s,m,n). Below, P0 and E0 denote the prob-
ability measure and expectation under the global null hypothesis H=.

The random vector Vm ≡ (Vm,s : s ∈ Im,n) contains all the information about
the ranks of both samples. Moreover,

(2.1) Ĝn(ts) − F̂m(ts) = m + n

mn

(
E0[Vm,s] − Vm,s

)
, E0[Vm,s] = ms

m + n
,

that is, test statistics in terms of Ĝn − F̂m can be rewritten in terms of Vm; see also
[28]. In what follows, local test statistics Vm,s , s ∈ Im,n, play a key role.

2.2. Proper two-sample GOF tests. In this paper, we restrict attention to GOF
tests with acceptance regions for Vm of the form

(2.2) Am,n = {
x ∈ N

m+n−1
0 : cs ≤ xs ≤ ds, s ∈ Im,n

}
.

In the one-sided case, we assume that the upper critical values are given by ds =
min(s,m), s ∈ Im,n. It can easily be shown that for any acceptance region Am,n

with P0(Vm ∈ Am,n) > 0 there exists a unique acceptance region Ãm,n ⊆ Am,n of
the form (2.2) with critical values c̃s , d̃s ∈ {0, . . . ,m}, s ∈ Im,n, satisfying P0(Vm ∈
Am,n) = P0(Vm ∈ Ãm,n) and

max(0, s − n) ≤ c̃s ≤ d̃s ≤ min(s,m), s ∈ Im,n,(2.3)

cs ≤ c̃s ≤ d̃s ≤ ds, s ∈ Im,n,(2.4)

c̃s+1 ∈ {c̃s , c̃s + 1} and d̃s+1 ∈ {d̃s , d̃s + 1}, s = 1, . . . ,m + n − 2.(2.5)

The latter property is a consequence of Vm,s+1 ∈ {Vm,s,Vm,s + 1} for s ∈ Im,n. We
denote critical values satisfying (2.3) and (2.5) as proper critical values and the
corresponding tests as proper GOF tests. Typically, acceptance regions are defined
in terms of a test statistic M = maxs∈Im,n Ms(Vm,s) or M = mins∈Im,n Ms(Vm,s))
with local test statistics Ms . Without loss of generality let Am,n = {M ≤ c}. Then
M is said to be proper if for all c with P0(M ≤ c) > 0 there exist proper critical
values cs , ds , such that for all s ∈ Im,n and max(0, s − n) ≤ x ≤ min(s,m) it holds

Ms(x) ≤ c iff cs ≤ x ≤ ds.

REMARK 2.1 (Proper GOF tests versus 2×2-table tests). In the area of 2×2-
table tests, (2.5) is often referred to as Barnard-convexity according to Barnard’s
ideas in [3], for example, cf. the discussion in [13]. Any Barnard-convex uncon-
ditional 2 × 2-table test for the comparison of two independent binomial samples
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yields a proper GOF test and vice versa. However, given an acceptance region
Am,n with proper critical values, the global level of the corresponding proper GOF
test and the unconditional level of the resulting 2 × 2-table test are two different
things.

Typically, the effective global level P0(Vm /∈ Am,n) is smaller than the prespec-
ified α, that is, two-sample GOF tests are not α-exhaustive. This is a general issue
with discrete distributions. Especially, in case m = n, KS-type tests can be rather
conservative. For the computation of the global level of tests with acceptance re-
gions (2.2), we refer to Section A2 in [11], which provides a recursive algorithm
based on properties of Vm. We also refer to [18] for further formulas and interesting
discussions around the overall significance level of the two-sample KS test.

Finally, it may be worth to mention that all proper two-sample GOF tests can be
complemented with simultaneous confidence bands for a shift function 	 defined
by G(x + 	(x)) = F(x), x ∈ R, by applying the method of Doksum and Sievers;
cf. [8].

2.3. Local levels of two-sample GOF tests. As mentioned in the Introduction,
we define (conditional) local levels as probabilities under H= to reject local hy-
potheses Ht given Sm+n(t) = s, s ∈ Im,n. More precisely, lower and upper local
levels of a proper two-sample GOF test with acceptance region of the form (2.2)
are defined by

αlow
s = P0(Vm,s < cs) and αup

s = P0(Vm,s > ds), s ∈ Im,n,

respectively. The corresponding two-sided local levels are given by

αs = αlow
s + αup

s , s ∈ Im,n.

It is important to note that these local levels do not depend on t , F and G and can
easily be computed in terms of the underlying hypergeometric distributions. Since
nonproper critical values may yield artificial small local levels, we consider local
levels based on proper critical values only.

Obviously, local levels of proper GOF tests are bounded by the global level, that
is, αs ≤ P0(Vm,n /∈ Am,n), s ∈ Im,n. Many GOF tests possess additional symmetry
properties which result in corresponding symmetry properties of local levels. For
example, if ds = m − cm+n−s , then αlow

s = α
up
m+n−s . If the latter property holds

for all s ∈ Im,n, then αs = αm+n−s for all s ∈ Im,n. Moreover, if m = n and cs =
s − m + c2m−s , then αlow

s = αlow
2m−s , s ∈ Im,m.

Figure 1 illustrates local levels of the two-sample two-sided original KS test
for α = 0.05, m = 20 and n = 80. Thereby, one-sided local levels fulfill αlow

s =
α

up
m+n−s , two-sided local levels are symmetric in s ∈ Im,n and the effective level is

0.0445. KS-type statistics are studied in more detail in Section 3.
In order to get a feeling for the behavior of local levels of various proper GOF

tests, asymptotic considerations for m,n → ∞ turn out to be helpful. As in [16]
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FIG. 1. Lower (red points in the left graph), upper (black points in the left graph) and two-sided
(right graph) local levels related to the level α two-sided KS test with α = 0.05, m = 20 and n = 80.
Thereby, the KS critical value is b = 1.3.

and [17], we distinguish three types of s-values w.r.t. their asymptotics, that is,
(a) s/(m + n) → η ∈ (0,1) (central range), (b) s/(m + n) → η ∈ {0,1} with
min{s,m + n − s} → ∞ (intermediate range), (c) s/(m + n) → η ∈ {0,1} with
min{s,m + n − s} fixed (extreme range). Thereby, we are interested in sets of
s-values leading to asymptotic exhaustion of the overall level α, that is, we are
looking for small sets Jm,n ⊂ Im,n such that P0(

⋃
s∈Jm,n

{Vm,s /∈ [cs, dc]}) → α as
m,n → ∞. We refer to such sets loosely as sensitivity ranges.

2.4. Local level shape functions. Noting that a given set of local levels yields
a corresponding set of critical values, one may design two-sample GOF tests
in terms of so-called local level shape functions (LLSFs). First, we restrict at-
tention to lower LLSFs α̃low

κ : [0,1] → [0,1], which are assumed to be mono-
tone in the tuning parameter κ . Then the largest critical values cs leading to
αlow

s ≤ α̃low
κ (s/(m + n)), s ∈ Im,n, define a (one-sided) GOF test of the form (2.2).

In order to get a level α test, we choose κ such that α is maximally exhausted.
Similarly, upper critical values can be defined by an upper LLSF α̃

up
κ . For two-

sided tests we may choose LLSFs with α̃
up
κ (η) = α̃low

κ (1 −η) for η ∈ [0,1] leading
to ds = m − cm+n−s for s ∈ Im,n. In order to get more symmetry, we may choose
α̃

up
κ = α̃low

κ = α̃κ for some symmetric LLSF α̃κ .
Typically, asymptotic local levels of conventional KS-type tests yield an asymp-

totic LLSFs; cf. Section 3. For example, classical KS tests result in the asymptotic
(symmetric) LLSF α̃κ (η) = �(−κ/

√
η(1 − η)) which yields a neat reflection of

the local levels of KS tests for larger sample sizes; cf. the animation in Figure B1
in [12]. LLSFs may be viewed as a tool for designing the sensitivity of GOF tests.
In this paper, we mainly restrict attention to local levels and the resulting LLSFs
of special weighted KS-type test statistics.
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3. Weighted two-sample KS tests. In this section, we are concerned with
weighted two-sample KS tests of the form

(3.1) sup
t∈R

√
mn

m + n

〈Ĝn(t) − F̂m(t)〉
w(Ĥm+n(t))

,

where w : (0,1) →R
+ is a nonnegative continuous weight function. The notation

〈·〉 indicates either the one- or two-sided test statistic, that is, 〈a〉 is either a or
|a|, respectively. Clearly, w(t) ≡ 1 leads to the classical two-sample KS statistics
and w(t) = √

t (1 − t) yields the supremum version of the two-sample Anderson–
Darling statistic. During the past decade, the one-sample supremum version of
Anderson–Darling statistics has gained a lot of attention as a higher criticism (HC)
statistic, for example, cf. [9] and [10]. Therefore, we refer to two-sample weighted
KS tests based on w(t) = √

t (1 − t) as HC tests, too. Although, the classical one-
sample HC approach leads to a series of innovative asymptotic results, especially
with respect to sparsity and detectability, the statistic itself has serious drawbacks.
This was already indicated by Canner in [6] by looking at the critical values of
two-sided HC tests. He found that “These results are rather shocking . . . ”. On the
other hand, Canner found that the two-sample statistic is less problematic.

3.1. Finite considerations and local levels. Since extrema of the difference
of two ECDFs are taken in jump points of the combined ECDF Ĥm+n and
Ĥm+n(ts) = s/(m + n), a statistic defined in (3.1) is almost surely equal to
KSw,〈〉

m,n = sups∈Im,n
KSw,〈〉

m,n,s with

(3.2) KSw,〈〉
m,n,s =

√
m + n

mn

〈(sm)/(m + n) − Vm,s〉
w(s/(m + n))

.

The null hypothesis is rejected if KSw,〈〉
m,n > b for some b > 0. Obviously, weighted

KS tests have acceptance regions of the form (2.2).

LEMMA 3.1. If the weight function w is continuous and concave, then the
weighted KS statistic KSw,〈〉

m,n is proper.

Formulas for proper critical values can be found in the proof of Lemma 3.1
in [11]. If the weight function is symmetric, we get ds = m − cm+n−s , s ∈ Im,n,
and, in case of m = n, cs = s − m + c2m−s , s ∈ Im,m. In what follows, we restrict
attention to the following symmetric, continuous and concave weight functions

(3.3) wν(t) = (
t (1 − t)

)ν
, ν ∈ [0,1].

The corresponding weighted KS statistics can be represented as

(3.4) KSν,〈〉
m,n = sup

s∈Im,n

√
m + n

m + n − 1

(
mn

m + n − 1

)ν−0.5 〈E0[Vm,s] − Vm,s〉
(Var0[Vm,s])ν ,

where Var0[Vm,s] denotes the variance of Vm,s under H=.



TWO-SAMPLE KOLMOGOROV–SMIRNOV-TYPE TESTS 3021

FIG. 2. Lower local levels αlow
s , s ∈ Im,n, related to level α two-sided weighted KS tests based

on (3.4) and critical value b for m = n = 50 and α = 0.05. First row: ν = 0,0.125,0.25,0.375,

b = 1.3,1.5699,1.9116,2.3602, P0(KSν,||
m,n > b) = 0.0392,0.0487,0.0494,0.0495; second row:

ν = 0.5, 0.625, 0.75 , 0.875, b = 2.9489, 3.846, 5.1844 , 7.4265, P0(KSν,||
m,n > b) = 0.0453, 0.0466,

0.035, 0.0262 (from left to right in each row).

Figure 2 illustrates the shape of lower local levels related to two-sided level α

weighted KS tests for m = n = 50, α = 0.05 and various ν-values. We observe
that smaller ν-values lead to larger local levels in the central range, and larger ν-
values lead to larger local levels in the tails. Figure 2 also illustrates that the actual
global level P0(KSν,||

m,n > b) may be much smaller than the prespecified level α

for ν-values larger than (and not too close to) 0.5. This is due to the fact that we
typically get discrete asymptotic distributions for ν ∈ (0.5,1]; see Theorem 3.3
and its discussion.

Figure 3 illustrates lower local levels for unequal sample sizes m = 20, n =
80 and α = 0.05 and ν = 0.25,0.5,0.75. For ν = 0, we refer to Figure 1. We
observe that lower local levels are only slightly asymmetric for ν = 0.0,0.25 and
extremely asymmetric for ν = 0.5,0.75. Extremely asymmetric local levels have
serious consequences with respect to power; cf. Section 5.

3.2. Asymptotics of weighted two-sample KS tests. In the one-sample case,
the asymptotic behavior of weighted KS statistics with weight functions defined in
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FIG. 3. Lower local levels αlow
s , s ∈ Im,n, related to level α two-sided weighted KS tests based

on test statistic (3.4) and critical value b for m = 20, n = 80, α = 0.05 and ν = 0.25,0.5,0.75

(from left to right). Thereby, b = 1.93,3.134,7.64 and P0(KSν,||
m,n > b) = 0.0489,0.04727,0.0158,

respectively.

(3.3) is closely related to the asymptotic behavior of weighted Brownian bridges
and normalized Poisson processes. A summary of main results can be found in
[19]. It therefore stands to reason that these results should carry over to the two-
sample case. However, this is not the case for all ν-values. In order to derive
asymptotic results, we consider the cases ν ∈ [0,0.5), ν = 0.5 and ν ∈ (0.5,1]
separately. Proofs of the asymptotic results are deferred to Section A3 in [11].

The case ν ∈ [0,0.5). Let B denote a standard Brownian bridge on [0,1] and
let the corresponding weighted Brownian bridges be defined by

B
ν(t) = B(t)

(t (1 − t))ν
, t ∈ (0,1), ν ∈ [0,0.5].

The next theorem shows that the asymptotic behavior of weighted KS statistics
with ν ∈ [0,0.5) is the same as in the one-sample case.

THEOREM 3.1. Let ν ∈ [0,0.5).
(a) Under H=, the test statistic KSν,〈〉

m,n converges in distribution to
supt∈(0,1)〈Bν(t)〉 as m,n → ∞.

(b) For s ∈ Im,n with limm,n→∞ s/(m + n) = η for some η ∈ [0,1], lower local
levels related to weighted (one- or two-sided) KS tests based on some critical value
b ∈ R fulfill

(3.5)
lim

m,n→∞αlow
s = 0, η ∈ {0,1},

lim
m,n→∞αlow

s = 1 − �
(
b
(
η(1 − η)

)ν−0.5)
, η ∈ (0,1).

(c) The sensitivity range of weighted KS tests, that is, a range of s-values lead-
ing to the asymptotic exhaustion of the level α, coincides with the central range.



TWO-SAMPLE KOLMOGOROV–SMIRNOV-TYPE TESTS 3023

FIG. 4. Asymptotic lower local levels limm,n→∞ αlow
s related to asymptotic level α one-sided

tests (left graph) and asymptotic two-sided local levels limm,n→∞ αs related to asymptotic level α

two-sided tests (right graph) based on (3.4) for α = 0.05 and ν = 0.0(0.05)0.45 (from top to bottom
in η = 0.5). Thereby, b = 1.224,1.322,1.427, 1.546,1.672,1.819,1.977,2.167,2.399,2.707 (left
graph) and b = 1.359,1.465,1.580,1.708, 1.846,2.002,2.171,2.372,2.609,2.922 (right graph)
are simulated (1 − α)-quantiles related to supt∈(0,1)〈Uν(t)〉 with ν = 0.0(0.05)0.45.

REMARK 3.1. To the best of our knowledge, for ν ∈ (0,0.5), a manageable
formula for the distribution of supt∈(0,1)〈Bν(t)〉 is not available. Approximate criti-
cal values may be obtained by simulation. However, in order to simulate the supre-
mum of a continuous process with sufficient accuracy, some care is necessary.

Figure 4 shows asymptotic one- and two-sided local levels based on (simulated
by 106 repetitions) (1 −α)-quantiles of supt∈(0,1)〈Bν(t)〉 for α = 0.05 and various
values of ν. Observe that the two-sided local levels are slightly smaller than their
one-sided counterparts.

Note that the right-hand side in (3.5) yields asymptotic (lower as well as upper)
LLSFs that are unimodal and symmetric at η = 1/2; cf. left graph in Figure 4. Such
asymptotic LLSFs induce new modified weighted KS tests in the finite setting.
Modified weighted KS tests coincide asymptotically with the original counterparts
defined by (3.4). However, in the finite case modified tests typically differ from
the related original tests. In some cases, modified KS tests may be better than their
counterparts defined by (3.4). For instance, for m = n, m = 30, . . . ,1000, ν = 0
and α = 0.05, we observed that modified KS tests have a much better α-exhaustion
than the related original KS tests.

Figure 5 shows exact local levels of weighted KS level α tests together with the
asymptotic local levels for α = 0.05 and ν = 0.25. It seems that the asymptotic
local levels yield a neat reflection of the shape of the exact local levels even for
the asymmetric case m �= n. Similar pictures can be observed for a lot of ν-values
being not too closed to 0.5. Moreover, asymptotic and exact critical values seem
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FIG. 5. Lower local levels αlow
s , s ∈ Im,n, related to asymptotic and exact level α two-sided tests

based on (3.4) for α = 0.05 and ν = 0.25. Asymptotic local levels (red curves) are defined by (3.5)
with b being the simulated (1 − α)-quantile of the corresponding asymptotic distribution, here,
b = 2.002. Exact local levels αlow

s , s ∈ Im,n, (black points) correspond to critical values b = 1.98504
for m = n = 1000 (left graph) and b = 1.98431 for m = 400, n = 1600 (right graph).

to be nearly equal. The global level is almost exhausted at least for the exact tests
considered here.

The case ν = 0.5. Now we show that two-sample HC statistics, that is, weighted
KS statistics defined in (3.4) with ν = 0.5, coincide asymptotically in distribution
with the one-sample HC statistic related to the smaller sample.

Let x+
α = − log(− log(1 − α)), xα = − log(− log(1 − α)/2) and

bm(x) =
√

2 log2(m) + (
log3(m) − log(π) + 2x

)
/
(
2
√

2 log2(m)
)
,

with log2(m) = log(log(m)) and log3(m) = log(log2(m)). Moreover, x
〈〉
α denotes

x+
α or xα . Note that

lim
m→∞P0

(
sup
t∈Tm

〈
B

0.5(t)
〉 ≤ bm

(
x〈〉
α

)) = 1 − α

for Tm = (log(m)5/m,1 − log(m)5/m), for example, cf. (11)–(13) together with
(15), (16) in [16].

THEOREM 3.2. Let ν = 0.5 and n ≡ n(m) ≥ m, m ∈ N.
(a) It holds

lim
m→∞P0

(
KS0.5,〈〉

m,n ≤ bm

(
x〈〉
α

)) = 1 − α.

(b) All local levels of asymptotic level α two-sample HC tests converge to zero.
Moreover, almost all HC local levels are asymptotically equal to

(3.6) α∗
m ≡ − log(1 − α)

2 log(m) log2(m)
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in the sense that for s ∈ Im,n fulfilling

(3.7) lim
m→∞

min{s,m + n − s}
(m + n) log3

2(m)/m
= ∞

we get

lim
m→∞αs/α

∗
m = 1

for one- and two-sided tests. In addition, in the two-sided case we get

lim
m→∞αlow

s /α∗
m = lim

m→∞αup
s /α∗

m = 1/2.

Thereby, the convergence of local levels is uniform in s fulfilling (3.7).
(c) The two-sample HC sensitivity range considered in s/(m + n) on (0,1) co-

incides with the sensitivity range of the one-sample HC statistic. More precisely,
two-sample HC tests are sensitive in the intermediate range of s-values which ful-
fill (3.7).

Since all HC local levels in the sensitivity range are equal, a constant asymp-
totic LLSF is a reasonable choice and leads to the so-called minP tests studied in
Section 3.2.

Lower HC local levels related to asymptotic and exact level α HC tests with
α = 0.05 are given in Figure 6. We observed that the level α is nearly exhausted
if m and n are not too small. It seems that the asymptotic local level (3.6) can
rather be seen as an upper bound for discrete (exact) local levels if m = n. In the
case m �= n, it looks like the most of exact local levels are much smaller and a
few local levels are much larger than the asymptotic local level. Although the two-
sided HC asymptotics is slow, it is much better than the one-sided HC asymptotics,
for example, cf. [6].

The case ν ∈ (0.5,1]. For ν ∈ (0.5,1], we consider renormalized KS statistics

(3.8) KS
ν,〈〉
m,n =

(
m + n

mn

)ν−0.5
KSν,〈〉

m,n .

In order to derive asymptotic results we have to define some further random vari-
ables and processes. Let Zi , i ∈ N, be i.i.d. Bernoulli random variables with pa-
rameter p ∈ (0,1). The corresponding binomial process is given by Ys = ∑s

i=1 Zi ,
s ∈ N. Let Ỹs denote an independent copy of Ys and let N and Ñ be independent
standard (right-continuous) Poisson processes.

The next theorem shows that the asymptotics of renormalized KS tests with
ν ∈ (0.5,1] differs from the one-sample asymptotics unless one sample is much
larger than the other. To this end, define

Q〈〉
ν,p = 1

(p(1 − p))ν
max

{
sup
s∈N

〈sp − Ys〉
sν

, sup
s∈N

〈Ỹs − sp〉
sν

}
, p ∈ (0,1),
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FIG. 6. Lower local levels αlow
s , s ∈ Im,n, related to asymptotic and exact level α two-sided HC

tests, that is, tests based on (3.4) with ν = 0.5. Here, α = 0.05. Asymptotic local levels (red lines) are
equal to α∗

m/2 with α∗
m defined in (3.6), while the exact αlow

s , s ∈ Im,n, (black points) correspond
to critical values b = 3.2451,3.4505 for m = n = 1000 (left graph) and m = 400, n = 1600 (right
graph), respectively.

and

Q〈〉
ν,p = max

{
sup
t>0

〈t − N(t)〉
tν

, sup
t>0

〈Ñ(t) − t〉
tν

}
, p ∈ {0,1}.

THEOREM 3.3. Let ν ∈ (0.5,1]. Under H=, the test statistic KS
ν,〈〉
m,n converges

in distribution to Q
〈〉
ν,p as m,n → ∞ and m/(m + n) → p ∈ [0,1].

The distribution of Q
〈〉
ν,p with p ∈ (0,1) seems to be discrete, and hence even

asymptotic weighted KS tests are typically not α-exhaustive and the effective level
may be much smaller than the prespecified α. For p ∈ {0,1}, we obtain asymptoti-
cally α-exhaustive tests at least for α < 0.5 and the CDF of Q

〈〉
ν,p can be calculated

with formulas given in [22]. However, a simple analytical representation is only
available for ν = 1; cf. results in [25].

For ν ∈ (0.5,1], almost all asymptotic local levels related to asymptotic level
α weighted KS tests are equal to zero. Many cases have to be distinguished in
order to identify all positive asymptotic local levels. We omit this here and give
a brief hint only. For p ∈ (0,1), only some extreme local levels are positive in
the left and/or right tail, and hence the sensitivity range of such tests lies in the
extreme tails. For p ∈ {0,1}, we get that only αs with limm,n→∞ min{s,m + n −
s}min{m,n}/(m + n) ∈ (0,∞) may be asymptotically positive.

Two examples of local level behavior in the right tail are displayed in Figure 7.
In the case m = 400, n = 1600 local levels are zero in the left tail, while for m =
n = 1000 local levels are symmetric in s ∈ Im,n. Surprisingly, asymptotic and exact
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FIG. 7. Lower local levels αlow
s , s ∈ Im,n, related to asymptotic and exact level α two-sided tests

based on (3.4) with ν = 0.75 and α = 0.05. The exact αs , s ∈ Im,n, (gray) correspond to the criti-

cal values b = 10.48996,15.91735 and P0(KSν,||
m,n > b) = 0.03598,0.01771 for m = n = 1000 (left

graph) and m = 400, n = 1600 (right graph), respectively. Asymptotic local levels (red) are defined
via Theorem 3.3. Thereby, the asymptotic critical values are b = 10.46635,15.90542 and the asymp-
totic global levels are 0.03632, 0.01787, respectively.

local levels are very close to each other. This seems to be true in general for ν not
too close to 0.5.

REMARK 3.2. The proofs of Theorems 3.1–3.2 also show that the empiri-
cal process KSν

m,n(t) converges in the sense of Hungarian constructions to a suit-
ably weighted Brownian bridge B

ν(t) uniformly on some subinterval of (0,1), cf.
(A3.11) in [11] for ν ∈ [0,0.5) and (A3.14) in [11] for ν = 0.5. Analogously, the
proof of Theorem 3.3 implies uniform convergence of the renormalized KS pro-
cess to suitably weighted Binomial processes for p ∈ (0,1) and Poisson processes
for p ∈ {0,1}.

4. Two-sample GOF tests with approximately equal local levels. In this
section, we provide new GOF tests that can be viewed as promising alternatives
for the HC tests. In the one-sample case, the concept of equal local levels was
recently introduced and studied in [16], [17] and [15]. The requirement of equal
local levels leads to so-called minimum p-value (minP) statistics. In [4], Berk and
Jones delivered a general theory for (one-sample) minP test statistics with respect
to Bahadur efficiency. Thereby, they denoted minP statistics as minimum level at-
tained statistics. Moreover, Berk and Jones studied various one-sample GOF tests
including minP tests with respect to Bahadur efficiency and asymptotic properties;
cf. [5]. The tail sensitive confidence bands introduced in [1] (see also [2]) corre-
spond to the minP test in the sense of duality between tests and confidence sets.
Recent investigations have shown that one-sample minP GOF tests are asymptot-
ically equivalent to one-sample HC tests but have favorable finite properties; cf.
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the discussions in [16], [17] and [15]. It seems that at least in the one-sample case
minP GOF tests yield a compromise between KS (larger local levels in the central
range) and HC tests (larger local levels in the tails).

In Section 4.1, we introduce a two-sample minP test and study its finite proper-
ties. In Section 4.2, we provide minP asymptotics.

4.1. Two-sample minP GOF tests. Formally, the minimum of any set of p-
values can be seen as a minP test statistic. Hence, minP GOF tests depend heavily
on the choice of p-values for testing local null hypotheses. First, we define local
p-values in terms of Vm,s . Conditionally on Sm+n(t) = s, one-sided p-values for
testing local null hypotheses H

≥
t are defined by

ps = FHyp(Vm,s |s,m,n), s ∈ Im,n,

and two-sided p-values for testing H=
t are defined by

ps = 2 min
{
1/2,FHyp(Vm,s |s,m,n),1 − FHyp(Vm,s − 1|s,m,n)

}
, s ∈ Im,n.

In both cases, the minP statistic is defined by mins∈Im,n ps and the corresponding
global null hypothesis is rejected if mins∈Im,n ps ≤ αloc

m,n. In order to exhaust the
prespecified level α as sharp as possible, αloc

m,n is chosen as large as possible and
equal to the maximum of all local levels. Note that αloc

m,n-values typically differ in
the one- and two-sided case. The minP tests considered here can be rewritten in
terms of the acceptance region Am,n of the form (2.2) with critical values cs , ds ,
s ∈ Im,n, defined by

(4.1) cs = max
{
x ∈ {0, . . . ,m} : FHyp(x − 1|s,m,n) ≤ αloc

m,n

}
in the one-sided case and

cs = max
{
x ∈ {0, . . . ,m} : FHyp(x − 1|s,m,n) ≤ αloc

m,n/2
}
,(4.2)

ds = min
{
x ∈ {0, . . . ,m} : FHyp(x|s,m,n) ≥ 1 − αloc

m,n/2
}

(4.3)

in the two-sided case. It is obvious that minP critical values fulfill ds = m −
cm+n−s, s ∈ Im,n, and, if m = n, cs = s − m + c2m−s, s ∈ Im,m. Consequently,
we get αlow

s = α
up
m+n−s and αlow

s = αlow
2m−s for s ∈ Im,n respectively, for resulting

minP local levels.

REMARK 4.1. It can easily be seen that one-sided minP tests based on αloc
m,n

can be obtained by derandomizing conditional one-sided UMPU tests at level αloc
m,n

for the (one-sided) comparison of two binomial distributions with sample sizes m

and n. Two-sided minP tests can be represented as a combination of two one-sided
level αloc

m,n/2 tests. Therefore, the theory of UMPU tests in 2 × 2-tables can be a
useful tool for studying various properties of minP tests.
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The next lemma is a consequence of results obtained in [13] concerning struc-
tural properties of UMPU tests in 2 × 2-tables.

LEMMA 4.1. The critical values defined in (4.1)–(4.3) are proper. Hence, the
corresponding minP tests are proper.

Due to the discreteness of the hypergeometric distributions, equal local lev-
els of all local tests are not possible. However, minP local levels may be viewed
as approximately equal if the sample sizes m and n are large enough. In any
case, for one-sided minP tests we get that αlow

s ≤ αloc
m,n, s ∈ Im,n, and there ex-

ists at least one s0 ∈ Im,n such that αlow
s0

= αloc
m,n. In the two-sided case, we ob-

tain αlow
s , α

up
s ≤ αloc

m,n/2, s ∈ Im,n, and there exists at least one s0 ∈ Im,n such that
αlow

s0
= α

up
m+n−s0

= αloc
m,n/2.

Figure 8 shows lower local levels of level α two-sided minP GOF tests with
α = 0.05 and some sample sizes. Note that minP local levels are identical to HC
local levels in the case m = n = 50, cf. ν = 0.5 in Figure 2. This is often the case
for smaller m- and n-values. In general, HC and minP GOF local levels seem to
be similar, while minP and HC local levels show a completely different behavior
if m �= n; cf. Figure 3 for ν = 0.5.

REMARK 4.2. An alternative version of two-sided minP GOF tests can be
constructed by derandomizing conditional level αloc

m,n UMPU tests for the two-
sided comparison of two binomial distributions. For m = n, we get the same two-
sided minP tests, no matter whether we start with one- or two-sided UMPU tests.
In contrast, for m �= n, different versions of minP tests are possible. For example,

FIG. 8. Lower local levels αlow
s , s ∈ Im,n, related to level α two-sided minP GOF tests with

α = 0.05. Left graph: m = 50, n = 50 , αloc
m,n = 0.00283, P0(mins∈Im,n

ps ≤ αloc
m,n) = 0.453; right

graph: m = 20, n = 80, αloc
m,n = 0.0038, P0(mins∈Im,n

ps ≤ αloc
m,n) = 0.0492.
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local p-values can be defined as the smallest possible level α′ such that the deran-
domized version of the conditional level α′ two-sided UMPU test leads to rejection
for the observed Vm,s . This leads to an alternative minP test with asymmetric local
levels. There is some evidence that the asymptotic behavior of this minP test coin-
cides with the minP test based on one-sided tests. From [13], we get that two-sided
(as well as one-sided, see Lemma 4.1) UMPU tests lead to proper critical values
for Vm,s .

4.2. Asymptotics of two-sample minP GOF tests. In this subsection, we pro-
vide the asymptotics of two-sample minP GOF tests defined by critical values
(4.1)–(4.3) and compare exact and corresponding asymptotic minP local levels.
We first provide asymptotic minP critical values.

THEOREM 4.1. For m,n ∈ N, αloc
m,n ∈ (0,1) and α∗

m,n ≡ α∗
min{m,n} with α∗

m

defined in (3.6) we get

lim
m,n→∞P0

(
min

s∈Im,n

ps > αloc
m,n

)
= 1 − α iff lim

m,n→∞
αloc

m,n

α∗
m,n

= 1.

It follows that two-sample minP local levels and almost all HC local levels are
asymptotically equal; cf. (b) in Theorem 3.2. That is, minP and HC tests coincide
asymptotically. Moreover, the two-sample minP asymptotics coincides with the
one-sample minP asymptotics related to the smaller sample.

Figure 9 shows lower minP local levels of asymptotic and exact level α minP
GOF tests as well as the corresponding HC local levels from Figure 6. Similarly, as

FIG. 9. Lower local levels αlow
s , s ∈ Im,n, related to asymptotic (red lines) and exact (black points)

level α two-sided minP tests together with the corresponding HC local levels for α = 0.05. Asymp-
totic local levels are equal to α∗

m/2 with α∗
m defined in (3.6), exact αlow

s , s ∈ Im,n, are based on
critical values αloc

m,n = 0.000741,0.000838 for m = n = 1000 (left graph) and m = 400, n = 1600
(right graph), respectively. HC local levels (light gray curves) are the same as in Figure 6.
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in the HC case, the global level of minP GOF tests seems to be nearly exhausted for
sample sizes being not too small. Moreover, it looks like minP and HC local levels
are very close to each other for equal (or nearly equal) sample sizes, while local
levels differ considerably if sample sizes are unequal. Unfortunately, the minP
asymptotics seems to be only slightly better than the HC asymptotics in the case
of equal sample sizes. However, for m �= n it appears as if the exact minP local
levels are much closer to the asymptotic ones than HC local levels. All in all, minP
GOF tests can be seen as more balanced HC tests in two- as well as one-sample
settings.

5. Power considerations. In Section 5.1, we briefly study and compare the
(overall) power of the two-sample GOF tests considered in Sections 3 and 4. In
Section 5.2, we discuss some versions of local power.

5.1. Power. The power of a two-sample GOF test with acceptance region (2.2)
is defined by PF,G(Vm /∈ Am,n). Due to the lack of general formulas for the power
of two-sample GOF tests (with few exceptions, cf., e.g., [28] for Lehmann alterna-
tives), simulation seems the method of choice. Some general results on the global
power function of GOF tests can be found in [20].

Given two different GOF tests, we will typically find different pairs of distri-
butions such that the first test dominates the second test and vice versa. Assuming
that we have no prior knowledge where the CDFs F and G may differ, the choice
of a test can only be a compromise in the sense that the power of the chosen test
should behave reasonably well over a large class of CDFs. From a practical point
of view, it seems a good strategy to avoid tests with excellent power under specific
alternatives and extremely poor power under other possible alternatives.

First of all, it is worth to mention that, given m �= n, the overall power typically
differs if we exchange m and n; cf. Table 1. This issue becomes more serious if
tests have nonsymmetric one-sided local levels. A general observation is that un-
equal sample sizes may lead to strange power behavior. For example, an increasing
sample size may lead to decreasing power; cf. the HC tests in Table 1. Here, a look

TABLE 1
Power of the two-sided KS (ν = 0), HC (ν = 0.5) and

minP tests for X1, . . . ,Xm being i.i.d. N(0,1)

distributed and Y1, . . . , Yn being i.i.d. N(0,3)

distributed (α = 0.05)

KS (ν = 0) HC (ν = 0.5) minP

m = 20, n = 20 0.29 0.62 0.62
m = 20, n = 80 0.55 0.31 0.83
m = 80, n = 20 0.67 0.99 0.97
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at local levels yields an explanation of such phenomena, for example, cf. Figure 3.
More precisely, lower and upper local levels may be large in the wrong tails. HC
tests have the most skewed local levels while KS and minP local levels are more
(although not perfect) symmetric. Therefore, we recommend to avoid tests with ex-
tremely nonsymmetric local levels, for example, weighted KS tests with ν ≥ 0.5,
if sample sizes differ considerably. In this case a minP test seems a good compro-
mise. If one prefers weighted KS tests with ν < 0.5, for example, because their
local levels in the central range are even bounded away from zero asymptotically,
we recommend the corresponding modified version based on the LLSFs induced
by the asymptotics in (3.5); cf. Section 2.4.

If m ≈ n, local levels of weighted KS tests with ν ≤ 0.5 and even ν’s slightly
larger that 0.5 are nearly symmetric, that is, right and left tails obtain approxi-
mately similar weights. Thereby, HC tests come close to the corresponding minP
tests.

We simulated various location-scale normal models with equal as well as un-
equal sample sizes. We observed that the power of weighted KS tests as a function
of ν is more or less unimodal. Thereby, the power is typically maximal for some
ν ∈ [0.3,0.6]. Surprisingly, ν ∈ (0,0.4] seems to beat ν = 0 so that we do not rec-
ommend original KS tests. One reason for this behavior may be that the size of the
acceptance regions, for example,

∑
s∈Im,n

(ds − cs), seems to be minimal for some
ν ∈ [0.3,0.4]. For approaches to minimize the acceptance region of one-sample
GOF tests, we refer to [14] and [29]. Furthermore, we observe that minP tests
(and hence HC tests in case m ≈ n) can be moderately more (rather for location-
scale or pure scale models) or less (rather for pure location models) powerful than
weighted KS tests with ν ∈ [0.0,0.4]. In total, it seems that minP tests have a stable
high power at least for most of the normal models considered in our simulations.
However, if one expects scale alternatives, one may choose a ν slightly larger than
0.5 in order to weight the tails a little more. This may lead to an increased power
compared to HC and minP. Thereby, one should check the resulting local levels in
order to avoid overweighting of the tails. Weighted KS tests with larger ν’s may
be an option to test a reference sample against outliers in a second sample.

In case m = n, the effective level of the classical KS test can be considerably
lower than the prespecified α which may result in an unnecessary low overall
power. Typically, if m and n are not relatively prime, there may be room for im-
provement. We observed that the effective level of the KS variant based on the
corresponding LLSF typically comes closer to the prespecified α. Therefore, if
one insists on the KS test, it is always worth to check whether the test based on
the corresponding LLSF yields a tighter effective level. If so, one should replace
KS by the latter one. For example, for m = n = 120 and α = 0.05 we observe
αeff ≈ 0.035 for KS while the αeff ≈ 0.0498 for the KS variant based on the LLSF.
A further option is to choose a ν slightly larger than 0.
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5.2. Power of local tests. A referee of this paper suggested to study some
kind of local power function. In order to receive an impression of the behavior
of different tests, one may study, for example, the power of local tests for test-
ing Ht . First, we may consider local t-power defined as local rejection probability
β1(t) = PF(t),G(t)(Ht is rejected) for each t . This results in the computation of the
unconditional power of two-sample binomial tests and can be time consuming.
Note that supt β1(t) yields a lower bound for the overall power. For illustration,
one may plot H(t) = ηF(t) + (1 − η)G(t) versus β1(t) with η = m/(m + n).
Second, we may consider local s-power defined as local rejection probability
β2(s) = PF,G(Vm,s /∈ [cs, ds]) for each s ∈ Im,n. In this case, it seems hard to say
anything about the distribution of Vm,s which depends on F and G. Nevertheless,
given F and G, we can easily simulate Vm,s as well as the test decision in s, and
hence the local s-power β2(s). In this case, one may plot s/(m + n) versus β2(s).
Typically, both local t- and s-powers lead to very similar shapes indicating where
local powers are small or large.

One may also look at least favorable distributions w.r.t. the overall power. Sup-
pose for a moment we restrict attention to the case F ≤ G and test H= versus
the one-sided alternative F(t) < G(t) for at least one t . Then the least favorable
overall power for a proper one-sided test ϕ defined as

(5.1) β(t0, q, δ, ϕ) = inf
F≤G:F(t0)=q,G(t0)≥q+δ

PF,G(ϕ = 1), q ∈ (0,1 − δ),

may be of interest. Clearly, the local t-power β1(t0) evaluated under G(t0) = q + δ

yields a lower bound for β(t0, q, δ, ϕ). Noting that the power decreases if F (G)
increases (decreases), an upper bound may be obtained for distributions F and G

with (i) F(t) = G(t) for t < t0 and t ≥ t0 + ε, and (ii) F(t) = q , G(t) = q + δ for
t ∈ [t0, t0 + ε) with ε > 0. Altogether, we get that

β1(t0) ≤ β(t0, q, δ, ϕ) ≤ β1(t0) + P0(ϕ = 1),

which yields a nice connection between power of local tests and least favorable
overall power. It seems hard if not impossible to cover the two-sided case in a
similar way.

6. Concluding remarks. Local levels of KS-type tests indicate which type of
s-values (e.g., extremes, intermediates or central) contribute to the overall level α.
Asymptotic local levels for extreme and central s-values may be bounded away
from zero or may tend to zero. Typically, local levels of intermediate s-values tend
to zero. While all local levels of minP versions tend to zero, weighted KS tests
with weight function (3.3) have asymptotically positive local levels in the central
range for ν ∈ [0,0.5) and, if m/(m + n) → p ∈ (0,1), asymptotically positive lo-
cal levels in the extreme range for ν ∈ (0.5,1]. In any case, large local levels for
s-values moving away from the center become more and more expensive with re-
spect to the consumption of the overall level α and the extreme tails are extremely
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expensive. Thereby, due to the underlying hypergeometric distributions, local lev-
els of s-values close to zero or m + n are typically zero for conventional α-values.
Taking all these points into account, one may design new KS-type tests in terms of
local levels or a LLSF in order to improve the power against specific alternatives.

The LLSFs α̃b(η) = �(−b[η(1 − η)]ν−1/2), which are induced by the asymp-
totics of weighted KS-type tests with ν < 0.5, have the interesting property, that
the (right and left hand) derivatives in 0 and 1 are zero for ν ∈ [0,0.5) and
b > 0. One may also consider shape functions with different behavior in 0 and
1 in order to give more weight to the tails. For example, consider the LLSFs
α̃κ (η) = κ[η(1 − η)]ν with tuning parameter κ > 0 for ν > 0. Now the corre-
sponding derivatives in 0 and 1 are ±∞ for ν ∈ (0,1), ±κ for ν = 1 and 0 for
ν > 1.

We may also combine the specific advantages of different types of sensitivity
behavior in terms of local levels. For a combination of classical test statistics in
order to overcome the poor sensitivity in the tails of the one-sample KS test, we
refer to [23] together with [24]. Alternatively, we may combine local levels of
different tests. As an example, we consider two combinations of (asymptotic) minP
and original KS tests. The asymptotic KS-related LLSFs α̃KS

κ (η) are given by the
right-hand side of (3.5) with b being the critical value of the asymptotic level
κ two-sided original KS test. For the minP part (assuming that m = min{m,n})
we choose LLSFs αminP

κ (η) ≡ α∗
m defined in (3.6) with κ instead of α. Then the

(symmetric) LLSFs α̃low
κ = α̃

up
κ = max{α̃KS

κ , αminP
κ } and α̃low

κ = α̃
up
κ = α̃KS

κ +αminP
κ

lead to two new GOF tests. In both cases, we choose κ as large as possible such
that the resulting combined tests are level α tests.

Figure 10 shows two-sided local levels of the aforementioned combined tests
for m = n = 1000 and α = 0.05. The two versions lead to very similar shapes of

FIG. 10. Two-sided local levels αs , s ∈ Im,n, related to level α two-sided GOF tests that are a
combination of original KS and minP tests with α = 0.05 and m = n = 1000. Left graph: maximum
version; right graph: sum version.
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the local levels. Moreover, these tests coincide asymptotically under the null hy-
pothesis and κ = α/2 leads to a level α test asymptotically. That is, the probability
to reject the true null hypothesis in the tails as well as in the central range tends
to α/2 for increasing sample sizes. We may also choose different weights for the
tests to be combined.

We conclude with some general remarks on the connection between weight
functions w and LLSFs α̃κ . Several classes of weight functions including
Chibisov–O’Reilly functions and the larger class of Erdős–Feller–Kolmogorov–
Petrovski (EFKP) upper-class functions were extensively studied, for example,
in [7] in connection with the uniform empirical process (and hence one-sample
GOF tests), the uniform quantile process and the Brownian bridge. We note that
the weight functions wν studied in Section 3 are Chibisov–O’Reilly functions for
ν ∈ [0,0.5). For an EFKP upper-class weight function w, weighted KS statis-
tics defined in (3.2) converge under H= to the supremum of the corresponding
weighted Brownian bridge Z = supη∈(0,1)〈B(η)〉/w(η), which is a nondegenerate
random variable; cf. Theorem 4.2.3 in [7]. In such cases, the corresponding (up-
per and lower) asymptotic LLSFs are given by α̃κ (η) = �(−κw(η)/

√
η(1 − η)),

where κ is the asymptotic critical value. Except rare cases, explicit formulas for the
distribution of Z are not available. However, one may simulate the distribution of Z

and the critical value κ in order to get a glimpse of the shape of the local levels and
to judge whether they may lead to useful GOF tests. Finally, any LLSF α̃κ defines
a bounding function bκ for the Brownian Bridge via P(B(η) ≤ bκ(η)) = α̃κ (η)

and vice versa. It may be of general interest to characterize LLSFs leading to bκ(α)

such that P(B(η) ≤ bκ(α)(η), η ∈ (0,1)) = 1 − α for all α ∈ (0,1).
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SUPPLEMENTARY MATERIAL

Supplement A: Proofs and computation of global levels (DOI: 10.1214/17-
AOS1647SUPPA; .pdf). In Section A1, we prove Lemma 3.1. Section A2 focuses
on the computation of global levels. Proofs of asymptotic results in Sections 3.2
and 4.2 are given in Section A3. Section A4 provides technical results for proofs
in Section A3.

Supplement B: Animated graphics of local levels (DOI: 10.1214/17-AOS
1647SUPPB; .pdf). In this supplement, we illustrate the convergence of local lev-
els related to weighted KS as well as minP tests to the corresponding asymptotic
counterparts by means of animated graphics.

https://doi.org/10.1214/17-AOS1647SUPPA
https://doi.org/10.1214/17-AOS1647SUPPB
https://doi.org/10.1214/17-AOS1647SUPPA
https://doi.org/10.1214/17-AOS1647SUPPB
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